4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <linux/swapops.h>
40 #include <linux/page_cgroup.h>
42 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44 static void free_swap_count_continuations(struct swap_info_struct *);
45 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47 DEFINE_SPINLOCK(swap_lock);
48 static unsigned int nr_swapfiles;
50 long total_swap_pages;
51 static int least_priority;
53 static const char Bad_file[] = "Bad swap file entry ";
54 static const char Unused_file[] = "Unused swap file entry ";
55 static const char Bad_offset[] = "Bad swap offset entry ";
56 static const char Unused_offset[] = "Unused swap offset entry ";
58 struct swap_list_t swap_list = {-1, -1};
60 struct swap_info_struct *swap_info[MAX_SWAPFILES];
62 static DEFINE_MUTEX(swapon_mutex);
64 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
65 /* Activity counter to indicate that a swapon or swapoff has occurred */
66 static atomic_t proc_poll_event = ATOMIC_INIT(0);
68 static inline unsigned char swap_count(unsigned char ent)
70 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
73 /* returns 1 if swap entry is freed */
75 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
77 swp_entry_t entry = swp_entry(si->type, offset);
81 page = find_get_page(&swapper_space, entry.val);
85 * This function is called from scan_swap_map() and it's called
86 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
87 * We have to use trylock for avoiding deadlock. This is a special
88 * case and you should use try_to_free_swap() with explicit lock_page()
89 * in usual operations.
91 if (trylock_page(page)) {
92 ret = try_to_free_swap(page);
95 page_cache_release(page);
100 * swapon tell device that all the old swap contents can be discarded,
101 * to allow the swap device to optimize its wear-levelling.
103 static int discard_swap(struct swap_info_struct *si)
105 struct swap_extent *se;
106 sector_t start_block;
110 /* Do not discard the swap header page! */
111 se = &si->first_swap_extent;
112 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
113 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
115 err = blkdev_issue_discard(si->bdev, start_block,
116 nr_blocks, GFP_KERNEL, 0);
122 list_for_each_entry(se, &si->first_swap_extent.list, list) {
123 start_block = se->start_block << (PAGE_SHIFT - 9);
124 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
126 err = blkdev_issue_discard(si->bdev, start_block,
127 nr_blocks, GFP_KERNEL, 0);
133 return err; /* That will often be -EOPNOTSUPP */
137 * swap allocation tell device that a cluster of swap can now be discarded,
138 * to allow the swap device to optimize its wear-levelling.
140 static void discard_swap_cluster(struct swap_info_struct *si,
141 pgoff_t start_page, pgoff_t nr_pages)
143 struct swap_extent *se = si->curr_swap_extent;
144 int found_extent = 0;
147 struct list_head *lh;
149 if (se->start_page <= start_page &&
150 start_page < se->start_page + se->nr_pages) {
151 pgoff_t offset = start_page - se->start_page;
152 sector_t start_block = se->start_block + offset;
153 sector_t nr_blocks = se->nr_pages - offset;
155 if (nr_blocks > nr_pages)
156 nr_blocks = nr_pages;
157 start_page += nr_blocks;
158 nr_pages -= nr_blocks;
161 si->curr_swap_extent = se;
163 start_block <<= PAGE_SHIFT - 9;
164 nr_blocks <<= PAGE_SHIFT - 9;
165 if (blkdev_issue_discard(si->bdev, start_block,
166 nr_blocks, GFP_NOIO, 0))
171 se = list_entry(lh, struct swap_extent, list);
175 static int wait_for_discard(void *word)
181 #define SWAPFILE_CLUSTER 256
182 #define LATENCY_LIMIT 256
184 static unsigned long scan_swap_map(struct swap_info_struct *si,
187 unsigned long offset;
188 unsigned long scan_base;
189 unsigned long last_in_cluster = 0;
190 int latency_ration = LATENCY_LIMIT;
191 int found_free_cluster = 0;
194 * We try to cluster swap pages by allocating them sequentially
195 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
196 * way, however, we resort to first-free allocation, starting
197 * a new cluster. This prevents us from scattering swap pages
198 * all over the entire swap partition, so that we reduce
199 * overall disk seek times between swap pages. -- sct
200 * But we do now try to find an empty cluster. -Andrea
201 * And we let swap pages go all over an SSD partition. Hugh
204 si->flags += SWP_SCANNING;
205 scan_base = offset = si->cluster_next;
207 if (unlikely(!si->cluster_nr--)) {
208 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
209 si->cluster_nr = SWAPFILE_CLUSTER - 1;
212 if (si->flags & SWP_DISCARDABLE) {
214 * Start range check on racing allocations, in case
215 * they overlap the cluster we eventually decide on
216 * (we scan without swap_lock to allow preemption).
217 * It's hardly conceivable that cluster_nr could be
218 * wrapped during our scan, but don't depend on it.
220 if (si->lowest_alloc)
222 si->lowest_alloc = si->max;
223 si->highest_alloc = 0;
225 spin_unlock(&swap_lock);
228 * If seek is expensive, start searching for new cluster from
229 * start of partition, to minimize the span of allocated swap.
230 * But if seek is cheap, search from our current position, so
231 * that swap is allocated from all over the partition: if the
232 * Flash Translation Layer only remaps within limited zones,
233 * we don't want to wear out the first zone too quickly.
235 if (!(si->flags & SWP_SOLIDSTATE))
236 scan_base = offset = si->lowest_bit;
237 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
239 /* Locate the first empty (unaligned) cluster */
240 for (; last_in_cluster <= si->highest_bit; offset++) {
241 if (si->swap_map[offset])
242 last_in_cluster = offset + SWAPFILE_CLUSTER;
243 else if (offset == last_in_cluster) {
244 spin_lock(&swap_lock);
245 offset -= SWAPFILE_CLUSTER - 1;
246 si->cluster_next = offset;
247 si->cluster_nr = SWAPFILE_CLUSTER - 1;
248 found_free_cluster = 1;
251 if (unlikely(--latency_ration < 0)) {
253 latency_ration = LATENCY_LIMIT;
257 offset = si->lowest_bit;
258 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
260 /* Locate the first empty (unaligned) cluster */
261 for (; last_in_cluster < scan_base; offset++) {
262 if (si->swap_map[offset])
263 last_in_cluster = offset + SWAPFILE_CLUSTER;
264 else if (offset == last_in_cluster) {
265 spin_lock(&swap_lock);
266 offset -= SWAPFILE_CLUSTER - 1;
267 si->cluster_next = offset;
268 si->cluster_nr = SWAPFILE_CLUSTER - 1;
269 found_free_cluster = 1;
272 if (unlikely(--latency_ration < 0)) {
274 latency_ration = LATENCY_LIMIT;
279 spin_lock(&swap_lock);
280 si->cluster_nr = SWAPFILE_CLUSTER - 1;
281 si->lowest_alloc = 0;
285 if (!(si->flags & SWP_WRITEOK))
287 if (!si->highest_bit)
289 if (offset > si->highest_bit)
290 scan_base = offset = si->lowest_bit;
292 /* reuse swap entry of cache-only swap if not busy. */
293 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
295 spin_unlock(&swap_lock);
296 swap_was_freed = __try_to_reclaim_swap(si, offset);
297 spin_lock(&swap_lock);
298 /* entry was freed successfully, try to use this again */
301 goto scan; /* check next one */
304 if (si->swap_map[offset])
307 if (offset == si->lowest_bit)
309 if (offset == si->highest_bit)
312 if (si->inuse_pages == si->pages) {
313 si->lowest_bit = si->max;
316 si->swap_map[offset] = usage;
317 si->cluster_next = offset + 1;
318 si->flags -= SWP_SCANNING;
320 if (si->lowest_alloc) {
322 * Only set when SWP_DISCARDABLE, and there's a scan
323 * for a free cluster in progress or just completed.
