lib/plist: add plist_requeue
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shmem_fs.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32 #include <linux/poll.h>
33 #include <linux/oom.h>
34 #include <linux/frontswap.h>
35 #include <linux/swapfile.h>
36 #include <linux/export.h>
37
38 #include <asm/pgtable.h>
39 #include <asm/tlbflush.h>
40 #include <linux/swapops.h>
41 #include <linux/page_cgroup.h>
42
43 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
44                                  unsigned char);
45 static void free_swap_count_continuations(struct swap_info_struct *);
46 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
47
48 DEFINE_SPINLOCK(swap_lock);
49 static unsigned int nr_swapfiles;
50 atomic_long_t nr_swap_pages;
51 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
52 long total_swap_pages;
53 static int least_priority;
54
55 static const char Bad_file[] = "Bad swap file entry ";
56 static const char Unused_file[] = "Unused swap file entry ";
57 static const char Bad_offset[] = "Bad swap offset entry ";
58 static const char Unused_offset[] = "Unused swap offset entry ";
59
60 /*
61  * all active swap_info_structs
62  * protected with swap_lock, and ordered by priority.
63  */
64 LIST_HEAD(swap_list_head);
65
66 struct swap_info_struct *swap_info[MAX_SWAPFILES];
67
68 static DEFINE_MUTEX(swapon_mutex);
69
70 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
71 /* Activity counter to indicate that a swapon or swapoff has occurred */
72 static atomic_t proc_poll_event = ATOMIC_INIT(0);
73
74 static inline unsigned char swap_count(unsigned char ent)
75 {
76         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
77 }
78
79 /* returns 1 if swap entry is freed */
80 static int
81 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
82 {
83         swp_entry_t entry = swp_entry(si->type, offset);
84         struct page *page;
85         int ret = 0;
86
87         page = find_get_page(swap_address_space(entry), entry.val);
88         if (!page)
89                 return 0;
90         /*
91          * This function is called from scan_swap_map() and it's called
92          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
93          * We have to use trylock for avoiding deadlock. This is a special
94          * case and you should use try_to_free_swap() with explicit lock_page()
95          * in usual operations.
96          */
97         if (trylock_page(page)) {
98                 ret = try_to_free_swap(page);
99                 unlock_page(page);
100         }
101         page_cache_release(page);
102         return ret;
103 }
104
105 /*
106  * swapon tell device that all the old swap contents can be discarded,
107  * to allow the swap device to optimize its wear-levelling.
108  */
109 static int discard_swap(struct swap_info_struct *si)
110 {
111         struct swap_extent *se;
112         sector_t start_block;
113         sector_t nr_blocks;
114         int err = 0;
115
116         /* Do not discard the swap header page! */
117         se = &si->first_swap_extent;
118         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
119         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
120         if (nr_blocks) {
121                 err = blkdev_issue_discard(si->bdev, start_block,
122                                 nr_blocks, GFP_KERNEL, 0);
123                 if (err)
124                         return err;
125                 cond_resched();
126         }
127
128         list_for_each_entry(se, &si->first_swap_extent.list, list) {
129                 start_block = se->start_block << (PAGE_SHIFT - 9);
130                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
131
132                 err = blkdev_issue_discard(si->bdev, start_block,
133                                 nr_blocks, GFP_KERNEL, 0);
134                 if (err)
135                         break;
136
137                 cond_resched();
138         }
139         return err;             /* That will often be -EOPNOTSUPP */
140 }
141
142 /*
143  * swap allocation tell device that a cluster of swap can now be discarded,
144  * to allow the swap device to optimize its wear-levelling.
