parisc: Mark ex_table entries 32-bit aligned in uaccess.h
[platform/kernel/linux-starfive.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51                                  unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif  /* CONFIG_MIGRATION */
70
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
75
76 /*
77  * all active swap_info_structs
78  * protected with swap_lock, and ordered by priority.
79  */
80 static PLIST_HEAD(swap_active_head);
81
82 /*
83  * all available (active, not full) swap_info_structs
84  * protected with swap_avail_lock, ordered by priority.
85  * This is used by folio_alloc_swap() instead of swap_active_head
86  * because swap_active_head includes all swap_info_structs,
87  * but folio_alloc_swap() doesn't need to look at full ones.
88  * This uses its own lock instead of swap_lock because when a
89  * swap_info_struct changes between not-full/full, it needs to
90  * add/remove itself to/from this list, but the swap_info_struct->lock
91  * is held and the locking order requires swap_lock to be taken
92  * before any swap_info_struct->lock.
93  */
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
96
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
98
99 static DEFINE_MUTEX(swapon_mutex);
100
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
104
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
106
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
108 {
109         if (type >= MAX_SWAPFILES)
110                 return NULL;
111
112         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
113 }
114
115 static inline unsigned char swap_count(unsigned char ent)
116 {
117         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
118 }
119
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY             0x1
122 /*
123  * Reclaim the swap entry if there are no more mappings of the
124  * corresponding page
125  */
126 #define TTRS_UNMAPPED           0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL               0x4
129
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132                                  unsigned long offset, unsigned long flags)
133 {
134         swp_entry_t entry = swp_entry(si->type, offset);
135         struct folio *folio;
136         int ret = 0;
137
138         folio = filemap_get_folio(swap_address_space(entry), offset);
139         if (!folio)
140                 return 0;
141         /*
142          * When this function is called from scan_swap_map_slots() and it's
143          * called by vmscan.c at reclaiming folios. So we hold a folio lock
144          * here. We have to use trylock for avoiding deadlock. This is a special
145          * case and you should use folio_free_swap() with explicit folio_lock()
146          * in usual operations.
147          */
148         if (folio_trylock(folio)) {
149                 if ((flags & TTRS_ANYWAY) ||
150                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152                         ret = folio_free_swap(folio);
153                 folio_unlock(folio);
154         }
155         folio_put(folio);
156         return ret;
157 }
158
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
160 {
161         struct rb_node *rb = rb_first(&sis->swap_extent_root);
162         return rb_entry(rb, struct swap_extent, rb_node);
163 }
164
165 static inline struct swap_extent *next_se(struct swap_extent *se)
166 {
167         struct rb_node *rb = rb_next(&se->rb_node);
168         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
169 }
170
171 /*
172  * swapon tell device that all the old swap contents can be discarded,
173  * to allow the swap device to optimize its wear-levelling.
174  */
175 static int discard_swap(struct swap_info_struct *si)
176 {
177         struct swap_extent *se;
178         sector_t start_block;
179         sector_t nr_blocks;
180         int err = 0;
181
182         /* Do not discard the swap header page! */
183         se = first_se(si);
184         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
186         if (nr_blocks) {
187                 err = blkdev_issue_discard(si->bdev, start_block,
188                                 nr_blocks, GFP_KERNEL);
189                 if (err)
190                         return err;
191                 cond_resched();
192         }
193
194         for (se = next_se(se); se; se = next_se(se)) {
195                 start_block = se->start_block << (PAGE_SHIFT - 9);
196                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
197
198                 err = blkdev_issue_discard(si->bdev, start_block,
199                                 nr_blocks, GFP_KERNEL);
200                 if (err)
201                         break;
202
203                 cond_resched();
204         }
205         return err;             /* That will often be -EOPNOTSUPP */
206 }
207
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
210 {
211         struct swap_extent *se;
212         struct rb_node *rb;
213
214         rb = sis->swap_extent_root.rb_node;
215         while (rb) {
216                 se = rb_entry(rb, struct swap_extent, rb_node);
217                 if (offset < se->start_page)
218                         rb = rb->rb_left;
219                 else if (offset >= se->start_page + se->nr_pages)
220                         rb = rb->rb_right;
221                 else
222                         return se;
223         }
224         /* It *must* be present */
225         BUG();
226 }
227
228 sector_t swap_page_sector(struct page *page)
229 {
230         struct swap_info_struct *sis = page_swap_info(page);
231         struct swap_extent *se;
232         sector_t sector;
233         pgoff_t offset;
234
235         offset = __page_file_index(page);
236         se = offset_to_swap_extent(sis, offset);
237         sector = se->start_block + (offset - se->start_page);
238         return sector << (PAGE_SHIFT - 9);
239 }
240
241 /*
242  * swap allocation tell device that a cluster of swap can now be discarded,
243  * to allow the swap device to optimize its wear-levelling.
244  */
245 static void discard_swap_cluster(struct swap_info_struct *si,
246                                  pgoff_t start_page, pgoff_t nr_pages)
247 {
248         struct swap_extent *se = offset_to_swap_extent(si, start_page);
249
250         while (nr_pages) {
251                 pgoff_t offset = start_page - se->start_page;
252                 sector_t start_block = se->start_block + offset;
253                 sector_t nr_blocks = se->nr_pages - offset;
254
255                 if (nr_blocks > nr_pages)
256                         nr_blocks = nr_pages;
257                 start_page += nr_blocks;
258                 nr_pages -= nr_blocks;
259
260                 start_block <<= PAGE_SHIFT - 9;
261                 nr_blocks <<= PAGE_SHIFT - 9;
262                 if (blkdev_issue_discard(si->bdev, start_block,
263                                         nr_blocks, GFP_NOIO))
264                         break;
265
266                 se = next_se(se);
267         }
268 }
269
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
272
273 #define swap_entry_size(size)   (size)
274 #else
275 #define SWAPFILE_CLUSTER        256
276
277 /*
278  * Define swap_entry_size() as constant to let compiler to optimize
279  * out some code if !CONFIG_THP_SWAP
280  */
281 #define swap_entry_size(size)   1
282 #endif
283 #define LATENCY_LIMIT           256
284
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
286         unsigned int flag)
287 {
288         info->flags = flag;
289 }
290
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 {
293         return info->data;
294 }
295
296 static inline void cluster_set_count(struct swap_cluster_info *info,
297                                      unsigned int c)
298 {
299         info->data = c;
300 }
301
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303                                          unsigned int c, unsigned int f)
304 {
305         info->flags = f;
306         info->data = c;
307 }
308
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 {
311         return info->data;
312 }
313
314 static inline void cluster_set_next(struct swap_cluster_info *info,
315                                     unsigned int n)
316 {
317         info->data = n;
318 }
319
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321                                          unsigned int n, unsigned int f)
322 {
323         info->flags = f;
324         info->data = n;
325 }
326
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
328 {
329         return info->flags & CLUSTER_FLAG_FREE;
330 }
331
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
333 {
334         return info->flags & CLUSTER_FLAG_NEXT_NULL;
335 }
336
337 static inline void cluster_set_null(struct swap_cluster_info *info)
338 {
339         info->flags = CLUSTER_FLAG_NEXT_NULL;
340         info->data = 0;
341 }
342
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
344 {
345         if (IS_ENABLED(CONFIG_THP_SWAP))
346                 return info->flags & CLUSTER_FLAG_HUGE;
347         return false;
348 }
349
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
351 {
352         info->flags &= ~CLUSTER_FLAG_HUGE;
353 }
354
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356                                                      unsigned long offset)
357 {
358         struct swap_cluster_info *ci;
359
360         ci = si->cluster_info;
361         if (ci) {
362                 ci += offset / SWAPFILE_CLUSTER;
363                 spin_lock(&ci->lock);
364         }
365         return ci;
366 }
367
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
369 {
370         if (ci)
371                 spin_unlock(&ci->lock);
372 }
373
374 /*
375  * Determine the locking method in use for this device.  Return
376  * swap_cluster_info if SSD-style cluster-based locking is in place.
377  */
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379                 struct swap_info_struct *si, unsigned long offset)
380 {
381         struct swap_cluster_info *ci;
382
383         /* Try to use fine-grained SSD-style locking if available: */
384         ci = lock_cluster(si, offset);
385         /* Otherwise, fall back to traditional, coarse locking: */
386         if (!ci)
387                 spin_lock(&si->lock);
388
389         return ci;
390 }
391
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393                                                struct swap_cluster_info *ci)
394 {
395         if (ci)
396                 unlock_cluster(ci);
397         else
398                 spin_unlock(&si->lock);
399 }
400
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
402 {
403         return cluster_is_null(&list->head);
404 }
405
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
407 {
408         return cluster_next(&list->head);
409 }
410
411 static void cluster_list_init(struct swap_cluster_list *list)
412 {
413         cluster_set_null(&list->head);
414         cluster_set_null(&list->tail);
415 }
416
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418                                   struct swap_cluster_info *ci,
419                                   unsigned int idx)
420 {
421         if (cluster_list_empty(list)) {
422                 cluster_set_next_flag(&list->head, idx, 0);
423                 cluster_set_next_flag(&list->tail, idx, 0);
424         } else {
425                 struct swap_cluster_info *ci_tail;
426                 unsigned int tail = cluster_next(&list->tail);
427
428                 /*
429                  * Nested cluster lock, but both cluster locks are
430                  * only acquired when we held swap_info_struct->lock
431                  */
432                 ci_tail = ci + tail;
433                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434                 cluster_set_next(ci_tail, idx);
435                 spin_unlock(&ci_tail->lock);
436                 cluster_set_next_flag(&list->tail, idx, 0);
437         }
438 }
439
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441                                            struct swap_cluster_info *ci)
442 {
443         unsigned int idx;
444
445         idx = cluster_next(&list->head);
446         if (cluster_next(&list->tail) == idx) {
447                 cluster_set_null(&list->head);
448                 cluster_set_null(&list->tail);
449         } else
450                 cluster_set_next_flag(&list->head,
451                                       cluster_next(&ci[idx]), 0);
452
453         return idx;
454 }
455
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
458                 unsigned int idx)
459 {
460         /*
461          * If scan_swap_map_slots() can't find a free cluster, it will check
462          * si->swap_map directly. To make sure the discarding cluster isn't
463          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464          * It will be cleared after discard
465          */
466         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
468
469         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
470
471         schedule_work(&si->discard_work);
472 }
473
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
475 {
476         struct swap_cluster_info *ci = si->cluster_info;
477
478         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479         cluster_list_add_tail(&si->free_clusters, ci, idx);
480 }
481
482 /*
483  * Doing discard actually. After a cluster discard is finished, the cluster
484  * will be added to free cluster list. caller should hold si->lock.
485 */
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
487 {
488         struct swap_cluster_info *info, *ci;
489         unsigned int idx;
490
491         info = si->cluster_info;
492
493         while (!cluster_list_empty(&si->discard_clusters)) {
494                 idx = cluster_list_del_first(&si->discard_clusters, info);
495                 spin_unlock(&si->lock);
496
497                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
498                                 SWAPFILE_CLUSTER);
499
500                 spin_lock(&si->lock);
501                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502                 __free_cluster(si, idx);
503                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504                                 0, SWAPFILE_CLUSTER);
505                 unlock_cluster(ci);
506         }
507 }
508
509 static void swap_discard_work(struct work_struct *work)
510 {
511         struct swap_info_struct *si;
512
513         si = container_of(work, struct swap_info_struct, discard_work);
514
515         spin_lock(&si->lock);
516         swap_do_scheduled_discard(si);
517         spin_unlock(&si->lock);
518 }
519
520 static void swap_users_ref_free(struct percpu_ref *ref)
521 {
522         struct swap_info_struct *si;
523
524         si = container_of(ref, struct swap_info_struct, users);
525         complete(&si->comp);
526 }
527
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
529 {
530         struct swap_cluster_info *ci = si->cluster_info;
531
532         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533         cluster_list_del_first(&si->free_clusters, ci);
534         cluster_set_count_flag(ci + idx, 0, 0);
535 }
536
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
538 {
539         struct swap_cluster_info *ci = si->cluster_info + idx;
540
541         VM_BUG_ON(cluster_count(ci) != 0);
542         /*
543          * If the swap is discardable, prepare discard the cluster
544          * instead of free it immediately. The cluster will be freed
545          * after discard.
546          */
547         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549                 swap_cluster_schedule_discard(si, idx);
550                 return;
551         }
552
553         __free_cluster(si, idx);
554 }
555
556 /*
557  * The cluster corresponding to page_nr will be used. The cluster will be
558  * removed from free cluster list and its usage counter will be increased.
559  */
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561         struct swap_cluster_info *cluster_info, unsigned long page_nr)
562 {
563         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
564
565         if (!cluster_info)
566                 return;
567         if (cluster_is_free(&cluster_info[idx]))
568                 alloc_cluster(p, idx);
569
570         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571         cluster_set_count(&cluster_info[idx],
572                 cluster_count(&cluster_info[idx]) + 1);
573 }
574
575 /*
576  * The cluster corresponding to page_nr decreases one usage. If the usage
577  * counter becomes 0, which means no page in the cluster is in using, we can
578  * optionally discard the cluster and add it to free cluster list.
579  */
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581         struct swap_cluster_info *cluster_info, unsigned long page_nr)
582 {
583         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584
585         if (!cluster_info)
586                 return;
587
588         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589         cluster_set_count(&cluster_info[idx],
590                 cluster_count(&cluster_info[idx]) - 1);
591
592         if (cluster_count(&cluster_info[idx]) == 0)
593                 free_cluster(p, idx);
594 }
595
596 /*
597  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598  * cluster list. Avoiding such abuse to avoid list corruption.