325 if (found_free_cluster) {
327 * To optimize wear-levelling, discard the
328 * old data of the cluster, taking care not to
329 * discard any of its pages that have already
330 * been allocated by racing tasks (offset has
331 * already stepped over any at the beginning).
333 if (offset < si->highest_alloc &&
334 si->lowest_alloc <= last_in_cluster)
335 last_in_cluster = si->lowest_alloc - 1;
336 si->flags |= SWP_DISCARDING;
337 spin_unlock(&swap_lock);
339 if (offset < last_in_cluster)
340 discard_swap_cluster(si, offset,
341 last_in_cluster - offset + 1);
343 spin_lock(&swap_lock);
344 si->lowest_alloc = 0;
345 si->flags &= ~SWP_DISCARDING;
347 smp_mb(); /* wake_up_bit advises this */
348 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
350 } else if (si->flags & SWP_DISCARDING) {
352 * Delay using pages allocated by racing tasks
353 * until the whole discard has been issued. We
354 * could defer that delay until swap_writepage,
355 * but it's easier to keep this self-contained.
357 spin_unlock(&swap_lock);
358 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
359 wait_for_discard, TASK_UNINTERRUPTIBLE);
360 spin_lock(&swap_lock);
363 * Note pages allocated by racing tasks while
364 * scan for a free cluster is in progress, so
365 * that its final discard can exclude them.
367 if (offset < si->lowest_alloc)
368 si->lowest_alloc = offset;
369 if (offset > si->highest_alloc)
370 si->highest_alloc = offset;
376 spin_unlock(&swap_lock);
377 while (++offset <= si->highest_bit) {
378 if (!si->swap_map[offset]) {
379 spin_lock(&swap_lock);
382 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
383 spin_lock(&swap_lock);
386 if (unlikely(--latency_ration < 0)) {
388 latency_ration = LATENCY_LIMIT;
391 offset = si->lowest_bit;
392 while (++offset < scan_base) {
393 if (!si->swap_map[offset]) {
394 spin_lock(&swap_lock);
397 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
398 spin_lock(&swap_lock);
401 if (unlikely(--latency_ration < 0)) {
403 latency_ration = LATENCY_LIMIT;
406 spin_lock(&swap_lock);
409 si->flags -= SWP_SCANNING;
413 swp_entry_t get_swap_page(void)
415 struct swap_info_struct *si;
420 spin_lock(&swap_lock);
421 if (nr_swap_pages <= 0)
425 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
426 si = swap_info[type];
429 (!wrapped && si->prio != swap_info[next]->prio)) {
430 next = swap_list.head;
434 if (!si->highest_bit)
436 if (!(si->flags & SWP_WRITEOK))
439 swap_list.next = next;
440 /* This is called for allocating swap entry for cache */
441 offset = scan_swap_map(si, SWAP_HAS_CACHE);
443 spin_unlock(&swap_lock);
444 return swp_entry(type, offset);
446 next = swap_list.next;
451 spin_unlock(&swap_lock);
452 return (swp_entry_t) {0};
455 /* The only caller of this function is now susupend routine */
456 swp_entry_t get_swap_page_of_type(int type)
458 struct swap_info_struct *si;
461 spin_lock(&swap_lock);
462 si = swap_info[type];
463 if (si && (si->flags & SWP_WRITEOK)) {
465 /* This is called for allocating swap entry, not cache */
466 offset = scan_swap_map(si, 1);
468 spin_unlock(&swap_lock);
469 return swp_entry(type, offset);
473 spin_unlock(&swap_lock);
474 return (swp_entry_t) {0};
477 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
479 struct swap_info_struct *p;
480 unsigned long offset, type;
484 type = swp_type(entry);
485 if (type >= nr_swapfiles)
488 if (!(p->flags & SWP_USED))
490 offset = swp_offset(entry);
491 if (offset >= p->max)
493 if (!p->swap_map[offset])
495 spin_lock(&swap_lock);
499 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
502 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
505 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
508 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
513 static unsigned char swap_entry_free(struct swap_info_struct *p,
514 swp_entry_t entry, unsigned char usage)
516 unsigned long offset = swp_offset(entry);
518 unsigned char has_cache;
520 count = p->swap_map[offset];
521 has_cache = count & SWAP_HAS_CACHE;
522 count &= ~SWAP_HAS_CACHE;
524 if (usage == SWAP_HAS_CACHE) {
525 VM_BUG_ON(!has_cache);
527 } else if (count == SWAP_MAP_SHMEM) {
529 * Or we could insist on shmem.c using a special
530 * swap_shmem_free() and free_shmem_swap_and_cache()...
533 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
534 if (count == COUNT_CONTINUED) {
535 if (swap_count_continued(p, offset, count))
536 count = SWAP_MAP_MAX | COUNT_CONTINUED;
538 count = SWAP_MAP_MAX;
544 mem_cgroup_uncharge_swap(entry);
546 usage = count | has_cache;
547 p->swap_map[offset] = usage;
549 /* free if no reference */
551 struct gendisk *disk = p->bdev->bd_disk;
552 if (offset < p->lowest_bit)
553 p->lowest_bit = offset;
554 if (offset > p->highest_bit)
555 p->highest_bit = offset;
556 if (swap_list.next >= 0 &&
557 p->prio > swap_info[swap_list.next]->prio)
558 swap_list.next = p->type;
561 frontswap_invalidate_page(p->type, offset);
562 if ((p->flags & SWP_BLKDEV) &&
563 disk->fops->swap_slot_free_notify)
564 disk->fops->swap_slot_free_notify(p->bdev, offset);
571 * Caller has made sure that the swapdevice corresponding to entry
572 * is still around or has not been recycled.
574 void swap_free(swp_entry_t entry)
576 struct swap_info_struct *p;
578 p = swap_info_get(entry);
580 swap_entry_free(p, entry, 1);
581 spin_unlock(&swap_lock);
586 * Called after dropping swapcache to decrease refcnt to swap entries.
588 void swapcache_free(swp_entry_t entry, struct page *page)
590 struct swap_info_struct *p;
593 p = swap_info_get(entry);
595 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
597 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
598 spin_unlock(&swap_lock);
603 * How many references to page are currently swapped out?
604 * This does not give an exact answer when swap count is continued,
605 * but does include the high COUNT_CONTINUED flag to allow for that.