145  */
146 static void discard_swap_cluster(struct swap_info_struct *si,
147                                  pgoff_t start_page, pgoff_t nr_pages)
148 {
149         struct swap_extent *se = si->curr_swap_extent;
150         int found_extent = 0;
151
152         while (nr_pages) {
153                 struct list_head *lh;
154
155                 if (se->start_page <= start_page &&
156                     start_page < se->start_page + se->nr_pages) {
157                         pgoff_t offset = start_page - se->start_page;
158                         sector_t start_block = se->start_block + offset;
159                         sector_t nr_blocks = se->nr_pages - offset;
160
161                         if (nr_blocks > nr_pages)
162                                 nr_blocks = nr_pages;
163                         start_page += nr_blocks;
164                         nr_pages -= nr_blocks;
165
166                         if (!found_extent++)
167                                 si->curr_swap_extent = se;
168
169                         start_block <<= PAGE_SHIFT - 9;
170                         nr_blocks <<= PAGE_SHIFT - 9;
171                         if (blkdev_issue_discard(si->bdev, start_block,
172                                     nr_blocks, GFP_NOIO, 0))
173                                 break;
174                 }
175
176                 lh = se->list.next;
177                 se = list_entry(lh, struct swap_extent, list);
178         }
179 }
180
181 #define SWAPFILE_CLUSTER        256
182 #define LATENCY_LIMIT           256
183
184 static inline void cluster_set_flag(struct swap_cluster_info *info,
185         unsigned int flag)
186 {
187         info->flags = flag;
188 }
189
190 static inline unsigned int cluster_count(struct swap_cluster_info *info)
191 {
192         return info->data;
193 }
194
195 static inline void cluster_set_count(struct swap_cluster_info *info,
196                                      unsigned int c)
197 {
198         info->data = c;
199 }
200
201 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
202                                          unsigned int c, unsigned int f)
203 {
204         info->flags = f;
205         info->data = c;
206 }
207
208 static inline unsigned int cluster_next(struct swap_cluster_info *info)
209 {
210         return info->data;
211 }
212
213 static inline void cluster_set_next(struct swap_cluster_info *info,
214                                     unsigned int n)
215 {
216         info->data = n;
217 }
218
219 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
220                                          unsigned int n, unsigned int f)
221 {
222         info->flags = f;
223         info->data = n;
224 }
225
226 static inline bool cluster_is_free(struct swap_cluster_info *info)
227 {
228         return info->flags & CLUSTER_FLAG_FREE;
229 }
230
231 static inline bool cluster_is_null(struct swap_cluster_info *info)
232 {
233         return info->flags & CLUSTER_FLAG_NEXT_NULL;
234 }
235
236 static inline void cluster_set_null(struct swap_cluster_info *info)
237 {
238         info->flags = CLUSTER_FLAG_NEXT_NULL;
239         info->data = 0;
240 }
241
242 /* Add a cluster to discard list and schedule it to do discard */
243 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
244                 unsigned int idx)
245 {
246         /*
247          * If scan_swap_map() can't find a free cluster, it will check
248          * si->swap_map directly. To make sure the discarding cluster isn't
249          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
250          * will be cleared after discard
251          */
252         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
253                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
254
255         if (cluster_is_null(&si->discard_cluster_head)) {
256                 cluster_set_next_flag(&si->discard_cluster_head,
257                                                 idx, 0);
258                 cluster_set_next_flag(&si->discard_cluster_tail,
259                                                 idx, 0);
260         } else {
261                 unsigned int tail = cluster_next(&si->discard_cluster_tail);
262                 cluster_set_next(&si->cluster_info[tail], idx);
263                 cluster_set_next_flag(&si->discard_cluster_tail,
264                                                 idx, 0);
265         }
266
267         schedule_work(&si->discard_work);
268 }
269
270 /*
271  * Doing discard actually. After a cluster discard is finished, the cluster
272  * will be added to free cluster list. caller should hold si->lock.
273 */
274 static void swap_do_scheduled_discard(struct swap_info_struct *si)
275 {
276         struct swap_cluster_info *info;
277         unsigned int idx;
278
279         info = si->cluster_info;
280
281         while (!cluster_is_null(&si->discard_cluster_head)) {
282                 idx = cluster_next(&si->discard_cluster_head);
283
284                 cluster_set_next_flag(&si->discard_cluster_head,
285                                                 cluster_next(&info[idx]), 0);
286                 if (cluster_next(&si->discard_cluster_tail) == idx) {
287                         cluster_set_null(&si->discard_cluster_head);
288                         cluster_set_null(&si->discard_cluster_tail);
289                 }
290                 spin_unlock(&si->lock);
291
292                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
293                                 SWAPFILE_CLUSTER);
294
295                 spin_lock(&si->lock);
296                 cluster_set_flag(&info[idx], CLUSTER_FLAG_FREE);
297                 if (cluster_is_null(&si->free_cluster_head)) {
298                         cluster_set_next_flag(&si->free_cluster_head,
299                                                 idx, 0);
300                         cluster_set_next_flag(&si->free_cluster_tail,
301                                                 idx, 0);
302                 } else {
303                         unsigned int tail;
304
305                         tail = cluster_next(&si->free_cluster_tail);
306                         cluster_set_next(&info[tail], idx);
307                         cluster_set_next_flag(&si->free_cluster_tail,
308                                                 idx, 0);
309                 }
310                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
311                                 0, SWAPFILE_CLUSTER);
312         }
313 }
314
315 static void swap_discard_work(struct work_struct *work)
316 {
317         struct swap_info_struct *si;
318
319         si = container_of(work, struct swap_info_struct, discard_work);
320
321         spin_lock(&si->lock);
322         swap_do_scheduled_discard(si);
323         spin_unlock(&si->lock);
324 }
325
326 /*
327  * The cluster corresponding to page_nr will be used. The cluster will be
328  * removed from free cluster list and its usage counter will be increased.