599  */
600 static bool
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602         unsigned long offset)
603 {
604         struct percpu_cluster *percpu_cluster;
605         bool conflict;
606
607         offset /= SWAPFILE_CLUSTER;
608         conflict = !cluster_list_empty(&si->free_clusters) &&
609                 offset != cluster_list_first(&si->free_clusters) &&
610                 cluster_is_free(&si->cluster_info[offset]);
611
612         if (!conflict)
613                 return false;
614
615         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616         cluster_set_null(&percpu_cluster->index);
617         return true;
618 }
619
620 /*
621  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622  * might involve allocating a new cluster for current CPU too.
623  */
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625         unsigned long *offset, unsigned long *scan_base)
626 {
627         struct percpu_cluster *cluster;
628         struct swap_cluster_info *ci;
629         unsigned long tmp, max;
630
631 new_cluster:
632         cluster = this_cpu_ptr(si->percpu_cluster);
633         if (cluster_is_null(&cluster->index)) {
634                 if (!cluster_list_empty(&si->free_clusters)) {
635                         cluster->index = si->free_clusters.head;
636                         cluster->next = cluster_next(&cluster->index) *
637                                         SWAPFILE_CLUSTER;
638                 } else if (!cluster_list_empty(&si->discard_clusters)) {
639                         /*
640                          * we don't have free cluster but have some clusters in
641                          * discarding, do discard now and reclaim them, then
642                          * reread cluster_next_cpu since we dropped si->lock
643                          */
644                         swap_do_scheduled_discard(si);
645                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
646                         *offset = *scan_base;
647                         goto new_cluster;
648                 } else
649                         return false;
650         }
651
652         /*
653          * Other CPUs can use our cluster if they can't find a free cluster,
654          * check if there is still free entry in the cluster
655          */
656         tmp = cluster->next;
657         max = min_t(unsigned long, si->max,
658                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
659         if (tmp < max) {
660                 ci = lock_cluster(si, tmp);
661                 while (tmp < max) {
662                         if (!si->swap_map[tmp])
663                                 break;
664                         tmp++;
665                 }
666                 unlock_cluster(ci);
667         }
668         if (tmp >= max) {
669                 cluster_set_null(&cluster->index);
670                 goto new_cluster;
671         }
672         cluster->next = tmp + 1;
673         *offset = tmp;
674         *scan_base = tmp;
675         return true;
676 }
677
678 static void __del_from_avail_list(struct swap_info_struct *p)
679 {
680         int nid;
681
682         assert_spin_locked(&p->lock);
683         for_each_node(nid)
684                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
685 }
686
687 static void del_from_avail_list(struct swap_info_struct *p)
688 {
689         spin_lock(&swap_avail_lock);
690         __del_from_avail_list(p);
691         spin_unlock(&swap_avail_lock);
692 }
693
694 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
695                              unsigned int nr_entries)
696 {
697         unsigned int end = offset + nr_entries - 1;
698
699         if (offset == si->lowest_bit)
700                 si->lowest_bit += nr_entries;
701         if (end == si->highest_bit)
702                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
703         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
704         if (si->inuse_pages == si->pages) {
705                 si->lowest_bit = si->max;
706                 si->highest_bit = 0;
707                 del_from_avail_list(si);
708         }
709 }
710
711 static void add_to_avail_list(struct swap_info_struct *p)
712 {
713         int nid;
714
715         spin_lock(&swap_avail_lock);
716         for_each_node(nid) {
717                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
718                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719         }
720         spin_unlock(&swap_avail_lock);
721 }
722
723 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
724                             unsigned int nr_entries)
725 {
726         unsigned long begin = offset;
727         unsigned long end = offset + nr_entries - 1;
728         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729
730         if (offset < si->lowest_bit)
731                 si->lowest_bit = offset;
732         if (end > si->highest_bit) {
733                 bool was_full = !si->highest_bit;
734
735                 WRITE_ONCE(si->highest_bit, end);
736                 if (was_full && (si->flags & SWP_WRITEOK))
737                         add_to_avail_list(si);
738         }
739         atomic_long_add(nr_entries, &nr_swap_pages);
740         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
741         if (si->flags & SWP_BLKDEV)
742                 swap_slot_free_notify =
743                         si->bdev->bd_disk->fops->swap_slot_free_notify;
744         else
745                 swap_slot_free_notify = NULL;
746         while (offset <= end) {
747                 arch_swap_invalidate_page(si->type, offset);
748                 frontswap_invalidate_page(si->type, offset);
749                 if (swap_slot_free_notify)
750                         swap_slot_free_notify(si->bdev, offset);
751                 offset++;
752         }
753         clear_shadow_from_swap_cache(si->type, begin, end);
754 }
755
756 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
757 {
758         unsigned long prev;
759
760         if (!(si->flags & SWP_SOLIDSTATE)) {
761                 si->cluster_next = next;
762                 return;
763         }
764
765         prev = this_cpu_read(*si->cluster_next_cpu);
766         /*
767          * Cross the swap address space size aligned trunk, choose
768          * another trunk randomly to avoid lock contention on swap
769          * address space if possible.
770          */
771         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
772             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
773                 /* No free swap slots available */
774                 if (si->highest_bit <= si->lowest_bit)
775                         return;
776                 next = si->lowest_bit +
777                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
778                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
779                 next = max_t(unsigned int, next, si->lowest_bit);
780         }
781         this_cpu_write(*si->cluster_next_cpu, next);
782 }
783
784 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
785                                              unsigned long offset)
786 {
787         if (data_race(!si->swap_map[offset])) {
788                 spin_lock(&si->lock);
789                 return true;
790         }
791
792         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
793                 spin_lock(&si->lock);
794                 return true;
795         }
796
797         return false;
798 }
799
800 static int scan_swap_map_slots(struct swap_info_struct *si,
801                                unsigned char usage, int nr,
802                                swp_entry_t slots[])
803 {
804         struct swap_cluster_info *ci;
805         unsigned long offset;
806         unsigned long scan_base;
807         unsigned long last_in_cluster = 0;
808         int latency_ration = LATENCY_LIMIT;
809         int n_ret = 0;
810         bool scanned_many = false;
811
812         /*
813          * We try to cluster swap pages by allocating them sequentially
814          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
815          * way, however, we resort to first-free allocation, starting
816          * a new cluster.  This prevents us from scattering swap pages
817          * all over the entire swap partition, so that we reduce
818          * overall disk seek times between swap pages.  -- sct
819          * But we do now try to find an empty cluster.  -Andrea
820          * And we let swap pages go all over an SSD partition.  Hugh
821          */
822
823         si->flags += SWP_SCANNING;
824         /*
825          * Use percpu scan base for SSD to reduce lock contention on
826          * cluster and swap cache.  For HDD, sequential access is more
827          * important.
828          */
829         if (si->flags & SWP_SOLIDSTATE)
830                 scan_base = this_cpu_read(*si->cluster_next_cpu);
831         else
832                 scan_base = si->cluster_next;
833         offset = scan_base;
834
835         /* SSD algorithm */
836         if (si->cluster_info) {
837                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838                         goto scan;
839         } else if (unlikely(!si->cluster_nr--)) {
840                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
841                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
842                         goto checks;
843                 }
844
845                 spin_unlock(&si->lock);
846
847                 /*
848                  * If seek is expensive, start searching for new cluster from
849                  * start of partition, to minimize the span of allocated swap.
850                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
851                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
852                  */
853                 scan_base = offset = si->lowest_bit;
854                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855
856                 /* Locate the first empty (unaligned) cluster */
857                 for (; last_in_cluster <= si->highest_bit; offset++) {
858                         if (si->swap_map[offset])
859                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
860                         else if (offset == last_in_cluster) {
861                                 spin_lock(&si->lock);
862                                 offset -= SWAPFILE_CLUSTER - 1;
863                                 si->cluster_next = offset;
864                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
865                                 goto checks;
866                         }
867                         if (unlikely(--latency_ration < 0)) {
868                                 cond_resched();
869                                 latency_ration = LATENCY_LIMIT;
870                         }
871                 }
872
873                 offset = scan_base;
874                 spin_lock(&si->lock);
875                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
876         }
877
878 checks:
879         if (si->cluster_info) {
880                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
881                 /* take a break if we already got some slots */
882                         if (n_ret)
883                                 goto done;
884                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
885                                                         &scan_base))
886                                 goto scan;
887                 }
888         }
889         if (!(si->flags & SWP_WRITEOK))
890                 goto no_page;
891         if (!si->highest_bit)
892                 goto no_page;
893         if (offset > si->highest_bit)
894                 scan_base = offset = si->lowest_bit;
895
896         ci = lock_cluster(si, offset);
897         /* reuse swap entry of cache-only swap if not busy. */
898         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
899                 int swap_was_freed;
900                 unlock_cluster(ci);
901                 spin_unlock(&si->lock);
902                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
903                 spin_lock(&si->lock);
904                 /* entry was freed successfully, try to use this again */
905                 if (swap_was_freed)
906                         goto checks;
907                 goto scan; /* check next one */
908         }
909
910         if (si->swap_map[offset]) {
911                 unlock_cluster(ci);
912                 if (!n_ret)
913                         goto scan;
914                 else
915                         goto done;
916         }
917         WRITE_ONCE(si->swap_map[offset], usage);
918         inc_cluster_info_page(si, si->cluster_info, offset);
919         unlock_cluster(ci);
920
921         swap_range_alloc(si, offset, 1);
922         slots[n_ret++] = swp_entry(si->type, offset);
923
924         /* got enough slots or reach max slots? */
925         if ((n_ret == nr) || (offset >= si->highest_bit))
926                 goto done;
927
928         /* search for next available slot */
929
930         /* time to take a break? */
931         if (unlikely(--latency_ration < 0)) {
932                 if (n_ret)
933                         goto done;
934                 spin_unlock(&si->lock);
935                 cond_resched();
936                 spin_lock(&si->lock);
937                 latency_ration = LATENCY_LIMIT;
938         }
939
940         /* try to get more slots in cluster */
941         if (si->cluster_info) {
942                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943                         goto checks;
944         } else if (si->cluster_nr && !si->swap_map[++offset]) {
945                 /* non-ssd case, still more slots in cluster? */
946                 --si->cluster_nr;
947                 goto checks;
948         }
949
950         /*
951          * Even if there's no free clusters available (fragmented),
952          * try to scan a little more quickly with lock held unless we
953          * have scanned too many slots already.
954          */
955         if (!scanned_many) {
956                 unsigned long scan_limit;
957
958                 if (offset < scan_base)
959                         scan_limit = scan_base;
960                 else
961                         scan_limit = si->highest_bit;
962                 for (; offset <= scan_limit && --latency_ration > 0;
963                      offset++) {
964                         if (!si->swap_map[offset])
965                                 goto checks;
966                 }
967         }
968
969 done:
970         set_cluster_next(si, offset + 1);
971         si->flags -= SWP_SCANNING;
972         return n_ret;
973
974 scan:
975         spin_unlock(&si->lock);
976         while (++offset <= READ_ONCE(si->highest_bit)) {
977                 if (unlikely(--latency_ration < 0)) {
978                         cond_resched();
979                         latency_ration = LATENCY_LIMIT;
980                         scanned_many = true;
981                 }
982                 if (swap_offset_available_and_locked(si, offset))
983                         goto checks;
984         }
985         offset = si->lowest_bit;
986         while (offset < scan_base) {
987                 if (unlikely(--latency_ration < 0)) {
988                         cond_resched();
989                         latency_ration = LATENCY_LIMIT;
990                         scanned_many = true;
991                 }
992                 if (swap_offset_available_and_locked(si, offset))
993                         goto checks;
994                 offset++;
995         }
996         spin_lock(&si->lock);
997
998 no_page:
999         si->flags -= SWP_SCANNING;
1000         return n_ret;
1001 }
1002
1003 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1004 {
1005         unsigned long idx;
1006         struct swap_cluster_info *ci;
1007         unsigned long offset;
1008
1009         /*
1010          * Should not even be attempting cluster allocations when huge
1011          * page swap is disabled.  Warn and fail the allocation.