607 int page_swapcount(struct page *page)
610 struct swap_info_struct *p;
613 entry.val = page_private(page);
614 p = swap_info_get(entry);
616 count = swap_count(p->swap_map[swp_offset(entry)]);
617 spin_unlock(&swap_lock);
623 * We can write to an anon page without COW if there are no other references
624 * to it. And as a side-effect, free up its swap: because the old content
625 * on disk will never be read, and seeking back there to write new content
626 * later would only waste time away from clustering.
628 int reuse_swap_page(struct page *page)
632 VM_BUG_ON(!PageLocked(page));
633 if (unlikely(PageKsm(page)))
635 count = page_mapcount(page);
636 if (count <= 1 && PageSwapCache(page)) {
637 count += page_swapcount(page);
638 if (count == 1 && !PageWriteback(page)) {
639 delete_from_swap_cache(page);
647 * If swap is getting full, or if there are no more mappings of this page,
648 * then try_to_free_swap is called to free its swap space.
650 int try_to_free_swap(struct page *page)
652 VM_BUG_ON(!PageLocked(page));
654 if (!PageSwapCache(page))
656 if (PageWriteback(page))
658 if (page_swapcount(page))
662 * Once hibernation has begun to create its image of memory,
663 * there's a danger that one of the calls to try_to_free_swap()
664 * - most probably a call from __try_to_reclaim_swap() while
665 * hibernation is allocating its own swap pages for the image,
666 * but conceivably even a call from memory reclaim - will free
667 * the swap from a page which has already been recorded in the
668 * image as a clean swapcache page, and then reuse its swap for
669 * another page of the image. On waking from hibernation, the
670 * original page might be freed under memory pressure, then
671 * later read back in from swap, now with the wrong data.
673 * Hibration suspends storage while it is writing the image
674 * to disk so check that here.
676 if (pm_suspended_storage())
679 delete_from_swap_cache(page);
685 * Free the swap entry like above, but also try to
686 * free the page cache entry if it is the last user.
688 int free_swap_and_cache(swp_entry_t entry)
690 struct swap_info_struct *p;
691 struct page *page = NULL;
693 if (non_swap_entry(entry))
696 p = swap_info_get(entry);
698 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
699 page = find_get_page(&swapper_space, entry.val);
700 if (page && !trylock_page(page)) {
701 page_cache_release(page);
705 spin_unlock(&swap_lock);
709 * Not mapped elsewhere, or swap space full? Free it!
710 * Also recheck PageSwapCache now page is locked (above).
712 if (PageSwapCache(page) && !PageWriteback(page) &&
713 (!page_mapped(page) || vm_swap_full())) {
714 delete_from_swap_cache(page);
718 page_cache_release(page);
723 #ifdef CONFIG_HIBERNATION
725 * Find the swap type that corresponds to given device (if any).
727 * @offset - number of the PAGE_SIZE-sized block of the device, starting
728 * from 0, in which the swap header is expected to be located.
730 * This is needed for the suspend to disk (aka swsusp).
732 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
734 struct block_device *bdev = NULL;
738 bdev = bdget(device);
740 spin_lock(&swap_lock);
741 for (type = 0; type < nr_swapfiles; type++) {
742 struct swap_info_struct *sis = swap_info[type];
744 if (!(sis->flags & SWP_WRITEOK))
749 *bdev_p = bdgrab(sis->bdev);
751 spin_unlock(&swap_lock);
754 if (bdev == sis->bdev) {
755 struct swap_extent *se = &sis->first_swap_extent;
757 if (se->start_block == offset) {
759 *bdev_p = bdgrab(sis->bdev);
761 spin_unlock(&swap_lock);
767 spin_unlock(&swap_lock);
775 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
776 * corresponding to given index in swap_info (swap type).
778 sector_t swapdev_block(int type, pgoff_t offset)
780 struct block_device *bdev;
782 if ((unsigned int)type >= nr_swapfiles)
784 if (!(swap_info[type]->flags & SWP_WRITEOK))
786 return map_swap_entry(swp_entry(type, offset), &bdev);
790 * Return either the total number of swap pages of given type, or the number
791 * of free pages of that type (depending on @free)
793 * This is needed for software suspend
795 unsigned int count_swap_pages(int type, int free)
799 spin_lock(&swap_lock);
800 if ((unsigned int)type < nr_swapfiles) {
801 struct swap_info_struct *sis = swap_info[type];
803 if (sis->flags & SWP_WRITEOK) {
806 n -= sis->inuse_pages;
809 spin_unlock(&swap_lock);
812 #endif /* CONFIG_HIBERNATION */
815 * No need to decide whether this PTE shares the swap entry with others,
816 * just let do_wp_page work it out if a write is requested later - to
817 * force COW, vm_page_prot omits write permission from any private vma.
819 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
820 unsigned long addr, swp_entry_t entry, struct page *page)
822 struct mem_cgroup *memcg;
827 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
828 GFP_KERNEL, &memcg)) {
833 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
834 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
836 mem_cgroup_cancel_charge_swapin(memcg);
841 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
842 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
844 set_pte_at(vma->vm_mm, addr, pte,
845 pte_mkold(mk_pte(page, vma->vm_page_prot)));
846 page_add_anon_rmap(page, vma, addr);
847 mem_cgroup_commit_charge_swapin(page, memcg);
850 * Move the page to the active list so it is not
851 * immediately swapped out again after swapon.
855 pte_unmap_unlock(pte, ptl);
860 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
861 unsigned long addr, unsigned long end,
862 swp_entry_t entry, struct page *page)
864 pte_t swp_pte = swp_entry_to_pte(entry);
869 * We don't actually need pte lock while scanning for swp_pte: since
870 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
871 * page table while we're scanning; though it could get zapped, and on
872 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
873 * of unmatched parts which look like swp_pte, so unuse_pte must
874 * recheck under pte lock. Scanning without pte lock lets it be
875 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
877 pte = pte_offset_map(pmd, addr);
880 * swapoff spends a _lot_ of time in this loop!
881 * Test inline before going to call unuse_pte.
883 if (unlikely(pte_same(*pte, swp_pte))) {
885 ret = unuse_pte(vma, pmd, addr, entry, page);
888 pte = pte_offset_map(pmd, addr);
890 } while (pte++, addr += PAGE_SIZE, addr != end);
896 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
897 unsigned long addr, unsigned long end,
898 swp_entry_t entry, struct page *page)
904 pmd = pmd_offset(pud, addr);
906 next = pmd_addr_end(addr, end);
907 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
909 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
912 } while (pmd++, addr = next, addr != end);
916 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
917 unsigned long addr, unsigned long end,
918 swp_entry_t entry, struct page *page)
924 pud = pud_offset(pgd, addr);
926 next = pud_addr_end(addr, end);
927 if (pud_none_or_clear_bad(pud))
929 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
932 } while (pud++, addr = next, addr != end);
936 static int unuse_vma(struct vm_area_struct *vma,
937 swp_entry_t entry, struct page *page)
940 unsigned long addr, end, next;
943 if (page_anon_vma(page)) {
944 addr = page_address_in_vma(page, vma);
948 end = addr + PAGE_SIZE;
950 addr = vma->vm_start;
954 pgd = pgd_offset(vma->vm_mm, addr);
956 next = pgd_addr_end(addr, end);
957 if (pgd_none_or_clear_bad(pgd))
959 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
962 } while (pgd++, addr = next, addr != end);
966 static int unuse_mm(struct mm_struct *mm,
967 swp_entry_t entry, struct page *page)
969 struct vm_area_struct *vma;
972 if (!down_read_trylock(&mm->mmap_sem)) {
974 * Activate page so shrink_inactive_list is unlikely to unmap
975 * its ptes while lock is dropped, so swapoff can make progress.