329  */
330 static void inc_cluster_info_page(struct swap_info_struct *p,
331         struct swap_cluster_info *cluster_info, unsigned long page_nr)
332 {
333         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
334
335         if (!cluster_info)
336                 return;
337         if (cluster_is_free(&cluster_info[idx])) {
338                 VM_BUG_ON(cluster_next(&p->free_cluster_head) != idx);
339                 cluster_set_next_flag(&p->free_cluster_head,
340                         cluster_next(&cluster_info[idx]), 0);
341                 if (cluster_next(&p->free_cluster_tail) == idx) {
342                         cluster_set_null(&p->free_cluster_tail);
343                         cluster_set_null(&p->free_cluster_head);
344                 }
345                 cluster_set_count_flag(&cluster_info[idx], 0, 0);
346         }
347
348         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
349         cluster_set_count(&cluster_info[idx],
350                 cluster_count(&cluster_info[idx]) + 1);
351 }
352
353 /*
354  * The cluster corresponding to page_nr decreases one usage. If the usage
355  * counter becomes 0, which means no page in the cluster is in using, we can
356  * optionally discard the cluster and add it to free cluster list.
357  */
358 static void dec_cluster_info_page(struct swap_info_struct *p,
359         struct swap_cluster_info *cluster_info, unsigned long page_nr)
360 {
361         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
362
363         if (!cluster_info)
364                 return;
365
366         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
367         cluster_set_count(&cluster_info[idx],
368                 cluster_count(&cluster_info[idx]) - 1);
369
370         if (cluster_count(&cluster_info[idx]) == 0) {
371                 /*
372                  * If the swap is discardable, prepare discard the cluster
373                  * instead of free it immediately. The cluster will be freed
374                  * after discard.
375                  */
376                 if ((p->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
377                                  (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
378                         swap_cluster_schedule_discard(p, idx);
379                         return;
380                 }
381
382                 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
383                 if (cluster_is_null(&p->free_cluster_head)) {
384                         cluster_set_next_flag(&p->free_cluster_head, idx, 0);
385                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
386                 } else {
387                         unsigned int tail = cluster_next(&p->free_cluster_tail);
388                         cluster_set_next(&cluster_info[tail], idx);
389                         cluster_set_next_flag(&p->free_cluster_tail, idx, 0);
390                 }
391         }
392 }
393
394 /*
395  * It's possible scan_swap_map() uses a free cluster in the middle of free
396  * cluster list. Avoiding such abuse to avoid list corruption.
397  */
398 static bool
399 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
400         unsigned long offset)
401 {
402         struct percpu_cluster *percpu_cluster;
403         bool conflict;
404
405         offset /= SWAPFILE_CLUSTER;
406         conflict = !cluster_is_null(&si->free_cluster_head) &&
407                 offset != cluster_next(&si->free_cluster_head) &&
408                 cluster_is_free(&si->cluster_info[offset]);
409
410         if (!conflict)
411                 return false;
412
413         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
414         cluster_set_null(&percpu_cluster->index);
415         return true;
416 }
417
418 /*
419  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
420  * might involve allocating a new cluster for current CPU too.