1012          */
1013         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1014                 VM_WARN_ON_ONCE(1);
1015                 return 0;
1016         }
1017
1018         if (cluster_list_empty(&si->free_clusters))
1019                 return 0;
1020
1021         idx = cluster_list_first(&si->free_clusters);
1022         offset = idx * SWAPFILE_CLUSTER;
1023         ci = lock_cluster(si, offset);
1024         alloc_cluster(si, idx);
1025         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026
1027         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028         unlock_cluster(ci);
1029         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1030         *slot = swp_entry(si->type, offset);
1031
1032         return 1;
1033 }
1034
1035 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 {
1037         unsigned long offset = idx * SWAPFILE_CLUSTER;
1038         struct swap_cluster_info *ci;
1039
1040         ci = lock_cluster(si, offset);
1041         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1042         cluster_set_count_flag(ci, 0, 0);
1043         free_cluster(si, idx);
1044         unlock_cluster(ci);
1045         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1046 }
1047
1048 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 {
1050         unsigned long size = swap_entry_size(entry_size);
1051         struct swap_info_struct *si, *next;
1052         long avail_pgs;
1053         int n_ret = 0;
1054         int node;
1055
1056         /* Only single cluster request supported */
1057         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058
1059         spin_lock(&swap_avail_lock);
1060
1061         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1062         if (avail_pgs <= 0) {
1063                 spin_unlock(&swap_avail_lock);
1064                 goto noswap;
1065         }
1066
1067         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068
1069         atomic_long_sub(n_goal * size, &nr_swap_pages);
1070
1071 start_over:
1072         node = numa_node_id();
1073         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1074                 /* requeue si to after same-priority siblings */
1075                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1076                 spin_unlock(&swap_avail_lock);
1077                 spin_lock(&si->lock);
1078                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1079                         spin_lock(&swap_avail_lock);
1080                         if (plist_node_empty(&si->avail_lists[node])) {
1081                                 spin_unlock(&si->lock);
1082                                 goto nextsi;
1083                         }
1084                         WARN(!si->highest_bit,
1085                              "swap_info %d in list but !highest_bit\n",
1086                              si->type);
1087                         WARN(!(si->flags & SWP_WRITEOK),
1088                              "swap_info %d in list but !SWP_WRITEOK\n",
1089                              si->type);
1090                         __del_from_avail_list(si);
1091                         spin_unlock(&si->lock);
1092                         goto nextsi;
1093                 }
1094                 if (size == SWAPFILE_CLUSTER) {
1095                         if (si->flags & SWP_BLKDEV)
1096                                 n_ret = swap_alloc_cluster(si, swp_entries);
1097                 } else
1098                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1099                                                     n_goal, swp_entries);
1100                 spin_unlock(&si->lock);
1101                 if (n_ret || size == SWAPFILE_CLUSTER)
1102                         goto check_out;
1103                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1104                         si->type);
1105                 cond_resched();
1106
1107                 spin_lock(&swap_avail_lock);
1108 nextsi:
1109                 /*
1110                  * if we got here, it's likely that si was almost full before,
1111                  * and since scan_swap_map_slots() can drop the si->lock,
1112                  * multiple callers probably all tried to get a page from the
1113                  * same si and it filled up before we could get one; or, the si
1114                  * filled up between us dropping swap_avail_lock and taking
1115                  * si->lock. Since we dropped the swap_avail_lock, the
1116                  * swap_avail_head list may have been modified; so if next is
1117                  * still in the swap_avail_head list then try it, otherwise
1118                  * start over if we have not gotten any slots.
1119                  */
1120                 if (plist_node_empty(&next->avail_lists[node]))
1121                         goto start_over;
1122         }
1123
1124         spin_unlock(&swap_avail_lock);
1125
1126 check_out:
1127         if (n_ret < n_goal)
1128                 atomic_long_add((long)(n_goal - n_ret) * size,
1129                                 &nr_swap_pages);
1130 noswap:
1131         return n_ret;
1132 }
1133
1134 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1135 {
1136         struct swap_info_struct *p;
1137         unsigned long offset;
1138
1139         if (!entry.val)
1140                 goto out;
1141         p = swp_swap_info(entry);
1142         if (!p)
1143                 goto bad_nofile;
1144         if (data_race(!(p->flags & SWP_USED)))
1145                 goto bad_device;
1146         offset = swp_offset(entry);
1147         if (offset >= p->max)
1148                 goto bad_offset;
1149         if (data_race(!p->swap_map[swp_offset(entry)]))
1150                 goto bad_free;
1151         return p;
1152
1153 bad_free:
1154         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1155         goto out;
1156 bad_offset:
1157         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1158         goto out;
1159 bad_device:
1160         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1161         goto out;
1162 bad_nofile:
1163         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1164 out:
1165         return NULL;
1166 }
1167
1168 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1169                                         struct swap_info_struct *q)
1170 {
1171         struct swap_info_struct *p;
1172
1173         p = _swap_info_get(entry);
1174
1175         if (p != q) {
1176                 if (q != NULL)
1177                         spin_unlock(&q->lock);
1178                 if (p != NULL)
1179                         spin_lock(&p->lock);
1180         }
1181         return p;
1182 }
1183
1184 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1185                                               unsigned long offset,
1186                                               unsigned char usage)
1187 {
1188         unsigned char count;
1189         unsigned char has_cache;
1190
1191         count = p->swap_map[offset];
1192
1193         has_cache = count & SWAP_HAS_CACHE;
1194         count &= ~SWAP_HAS_CACHE;
1195
1196         if (usage == SWAP_HAS_CACHE) {
1197                 VM_BUG_ON(!has_cache);
1198                 has_cache = 0;
1199         } else if (count == SWAP_MAP_SHMEM) {
1200                 /*
1201                  * Or we could insist on shmem.c using a special
1202                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1203                  */
1204                 count = 0;
1205         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1206                 if (count == COUNT_CONTINUED) {
1207                         if (swap_count_continued(p, offset, count))
1208                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1209                         else
1210                                 count = SWAP_MAP_MAX;
1211                 } else
1212                         count--;
1213         }
1214
1215         usage = count | has_cache;
1216         if (usage)
1217                 WRITE_ONCE(p->swap_map[offset], usage);
1218         else
1219                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1220
1221         return usage;
1222 }
1223
1224 /*
1225  * Check whether swap entry is valid in the swap device.  If so,
1226  * return pointer to swap_info_struct, and keep the swap entry valid
1227  * via preventing the swap device from being swapoff, until
1228  * put_swap_device() is called.  Otherwise return NULL.
1229  *
1230  * Notice that swapoff or swapoff+swapon can still happen before the
1231  * percpu_ref_tryget_live() in get_swap_device() or after the
1232  * percpu_ref_put() in put_swap_device() if there isn't any other way
1233  * to prevent swapoff, such as page lock, page table lock, etc.  The
1234  * caller must be prepared for that.  For example, the following
1235  * situation is possible.
1236  *
1237  *   CPU1                               CPU2
1238  *   do_swap_page()
1239  *     ...                              swapoff+swapon
1240  *     __read_swap_cache_async()
1241  *       swapcache_prepare()
1242  *         __swap_duplicate()
1243  *           // check swap_map
1244  *     // verify PTE not changed
1245  *
1246  * In __swap_duplicate(), the swap_map need to be checked before
1247  * changing partly because the specified swap entry may be for another
1248  * swap device which has been swapoff.  And in do_swap_page(), after
1249  * the page is read from the swap device, the PTE is verified not
1250  * changed with the page table locked to check whether the swap device
1251  * has been swapoff or swapoff+swapon.
1252  */
1253 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1254 {
1255         struct swap_info_struct *si;
1256         unsigned long offset;
1257
1258         if (!entry.val)
1259                 goto out;
1260         si = swp_swap_info(entry);
1261         if (!si)
1262                 goto bad_nofile;
1263         if (!percpu_ref_tryget_live(&si->users))
1264                 goto out;
1265         /*
1266          * Guarantee the si->users are checked before accessing other
1267          * fields of swap_info_struct.
1268          *
1269          * Paired with the spin_unlock() after setup_swap_info() in
1270          * enable_swap_info().
1271          */
1272         smp_rmb();
1273         offset = swp_offset(entry);
1274         if (offset >= si->max)
1275                 goto put_out;
1276
1277         return si;
1278 bad_nofile:
1279         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1280 out:
1281         return NULL;
1282 put_out:
1283         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1284         percpu_ref_put(&si->users);
1285         return NULL;
1286 }
1287
1288 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1289                                        swp_entry_t entry)
1290 {
1291         struct swap_cluster_info *ci;
1292         unsigned long offset = swp_offset(entry);
1293         unsigned char usage;
1294
1295         ci = lock_cluster_or_swap_info(p, offset);
1296         usage = __swap_entry_free_locked(p, offset, 1);
1297         unlock_cluster_or_swap_info(p, ci);
1298         if (!usage)
1299                 free_swap_slot(entry);
1300
1301         return usage;
1302 }
1303
1304 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1305 {
1306         struct swap_cluster_info *ci;
1307         unsigned long offset = swp_offset(entry);
1308         unsigned char count;
1309
1310         ci = lock_cluster(p, offset);
1311         count = p->swap_map[offset];
1312         VM_BUG_ON(count != SWAP_HAS_CACHE);
1313         p->swap_map[offset] = 0;
1314         dec_cluster_info_page(p, p->cluster_info, offset);
1315         unlock_cluster(ci);
1316
1317         mem_cgroup_uncharge_swap(entry, 1);
1318         swap_range_free(p, offset, 1);
1319 }
1320
1321 /*
1322  * Caller has made sure that the swap device corresponding to entry
1323  * is still around or has not been recycled.
1324  */
1325 void swap_free(swp_entry_t entry)
1326 {
1327         struct swap_info_struct *p;
1328
1329         p = _swap_info_get(entry);
1330         if (p)
1331                 __swap_entry_free(p, entry);
1332 }
1333
1334 /*
1335  * Called after dropping swapcache to decrease refcnt to swap entries.
1336  */
1337 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1338 {
1339         unsigned long offset = swp_offset(entry);
1340         unsigned long idx = offset / SWAPFILE_CLUSTER;
1341         struct swap_cluster_info *ci;
1342         struct swap_info_struct *si;
1343         unsigned char *map;
1344         unsigned int i, free_entries = 0;
1345         unsigned char val;
1346         int size = swap_entry_size(folio_nr_pages(folio));
1347
1348         si = _swap_info_get(entry);
1349         if (!si)
1350                 return;
1351
1352         ci = lock_cluster_or_swap_info(si, offset);
1353         if (size == SWAPFILE_CLUSTER) {
1354                 VM_BUG_ON(!cluster_is_huge(ci));
1355                 map = si->swap_map + offset;
1356                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1357                         val = map[i];
1358                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1359                         if (val == SWAP_HAS_CACHE)
1360                                 free_entries++;
1361                 }
1362                 cluster_clear_huge(ci);
1363                 if (free_entries == SWAPFILE_CLUSTER) {
1364                         unlock_cluster_or_swap_info(si, ci);
1365                         spin_lock(&si->lock);
1366                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1367                         swap_free_cluster(si, idx);
1368                         spin_unlock(&si->lock);
1369                         return;
1370                 }
1371         }
1372         for (i = 0; i < size; i++, entry.val++) {
1373                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1374                         unlock_cluster_or_swap_info(si, ci);
1375                         free_swap_slot(entry);
1376                         if (i == size - 1)
1377                                 return;
1378                         lock_cluster_or_swap_info(si, offset);
1379                 }
1380         }
1381         unlock_cluster_or_swap_info(si, ci);
1382 }
1383
1384 #ifdef CONFIG_THP_SWAP
1385 int split_swap_cluster(swp_entry_t entry)
1386 {
1387         struct swap_info_struct *si;
1388         struct swap_cluster_info *ci;
1389         unsigned long offset = swp_offset(entry);
1390
1391         si = _swap_info_get(entry);
1392         if (!si)
1393                 return -EBUSY;
1394         ci = lock_cluster(si, offset);
1395         cluster_clear_huge(ci);
1396         unlock_cluster(ci);
1397         return 0;
1398 }
1399 #endif
1400
1401 static int swp_entry_cmp(const void *ent1, const void *ent2)
1402 {
1403         const swp_entry_t *e1 = ent1, *e2 = ent2;
1404
1405         return (int)swp_type(*e1) - (int)swp_type(*e2);
1406 }
1407
1408 void swapcache_free_entries(swp_entry_t *entries, int n)
1409 {
1410         struct swap_info_struct *p, *prev;
1411         int i;
1412
1413         if (n <= 0)
1414                 return;
1415
1416         prev = NULL;
1417         p = NULL;
1418
1419         /*
1420          * Sort swap entries by swap device, so each lock is only taken once.
1421          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1422          * so low that it isn't necessary to optimize further.
1423          */
1424         if (nr_swapfiles > 1)
1425                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1426         for (i = 0; i < n; ++i) {
1427                 p = swap_info_get_cont(entries[i], prev);
1428                 if (p)
1429                         swap_entry_free(p, entries[i]);
1430                 prev = p;
1431         }
1432         if (p)
1433                 spin_unlock(&p->lock);
1434 }
1435
1436 int __swap_count(swp_entry_t entry)
1437 {
1438         struct swap_info_struct *si;
1439         pgoff_t offset = swp_offset(entry);
1440         int count = 0;
1441
1442         si = get_swap_device(entry);
1443         if (si) {
1444                 count = swap_count(si->swap_map[offset]);
1445                 put_swap_device(si);
1446         }
1447         return count;
1448 }
1449
1450 /*
1451  * How many references to @entry are currently swapped out?
1452  * This does not give an exact answer when swap count is continued,
1453  * but does include the high COUNT_CONTINUED flag to allow for that.
1454  */
1455 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1456 {
1457         pgoff_t offset = swp_offset(entry);
1458         struct swap_cluster_info *ci;
1459         int count;
1460
1461         ci = lock_cluster_or_swap_info(si, offset);
1462         count = swap_count(si->swap_map[offset]);
1463         unlock_cluster_or_swap_info(si, ci);
1464         return count;
1465 }
1466
1467 /*
1468  * How many references to @entry are currently swapped out?
1469  * This does not give an exact answer when swap count is continued,
1470  * but does include the high COUNT_CONTINUED flag to allow for that.
1471  */
1472 int __swp_swapcount(swp_entry_t entry)
1473 {
1474         int count = 0;
1475         struct swap_info_struct *si;
1476
1477         si = get_swap_device(entry);
1478         if (si) {
1479                 count = swap_swapcount(si, entry);
1480                 put_swap_device(si);
1481         }
1482         return count;
1483 }
1484
1485 /*
1486  * How many references to @entry are currently swapped out?
1487  * This considers COUNT_CONTINUED so it returns exact answer.