979 down_read(&mm->mmap_sem);
982 for (vma = mm->mmap; vma; vma = vma->vm_next) {
983 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
986 up_read(&mm->mmap_sem);
987 return (ret < 0)? ret: 0;
991 * Scan swap_map (or frontswap_map if frontswap parameter is true)
992 * from current position to next entry still in use.
993 * Recycle to start on reaching the end, returning 0 when empty.
995 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
996 unsigned int prev, bool frontswap)
998 unsigned int max = si->max;
999 unsigned int i = prev;
1000 unsigned char count;
1003 * No need for swap_lock here: we're just looking
1004 * for whether an entry is in use, not modifying it; false
1005 * hits are okay, and sys_swapoff() has already prevented new
1006 * allocations from this area (while holding swap_lock).
1015 * No entries in use at top of swap_map,
1016 * loop back to start and recheck there.
1023 if (frontswap_test(si, i))
1028 count = si->swap_map[i];
1029 if (count && swap_count(count) != SWAP_MAP_BAD)
1036 * We completely avoid races by reading each swap page in advance,
1037 * and then search for the process using it. All the necessary
1038 * page table adjustments can then be made atomically.
1040 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1041 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1043 int try_to_unuse(unsigned int type, bool frontswap,
1044 unsigned long pages_to_unuse)
1046 struct swap_info_struct *si = swap_info[type];
1047 struct mm_struct *start_mm;
1048 unsigned char *swap_map;
1049 unsigned char swcount;
1056 * When searching mms for an entry, a good strategy is to
1057 * start at the first mm we freed the previous entry from
1058 * (though actually we don't notice whether we or coincidence
1059 * freed the entry). Initialize this start_mm with a hold.
1061 * A simpler strategy would be to start at the last mm we
1062 * freed the previous entry from; but that would take less
1063 * advantage of mmlist ordering, which clusters forked mms
1064 * together, child after parent. If we race with dup_mmap(), we
1065 * prefer to resolve parent before child, lest we miss entries
1066 * duplicated after we scanned child: using last mm would invert
1069 start_mm = &init_mm;
1070 atomic_inc(&init_mm.mm_users);
1073 * Keep on scanning until all entries have gone. Usually,
1074 * one pass through swap_map is enough, but not necessarily:
1075 * there are races when an instance of an entry might be missed.
1077 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1078 if (signal_pending(current)) {
1084 * Get a page for the entry, using the existing swap
1085 * cache page if there is one. Otherwise, get a clean
1086 * page and read the swap into it.
1088 swap_map = &si->swap_map[i];
1089 entry = swp_entry(type, i);
1090 page = read_swap_cache_async(entry,
1091 GFP_HIGHUSER_MOVABLE, NULL, 0);
1094 * Either swap_duplicate() failed because entry
1095 * has been freed independently, and will not be
1096 * reused since sys_swapoff() already disabled
1097 * allocation from here, or alloc_page() failed.
1106 * Don't hold on to start_mm if it looks like exiting.
1108 if (atomic_read(&start_mm->mm_users) == 1) {
1110 start_mm = &init_mm;
1111 atomic_inc(&init_mm.mm_users);
1115 * Wait for and lock page. When do_swap_page races with
1116 * try_to_unuse, do_swap_page can handle the fault much
1117 * faster than try_to_unuse can locate the entry. This
1118 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1119 * defer to do_swap_page in such a case - in some tests,
1120 * do_swap_page and try_to_unuse repeatedly compete.
1122 wait_on_page_locked(page);
1123 wait_on_page_writeback(page);
1125 wait_on_page_writeback(page);
1128 * Remove all references to entry.
1130 swcount = *swap_map;
1131 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1132 retval = shmem_unuse(entry, page);
1133 /* page has already been unlocked and released */
1138 if (swap_count(swcount) && start_mm != &init_mm)
1139 retval = unuse_mm(start_mm, entry, page);
1141 if (swap_count(*swap_map)) {
1142 int set_start_mm = (*swap_map >= swcount);
1143 struct list_head *p = &start_mm->mmlist;
1144 struct mm_struct *new_start_mm = start_mm;
1145 struct mm_struct *prev_mm = start_mm;
1146 struct mm_struct *mm;
1148 atomic_inc(&new_start_mm->mm_users);
1149 atomic_inc(&prev_mm->mm_users);
1150 spin_lock(&mmlist_lock);
1151 while (swap_count(*swap_map) && !retval &&
1152 (p = p->next) != &start_mm->mmlist) {
1153 mm = list_entry(p, struct mm_struct, mmlist);
1154 if (!atomic_inc_not_zero(&mm->mm_users))
1156 spin_unlock(&mmlist_lock);
1162 swcount = *swap_map;
1163 if (!swap_count(swcount)) /* any usage ? */
1165 else if (mm == &init_mm)
1168 retval = unuse_mm(mm, entry, page);
1170 if (set_start_mm && *swap_map < swcount) {
1171 mmput(new_start_mm);
1172 atomic_inc(&mm->mm_users);
1176 spin_lock(&mmlist_lock);
1178 spin_unlock(&mmlist_lock);
1181 start_mm = new_start_mm;
1185 page_cache_release(page);
1190 * If a reference remains (rare), we would like to leave
1191 * the page in the swap cache; but try_to_unmap could
1192 * then re-duplicate the entry once we drop page lock,
1193 * so we might loop indefinitely; also, that page could
1194 * not be swapped out to other storage meanwhile. So:
1195 * delete from cache even if there's another reference,
1196 * after ensuring that the data has been saved to disk -
1197 * since if the reference remains (rarer), it will be
1198 * read from disk into another page. Splitting into two
1199 * pages would be incorrect if swap supported "shared
1200 * private" pages, but they are handled by tmpfs files.
1202 * Given how unuse_vma() targets one particular offset
1203 * in an anon_vma, once the anon_vma has been determined,
1204 * this splitting happens to be just what is needed to
1205 * handle where KSM pages have been swapped out: re-reading
1206 * is unnecessarily slow, but we can fix that later on.
1208 if (swap_count(*swap_map) &&
1209 PageDirty(page) && PageSwapCache(page)) {
1210 struct writeback_control wbc = {
1211 .sync_mode = WB_SYNC_NONE,
1214 swap_writepage(page, &wbc);
1216 wait_on_page_writeback(page);
1220 * It is conceivable that a racing task removed this page from
1221 * swap cache just before we acquired the page lock at the top,
1222 * or while we dropped it in unuse_mm(). The page might even
1223 * be back in swap cache on another swap area: that we must not
1224 * delete, since it may not have been written out to swap yet.
1226 if (PageSwapCache(page) &&
1227 likely(page_private(page) == entry.val))
1228 delete_from_swap_cache(page);
1231 * So we could skip searching mms once swap count went
1232 * to 1, we did not mark any present ptes as dirty: must
1233 * mark page dirty so shrink_page_list will preserve it.