421  */
422 static void scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
423         unsigned long *offset, unsigned long *scan_base)
424 {
425         struct percpu_cluster *cluster;
426         bool found_free;
427         unsigned long tmp;
428
429 new_cluster:
430         cluster = this_cpu_ptr(si->percpu_cluster);
431         if (cluster_is_null(&cluster->index)) {
432                 if (!cluster_is_null(&si->free_cluster_head)) {
433                         cluster->index = si->free_cluster_head;
434                         cluster->next = cluster_next(&cluster->index) *
435                                         SWAPFILE_CLUSTER;
436                 } else if (!cluster_is_null(&si->discard_cluster_head)) {
437                         /*
438                          * we don't have free cluster but have some clusters in
439                          * discarding, do discard now and reclaim them
440                          */
441                         swap_do_scheduled_discard(si);
442                         *scan_base = *offset = si->cluster_next;
443                         goto new_cluster;
444                 } else
445                         return;
446         }
447
448         found_free = false;
449
450         /*
451          * Other CPUs can use our cluster if they can't find a free cluster,
452          * check if there is still free entry in the cluster
453          */
454         tmp = cluster->next;
455         while (tmp < si->max && tmp < (cluster_next(&cluster->index) + 1) *
456                SWAPFILE_CLUSTER) {
457                 if (!si->swap_map[tmp]) {
458                         found_free = true;
459                         break;
460                 }
461                 tmp++;
462         }
463         if (!found_free) {
464                 cluster_set_null(&cluster->index);
465                 goto new_cluster;
466         }
467         cluster->next = tmp + 1;
468         *offset = tmp;
469         *scan_base = tmp;
470 }
471
472 static unsigned long scan_swap_map(struct swap_info_struct *si,
473                                    unsigned char usage)
474 {
475         unsigned long offset;
476         unsigned long scan_base;
477         unsigned long last_in_cluster = 0;
478         int latency_ration = LATENCY_LIMIT;
479
480         /*
481          * We try to cluster swap pages by allocating them sequentially
482          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
483          * way, however, we resort to first-free allocation, starting
484          * a new cluster.  This prevents us from scattering swap pages
485          * all over the entire swap partition, so that we reduce
486          * overall disk seek times between swap pages.  -- sct
487          * But we do now try to find an empty cluster.  -Andrea
488          * And we let swap pages go all over an SSD partition.  Hugh
489          */
490
491         si->flags += SWP_SCANNING;
492         scan_base = offset = si->cluster_next;
493
494         /* SSD algorithm */
495         if (si->cluster_info) {
496                 scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
497                 goto checks;
498         }
499
500         if (unlikely(!si->cluster_nr--)) {
501                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
502                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
503                         goto checks;
504                 }
505
506                 spin_unlock(&si->lock);
507
508                 /*
509                  * If seek is expensive, start searching for new cluster from
510                  * start of partition, to minimize the span of allocated swap.
511                  * But if seek is cheap, search from our current position, so
512                  * that swap is allocated from all over the partition: if the
513                  * Flash Translation Layer only remaps within limited zones,
514                  * we don't want to wear out the first zone too quickly.
515                  */
516                 if (!(si->flags & SWP_SOLIDSTATE))
517                         scan_base = offset = si->lowest_bit;
518                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
519
520                 /* Locate the first empty (unaligned) cluster */
521                 for (; last_in_cluster <= si->highest_bit; offset++) {
522                         if (si->swap_map[offset])
523                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
524                         else if (offset == last_in_cluster) {
525                                 spin_lock(&si->lock);
526                                 offset -= SWAPFILE_CLUSTER - 1;
527                                 si->cluster_next = offset;
528                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
529                                 goto checks;
530                         }
531                         if (unlikely(--latency_ration < 0)) {
532                                 cond_resched();
533                                 latency_ration = LATENCY_LIMIT;
534                         }
535                 }
536
537                 offset = si->lowest_bit;
538                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
539
540                 /* Locate the first empty (unaligned) cluster */
541                 for (; last_in_cluster < scan_base; offset++) {
542                         if (si->swap_map[offset])
543                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
544                         else if (offset == last_in_cluster) {
545                                 spin_lock(&si->lock);
546                                 offset -= SWAPFILE_CLUSTER - 1;
547                                 si->cluster_next = offset;
548                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