1488  */
1489 int swp_swapcount(swp_entry_t entry)
1490 {
1491         int count, tmp_count, n;
1492         struct swap_info_struct *p;
1493         struct swap_cluster_info *ci;
1494         struct page *page;
1495         pgoff_t offset;
1496         unsigned char *map;
1497
1498         p = _swap_info_get(entry);
1499         if (!p)
1500                 return 0;
1501
1502         offset = swp_offset(entry);
1503
1504         ci = lock_cluster_or_swap_info(p, offset);
1505
1506         count = swap_count(p->swap_map[offset]);
1507         if (!(count & COUNT_CONTINUED))
1508                 goto out;
1509
1510         count &= ~COUNT_CONTINUED;
1511         n = SWAP_MAP_MAX + 1;
1512
1513         page = vmalloc_to_page(p->swap_map + offset);
1514         offset &= ~PAGE_MASK;
1515         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1516
1517         do {
1518                 page = list_next_entry(page, lru);
1519                 map = kmap_atomic(page);
1520                 tmp_count = map[offset];
1521                 kunmap_atomic(map);
1522
1523                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1524                 n *= (SWAP_CONT_MAX + 1);
1525         } while (tmp_count & COUNT_CONTINUED);
1526 out:
1527         unlock_cluster_or_swap_info(p, ci);
1528         return count;
1529 }
1530
1531 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1532                                          swp_entry_t entry)
1533 {
1534         struct swap_cluster_info *ci;
1535         unsigned char *map = si->swap_map;
1536         unsigned long roffset = swp_offset(entry);
1537         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1538         int i;
1539         bool ret = false;
1540
1541         ci = lock_cluster_or_swap_info(si, offset);
1542         if (!ci || !cluster_is_huge(ci)) {
1543                 if (swap_count(map[roffset]))
1544                         ret = true;
1545                 goto unlock_out;
1546         }
1547         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1548                 if (swap_count(map[offset + i])) {
1549                         ret = true;
1550                         break;
1551                 }
1552         }
1553 unlock_out:
1554         unlock_cluster_or_swap_info(si, ci);
1555         return ret;
1556 }
1557
1558 static bool folio_swapped(struct folio *folio)
1559 {
1560         swp_entry_t entry = folio_swap_entry(folio);
1561         struct swap_info_struct *si = _swap_info_get(entry);
1562
1563         if (!si)
1564                 return false;
1565
1566         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1567                 return swap_swapcount(si, entry) != 0;
1568
1569         return swap_page_trans_huge_swapped(si, entry);
1570 }
1571
1572 /**
1573  * folio_free_swap() - Free the swap space used for this folio.
1574  * @folio: The folio to remove.
1575  *
1576  * If swap is getting full, or if there are no more mappings of this folio,
1577  * then call folio_free_swap to free its swap space.
1578  *
1579  * Return: true if we were able to release the swap space.
1580  */
1581 bool folio_free_swap(struct folio *folio)
1582 {
1583         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1584
1585         if (!folio_test_swapcache(folio))
1586                 return false;
1587         if (folio_test_writeback(folio))
1588                 return false;
1589         if (folio_swapped(folio))
1590                 return false;
1591
1592         /*
1593          * Once hibernation has begun to create its image of memory,
1594          * there's a danger that one of the calls to folio_free_swap()
1595          * - most probably a call from __try_to_reclaim_swap() while
1596          * hibernation is allocating its own swap pages for the image,
1597          * but conceivably even a call from memory reclaim - will free
1598          * the swap from a folio which has already been recorded in the
1599          * image as a clean swapcache folio, and then reuse its swap for
1600          * another page of the image.  On waking from hibernation, the
1601          * original folio might be freed under memory pressure, then
1602          * later read back in from swap, now with the wrong data.
1603          *
1604          * Hibernation suspends storage while it is writing the image
1605          * to disk so check that here.
1606          */
1607         if (pm_suspended_storage())
1608                 return false;
1609
1610         delete_from_swap_cache(folio);
1611         folio_set_dirty(folio);
1612         return true;
1613 }
1614
1615 /*
1616  * Free the swap entry like above, but also try to
1617  * free the page cache entry if it is the last user.
1618  */
1619 int free_swap_and_cache(swp_entry_t entry)
1620 {
1621         struct swap_info_struct *p;
1622         unsigned char count;
1623
1624         if (non_swap_entry(entry))
1625                 return 1;
1626
1627         p = _swap_info_get(entry);
1628         if (p) {
1629                 count = __swap_entry_free(p, entry);
1630                 if (count == SWAP_HAS_CACHE &&
1631                     !swap_page_trans_huge_swapped(p, entry))
1632                         __try_to_reclaim_swap(p, swp_offset(entry),
1633                                               TTRS_UNMAPPED | TTRS_FULL);
1634         }
1635         return p != NULL;
1636 }
1637
1638 #ifdef CONFIG_HIBERNATION
1639
1640 swp_entry_t get_swap_page_of_type(int type)
1641 {
1642         struct swap_info_struct *si = swap_type_to_swap_info(type);
1643         swp_entry_t entry = {0};
1644
1645         if (!si)
1646                 goto fail;
1647
1648         /* This is called for allocating swap entry, not cache */
1649         spin_lock(&si->lock);
1650         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1651                 atomic_long_dec(&nr_swap_pages);
1652         spin_unlock(&si->lock);
1653 fail:
1654         return entry;
1655 }
1656
1657 /*
1658  * Find the swap type that corresponds to given device (if any).
1659  *
1660  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1661  * from 0, in which the swap header is expected to be located.
1662  *
1663  * This is needed for the suspend to disk (aka swsusp).
1664  */
1665 int swap_type_of(dev_t device, sector_t offset)
1666 {
1667         int type;
1668
1669         if (!device)
1670                 return -1;
1671
1672         spin_lock(&swap_lock);
1673         for (type = 0; type < nr_swapfiles; type++) {
1674                 struct swap_info_struct *sis = swap_info[type];
1675
1676                 if (!(sis->flags & SWP_WRITEOK))
1677                         continue;
1678
1679                 if (device == sis->bdev->bd_dev) {
1680                         struct swap_extent *se = first_se(sis);
1681
1682                         if (se->start_block == offset) {
1683                                 spin_unlock(&swap_lock);
1684                                 return type;
1685                         }
1686                 }
1687         }
1688         spin_unlock(&swap_lock);
1689         return -ENODEV;
1690 }
1691
1692 int find_first_swap(dev_t *device)
1693 {
1694         int type;
1695
1696         spin_lock(&swap_lock);
1697         for (type = 0; type < nr_swapfiles; type++) {
1698                 struct swap_info_struct *sis = swap_info[type];
1699
1700                 if (!(sis->flags & SWP_WRITEOK))
1701                         continue;
1702                 *device = sis->bdev->bd_dev;
1703                 spin_unlock(&swap_lock);
1704                 return type;
1705         }
1706         spin_unlock(&swap_lock);
1707         return -ENODEV;
1708 }
1709
1710 /*
1711  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1712  * corresponding to given index in swap_info (swap type).
1713  */
1714 sector_t swapdev_block(int type, pgoff_t offset)
1715 {
1716         struct swap_info_struct *si = swap_type_to_swap_info(type);
1717         struct swap_extent *se;
1718
1719         if (!si || !(si->flags & SWP_WRITEOK))
1720                 return 0;
1721         se = offset_to_swap_extent(si, offset);
1722         return se->start_block + (offset - se->start_page);
1723 }
1724
1725 /*
1726  * Return either the total number of swap pages of given type, or the number
1727  * of free pages of that type (depending on @free)
1728  *
1729  * This is needed for software suspend
1730  */
1731 unsigned int count_swap_pages(int type, int free)
1732 {
1733         unsigned int n = 0;
1734
1735         spin_lock(&swap_lock);
1736         if ((unsigned int)type < nr_swapfiles) {
1737                 struct swap_info_struct *sis = swap_info[type];
1738
1739                 spin_lock(&sis->lock);
1740                 if (sis->flags & SWP_WRITEOK) {
1741                         n = sis->pages;
1742                         if (free)
1743                                 n -= sis->inuse_pages;
1744                 }
1745                 spin_unlock(&sis->lock);
1746         }
1747         spin_unlock(&swap_lock);
1748         return n;
1749 }
1750 #endif /* CONFIG_HIBERNATION */
1751
1752 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1753 {
1754         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1755 }
1756
1757 /*
1758  * No need to decide whether this PTE shares the swap entry with others,
1759  * just let do_wp_page work it out if a write is requested later - to
1760  * force COW, vm_page_prot omits write permission from any private vma.
1761  */
1762 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1763                 unsigned long addr, swp_entry_t entry, struct folio *folio)
1764 {
1765         struct page *page = folio_file_page(folio, swp_offset(entry));
1766         struct page *swapcache;
1767         spinlock_t *ptl;
1768         pte_t *pte, new_pte;
1769         int ret = 1;
1770
1771         swapcache = page;
1772         page = ksm_might_need_to_copy(page, vma, addr);
1773         if (unlikely(!page))
1774                 return -ENOMEM;
1775
1776         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778                 ret = 0;
1779                 goto out;
1780         }
1781
1782         if (unlikely(!PageUptodate(page))) {
1783                 pte_t pteval;
1784
1785                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1786                 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1787                 set_pte_at(vma->vm_mm, addr, pte, pteval);
1788                 swap_free(entry);
1789                 ret = 0;
1790                 goto out;
1791         }
1792
1793         /* See do_swap_page() */
1794         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1795         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1796
1797         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1798         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1799         get_page(page);
1800         if (page == swapcache) {
1801                 rmap_t rmap_flags = RMAP_NONE;
1802
1803                 /*
1804                  * See do_swap_page(): PageWriteback() would be problematic.
1805                  * However, we do a wait_on_page_writeback() just before this
1806                  * call and have the page locked.
1807                  */
1808                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1809                 if (pte_swp_exclusive(*pte))
1810                         rmap_flags |= RMAP_EXCLUSIVE;
1811
1812                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1813         } else { /* ksm created a completely new copy */
1814                 page_add_new_anon_rmap(page, vma, addr);
1815                 lru_cache_add_inactive_or_unevictable(page, vma);
1816         }
1817         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1818         if (pte_swp_soft_dirty(*pte))
1819                 new_pte = pte_mksoft_dirty(new_pte);
1820         if (pte_swp_uffd_wp(*pte))
1821                 new_pte = pte_mkuffd_wp(new_pte);
1822         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1823         swap_free(entry);
1824 out:
1825         pte_unmap_unlock(pte, ptl);
1826         if (page != swapcache) {
1827                 unlock_page(page);
1828                 put_page(page);
1829         }
1830         return ret;
1831 }
1832
1833 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1834                         unsigned long addr, unsigned long end,
1835                         unsigned int type)
1836 {
1837         swp_entry_t entry;
1838         pte_t *pte;
1839         struct swap_info_struct *si;
1840         int ret = 0;
1841         volatile unsigned char *swap_map;
1842
1843         si = swap_info[type];
1844         pte = pte_offset_map(pmd, addr);
1845         do {
1846                 struct folio *folio;
1847                 unsigned long offset;
1848
1849                 if (!is_swap_pte(*pte))
1850                         continue;
1851
1852                 entry = pte_to_swp_entry(*pte);
1853                 if (swp_type(entry) != type)
1854                         continue;
1855
1856                 offset = swp_offset(entry);
1857                 pte_unmap(pte);
1858                 swap_map = &si->swap_map[offset];
1859                 folio = swap_cache_get_folio(entry, vma, addr);
1860                 if (!folio) {
1861                         struct page *page;
1862                         struct vm_fault vmf = {
1863                                 .vma = vma,
1864                                 .address = addr,
1865                                 .real_address = addr,
1866                                 .pmd = pmd,
1867                         };
1868
1869                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1870                                                 &vmf);
1871                         if (page)
1872                                 folio = page_folio(page);
1873                 }
1874                 if (!folio) {
1875                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1876                                 goto try_next;
1877                         return -ENOMEM;
1878                 }
1879
1880                 folio_lock(folio);
1881                 folio_wait_writeback(folio);
1882                 ret = unuse_pte(vma, pmd, addr, entry, folio);
1883                 if (ret < 0) {
1884                         folio_unlock(folio);
1885                         folio_put(folio);
1886                         goto out;
1887                 }
1888
1889                 folio_free_swap(folio);
1890                 folio_unlock(folio);
1891                 folio_put(folio);
1892 try_next:
1893                 pte = pte_offset_map(pmd, addr);
1894         } while (pte++, addr += PAGE_SIZE, addr != end);
1895         pte_unmap(pte - 1);
1896
1897         ret = 0;
1898 out:
1899         return ret;
1900 }
1901
1902 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1903                                 unsigned long addr, unsigned long end,
1904                                 unsigned int type)
1905 {
1906         pmd_t *pmd;
1907         unsigned long next;
1908         int ret;
1909
1910         pmd = pmd_offset(pud, addr);
1911         do {
1912                 cond_resched();
1913                 next = pmd_addr_end(addr, end);
1914                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1915                         continue;
1916                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1917                 if (ret)
1918                         return ret;
1919         } while (pmd++, addr = next, addr != end);
1920         return 0;
1921 }
1922
1923 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1924                                 unsigned long addr, unsigned long end,
1925                                 unsigned int type)
1926 {
1927         pud_t *pud;
1928         unsigned long next;
1929         int ret;
1930
1931         pud = pud_offset(p4d, addr);
1932         do {
1933                 next = pud_addr_end(addr, end);
1934                 if (pud_none_or_clear_bad(pud))
1935                         continue;
1936                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1937                 if (ret)
1938                         return ret;
1939         } while (pud++, addr = next, addr != end);
1940         return 0;
1941 }
1942
1943 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1944                                 unsigned long addr, unsigned long end,
1945                                 unsigned int type)
1946 {
1947         p4d_t *p4d;
1948         unsigned long next;
1949         int ret;
1950
1951         p4d = p4d_offset(pgd, addr);
1952         do {
1953                 next = p4d_addr_end(addr, end);
1954                 if (p4d_none_or_clear_bad(p4d))
1955                         continue;
1956                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1957                 if (ret)
1958                         return ret;
1959         } while (p4d++, addr = next, addr != end);
1960         return 0;
1961 }
1962
1963 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1964 {
1965         pgd_t *pgd;
1966         unsigned long addr, end, next;
1967         int ret;
1968
1969         addr = vma->vm_start;
1970         end = vma->vm_end;
1971
1972         pgd = pgd_offset(vma->vm_mm, addr);
1973         do {
1974                 next = pgd_addr_end(addr, end);
1975                 if (pgd_none_or_clear_bad(pgd))
1976                         continue;
1977                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1978                 if (ret)
1979                         return ret;
1980         } while (pgd++, addr = next, addr != end);
1981         return 0;
1982 }
1983
1984 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1985 {
1986         struct vm_area_struct *vma;
1987         int ret = 0;
1988         VMA_ITERATOR(vmi, mm, 0);
1989
1990         mmap_read_lock(mm);
1991         for_each_vma(vmi, vma) {
1992                 if (vma->anon_vma) {
1993                         ret = unuse_vma(vma, type);
1994                         if (ret)
1995                                 break;
1996                 }
1997
1998                 cond_resched();
1999         }
2000         mmap_read_unlock(mm);
2001         return ret;
2002 }
2003
2004 /*
2005  * Scan swap_map from current position to next entry still in use.