1237 page_cache_release(page);
1240 * Make sure that we aren't completely killing
1241 * interactive performance.
1244 if (frontswap && pages_to_unuse > 0) {
1245 if (!--pages_to_unuse)
1255 * After a successful try_to_unuse, if no swap is now in use, we know
1256 * we can empty the mmlist. swap_lock must be held on entry and exit.
1257 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1258 * added to the mmlist just after page_duplicate - before would be racy.
1260 static void drain_mmlist(void)
1262 struct list_head *p, *next;
1265 for (type = 0; type < nr_swapfiles; type++)
1266 if (swap_info[type]->inuse_pages)
1268 spin_lock(&mmlist_lock);
1269 list_for_each_safe(p, next, &init_mm.mmlist)
1271 spin_unlock(&mmlist_lock);
1275 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1276 * corresponds to page offset for the specified swap entry.
1277 * Note that the type of this function is sector_t, but it returns page offset
1278 * into the bdev, not sector offset.
1280 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1282 struct swap_info_struct *sis;
1283 struct swap_extent *start_se;
1284 struct swap_extent *se;
1287 sis = swap_info[swp_type(entry)];
1290 offset = swp_offset(entry);
1291 start_se = sis->curr_swap_extent;
1295 struct list_head *lh;
1297 if (se->start_page <= offset &&
1298 offset < (se->start_page + se->nr_pages)) {
1299 return se->start_block + (offset - se->start_page);
1302 se = list_entry(lh, struct swap_extent, list);
1303 sis->curr_swap_extent = se;
1304 BUG_ON(se == start_se); /* It *must* be present */
1309 * Returns the page offset into bdev for the specified page's swap entry.
1311 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1314 entry.val = page_private(page);
1315 return map_swap_entry(entry, bdev);
1319 * Free all of a swapdev's extent information
1321 static void destroy_swap_extents(struct swap_info_struct *sis)
1323 while (!list_empty(&sis->first_swap_extent.list)) {
1324 struct swap_extent *se;
1326 se = list_entry(sis->first_swap_extent.list.next,
1327 struct swap_extent, list);
1328 list_del(&se->list);
1334 * Add a block range (and the corresponding page range) into this swapdev's
1335 * extent list. The extent list is kept sorted in page order.
1337 * This function rather assumes that it is called in ascending page order.
1340 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1341 unsigned long nr_pages, sector_t start_block)
1343 struct swap_extent *se;
1344 struct swap_extent *new_se;
1345 struct list_head *lh;
1347 if (start_page == 0) {
1348 se = &sis->first_swap_extent;
1349 sis->curr_swap_extent = se;
1351 se->nr_pages = nr_pages;
1352 se->start_block = start_block;
1355 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1356 se = list_entry(lh, struct swap_extent, list);
1357 BUG_ON(se->start_page + se->nr_pages != start_page);
1358 if (se->start_block + se->nr_pages == start_block) {
1360 se->nr_pages += nr_pages;
1366 * No merge. Insert a new extent, preserving ordering.
1368 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1371 new_se->start_page = start_page;
1372 new_se->nr_pages = nr_pages;
1373 new_se->start_block = start_block;
1375 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1380 * A `swap extent' is a simple thing which maps a contiguous range of pages
1381 * onto a contiguous range of disk blocks. An ordered list of swap extents
1382 * is built at swapon time and is then used at swap_writepage/swap_readpage
1383 * time for locating where on disk a page belongs.
1385 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1386 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1387 * swap files identically.
1389 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1390 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1391 * swapfiles are handled *identically* after swapon time.
1393 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1394 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1395 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1396 * requirements, they are simply tossed out - we will never use those blocks
1399 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1400 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1401 * which will scribble on the fs.
1403 * The amount of disk space which a single swap extent represents varies.
1404 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1405 * extents in the list. To avoid much list walking, we cache the previous
1406 * search location in `curr_swap_extent', and start new searches from there.
1407 * This is extremely effective. The average number of iterations in
1408 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1410 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1412 struct inode *inode;
1413 unsigned blocks_per_page;
1414 unsigned long page_no;
1416 sector_t probe_block;
1417 sector_t last_block;
1418 sector_t lowest_block = -1;
1419 sector_t highest_block = 0;
1423 inode = sis->swap_file->f_mapping->host;
1424 if (S_ISBLK(inode->i_mode)) {
1425 ret = add_swap_extent(sis, 0, sis->max, 0);
1430 blkbits = inode->i_blkbits;
1431 blocks_per_page = PAGE_SIZE >> blkbits;
1434 * Map all the blocks into the extent list. This code doesn't try
1439 last_block = i_size_read(inode) >> blkbits;
1440 while ((probe_block + blocks_per_page) <= last_block &&
1441 page_no < sis->max) {
1442 unsigned block_in_page;
1443 sector_t first_block;
1445 first_block = bmap(inode, probe_block);
1446 if (first_block == 0)
1450 * It must be PAGE_SIZE aligned on-disk
1452 if (first_block & (blocks_per_page - 1)) {
1457 for (block_in_page = 1; block_in_page < blocks_per_page;
1461 block = bmap(inode, probe_block + block_in_page);
1464 if (block != first_block + block_in_page) {
1471 first_block >>= (PAGE_SHIFT - blkbits);
1472 if (page_no) { /* exclude the header page */
1473 if (first_block < lowest_block)
1474 lowest_block = first_block;
1475 if (first_block > highest_block)
1476 highest_block = first_block;
1480 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1482 ret = add_swap_extent(sis, page_no, 1, first_block);
1487 probe_block += blocks_per_page;
1492 *span = 1 + highest_block - lowest_block;
1494 page_no = 1; /* force Empty message */
1496 sis->pages = page_no - 1;
1497 sis->highest_bit = page_no - 1;
1501 printk(KERN_ERR "swapon: swapfile has holes\n");
1506 static void enable_swap_info(struct swap_info_struct *p, int prio,
1507 unsigned char *swap_map,
1508 unsigned long *frontswap_map)
1512 spin_lock(&swap_lock);
1516 p->prio = --least_priority;
1517 p->swap_map = swap_map;
1518 frontswap_map_set(p, frontswap_map);
1519 p->flags |= SWP_WRITEOK;
1520 nr_swap_pages += p->pages;
1521 total_swap_pages += p->pages;
1523 /* insert swap space into swap_list: */
1525 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1526 if (p->prio >= swap_info[i]->prio)
1532 swap_list.head = swap_list.next = p->type;
1534 swap_info[prev]->next = p->type;
1535 frontswap_init(p->type);
1536 spin_unlock(&swap_lock);
1539 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1541 struct swap_info_struct *p = NULL;
1542 unsigned char *swap_map;
1543 struct file *swap_file, *victim;
1544 struct address_space *mapping;
1545 struct inode *inode;
1551 if (!capable(CAP_SYS_ADMIN))
1554 BUG_ON(!current->mm);
1556 pathname = getname(specialfile);
1557 err = PTR_ERR(pathname);
1558 if (IS_ERR(pathname))
1561 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1563 err = PTR_ERR(victim);
1567 mapping = victim->f_mapping;
1569 spin_lock(&swap_lock);
1570 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1571 p = swap_info[type];
1572 if (p->flags & SWP_WRITEOK) {
1573 if (p->swap_file->f_mapping == mapping)
1580 spin_unlock(&swap_lock);
1583 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1584 vm_unacct_memory(p->pages);
1587 spin_unlock(&swap_lock);
1591 swap_list.head = p->next;
1593 swap_info[prev]->next = p->next;
1594 if (type == swap_list.next) {
1595 /* just pick something that's safe... */
1596 swap_list.next = swap_list.head;
1599 for (i = p->next; i >= 0; i = swap_info[i]->next)
1600 swap_info[i]->prio = p->prio--;
1603 nr_swap_pages -= p->pages;
1604 total_swap_pages -= p->pages;
1605 p->flags &= ~SWP_WRITEOK;
1606 spin_unlock(&swap_lock);
1608 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1609 err = try_to_unuse(type, false, 0); /* force all pages to be unused */
1610 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX, oom_score_adj);
1614 * reading p->prio and p->swap_map outside the lock is
1615 * safe here because only sys_swapon and sys_swapoff
1616 * change them, and there can be no other sys_swapon or
1617 * sys_swapoff for this swap_info_struct at this point.