549                                 goto checks;
550                         }
551                         if (unlikely(--latency_ration < 0)) {
552                                 cond_resched();
553                                 latency_ration = LATENCY_LIMIT;
554                         }
555                 }
556
557                 offset = scan_base;
558                 spin_lock(&si->lock);
559                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
560         }
561
562 checks:
563         if (si->cluster_info) {
564                 while (scan_swap_map_ssd_cluster_conflict(si, offset))
565                         scan_swap_map_try_ssd_cluster(si, &offset, &scan_base);
566         }
567         if (!(si->flags & SWP_WRITEOK))
568                 goto no_page;
569         if (!si->highest_bit)
570                 goto no_page;
571         if (offset > si->highest_bit)
572                 scan_base = offset = si->lowest_bit;
573
574         /* reuse swap entry of cache-only swap if not busy. */
575         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
576                 int swap_was_freed;
577                 spin_unlock(&si->lock);
578                 swap_was_freed = __try_to_reclaim_swap(si, offset);
579                 spin_lock(&si->lock);
580                 /* entry was freed successfully, try to use this again */
581                 if (swap_was_freed)
582                         goto checks;
583                 goto scan; /* check next one */
584         }
585
586         if (si->swap_map[offset])
587                 goto scan;
588
589         if (offset == si->lowest_bit)
590                 si->lowest_bit++;
591         if (offset == si->highest_bit)
592                 si->highest_bit--;
593         si->inuse_pages++;
594         if (si->inuse_pages == si->pages) {
595                 si->lowest_bit = si->max;
596                 si->highest_bit = 0;
597         }
598         si->swap_map[offset] = usage;
599         inc_cluster_info_page(si, si->cluster_info, offset);
600         si->cluster_next = offset + 1;
601         si->flags -= SWP_SCANNING;
602
603         return offset;
604
605 scan:
606         spin_unlock(&si->lock);
607         while (++offset <= si->highest_bit) {
608                 if (!si->swap_map[offset]) {
609                         spin_lock(&si->lock);
610                         goto checks;
611                 }
612                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
613                         spin_lock(&si->lock);
614                         goto checks;
615                 }
616                 if (unlikely(--latency_ration < 0)) {
617                         cond_resched();
618                         latency_ration = LATENCY_LIMIT;
619                 }
620         }
621         offset = si->lowest_bit;
622         while (offset < scan_base) {
623                 if (!si->swap_map[offset]) {
624                         spin_lock(&si->lock);
625                         goto checks;
626                 }
627                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
628                         spin_lock(&si->lock);
629                         goto checks;
630                 }
631                 if (unlikely(--latency_ration < 0)) {
632                         cond_resched();
633                         latency_ration = LATENCY_LIMIT;
634                 }
635                 offset++;
636         }
637         spin_lock(&si->lock);
638
639 no_page:
640         si->flags -= SWP_SCANNING;
641         return 0;
642 }
643
644 swp_entry_t get_swap_page(void)
645 {
646         struct swap_info_struct *si, *next;
647         pgoff_t offset;
648         struct list_head *tmp;
649
650         spin_lock(&swap_lock);
651         if (atomic_long_read(&nr_swap_pages) <= 0)
652                 goto noswap;
653         atomic_long_dec(&nr_swap_pages);
654
655         list_for_each(tmp, &swap_list_head) {
656                 si = list_entry(tmp, typeof(*si), list);
657                 spin_lock(&si->lock);
658                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
659                         spin_unlock(&si->lock);
660                         continue;
661                 }
662
663                 /*
664                  * rotate the current swap_info that we're going to use
665                  * to after any other swap_info that have the same prio,
666                  * so that all equal-priority swap_info get used equally
667                  */
668                 next = si;
669                 list_for_each_entry_continue(next, &swap_list_head, list) {
670                         if (si->prio != next->prio)
671                                 break;
672                         list_rotate_left(&si->list);
673                         next = si;
674                 }
675
676                 spin_unlock(&swap_lock);
677                 /* This is called for allocating swap entry for cache */
678                 offset = scan_swap_map(si, SWAP_HAS_CACHE);
679                 spin_unlock(&si->lock);
680                 if (offset)
681                         return swp_entry(si->type, offset);
682                 spin_lock(&swap_lock);
683                 /*
684                  * if we got here, it's likely that si was almost full before,
685                  * and since scan_swap_map() can drop the si->lock, multiple
686                  * callers probably all tried to get a page from the same si
687                  * and it filled up before we could get one.  So we need to
688                  * try again.  Since we dropped the swap_lock, there may now
689                  * be non-full higher priority swap_infos, and this si may have
690                  * even been removed from the list (although very unlikely).