2006  * Return 0 if there are no inuse entries after prev till end of
2007  * the map.
2008  */
2009 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2010                                         unsigned int prev)
2011 {
2012         unsigned int i;
2013         unsigned char count;
2014
2015         /*
2016          * No need for swap_lock here: we're just looking
2017          * for whether an entry is in use, not modifying it; false
2018          * hits are okay, and sys_swapoff() has already prevented new
2019          * allocations from this area (while holding swap_lock).
2020          */
2021         for (i = prev + 1; i < si->max; i++) {
2022                 count = READ_ONCE(si->swap_map[i]);
2023                 if (count && swap_count(count) != SWAP_MAP_BAD)
2024                         break;
2025                 if ((i % LATENCY_LIMIT) == 0)
2026                         cond_resched();
2027         }
2028
2029         if (i == si->max)
2030                 i = 0;
2031
2032         return i;
2033 }
2034
2035 static int try_to_unuse(unsigned int type)
2036 {
2037         struct mm_struct *prev_mm;
2038         struct mm_struct *mm;
2039         struct list_head *p;
2040         int retval = 0;
2041         struct swap_info_struct *si = swap_info[type];
2042         struct folio *folio;
2043         swp_entry_t entry;
2044         unsigned int i;
2045
2046         if (!READ_ONCE(si->inuse_pages))
2047                 return 0;
2048
2049 retry:
2050         retval = shmem_unuse(type);
2051         if (retval)
2052                 return retval;
2053
2054         prev_mm = &init_mm;
2055         mmget(prev_mm);
2056
2057         spin_lock(&mmlist_lock);
2058         p = &init_mm.mmlist;
2059         while (READ_ONCE(si->inuse_pages) &&
2060                !signal_pending(current) &&
2061                (p = p->next) != &init_mm.mmlist) {
2062
2063                 mm = list_entry(p, struct mm_struct, mmlist);
2064                 if (!mmget_not_zero(mm))
2065                         continue;
2066                 spin_unlock(&mmlist_lock);
2067                 mmput(prev_mm);
2068                 prev_mm = mm;
2069                 retval = unuse_mm(mm, type);
2070                 if (retval) {
2071                         mmput(prev_mm);
2072                         return retval;
2073                 }
2074
2075                 /*
2076                  * Make sure that we aren't completely killing
2077                  * interactive performance.
2078                  */
2079                 cond_resched();
2080                 spin_lock(&mmlist_lock);
2081         }
2082         spin_unlock(&mmlist_lock);
2083
2084         mmput(prev_mm);
2085
2086         i = 0;
2087         while (READ_ONCE(si->inuse_pages) &&
2088                !signal_pending(current) &&
2089                (i = find_next_to_unuse(si, i)) != 0) {
2090
2091                 entry = swp_entry(type, i);
2092                 folio = filemap_get_folio(swap_address_space(entry), i);
2093                 if (!folio)
2094                         continue;
2095
2096                 /*
2097                  * It is conceivable that a racing task removed this folio from
2098                  * swap cache just before we acquired the page lock. The folio
2099                  * might even be back in swap cache on another swap area. But
2100                  * that is okay, folio_free_swap() only removes stale folios.
2101                  */
2102                 folio_lock(folio);
2103                 folio_wait_writeback(folio);
2104                 folio_free_swap(folio);
2105                 folio_unlock(folio);
2106                 folio_put(folio);
2107         }
2108
2109         /*
2110          * Lets check again to see if there are still swap entries in the map.
2111          * If yes, we would need to do retry the unuse logic again.
2112          * Under global memory pressure, swap entries can be reinserted back
2113          * into process space after the mmlist loop above passes over them.
2114          *
2115          * Limit the number of retries? No: when mmget_not_zero()
2116          * above fails, that mm is likely to be freeing swap from
2117          * exit_mmap(), which proceeds at its own independent pace;
2118          * and even shmem_writepage() could have been preempted after
2119          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2120          * and robust (though cpu-intensive) just to keep retrying.
2121          */
2122         if (READ_ONCE(si->inuse_pages)) {
2123                 if (!signal_pending(current))
2124                         goto retry;
2125                 return -EINTR;
2126         }
2127
2128         return 0;
2129 }
2130
2131 /*
2132  * After a successful try_to_unuse, if no swap is now in use, we know
2133  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2134  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2135  * added to the mmlist just after page_duplicate - before would be racy.
2136  */
2137 static void drain_mmlist(void)
2138 {
2139         struct list_head *p, *next;
2140         unsigned int type;
2141
2142         for (type = 0; type < nr_swapfiles; type++)
2143                 if (swap_info[type]->inuse_pages)
2144                         return;
2145         spin_lock(&mmlist_lock);
2146         list_for_each_safe(p, next, &init_mm.mmlist)
2147                 list_del_init(p);
2148         spin_unlock(&mmlist_lock);
2149 }
2150
2151 /*
2152  * Free all of a swapdev's extent information
2153  */
2154 static void destroy_swap_extents(struct swap_info_struct *sis)
2155 {
2156         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2157                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2158                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2159
2160                 rb_erase(rb, &sis->swap_extent_root);
2161                 kfree(se);
2162         }
2163
2164         if (sis->flags & SWP_ACTIVATED) {
2165                 struct file *swap_file = sis->swap_file;
2166                 struct address_space *mapping = swap_file->f_mapping;
2167
2168                 sis->flags &= ~SWP_ACTIVATED;
2169                 if (mapping->a_ops->swap_deactivate)
2170                         mapping->a_ops->swap_deactivate(swap_file);
2171         }
2172 }
2173
2174 /*
2175  * Add a block range (and the corresponding page range) into this swapdev's
2176  * extent tree.
2177  *
2178  * This function rather assumes that it is called in ascending page order.
2179  */
2180 int
2181 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2182                 unsigned long nr_pages, sector_t start_block)
2183 {
2184         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2185         struct swap_extent *se;
2186         struct swap_extent *new_se;
2187
2188         /*
2189          * place the new node at the right most since the
2190          * function is called in ascending page order.
2191          */
2192         while (*link) {
2193                 parent = *link;
2194                 link = &parent->rb_right;
2195         }
2196
2197         if (parent) {
2198                 se = rb_entry(parent, struct swap_extent, rb_node);
2199                 BUG_ON(se->start_page + se->nr_pages != start_page);
2200                 if (se->start_block + se->nr_pages == start_block) {
2201                         /* Merge it */
2202                         se->nr_pages += nr_pages;
2203                         return 0;
2204                 }
2205         }
2206
2207         /* No merge, insert a new extent. */
2208         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2209         if (new_se == NULL)
2210                 return -ENOMEM;
2211         new_se->start_page = start_page;
2212         new_se->nr_pages = nr_pages;
2213         new_se->start_block = start_block;
2214
2215         rb_link_node(&new_se->rb_node, parent, link);
2216         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2217         return 1;
2218 }
2219 EXPORT_SYMBOL_GPL(add_swap_extent);
2220
2221 /*
2222  * A `swap extent' is a simple thing which maps a contiguous range of pages
2223  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2224  * built at swapon time and is then used at swap_writepage/swap_readpage
2225  * time for locating where on disk a page belongs.
2226  *
2227  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2228  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2229  * swap files identically.
2230  *
2231  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2232  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2233  * swapfiles are handled *identically* after swapon time.
2234  *
2235  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2236  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2237  * blocks are found which do not fall within the PAGE_SIZE alignment
2238  * requirements, they are simply tossed out - we will never use those blocks
2239  * for swapping.
2240  *
2241  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2242  * prevents users from writing to the swap device, which will corrupt memory.
2243  *
2244  * The amount of disk space which a single swap extent represents varies.
2245  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2246  * extents in the rbtree. - akpm.
2247  */
2248 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2249 {
2250         struct file *swap_file = sis->swap_file;
2251         struct address_space *mapping = swap_file->f_mapping;
2252         struct inode *inode = mapping->host;
2253         int ret;
2254
2255         if (S_ISBLK(inode->i_mode)) {
2256                 ret = add_swap_extent(sis, 0, sis->max, 0);
2257                 *span = sis->pages;
2258                 return ret;
2259         }
2260
2261         if (mapping->a_ops->swap_activate) {
2262                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2263                 if (ret < 0)
2264                         return ret;
2265                 sis->flags |= SWP_ACTIVATED;
2266                 if ((sis->flags & SWP_FS_OPS) &&
2267                     sio_pool_init() != 0) {
2268                         destroy_swap_extents(sis);
2269                         return -ENOMEM;
2270                 }
2271                 return ret;
2272         }
2273
2274         return generic_swapfile_activate(sis, swap_file, span);
2275 }
2276
2277 static int swap_node(struct swap_info_struct *p)
2278 {
2279         struct block_device *bdev;
2280
2281         if (p->bdev)
2282                 bdev = p->bdev;
2283         else
2284                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2285
2286         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2287 }
2288
2289 static void setup_swap_info(struct swap_info_struct *p, int prio,
2290                             unsigned char *swap_map,
2291                             struct swap_cluster_info *cluster_info)
2292 {
2293         int i;
2294
2295         if (prio >= 0)
2296                 p->prio = prio;
2297         else
2298                 p->prio = --least_priority;
2299         /*
2300          * the plist prio is negated because plist ordering is
2301          * low-to-high, while swap ordering is high-to-low
2302          */
2303         p->list.prio = -p->prio;
2304         for_each_node(i) {
2305                 if (p->prio >= 0)
2306                         p->avail_lists[i].prio = -p->prio;
2307                 else {
2308                         if (swap_node(p) == i)
2309                                 p->avail_lists[i].prio = 1;
2310                         else
2311                                 p->avail_lists[i].prio = -p->prio;
2312                 }
2313         }
2314         p->swap_map = swap_map;
2315         p->cluster_info = cluster_info;
2316 }
2317
2318 static void _enable_swap_info(struct swap_info_struct *p)
2319 {
2320         p->flags |= SWP_WRITEOK;
2321         atomic_long_add(p->pages, &nr_swap_pages);
2322         total_swap_pages += p->pages;
2323
2324         assert_spin_locked(&swap_lock);
2325         /*
2326          * both lists are plists, and thus priority ordered.
2327          * swap_active_head needs to be priority ordered for swapoff(),
2328          * which on removal of any swap_info_struct with an auto-assigned
2329          * (i.e. negative) priority increments the auto-assigned priority
2330          * of any lower-priority swap_info_structs.
2331          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2332          * which allocates swap pages from the highest available priority
2333          * swap_info_struct.
2334          */
2335         plist_add(&p->list, &swap_active_head);
2336         add_to_avail_list(p);
2337 }
2338
2339 static void enable_swap_info(struct swap_info_struct *p, int prio,
2340                                 unsigned char *swap_map,
2341                                 struct swap_cluster_info *cluster_info,
2342                                 unsigned long *frontswap_map)
2343 {
2344         if (IS_ENABLED(CONFIG_FRONTSWAP))
2345                 frontswap_init(p->type, frontswap_map);
2346         spin_lock(&swap_lock);
2347         spin_lock(&p->lock);
2348         setup_swap_info(p, prio, swap_map, cluster_info);
2349         spin_unlock(&p->lock);
2350         spin_unlock(&swap_lock);
2351         /*
2352          * Finished initializing swap device, now it's safe to reference it.