1619 /* re-insert swap space back into swap_list */
1620 enable_swap_info(p, p->prio, p->swap_map, frontswap_map_get(p));
1624 destroy_swap_extents(p);
1625 if (p->flags & SWP_CONTINUED)
1626 free_swap_count_continuations(p);
1628 mutex_lock(&swapon_mutex);
1629 spin_lock(&swap_lock);
1632 /* wait for anyone still in scan_swap_map */
1633 p->highest_bit = 0; /* cuts scans short */
1634 while (p->flags >= SWP_SCANNING) {
1635 spin_unlock(&swap_lock);
1636 schedule_timeout_uninterruptible(1);
1637 spin_lock(&swap_lock);
1640 swap_file = p->swap_file;
1641 p->swap_file = NULL;
1643 swap_map = p->swap_map;
1646 frontswap_invalidate_area(type);
1647 spin_unlock(&swap_lock);
1648 mutex_unlock(&swapon_mutex);
1650 vfree(frontswap_map_get(p));
1651 /* Destroy swap account informatin */
1652 swap_cgroup_swapoff(type);
1654 inode = mapping->host;
1655 if (S_ISBLK(inode->i_mode)) {
1656 struct block_device *bdev = I_BDEV(inode);
1657 set_blocksize(bdev, p->old_block_size);
1658 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1660 mutex_lock(&inode->i_mutex);
1661 inode->i_flags &= ~S_SWAPFILE;
1662 mutex_unlock(&inode->i_mutex);
1664 filp_close(swap_file, NULL);
1666 atomic_inc(&proc_poll_event);
1667 wake_up_interruptible(&proc_poll_wait);
1670 filp_close(victim, NULL);
1675 #ifdef CONFIG_PROC_FS
1676 static unsigned swaps_poll(struct file *file, poll_table *wait)
1678 struct seq_file *seq = file->private_data;
1680 poll_wait(file, &proc_poll_wait, wait);
1682 if (seq->poll_event != atomic_read(&proc_poll_event)) {
1683 seq->poll_event = atomic_read(&proc_poll_event);
1684 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1687 return POLLIN | POLLRDNORM;
1691 static void *swap_start(struct seq_file *swap, loff_t *pos)
1693 struct swap_info_struct *si;
1697 mutex_lock(&swapon_mutex);
1700 return SEQ_START_TOKEN;
1702 for (type = 0; type < nr_swapfiles; type++) {
1703 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1704 si = swap_info[type];
1705 if (!(si->flags & SWP_USED) || !si->swap_map)
1714 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1716 struct swap_info_struct *si = v;
1719 if (v == SEQ_START_TOKEN)
1722 type = si->type + 1;
1724 for (; type < nr_swapfiles; type++) {
1725 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1726 si = swap_info[type];
1727 if (!(si->flags & SWP_USED) || !si->swap_map)
1736 static void swap_stop(struct seq_file *swap, void *v)
1738 mutex_unlock(&swapon_mutex);
1741 static int swap_show(struct seq_file *swap, void *v)
1743 struct swap_info_struct *si = v;
1747 if (si == SEQ_START_TOKEN) {
1748 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1752 file = si->swap_file;
1753 len = seq_path(swap, &file->f_path, " \t\n\\");
1754 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1755 len < 40 ? 40 - len : 1, " ",
1756 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1757 "partition" : "file\t",
1758 si->pages << (PAGE_SHIFT - 10),
1759 si->inuse_pages << (PAGE_SHIFT - 10),
1764 static const struct seq_operations swaps_op = {
1765 .start = swap_start,
1771 static int swaps_open(struct inode *inode, struct file *file)
1773 struct seq_file *seq;
1776 ret = seq_open(file, &swaps_op);
1780 seq = file->private_data;
1781 seq->poll_event = atomic_read(&proc_poll_event);
1785 static const struct file_operations proc_swaps_operations = {
1788 .llseek = seq_lseek,
1789 .release = seq_release,
1793 static int __init procswaps_init(void)
1795 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1798 __initcall(procswaps_init);
1799 #endif /* CONFIG_PROC_FS */
1801 #ifdef MAX_SWAPFILES_CHECK
1802 static int __init max_swapfiles_check(void)
1804 MAX_SWAPFILES_CHECK();
1807 late_initcall(max_swapfiles_check);
1810 static struct swap_info_struct *alloc_swap_info(void)
1812 struct swap_info_struct *p;
1815 p = kzalloc(sizeof(*p), GFP_KERNEL);
1817 return ERR_PTR(-ENOMEM);
1819 spin_lock(&swap_lock);
1820 for (type = 0; type < nr_swapfiles; type++) {
1821 if (!(swap_info[type]->flags & SWP_USED))
1824 if (type >= MAX_SWAPFILES) {
1825 spin_unlock(&swap_lock);
1827 return ERR_PTR(-EPERM);
1829 if (type >= nr_swapfiles) {
1831 swap_info[type] = p;
1833 * Write swap_info[type] before nr_swapfiles, in case a
1834 * racing procfs swap_start() or swap_next() is reading them.
1835 * (We never shrink nr_swapfiles, we never free this entry.)
1841 p = swap_info[type];
1843 * Do not memset this entry: a racing procfs swap_next()
1844 * would be relying on p->type to remain valid.