691                  * Let's start over.
692                  */
693                 tmp = &swap_list_head;
694         }
695
696         atomic_long_inc(&nr_swap_pages);
697 noswap:
698         spin_unlock(&swap_lock);
699         return (swp_entry_t) {0};
700 }
701
702 /* The only caller of this function is now suspend routine */
703 swp_entry_t get_swap_page_of_type(int type)
704 {
705         struct swap_info_struct *si;
706         pgoff_t offset;
707
708         si = swap_info[type];
709         spin_lock(&si->lock);
710         if (si && (si->flags & SWP_WRITEOK)) {
711                 atomic_long_dec(&nr_swap_pages);
712                 /* This is called for allocating swap entry, not cache */
713                 offset = scan_swap_map(si, 1);
714                 if (offset) {
715                         spin_unlock(&si->lock);
716                         return swp_entry(type, offset);
717                 }
718                 atomic_long_inc(&nr_swap_pages);
719         }
720         spin_unlock(&si->lock);
721         return (swp_entry_t) {0};
722 }
723
724 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
725 {
726         struct swap_info_struct *p;
727         unsigned long offset, type;
728
729         if (!entry.val)
730                 goto out;
731         type = swp_type(entry);
732         if (type >= nr_swapfiles)
733                 goto bad_nofile;
734         p = swap_info[type];
735         if (!(p->flags & SWP_USED))
736                 goto bad_device;
737         offset = swp_offset(entry);
738         if (offset >= p->max)
739                 goto bad_offset;
740         if (!p->swap_map[offset])
741                 goto bad_free;
742         spin_lock(&p->lock);
743         return p;
744
745 bad_free:
746         pr_err("swap_free: %s%08lx\n", Unused_offset, entry.val);
747         goto out;
748 bad_offset:
749         pr_err("swap_free: %s%08lx\n", Bad_offset, entry.val);
750         goto out;
751 bad_device:
752         pr_err("swap_free: %s%08lx\n", Unused_file, entry.val);
753         goto out;
754 bad_nofile:
755         pr_err("swap_free: %s%08lx\n", Bad_file, entry.val);
756 out:
757         return NULL;
758 }
759
760 static unsigned char swap_entry_free(struct swap_info_struct *p,
761                                      swp_entry_t entry, unsigned char usage)
762 {
763         unsigned long offset = swp_offset(entry);
764         unsigned char count;
765         unsigned char has_cache;
766
767         count = p->swap_map[offset];
768         has_cache = count & SWAP_HAS_CACHE;
769         count &= ~SWAP_HAS_CACHE;
770
771         if (usage == SWAP_HAS_CACHE) {
772                 VM_BUG_ON(!has_cache);
773                 has_cache = 0;
774         } else if (count == SWAP_MAP_SHMEM) {
775                 /*
776                  * Or we could insist on shmem.c using a special
777                  * swap_shmem_free() and free_shmem_swap_and_cache()...
778                  */
779                 count = 0;
780         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
781                 if (count == COUNT_CONTINUED) {
782                         if (swap_count_continued(p, offset, count))
783                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
784                         else
785                                 count = SWAP_MAP_MAX;
786                 } else
787                         count--;
788         }
789
790         if (!count)
791                 mem_cgroup_uncharge_swap(entry);
792
793         usage = count | has_cache;
794         p->swap_map[offset] = usage;
795
796         /* free if no reference */
797         if (!usage) {
798                 dec_cluster_info_page(p, p->cluster_info, offset);
799                 if (offset < p->lowest_bit)
800                         p->lowest_bit = offset;
801                 if (offset > p->highest_bit)
802                         p->highest_bit = offset;
803                 atomic_long_inc(&nr_swap_pages);
804                 p->inuse_pages--;
805                 frontswap_invalidate_page(p->type, offset);
806                 if (p->flags & SWP_BLKDEV) {
807                         struct gendisk *disk = p->bdev->bd_disk;
808                         if (disk->fops->swap_slot_free_notify)
809                                 disk->fops->swap_slot_free_notify(p->bdev,
810                                                                   offset);
811                 }
812         }
813
814         return usage;
815 }
816
817 /*
818  * Caller has made sure that the swap device corresponding to entry
819  * is still around or has not been recycled.