2353          */
2354         percpu_ref_resurrect(&p->users);
2355         spin_lock(&swap_lock);
2356         spin_lock(&p->lock);
2357         _enable_swap_info(p);
2358         spin_unlock(&p->lock);
2359         spin_unlock(&swap_lock);
2360 }
2361
2362 static void reinsert_swap_info(struct swap_info_struct *p)
2363 {
2364         spin_lock(&swap_lock);
2365         spin_lock(&p->lock);
2366         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2367         _enable_swap_info(p);
2368         spin_unlock(&p->lock);
2369         spin_unlock(&swap_lock);
2370 }
2371
2372 bool has_usable_swap(void)
2373 {
2374         bool ret = true;
2375
2376         spin_lock(&swap_lock);
2377         if (plist_head_empty(&swap_active_head))
2378                 ret = false;
2379         spin_unlock(&swap_lock);
2380         return ret;
2381 }
2382
2383 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2384 {
2385         struct swap_info_struct *p = NULL;
2386         unsigned char *swap_map;
2387         struct swap_cluster_info *cluster_info;
2388         unsigned long *frontswap_map;
2389         struct file *swap_file, *victim;
2390         struct address_space *mapping;
2391         struct inode *inode;
2392         struct filename *pathname;
2393         int err, found = 0;
2394         unsigned int old_block_size;
2395
2396         if (!capable(CAP_SYS_ADMIN))
2397                 return -EPERM;
2398
2399         BUG_ON(!current->mm);
2400
2401         pathname = getname(specialfile);
2402         if (IS_ERR(pathname))
2403                 return PTR_ERR(pathname);
2404
2405         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2406         err = PTR_ERR(victim);
2407         if (IS_ERR(victim))
2408                 goto out;
2409
2410         mapping = victim->f_mapping;
2411         spin_lock(&swap_lock);
2412         plist_for_each_entry(p, &swap_active_head, list) {
2413                 if (p->flags & SWP_WRITEOK) {
2414                         if (p->swap_file->f_mapping == mapping) {
2415                                 found = 1;
2416                                 break;
2417                         }
2418                 }
2419         }
2420         if (!found) {
2421                 err = -EINVAL;
2422                 spin_unlock(&swap_lock);
2423                 goto out_dput;
2424         }
2425         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2426                 vm_unacct_memory(p->pages);
2427         else {
2428                 err = -ENOMEM;
2429                 spin_unlock(&swap_lock);
2430                 goto out_dput;
2431         }
2432         spin_lock(&p->lock);
2433         del_from_avail_list(p);
2434         if (p->prio < 0) {
2435                 struct swap_info_struct *si = p;
2436                 int nid;
2437
2438                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2439                         si->prio++;
2440                         si->list.prio--;
2441                         for_each_node(nid) {
2442                                 if (si->avail_lists[nid].prio != 1)
2443                                         si->avail_lists[nid].prio--;
2444                         }
2445                 }
2446                 least_priority++;
2447         }
2448         plist_del(&p->list, &swap_active_head);
2449         atomic_long_sub(p->pages, &nr_swap_pages);
2450         total_swap_pages -= p->pages;
2451         p->flags &= ~SWP_WRITEOK;
2452         spin_unlock(&p->lock);
2453         spin_unlock(&swap_lock);
2454
2455         disable_swap_slots_cache_lock();
2456
2457         set_current_oom_origin();
2458         err = try_to_unuse(p->type);
2459         clear_current_oom_origin();
2460
2461         if (err) {
2462                 /* re-insert swap space back into swap_list */
2463                 reinsert_swap_info(p);
2464                 reenable_swap_slots_cache_unlock();
2465                 goto out_dput;
2466         }
2467
2468         reenable_swap_slots_cache_unlock();
2469
2470         /*
2471          * Wait for swap operations protected by get/put_swap_device()
2472          * to complete.
2473          *
2474          * We need synchronize_rcu() here to protect the accessing to
2475          * the swap cache data structure.
2476          */
2477         percpu_ref_kill(&p->users);
2478         synchronize_rcu();
2479         wait_for_completion(&p->comp);
2480
2481         flush_work(&p->discard_work);
2482
2483         destroy_swap_extents(p);
2484         if (p->flags & SWP_CONTINUED)
2485                 free_swap_count_continuations(p);
2486
2487         if (!p->bdev || !bdev_nonrot(p->bdev))
2488                 atomic_dec(&nr_rotate_swap);
2489
2490         mutex_lock(&swapon_mutex);
2491         spin_lock(&swap_lock);
2492         spin_lock(&p->lock);
2493         drain_mmlist();
2494
2495         /* wait for anyone still in scan_swap_map_slots */
2496         p->highest_bit = 0;             /* cuts scans short */
2497         while (p->flags >= SWP_SCANNING) {
2498                 spin_unlock(&p->lock);
2499                 spin_unlock(&swap_lock);
2500                 schedule_timeout_uninterruptible(1);
2501                 spin_lock(&swap_lock);
2502                 spin_lock(&p->lock);
2503         }
2504
2505         swap_file = p->swap_file;
2506         old_block_size = p->old_block_size;
2507         p->swap_file = NULL;
2508         p->max = 0;
2509         swap_map = p->swap_map;
2510         p->swap_map = NULL;
2511         cluster_info = p->cluster_info;
2512         p->cluster_info = NULL;
2513         frontswap_map = frontswap_map_get(p);
2514         spin_unlock(&p->lock);
2515         spin_unlock(&swap_lock);
2516         arch_swap_invalidate_area(p->type);
2517         frontswap_invalidate_area(p->type);
2518         frontswap_map_set(p, NULL);
2519         mutex_unlock(&swapon_mutex);
2520         free_percpu(p->percpu_cluster);
2521         p->percpu_cluster = NULL;
2522         free_percpu(p->cluster_next_cpu);
2523         p->cluster_next_cpu = NULL;
2524         vfree(swap_map);
2525         kvfree(cluster_info);
2526         kvfree(frontswap_map);
2527         /* Destroy swap account information */
2528         swap_cgroup_swapoff(p->type);
2529         exit_swap_address_space(p->type);
2530
2531         inode = mapping->host;
2532         if (S_ISBLK(inode->i_mode)) {
2533                 struct block_device *bdev = I_BDEV(inode);
2534
2535                 set_blocksize(bdev, old_block_size);
2536                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2537         }
2538
2539         inode_lock(inode);
2540         inode->i_flags &= ~S_SWAPFILE;
2541         inode_unlock(inode);
2542         filp_close(swap_file, NULL);
2543
2544         /*
2545          * Clear the SWP_USED flag after all resources are freed so that swapon
2546          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2547          * not hold p->lock after we cleared its SWP_WRITEOK.
2548          */
2549         spin_lock(&swap_lock);
2550         p->flags = 0;
2551         spin_unlock(&swap_lock);
2552
2553         err = 0;
2554         atomic_inc(&proc_poll_event);
2555         wake_up_interruptible(&proc_poll_wait);
2556
2557 out_dput:
2558         filp_close(victim, NULL);
2559 out:
2560         putname(pathname);
2561         return err;
2562 }
2563
2564 #ifdef CONFIG_PROC_FS
2565 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2566 {
2567         struct seq_file *seq = file->private_data;
2568
2569         poll_wait(file, &proc_poll_wait, wait);
2570
2571         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2572                 seq->poll_event = atomic_read(&proc_poll_event);
2573                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2574         }
2575
2576         return EPOLLIN | EPOLLRDNORM;
2577 }
2578
2579 /* iterator */
2580 static void *swap_start(struct seq_file *swap, loff_t *pos)
2581 {
2582         struct swap_info_struct *si;
2583         int type;
2584         loff_t l = *pos;
2585
2586         mutex_lock(&swapon_mutex);
2587
2588         if (!l)
2589                 return SEQ_START_TOKEN;
2590
2591         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2592                 if (!(si->flags & SWP_USED) || !si->swap_map)
2593                         continue;
2594                 if (!--l)
2595                         return si;
2596         }
2597
2598         return NULL;
2599 }
2600
2601 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2602 {
2603         struct swap_info_struct *si = v;
2604         int type;
2605
2606         if (v == SEQ_START_TOKEN)
2607                 type = 0;
2608         else
2609                 type = si->type + 1;
2610
2611         ++(*pos);
2612         for (; (si = swap_type_to_swap_info(type)); type++) {
2613                 if (!(si->flags & SWP_USED) || !si->swap_map)
2614                         continue;
2615                 return si;
2616         }
2617
2618         return NULL;
2619 }
2620
2621 static void swap_stop(struct seq_file *swap, void *v)
2622 {
2623         mutex_unlock(&swapon_mutex);
2624 }
2625
2626 static int swap_show(struct seq_file *swap, void *v)
2627 {
2628         struct swap_info_struct *si = v;
2629         struct file *file;
2630         int len;
2631         unsigned long bytes, inuse;
2632
2633         if (si == SEQ_START_TOKEN) {
2634                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2635                 return 0;
2636         }
2637
2638         bytes = si->pages << (PAGE_SHIFT - 10);
2639         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2640
2641         file = si->swap_file;
2642         len = seq_file_path(swap, file, " \t\n\\");
2643         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2644                         len < 40 ? 40 - len : 1, " ",
2645                         S_ISBLK(file_inode(file)->i_mode) ?
2646                                 "partition" : "file\t",
2647                         bytes, bytes < 10000000 ? "\t" : "",
2648                         inuse, inuse < 10000000 ? "\t" : "",
2649                         si->prio);
2650         return 0;
2651 }
2652
2653 static const struct seq_operations swaps_op = {
2654         .start =        swap_start,
2655         .next =         swap_next,
2656         .stop =         swap_stop,
2657         .show =         swap_show
2658 };
2659
2660 static int swaps_open(struct inode *inode, struct file *file)
2661 {
2662         struct seq_file *seq;
2663         int ret;
2664
2665         ret = seq_open(file, &swaps_op);
2666         if (ret)
2667                 return ret;
2668
2669         seq = file->private_data;
2670         seq->poll_event = atomic_read(&proc_poll_event);
2671         return 0;
2672 }
2673
2674 static const struct proc_ops swaps_proc_ops = {
2675         .proc_flags     = PROC_ENTRY_PERMANENT,
2676         .proc_open      = swaps_open,
2677         .proc_read      = seq_read,
2678         .proc_lseek     = seq_lseek,
2679         .proc_release   = seq_release,
2680         .proc_poll      = swaps_poll,
2681 };
2682
2683 static int __init procswaps_init(void)
2684 {
2685         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2686         return 0;
2687 }
2688 __initcall(procswaps_init);
2689 #endif /* CONFIG_PROC_FS */
2690
2691 #ifdef MAX_SWAPFILES_CHECK
2692 static int __init max_swapfiles_check(void)
2693 {
2694         MAX_SWAPFILES_CHECK();
2695         return 0;
2696 }
2697 late_initcall(max_swapfiles_check);
2698 #endif
2699
2700 static struct swap_info_struct *alloc_swap_info(void)
2701 {
2702         struct swap_info_struct *p;
2703         struct swap_info_struct *defer = NULL;
2704         unsigned int type;
2705         int i;
2706
2707         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2708         if (!p)
2709                 return ERR_PTR(-ENOMEM);
2710
2711         if (percpu_ref_init(&p->users, swap_users_ref_free,
2712                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2713                 kvfree(p);
2714                 return ERR_PTR(-ENOMEM);
2715         }
2716
2717         spin_lock(&swap_lock);
2718         for (type = 0; type < nr_swapfiles; type++) {
2719                 if (!(swap_info[type]->flags & SWP_USED))
2720                         break;
2721         }
2722         if (type >= MAX_SWAPFILES) {
2723                 spin_unlock(&swap_lock);
2724                 percpu_ref_exit(&p->users);
2725                 kvfree(p);
2726                 return ERR_PTR(-EPERM);
2727         }
2728         if (type >= nr_swapfiles) {
2729                 p->type = type;
2730                 /*
2731                  * Publish the swap_info_struct after initializing it.
2732                  * Note that kvzalloc() above zeroes all its fields.
2733                  */
2734                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2735                 nr_swapfiles++;
2736         } else {
2737                 defer = p;
2738                 p = swap_info[type];
2739                 /*
2740                  * Do not memset this entry: a racing procfs swap_next()
2741                  * would be relying on p->type to remain valid.
2742                  */
2743         }
2744         p->swap_extent_root = RB_ROOT;
2745         plist_node_init(&p->list, 0);
2746         for_each_node(i)
2747                 plist_node_init(&p->avail_lists[i], 0);
2748         p->flags = SWP_USED;
2749         spin_unlock(&swap_lock);
2750         if (defer) {
2751                 percpu_ref_exit(&defer->users);
2752                 kvfree(defer);
2753         }
2754         spin_lock_init(&p->lock);
2755         spin_lock_init(&p->cont_lock);
2756         init_completion(&p->comp);
2757
2758         return p;
2759 }
2760
2761 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2762 {
2763         int error;
2764
2765         if (S_ISBLK(inode->i_mode)) {
2766                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2767                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2768                 if (IS_ERR(p->bdev)) {
2769                         error = PTR_ERR(p->bdev);
2770                         p->bdev = NULL;
2771                         return error;
2772                 }
2773                 p->old_block_size = block_size(p->bdev);
2774                 error = set_blocksize(p->bdev, PAGE_SIZE);
2775                 if (error < 0)
2776                         return error;
2777                 /*
2778                  * Zoned block devices contain zones that have a sequential
2779                  * write only restriction.  Hence zoned block devices are not
2780                  * suitable for swapping.  Disallow them here.
2781                  */
2782                 if (bdev_is_zoned(p->bdev))
2783                         return -EINVAL;
2784                 p->flags |= SWP_BLKDEV;
2785         } else if (S_ISREG(inode->i_mode)) {
2786                 p->bdev = inode->i_sb->s_bdev;
2787         }
2788
2789         return 0;
2790 }
2791
2792
2793 /*
2794  * Find out how many pages are allowed for a single swap device. There
2795  * are two limiting factors:
2796  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2797  * 2) the number of bits in the swap pte, as defined by the different
2798  * architectures.