1847 INIT_LIST_HEAD(&p->first_swap_extent.list);
1848 p->flags = SWP_USED;
1850 spin_unlock(&swap_lock);
1855 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
1859 if (S_ISBLK(inode->i_mode)) {
1860 p->bdev = bdgrab(I_BDEV(inode));
1861 error = blkdev_get(p->bdev,
1862 FMODE_READ | FMODE_WRITE | FMODE_EXCL,
1868 p->old_block_size = block_size(p->bdev);
1869 error = set_blocksize(p->bdev, PAGE_SIZE);
1872 p->flags |= SWP_BLKDEV;
1873 } else if (S_ISREG(inode->i_mode)) {
1874 p->bdev = inode->i_sb->s_bdev;
1875 mutex_lock(&inode->i_mutex);
1876 if (IS_SWAPFILE(inode))
1884 static unsigned long read_swap_header(struct swap_info_struct *p,
1885 union swap_header *swap_header,
1886 struct inode *inode)
1889 unsigned long maxpages;
1890 unsigned long swapfilepages;
1892 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1893 printk(KERN_ERR "Unable to find swap-space signature\n");
1897 /* swap partition endianess hack... */
1898 if (swab32(swap_header->info.version) == 1) {
1899 swab32s(&swap_header->info.version);
1900 swab32s(&swap_header->info.last_page);
1901 swab32s(&swap_header->info.nr_badpages);
1902 for (i = 0; i < swap_header->info.nr_badpages; i++)
1903 swab32s(&swap_header->info.badpages[i]);
1905 /* Check the swap header's sub-version */
1906 if (swap_header->info.version != 1) {
1908 "Unable to handle swap header version %d\n",
1909 swap_header->info.version);
1914 p->cluster_next = 1;
1918 * Find out how many pages are allowed for a single swap
1919 * device. There are two limiting factors: 1) the number
1920 * of bits for the swap offset in the swp_entry_t type, and
1921 * 2) the number of bits in the swap pte as defined by the
1922 * different architectures. In order to find the
1923 * largest possible bit mask, a swap entry with swap type 0
1924 * and swap offset ~0UL is created, encoded to a swap pte,
1925 * decoded to a swp_entry_t again, and finally the swap
1926 * offset is extracted. This will mask all the bits from
1927 * the initial ~0UL mask that can't be encoded in either
1928 * the swp_entry_t or the architecture definition of a
1931 maxpages = swp_offset(pte_to_swp_entry(
1932 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
1933 if (maxpages > swap_header->info.last_page) {
1934 maxpages = swap_header->info.last_page + 1;
1935 /* p->max is an unsigned int: don't overflow it */
1936 if ((unsigned int)maxpages == 0)
1937 maxpages = UINT_MAX;
1939 p->highest_bit = maxpages - 1;
1943 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1944 if (swapfilepages && maxpages > swapfilepages) {
1946 "Swap area shorter than signature indicates\n");
1949 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1951 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1957 static int setup_swap_map_and_extents(struct swap_info_struct *p,
1958 union swap_header *swap_header,
1959 unsigned char *swap_map,
1960 unsigned long maxpages,
1964 unsigned int nr_good_pages;
1967 nr_good_pages = maxpages - 1; /* omit header page */
1969 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1970 unsigned int page_nr = swap_header->info.badpages[i];
1971 if (page_nr == 0 || page_nr > swap_header->info.last_page)
1973 if (page_nr < maxpages) {
1974 swap_map[page_nr] = SWAP_MAP_BAD;
1979 if (nr_good_pages) {
1980 swap_map[0] = SWAP_MAP_BAD;
1982 p->pages = nr_good_pages;
1983 nr_extents = setup_swap_extents(p, span);
1986 nr_good_pages = p->pages;
1988 if (!nr_good_pages) {
1989 printk(KERN_WARNING "Empty swap-file\n");
1996 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1998 struct swap_info_struct *p;
2000 struct file *swap_file = NULL;
2001 struct address_space *mapping;
2005 union swap_header *swap_header;
2008 unsigned long maxpages;
2009 unsigned char *swap_map = NULL;
2010 unsigned long *frontswap_map = NULL;
2011 struct page *page = NULL;
2012 struct inode *inode = NULL;
2014 if (swap_flags & ~SWAP_FLAGS_VALID)
2017 if (!capable(CAP_SYS_ADMIN))
2020 p = alloc_swap_info();
2024 name = getname(specialfile);
2026 error = PTR_ERR(name);
2030 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
2031 if (IS_ERR(swap_file)) {
2032 error = PTR_ERR(swap_file);
2037 p->swap_file = swap_file;
2038 mapping = swap_file->f_mapping;
2040 for (i = 0; i < nr_swapfiles; i++) {
2041 struct swap_info_struct *q = swap_info[i];
2043 if (q == p || !q->swap_file)
2045 if (mapping == q->swap_file->f_mapping) {
2051 inode = mapping->host;
2052 /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2053 error = claim_swapfile(p, inode);
2054 if (unlikely(error))
2058 * Read the swap header.
2060 if (!mapping->a_ops->readpage) {
2064 page = read_mapping_page(mapping, 0, swap_file);
2066 error = PTR_ERR(page);
2069 swap_header = kmap(page);
2071 maxpages = read_swap_header(p, swap_header, inode);
2072 if (unlikely(!maxpages)) {
2077 /* OK, set up the swap map and apply the bad block list */
2078 swap_map = vzalloc(maxpages);
2084 error = swap_cgroup_swapon(p->type, maxpages);
2088 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2090 if (unlikely(nr_extents < 0)) {
2094 /* frontswap enabled? set up bit-per-page map for frontswap */
2095 if (frontswap_enabled)
2096 frontswap_map = vzalloc(maxpages / sizeof(long));
2099 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2100 p->flags |= SWP_SOLIDSTATE;
2101 p->cluster_next = 1 + (random32() % p->highest_bit);
2103 if ((swap_flags & SWAP_FLAG_DISCARD) && discard_swap(p) == 0)
2104 p->flags |= SWP_DISCARDABLE;
2107 mutex_lock(&swapon_mutex);
2109 if (swap_flags & SWAP_FLAG_PREFER)
2111 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2112 enable_swap_info(p, prio, swap_map, frontswap_map);
2114 printk(KERN_INFO "Adding %uk swap on %s. "
2115 "Priority:%d extents:%d across:%lluk %s%s%s\n",
2116 p->pages<<(PAGE_SHIFT-10), name, p->prio,
2117 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2118 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2119 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2120 (frontswap_map) ? "FS" : "");
2122 mutex_unlock(&swapon_mutex);
2123 atomic_inc(&proc_poll_event);
2124 wake_up_interruptible(&proc_poll_wait);
2126 if (S_ISREG(inode->i_mode))
2127 inode->i_flags |= S_SWAPFILE;
2131 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2132 set_blocksize(p->bdev, p->old_block_size);
2133 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2135 destroy_swap_extents(p);
2136 swap_cgroup_swapoff(p->type);
2137 spin_lock(&swap_lock);
2138 p->swap_file = NULL;
2140 spin_unlock(&swap_lock);
2143 if (inode && S_ISREG(inode->i_mode)) {
2144 mutex_unlock(&inode->i_mutex);
2147 filp_close(swap_file, NULL);
2150 if (page && !IS_ERR(page)) {
2152 page_cache_release(page);
2156 if (inode && S_ISREG(inode->i_mode))
2157 mutex_unlock(&inode->i_mutex);
2161 void si_swapinfo(struct sysinfo *val)
2164 unsigned long nr_to_be_unused = 0;
2166 spin_lock(&swap_lock);
2167 for (type = 0; type < nr_swapfiles; type++) {
2168 struct swap_info_struct *si = swap_info[type];
2170 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2171 nr_to_be_unused += si->inuse_pages;
2173 val->freeswap = nr_swap_pages + nr_to_be_unused;
2174 val->totalswap = total_swap_pages + nr_to_be_unused;
2175 spin_unlock(&swap_lock);
2179 * Verify that a swap entry is valid and increment its swap map count.