820  */
821 void swap_free(swp_entry_t entry)
822 {
823         struct swap_info_struct *p;
824
825         p = swap_info_get(entry);
826         if (p) {
827                 swap_entry_free(p, entry, 1);
828                 spin_unlock(&p->lock);
829         }
830 }
831
832 /*
833  * Called after dropping swapcache to decrease refcnt to swap entries.
834  */
835 void swapcache_free(swp_entry_t entry, struct page *page)
836 {
837         struct swap_info_struct *p;
838         unsigned char count;
839
840         p = swap_info_get(entry);
841         if (p) {
842                 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
843                 if (page)
844                         mem_cgroup_uncharge_swapcache(page, entry, count != 0);
845                 spin_unlock(&p->lock);
846         }
847 }
848
849 /*
850  * How many references to page are currently swapped out?
851  * This does not give an exact answer when swap count is continued,
852  * but does include the high COUNT_CONTINUED flag to allow for that.
853  */
854 int page_swapcount(struct page *page)
855 {
856         int count = 0;
857         struct swap_info_struct *p;
858         swp_entry_t entry;
859
860         entry.val = page_private(page);
861         p = swap_info_get(entry);
862         if (p) {
863                 count = swap_count(p->swap_map[swp_offset(entry)]);
864                 spin_unlock(&p->lock);
865         }
866         return count;
867 }
868
869 /*
870  * We can write to an anon page without COW if there are no other references
871  * to it.  And as a side-effect, free up its swap: because the old content
872  * on disk will never be read, and seeking back there to write new content
873  * later would only waste time away from clustering.
874  */
875 int reuse_swap_page(struct page *page)
876 {
877         int count;
878
879         VM_BUG_ON_PAGE(!PageLocked(page), page);
880         if (unlikely(PageKsm(page)))
881                 return 0;
882         count = page_mapcount(page);
883         if (count <= 1 && PageSwapCache(page)) {
884                 count += page_swapcount(page);
885                 if (count == 1 && !PageWriteback(page)) {
886                         delete_from_swap_cache(page);
887                         SetPageDirty(page);
888                 }
889         }
890         return count <= 1;
891 }
892
893 /*
894  * If swap is getting full, or if there are no more mappings of this page,
895  * then try_to_free_swap is called to free its swap space.
896  */
897 int try_to_free_swap(struct page *page)
898 {
899         VM_BUG_ON_PAGE(!PageLocked(page), page);
900
901         if (!PageSwapCache(page))
902                 return 0;
903         if (PageWriteback(page))
904                 return 0;
905         if (page_swapcount(page))
906                 return 0;
907
908         /*
909          * Once hibernation has begun to create its image of memory,
910          * there's a danger that one of the calls to try_to_free_swap()
911          * - most probably a call from __try_to_reclaim_swap() while
912          * hibernation is allocating its own swap pages for the image,
913          * but conceivably even a call from memory reclaim - will free
914          * the swap from a page which has already been recorded in the
915          * image as a clean swapcache page, and then reuse its swap for
916          * another page of the image.  On waking from hibernation, the
917          * original page might be freed under memory pressure, then
918          * later read back in from swap, now with the wrong data.
919          *
920          * Hibernation suspends storage while it is writing the image
921          * to disk so check that here.
922          */
923         if (pm_suspended_storage())
924                 return 0;
925
926         delete_from_swap_cache(page);
927         SetPageDirty(page);
928         return 1;
929 }
930
931 /*
932  * Free the swap entry like above, but also try to
933  * free the page cache entry if it is the last user.
934  */
935 int free_swap_and_cache(swp_entry_t entry)
936 {
937         struct swap_info_struct *p;
938         struct page *page = NULL;
939
940         if (non_swap_entry(entry))
941                 return 1;
942
943         p = swap_info_get(entry);
944         if (p) {
945                 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
946                         page = find_get_page(swap_address_space(entry),
947                                                 entry.val);
948                         if (page && !trylock_page(page)) {
949                                 page_cache_release(page);
950                                 page = NULL;
951                         }
952                 }
953                 spin_unlock(&p->lock);
954         }
955         if (page) {
956                 /*
957                  * Not mapped elsewhere, or swap space full? Free it!