2799  *
2800  * In order to find the largest possible bit mask, a swap entry with
2801  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2802  * decoded to a swp_entry_t again, and finally the swap offset is
2803  * extracted.
2804  *
2805  * This will mask all the bits from the initial ~0UL mask that can't
2806  * be encoded in either the swp_entry_t or the architecture definition
2807  * of a swap pte.
2808  */
2809 unsigned long generic_max_swapfile_size(void)
2810 {
2811         return swp_offset(pte_to_swp_entry(
2812                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 }
2814
2815 /* Can be overridden by an architecture for additional checks. */
2816 __weak unsigned long arch_max_swapfile_size(void)
2817 {
2818         return generic_max_swapfile_size();
2819 }
2820
2821 static unsigned long read_swap_header(struct swap_info_struct *p,
2822                                         union swap_header *swap_header,
2823                                         struct inode *inode)
2824 {
2825         int i;
2826         unsigned long maxpages;
2827         unsigned long swapfilepages;
2828         unsigned long last_page;
2829
2830         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2831                 pr_err("Unable to find swap-space signature\n");
2832                 return 0;
2833         }
2834
2835         /* swap partition endianness hack... */
2836         if (swab32(swap_header->info.version) == 1) {
2837                 swab32s(&swap_header->info.version);
2838                 swab32s(&swap_header->info.last_page);
2839                 swab32s(&swap_header->info.nr_badpages);
2840                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2841                         return 0;
2842                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2843                         swab32s(&swap_header->info.badpages[i]);
2844         }
2845         /* Check the swap header's sub-version */
2846         if (swap_header->info.version != 1) {
2847                 pr_warn("Unable to handle swap header version %d\n",
2848                         swap_header->info.version);
2849                 return 0;
2850         }
2851
2852         p->lowest_bit  = 1;
2853         p->cluster_next = 1;
2854         p->cluster_nr = 0;
2855
2856         maxpages = swapfile_maximum_size;
2857         last_page = swap_header->info.last_page;
2858         if (!last_page) {
2859                 pr_warn("Empty swap-file\n");
2860                 return 0;
2861         }
2862         if (last_page > maxpages) {
2863                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2864                         maxpages << (PAGE_SHIFT - 10),
2865                         last_page << (PAGE_SHIFT - 10));
2866         }
2867         if (maxpages > last_page) {
2868                 maxpages = last_page + 1;
2869                 /* p->max is an unsigned int: don't overflow it */
2870                 if ((unsigned int)maxpages == 0)
2871                         maxpages = UINT_MAX;
2872         }
2873         p->highest_bit = maxpages - 1;
2874
2875         if (!maxpages)
2876                 return 0;
2877         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878         if (swapfilepages && maxpages > swapfilepages) {
2879                 pr_warn("Swap area shorter than signature indicates\n");
2880                 return 0;
2881         }
2882         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883                 return 0;
2884         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885                 return 0;
2886
2887         return maxpages;
2888 }
2889
2890 #define SWAP_CLUSTER_INFO_COLS                                          \
2891         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS                                         \
2893         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS                                               \
2895         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898                                         union swap_header *swap_header,
2899                                         unsigned char *swap_map,
2900                                         struct swap_cluster_info *cluster_info,
2901                                         unsigned long maxpages,
2902                                         sector_t *span)
2903 {
2904         unsigned int j, k;
2905         unsigned int nr_good_pages;
2906         int nr_extents;
2907         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909         unsigned long i, idx;
2910
2911         nr_good_pages = maxpages - 1;   /* omit header page */
2912
2913         cluster_list_init(&p->free_clusters);
2914         cluster_list_init(&p->discard_clusters);
2915
2916         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917                 unsigned int page_nr = swap_header->info.badpages[i];
2918                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919                         return -EINVAL;
2920                 if (page_nr < maxpages) {
2921                         swap_map[page_nr] = SWAP_MAP_BAD;
2922                         nr_good_pages--;
2923                         /*
2924                          * Haven't marked the cluster free yet, no list
2925                          * operation involved
2926                          */
2927                         inc_cluster_info_page(p, cluster_info, page_nr);
2928                 }
2929         }
2930
2931         /* Haven't marked the cluster free yet, no list operation involved */
2932         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933                 inc_cluster_info_page(p, cluster_info, i);
2934
2935         if (nr_good_pages) {
2936                 swap_map[0] = SWAP_MAP_BAD;
2937                 /*
2938                  * Not mark the cluster free yet, no list
2939                  * operation involved
2940                  */
2941                 inc_cluster_info_page(p, cluster_info, 0);
2942                 p->max = maxpages;
2943                 p->pages = nr_good_pages;
2944                 nr_extents = setup_swap_extents(p, span);
2945                 if (nr_extents < 0)
2946                         return nr_extents;
2947                 nr_good_pages = p->pages;
2948         }
2949         if (!nr_good_pages) {
2950                 pr_warn("Empty swap-file\n");
2951                 return -EINVAL;
2952         }
2953
2954         if (!cluster_info)
2955                 return nr_extents;
2956
2957
2958         /*
2959          * Reduce false cache line sharing between cluster_info and
2960          * sharing same address space.
2961          */
2962         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963                 j = (k + col) % SWAP_CLUSTER_COLS;
2964                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965                         idx = i * SWAP_CLUSTER_COLS + j;
2966                         if (idx >= nr_clusters)
2967                                 continue;
2968                         if (cluster_count(&cluster_info[idx]))
2969                                 continue;
2970                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2972                                               idx);
2973                 }
2974         }
2975         return nr_extents;
2976 }
2977
2978 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2979 {
2980         struct swap_info_struct *p;
2981         struct filename *name;
2982         struct file *swap_file = NULL;
2983         struct address_space *mapping;
2984         struct dentry *dentry;
2985         int prio;
2986         int error;
2987         union swap_header *swap_header;
2988         int nr_extents;
2989         sector_t span;
2990         unsigned long maxpages;
2991         unsigned char *swap_map = NULL;
2992         struct swap_cluster_info *cluster_info = NULL;
2993         unsigned long *frontswap_map = NULL;
2994         struct page *page = NULL;
2995         struct inode *inode = NULL;
2996         bool inced_nr_rotate_swap = false;
2997
2998         if (swap_flags & ~SWAP_FLAGS_VALID)
2999                 return -EINVAL;
3000
3001         if (!capable(CAP_SYS_ADMIN))
3002                 return -EPERM;
3003
3004         if (!swap_avail_heads)
3005                 return -ENOMEM;
3006
3007         p = alloc_swap_info();
3008         if (IS_ERR(p))
3009                 return PTR_ERR(p);
3010
3011         INIT_WORK(&p->discard_work, swap_discard_work);
3012
3013         name = getname(specialfile);
3014         if (IS_ERR(name)) {
3015                 error = PTR_ERR(name);
3016                 name = NULL;
3017                 goto bad_swap;
3018         }
3019         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3020         if (IS_ERR(swap_file)) {
3021                 error = PTR_ERR(swap_file);
3022                 swap_file = NULL;
3023                 goto bad_swap;
3024         }
3025
3026         p->swap_file = swap_file;
3027         mapping = swap_file->f_mapping;
3028         dentry = swap_file->f_path.dentry;
3029         inode = mapping->host;
3030
3031         error = claim_swapfile(p, inode);
3032         if (unlikely(error))
3033                 goto bad_swap;
3034
3035         inode_lock(inode);
3036         if (d_unlinked(dentry) || cant_mount(dentry)) {
3037                 error = -ENOENT;
3038                 goto bad_swap_unlock_inode;
3039         }
3040         if (IS_SWAPFILE(inode)) {
3041                 error = -EBUSY;
3042                 goto bad_swap_unlock_inode;
3043         }
3044
3045         /*
3046          * Read the swap header.
3047          */
3048         if (!mapping->a_ops->read_folio) {
3049                 error = -EINVAL;
3050                 goto bad_swap_unlock_inode;
3051         }
3052         page = read_mapping_page(mapping, 0, swap_file);
3053         if (IS_ERR(page)) {
3054                 error = PTR_ERR(page);
3055                 goto bad_swap_unlock_inode;
3056         }
3057         swap_header = kmap(page);
3058
3059         maxpages = read_swap_header(p, swap_header, inode);
3060         if (unlikely(!maxpages)) {
3061                 error = -EINVAL;
3062                 goto bad_swap_unlock_inode;
3063         }
3064
3065         /* OK, set up the swap map and apply the bad block list */
3066         swap_map = vzalloc(maxpages);
3067         if (!swap_map) {
3068                 error = -ENOMEM;
3069                 goto bad_swap_unlock_inode;
3070         }
3071
3072         if (p->bdev && bdev_stable_writes(p->bdev))
3073                 p->flags |= SWP_STABLE_WRITES;
3074
3075         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3076                 p->flags |= SWP_SYNCHRONOUS_IO;
3077
3078         if (p->bdev && bdev_nonrot(p->bdev)) {
3079                 int cpu;
3080                 unsigned long ci, nr_cluster;
3081
3082                 p->flags |= SWP_SOLIDSTATE;
3083                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3084                 if (!p->cluster_next_cpu) {
3085                         error = -ENOMEM;
3086                         goto bad_swap_unlock_inode;
3087                 }
3088                 /*
3089                  * select a random position to start with to help wear leveling
3090                  * SSD
3091                  */
3092                 for_each_possible_cpu(cpu) {
3093                         per_cpu(*p->cluster_next_cpu, cpu) =
3094                                 1 + prandom_u32_max(p->highest_bit);
3095                 }
3096                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3097
3098                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3099                                         GFP_KERNEL);
3100                 if (!cluster_info) {
3101                         error = -ENOMEM;
3102                         goto bad_swap_unlock_inode;
3103                 }
3104
3105                 for (ci = 0; ci < nr_cluster; ci++)
3106                         spin_lock_init(&((cluster_info + ci)->lock));
3107
3108                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3109                 if (!p->percpu_cluster) {
3110                         error = -ENOMEM;
3111                         goto bad_swap_unlock_inode;
3112                 }
3113                 for_each_possible_cpu(cpu) {
3114                         struct percpu_cluster *cluster;
3115                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3116                         cluster_set_null(&cluster->index);
3117                 }
3118         } else {
3119                 atomic_inc(&nr_rotate_swap);
3120                 inced_nr_rotate_swap = true;
3121         }
3122
3123         error = swap_cgroup_swapon(p->type, maxpages);
3124         if (error)
3125                 goto bad_swap_unlock_inode;
3126
3127         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3128                 cluster_info, maxpages, &span);
3129         if (unlikely(nr_extents < 0)) {
3130                 error = nr_extents;
3131                 goto bad_swap_unlock_inode;
3132         }
3133         /* frontswap enabled? set up bit-per-page map for frontswap */
3134         if (IS_ENABLED(CONFIG_FRONTSWAP))
3135                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3136                                          sizeof(long),
3137                                          GFP_KERNEL);
3138
3139         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3140             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3141                 /*
3142                  * When discard is enabled for swap with no particular
3143                  * policy flagged, we set all swap discard flags here in
3144                  * order to sustain backward compatibility with older
3145                  * swapon(8) releases.
3146                  */
3147                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3148                              SWP_PAGE_DISCARD);
3149
3150                 /*
3151                  * By flagging sys_swapon, a sysadmin can tell us to
3152                  * either do single-time area discards only, or to just
3153                  * perform discards for released swap page-clusters.
3154                  * Now it's time to adjust the p->flags accordingly.
3155                  */
3156                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3157                         p->flags &= ~SWP_PAGE_DISCARD;
3158                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3159                         p->flags &= ~SWP_AREA_DISCARD;
3160
3161                 /* issue a swapon-time discard if it's still required */
3162                 if (p->flags & SWP_AREA_DISCARD) {
3163                         int err = discard_swap(p);
3164                         if (unlikely(err))
3165                                 pr_err("swapon: discard_swap(%p): %d\n",
3166                                         p, err);
3167                 }
3168         }
3169
3170         error = init_swap_address_space(p->type, maxpages);
3171         if (error)
3172                 goto bad_swap_unlock_inode;
3173
3174         /*
3175          * Flush any pending IO and dirty mappings before we start using this
3176          * swap device.