2181 * Returns error code in following case.
2183 * - swp_entry is invalid -> EINVAL
2184 * - swp_entry is migration entry -> EINVAL
2185 * - swap-cache reference is requested but there is already one. -> EEXIST
2186 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2187 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2189 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2191 struct swap_info_struct *p;
2192 unsigned long offset, type;
2193 unsigned char count;
2194 unsigned char has_cache;
2197 if (non_swap_entry(entry))
2200 type = swp_type(entry);
2201 if (type >= nr_swapfiles)
2203 p = swap_info[type];
2204 offset = swp_offset(entry);
2206 spin_lock(&swap_lock);
2207 if (unlikely(offset >= p->max))
2210 count = p->swap_map[offset];
2211 has_cache = count & SWAP_HAS_CACHE;
2212 count &= ~SWAP_HAS_CACHE;
2215 if (usage == SWAP_HAS_CACHE) {
2217 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2218 if (!has_cache && count)
2219 has_cache = SWAP_HAS_CACHE;
2220 else if (has_cache) /* someone else added cache */
2222 else /* no users remaining */
2225 } else if (count || has_cache) {
2227 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2229 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2231 else if (swap_count_continued(p, offset, count))
2232 count = COUNT_CONTINUED;
2236 err = -ENOENT; /* unused swap entry */
2238 p->swap_map[offset] = count | has_cache;
2241 spin_unlock(&swap_lock);
2246 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2251 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2252 * (in which case its reference count is never incremented).
2254 void swap_shmem_alloc(swp_entry_t entry)
2256 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2260 * Increase reference count of swap entry by 1.
2261 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2262 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2263 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2264 * might occur if a page table entry has got corrupted.
2266 int swap_duplicate(swp_entry_t entry)
2270 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2271 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2276 * @entry: swap entry for which we allocate swap cache.
2278 * Called when allocating swap cache for existing swap entry,
2279 * This can return error codes. Returns 0 at success.
2280 * -EBUSY means there is a swap cache.
2281 * Note: return code is different from swap_duplicate().
2283 int swapcache_prepare(swp_entry_t entry)
2285 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2289 * add_swap_count_continuation - called when a swap count is duplicated
2290 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2291 * page of the original vmalloc'ed swap_map, to hold the continuation count
2292 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2293 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2295 * These continuation pages are seldom referenced: the common paths all work
2296 * on the original swap_map, only referring to a continuation page when the
2297 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2299 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2300 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2301 * can be called after dropping locks.
2303 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2305 struct swap_info_struct *si;
2308 struct page *list_page;
2310 unsigned char count;
2313 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2314 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2316 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2318 si = swap_info_get(entry);
2321 * An acceptable race has occurred since the failing
2322 * __swap_duplicate(): the swap entry has been freed,
2323 * perhaps even the whole swap_map cleared for swapoff.
2328 offset = swp_offset(entry);
2329 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2331 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2333 * The higher the swap count, the more likely it is that tasks
2334 * will race to add swap count continuation: we need to avoid
2335 * over-provisioning.
2341 spin_unlock(&swap_lock);
2346 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2347 * no architecture is using highmem pages for kernel pagetables: so it
2348 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2350 head = vmalloc_to_page(si->swap_map + offset);
2351 offset &= ~PAGE_MASK;
2354 * Page allocation does not initialize the page's lru field,
2355 * but it does always reset its private field.
2357 if (!page_private(head)) {
2358 BUG_ON(count & COUNT_CONTINUED);
2359 INIT_LIST_HEAD(&head->lru);
2360 set_page_private(head, SWP_CONTINUED);
2361 si->flags |= SWP_CONTINUED;
2364 list_for_each_entry(list_page, &head->lru, lru) {
2368 * If the previous map said no continuation, but we've found
2369 * a continuation page, free our allocation and use this one.
2371 if (!(count & COUNT_CONTINUED))
2374 map = kmap_atomic(list_page) + offset;
2379 * If this continuation count now has some space in it,
2380 * free our allocation and use this one.
2382 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2386 list_add_tail(&page->lru, &head->lru);
2387 page = NULL; /* now it's attached, don't free it */
2389 spin_unlock(&swap_lock);
2397 * swap_count_continued - when the original swap_map count is incremented
2398 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2399 * into, carry if so, or else fail until a new continuation page is allocated;
2400 * when the original swap_map count is decremented from 0 with continuation,
2401 * borrow from the continuation and report whether it still holds more.
2402 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2404 static bool swap_count_continued(struct swap_info_struct *si,
2405 pgoff_t offset, unsigned char count)
2411 head = vmalloc_to_page(si->swap_map + offset);
2412 if (page_private(head) != SWP_CONTINUED) {
2413 BUG_ON(count & COUNT_CONTINUED);
2414 return false; /* need to add count continuation */
2417 offset &= ~PAGE_MASK;
2418 page = list_entry(head->lru.next, struct page, lru);
2419 map = kmap_atomic(page) + offset;
2421 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2422 goto init_map; /* jump over SWAP_CONT_MAX checks */
2424 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2426 * Think of how you add 1 to 999
2428 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2430 page = list_entry(page->lru.next, struct page, lru);
2431 BUG_ON(page == head);
2432 map = kmap_atomic(page) + offset;
2434 if (*map == SWAP_CONT_MAX) {
2436 page = list_entry(page->lru.next, struct page, lru);
2438 return false; /* add count continuation */
2439 map = kmap_atomic(page) + offset;
2440 init_map: *map = 0; /* we didn't zero the page */
2444 page = list_entry(page->lru.prev, struct page, lru);
2445 while (page != head) {
2446 map = kmap_atomic(page) + offset;
2447 *map = COUNT_CONTINUED;
2449 page = list_entry(page->lru.prev, struct page, lru);
2451 return true; /* incremented */
2453 } else { /* decrementing */
2455 * Think of how you subtract 1 from 1000
2457 BUG_ON(count != COUNT_CONTINUED);
2458 while (*map == COUNT_CONTINUED) {
2460 page = list_entry(page->lru.next, struct page, lru);
2461 BUG_ON(page == head);
2462 map = kmap_atomic(page) + offset;
2469 page = list_entry(page->lru.prev, struct page, lru);
2470 while (page != head) {
2471 map = kmap_atomic(page) + offset;
2472 *map = SWAP_CONT_MAX | count;
2473 count = COUNT_CONTINUED;
2475 page = list_entry(page->lru.prev, struct page, lru);
2477 return count == COUNT_CONTINUED;
2482 * free_swap_count_continuations - swapoff free all the continuation pages
2483 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2485 static void free_swap_count_continuations(struct swap_info_struct *si)
2489 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2491 head = vmalloc_to_page(si->swap_map + offset);
2492 if (page_private(head)) {
2493 struct list_head *this, *next;
2494 list_for_each_safe(this, next, &head->lru) {
2496 page = list_entry(this, struct page, lru);