3177          */
3178         inode->i_flags |= S_SWAPFILE;
3179         error = inode_drain_writes(inode);
3180         if (error) {
3181                 inode->i_flags &= ~S_SWAPFILE;
3182                 goto free_swap_address_space;
3183         }
3184
3185         mutex_lock(&swapon_mutex);
3186         prio = -1;
3187         if (swap_flags & SWAP_FLAG_PREFER)
3188                 prio =
3189                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3190         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3191
3192         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3193                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3194                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3195                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3196                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3197                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3198                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3199                 (frontswap_map) ? "FS" : "");
3200
3201         mutex_unlock(&swapon_mutex);
3202         atomic_inc(&proc_poll_event);
3203         wake_up_interruptible(&proc_poll_wait);
3204
3205         error = 0;
3206         goto out;
3207 free_swap_address_space:
3208         exit_swap_address_space(p->type);
3209 bad_swap_unlock_inode:
3210         inode_unlock(inode);
3211 bad_swap:
3212         free_percpu(p->percpu_cluster);
3213         p->percpu_cluster = NULL;
3214         free_percpu(p->cluster_next_cpu);
3215         p->cluster_next_cpu = NULL;
3216         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3217                 set_blocksize(p->bdev, p->old_block_size);
3218                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3219         }
3220         inode = NULL;
3221         destroy_swap_extents(p);
3222         swap_cgroup_swapoff(p->type);
3223         spin_lock(&swap_lock);
3224         p->swap_file = NULL;
3225         p->flags = 0;
3226         spin_unlock(&swap_lock);
3227         vfree(swap_map);
3228         kvfree(cluster_info);
3229         kvfree(frontswap_map);
3230         if (inced_nr_rotate_swap)
3231                 atomic_dec(&nr_rotate_swap);
3232         if (swap_file)
3233                 filp_close(swap_file, NULL);
3234 out:
3235         if (page && !IS_ERR(page)) {
3236                 kunmap(page);
3237                 put_page(page);
3238         }
3239         if (name)
3240                 putname(name);
3241         if (inode)
3242                 inode_unlock(inode);
3243         if (!error)
3244                 enable_swap_slots_cache();
3245         return error;
3246 }
3247
3248 void si_swapinfo(struct sysinfo *val)
3249 {
3250         unsigned int type;
3251         unsigned long nr_to_be_unused = 0;
3252
3253         spin_lock(&swap_lock);
3254         for (type = 0; type < nr_swapfiles; type++) {
3255                 struct swap_info_struct *si = swap_info[type];
3256
3257                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3258                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3259         }
3260         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3261         val->totalswap = total_swap_pages + nr_to_be_unused;
3262         spin_unlock(&swap_lock);
3263 }
3264
3265 /*
3266  * Verify that a swap entry is valid and increment its swap map count.
3267  *
3268  * Returns error code in following case.
3269  * - success -> 0
3270  * - swp_entry is invalid -> EINVAL
3271  * - swp_entry is migration entry -> EINVAL
3272  * - swap-cache reference is requested but there is already one. -> EEXIST
3273  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3274  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3275  */
3276 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3277 {
3278         struct swap_info_struct *p;
3279         struct swap_cluster_info *ci;
3280         unsigned long offset;
3281         unsigned char count;
3282         unsigned char has_cache;
3283         int err;
3284
3285         p = get_swap_device(entry);
3286         if (!p)
3287                 return -EINVAL;
3288
3289         offset = swp_offset(entry);
3290         ci = lock_cluster_or_swap_info(p, offset);
3291
3292         count = p->swap_map[offset];
3293
3294         /*
3295          * swapin_readahead() doesn't check if a swap entry is valid, so the
3296          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3297          */
3298         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3299                 err = -ENOENT;
3300                 goto unlock_out;
3301         }
3302
3303         has_cache = count & SWAP_HAS_CACHE;
3304         count &= ~SWAP_HAS_CACHE;
3305         err = 0;
3306
3307         if (usage == SWAP_HAS_CACHE) {
3308
3309                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3310                 if (!has_cache && count)
3311                         has_cache = SWAP_HAS_CACHE;
3312                 else if (has_cache)             /* someone else added cache */
3313                         err = -EEXIST;
3314                 else                            /* no users remaining */
3315                         err = -ENOENT;
3316
3317         } else if (count || has_cache) {
3318
3319                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3320                         count += usage;
3321                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3322                         err = -EINVAL;
3323                 else if (swap_count_continued(p, offset, count))
3324                         count = COUNT_CONTINUED;
3325                 else
3326                         err = -ENOMEM;
3327         } else
3328                 err = -ENOENT;                  /* unused swap entry */
3329
3330         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3331
3332 unlock_out:
3333         unlock_cluster_or_swap_info(p, ci);
3334         put_swap_device(p);
3335         return err;
3336 }
3337
3338 /*
3339  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3340  * (in which case its reference count is never incremented).
3341  */
3342 void swap_shmem_alloc(swp_entry_t entry)
3343 {
3344         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3345 }
3346
3347 /*
3348  * Increase reference count of swap entry by 1.
3349  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3350  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3351  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3352  * might occur if a page table entry has got corrupted.
3353  */
3354 int swap_duplicate(swp_entry_t entry)
3355 {
3356         int err = 0;
3357
3358         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3359                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3360         return err;
3361 }
3362
3363 /*
3364  * @entry: swap entry for which we allocate swap cache.
3365  *
3366  * Called when allocating swap cache for existing swap entry,
3367  * This can return error codes. Returns 0 at success.
3368  * -EEXIST means there is a swap cache.
3369  * Note: return code is different from swap_duplicate().
3370  */
3371 int swapcache_prepare(swp_entry_t entry)
3372 {
3373         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3374 }
3375
3376 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3377 {
3378         return swap_type_to_swap_info(swp_type(entry));
3379 }
3380
3381 struct swap_info_struct *page_swap_info(struct page *page)
3382 {
3383         swp_entry_t entry = { .val = page_private(page) };
3384         return swp_swap_info(entry);
3385 }
3386
3387 /*
3388  * out-of-line methods to avoid include hell.
3389  */
3390 struct address_space *swapcache_mapping(struct folio *folio)
3391 {
3392         return page_swap_info(&folio->page)->swap_file->f_mapping;
3393 }
3394 EXPORT_SYMBOL_GPL(swapcache_mapping);
3395
3396 pgoff_t __page_file_index(struct page *page)
3397 {
3398         swp_entry_t swap = { .val = page_private(page) };
3399         return swp_offset(swap);
3400 }
3401 EXPORT_SYMBOL_GPL(__page_file_index);
3402
3403 /*
3404  * add_swap_count_continuation - called when a swap count is duplicated
3405  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3406  * page of the original vmalloc'ed swap_map, to hold the continuation count
3407  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3408  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3409  *
3410  * These continuation pages are seldom referenced: the common paths all work
3411  * on the original swap_map, only referring to a continuation page when the
3412  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3413  *
3414  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3415  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3416  * can be called after dropping locks.
3417  */
3418 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3419 {
3420         struct swap_info_struct *si;
3421         struct swap_cluster_info *ci;
3422         struct page *head;
3423         struct page *page;
3424         struct page *list_page;
3425         pgoff_t offset;
3426         unsigned char count;
3427         int ret = 0;
3428
3429         /*
3430          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3431          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3432          */
3433         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3434
3435         si = get_swap_device(entry);
3436         if (!si) {
3437                 /*
3438                  * An acceptable race has occurred since the failing
3439                  * __swap_duplicate(): the swap device may be swapoff
3440                  */
3441                 goto outer;
3442         }
3443         spin_lock(&si->lock);
3444
3445         offset = swp_offset(entry);
3446
3447         ci = lock_cluster(si, offset);
3448
3449         count = swap_count(si->swap_map[offset]);
3450
3451         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3452                 /*
3453                  * The higher the swap count, the more likely it is that tasks
3454                  * will race to add swap count continuation: we need to avoid
3455                  * over-provisioning.
3456                  */
3457                 goto out;
3458         }
3459
3460         if (!page) {
3461                 ret = -ENOMEM;
3462                 goto out;
3463         }
3464
3465         /*
3466          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3467          * no architecture is using highmem pages for kernel page tables: so it
3468          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3469          */
3470         head = vmalloc_to_page(si->swap_map + offset);
3471         offset &= ~PAGE_MASK;
3472
3473         spin_lock(&si->cont_lock);
3474         /*
3475          * Page allocation does not initialize the page's lru field,
3476          * but it does always reset its private field.
3477          */
3478         if (!page_private(head)) {
3479                 BUG_ON(count & COUNT_CONTINUED);
3480                 INIT_LIST_HEAD(&head->lru);
3481                 set_page_private(head, SWP_CONTINUED);
3482                 si->flags |= SWP_CONTINUED;
3483         }
3484
3485         list_for_each_entry(list_page, &head->lru, lru) {
3486                 unsigned char *map;
3487
3488                 /*
3489                  * If the previous map said no continuation, but we've found
3490                  * a continuation page, free our allocation and use this one.
3491                  */
3492                 if (!(count & COUNT_CONTINUED))
3493                         goto out_unlock_cont;
3494
3495                 map = kmap_atomic(list_page) + offset;
3496                 count = *map;
3497                 kunmap_atomic(map);
3498
3499                 /*
3500                  * If this continuation count now has some space in it,
3501                  * free our allocation and use this one.
3502                  */
3503                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3504                         goto out_unlock_cont;
3505         }
3506
3507         list_add_tail(&page->lru, &head->lru);
3508         page = NULL;                    /* now it's attached, don't free it */
3509 out_unlock_cont:
3510         spin_unlock(&si->cont_lock);
3511 out:
3512         unlock_cluster(ci);
3513         spin_unlock(&si->lock);
3514         put_swap_device(si);
3515 outer:
3516         if (page)
3517                 __free_page(page);
3518         return ret;
3519 }
3520
3521 /*
3522  * swap_count_continued - when the original swap_map count is incremented
3523  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3524  * into, carry if so, or else fail until a new continuation page is allocated;
3525  * when the original swap_map count is decremented from 0 with continuation,
3526  * borrow from the continuation and report whether it still holds more.
3527  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3528  * lock.
3529  */
3530 static bool swap_count_continued(struct swap_info_struct *si,
3531                                  pgoff_t offset, unsigned char count)
3532 {
3533         struct page *head;
3534         struct page *page;
3535         unsigned char *map;
3536         bool ret;
3537
3538         head = vmalloc_to_page(si->swap_map + offset);
3539         if (page_private(head) != SWP_CONTINUED) {
3540                 BUG_ON(count & COUNT_CONTINUED);
3541                 return false;           /* need to add count continuation */
3542         }
3543
3544         spin_lock(&si->cont_lock);
3545         offset &= ~PAGE_MASK;
3546         page = list_next_entry(head, lru);
3547         map = kmap_atomic(page) + offset;
3548
3549         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3550                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3551
3552         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3553                 /*
3554                  * Think of how you add 1 to 999
3555                  */
3556                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3557                         kunmap_atomic(map);
3558                         page = list_next_entry(page, lru);
3559                         BUG_ON(page == head);
3560                         map = kmap_atomic(page) + offset;
3561                 }
3562                 if (*map == SWAP_CONT_MAX) {
3563                         kunmap_atomic(map);
3564                         page = list_next_entry(page, lru);
3565                         if (page == head) {
3566                                 ret = false;    /* add count continuation */
3567                                 goto out;
3568                         }
3569                         map = kmap_atomic(page) + offset;
3570 init_map:               *map = 0;               /* we didn't zero the page */
3571                 }
3572                 *map += 1;
3573                 kunmap_atomic(map);
3574                 while ((page = list_prev_entry(page, lru)) != head) {
3575                         map = kmap_atomic(page) + offset;
3576                         *map = COUNT_CONTINUED;
3577                         kunmap_atomic(map);
3578                 }
3579                 ret = true;                     /* incremented */
3580
3581         } else {                                /* decrementing */
3582                 /*
3583                  * Think of how you subtract 1 from 1000
3584                  */
3585                 BUG_ON(count != COUNT_CONTINUED);
3586                 while (*map == COUNT_CONTINUED) {
3587                         kunmap_atomic(map);
3588                         page = list_next_entry(page, lru);
3589                         BUG_ON(page == head);
3590                         map = kmap_atomic(page) + offset;
3591                 }
3592                 BUG_ON(*map == 0);
3593                 *map -= 1;
3594                 if (*map == 0)
3595                         count = 0;
3596                 kunmap_atomic(map);
3597                 while ((page = list_prev_entry(page, lru)) != head) {
3598                         map = kmap_atomic(page) + offset;
3599                         *map = SWAP_CONT_MAX | count;
3600                         count = COUNT_CONTINUED;
3601                         kunmap_atomic(map);
3602                 }
3603                 ret = count == COUNT_CONTINUED;
3604         }
3605 out:
3606         spin_unlock(&si->cont_lock);
3607         return ret;
3608 }
3609
3610 /*
3611  * free_swap_count_continuations - swapoff free all the continuation pages
3612  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3613  */
3614 static void free_swap_count_continuations(struct swap_info_struct *si)
3615 {
3616         pgoff_t offset;
3617
3618         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3619                 struct page *head;
3620                 head = vmalloc_to_page(si->swap_map + offset);
3621                 if (page_private(head)) {
3622                         struct page *page, *next;
3623
3624                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3625                                 list_del(&page->lru);
3626                                 __free_page(page);
3627                         }
3628                 }
3629         }
3630 }
3631
3632 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3633 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3634 {
3635         struct swap_info_struct *si, *next;
3636         int nid = page_to_nid(page);
3637
3638         if (!(gfp_mask & __GFP_IO))
3639                 return;
3640
3641         if (!blk_cgroup_congested())
3642                 return;
3643
3644         /*
3645          * We've already scheduled a throttle, avoid taking the global swap
3646          * lock.
3647          */
3648         if (current->throttle_queue)
3649                 return;
3650
3651         spin_lock(&swap_avail_lock);
3652         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3653                                   avail_lists[nid]) {
3654                 if (si->bdev) {
3655                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
3656                         break;
3657                 }
3658         }
3659         spin_unlock(&swap_avail_lock);
3660 }
3661 #endif
3662
3663 static int __init swapfile_init(void)
3664 {
3665         int nid;
3666
3667         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3668                                          GFP_KERNEL);
3669         if (!swap_avail_heads) {
3670                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3671                 return -ENOMEM;
3672         }
3673
3674         for_each_node(nid)
3675                 plist_head_init(&swap_avail_heads[nid]);
3676
3677         swapfile_maximum_size = arch_max_swapfile_size();
3678
3679 #ifdef CONFIG_MIGRATION
3680         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3681                 swap_migration_ad_supported = true;
3682 #endif  /* CONFIG_MIGRATION */
3683
3684         return 0;
3685 }
3686 subsys_initcall(swapfile_init);