958                  * Also recheck PageSwapCache now page is locked (above).
959                  */
960                 if (PageSwapCache(page) && !PageWriteback(page) &&
961                                 (!page_mapped(page) || vm_swap_full())) {
962                         delete_from_swap_cache(page);
963                         SetPageDirty(page);
964                 }
965                 unlock_page(page);
966                 page_cache_release(page);
967         }
968         return p != NULL;
969 }
970
971 #ifdef CONFIG_HIBERNATION
972 /*
973  * Find the swap type that corresponds to given device (if any).
974  *
975  * @offset - number of the PAGE_SIZE-sized block of the device, starting
976  * from 0, in which the swap header is expected to be located.
977  *
978  * This is needed for the suspend to disk (aka swsusp).
979  */
980 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
981 {
982         struct block_device *bdev = NULL;
983         int type;
984
985         if (device)
986                 bdev = bdget(device);
987
988         spin_lock(&swap_lock);
989         for (type = 0; type < nr_swapfiles; type++) {
990                 struct swap_info_struct *sis = swap_info[type];
991
992                 if (!(sis->flags & SWP_WRITEOK))
993                         continue;
994
995                 if (!bdev) {
996                         if (bdev_p)
997                                 *bdev_p = bdgrab(sis->bdev);
998
999                         spin_unlock(&swap_lock);
1000                         return type;
1001                 }
1002                 if (bdev == sis->bdev) {
1003                         struct swap_extent *se = &sis->first_swap_extent;
1004
1005                         if (se->start_block == offset) {
1006                                 if (bdev_p)
1007                                         *bdev_p = bdgrab(sis->bdev);
1008
1009                                 spin_unlock(&swap_lock);
1010                                 bdput(bdev);
1011                                 return type;
1012                         }
1013                 }
1014         }
1015         spin_unlock(&swap_lock);
1016         if (bdev)
1017                 bdput(bdev);
1018
1019         return -ENODEV;
1020 }
1021
1022 /*
1023  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1024  * corresponding to given index in swap_info (swap type).
1025  */
1026 sector_t swapdev_block(int type, pgoff_t offset)
1027 {
1028         struct block_device *bdev;
1029
1030         if ((unsigned int)type >= nr_swapfiles)
1031                 return 0;
1032         if (!(swap_info[type]->flags & SWP_WRITEOK))
1033                 return 0;
1034         return map_swap_entry(swp_entry(type, offset), &bdev);
1035 }
1036
1037 /*
1038  * Return either the total number of swap pages of given type, or the number
1039  * of free pages of that type (depending on @free)
1040  *
1041  * This is needed for software suspend
1042  */
1043 unsigned int count_swap_pages(int type, int free)
1044 {
1045         unsigned int n = 0;
1046
1047         spin_lock(&swap_lock);
1048         if ((unsigned int)type < nr_swapfiles) {
1049                 struct swap_info_struct *sis = swap_info[type];
1050
1051                 spin_lock(&sis->lock);
1052                 if (sis->flags & SWP_WRITEOK) {
1053                         n = sis->pages;
1054                         if (free)
1055                                 n -= sis->inuse_pages;
1056                 }
1057                 spin_unlock(&sis->lock);
1058         }
1059         spin_unlock(&swap_lock);
1060         return n;
1061 }
1062 #endif /* CONFIG_HIBERNATION */
1063
1064 static inline int maybe_same_pte(pte_t pte, pte_t swp_pte)
1065 {
1066 #ifdef CONFIG_MEM_SOFT_DIRTY
1067         /*
1068          * When pte keeps soft dirty bit the pte generated
1069          * from swap entry does not has it, still it's same
1070          * pte from logical point of view.
1071          */
1072         pte_t swp_pte_dirty = pte_swp_mksoft_dirty(swp_pte);
1073         return pte_same(pte, swp_pte) || pte_same(pte, swp_pte_dirty);
1074 #else
1075         return pte_same(pte, swp_pte);
1076 #endif
1077 }
1078
1079 /*
1080  * No need to decide whether this PTE shares the swap entry with others,
1081  * just let do_wp_page work it out if a write is requested later - to
1082  * force COW, vm_page_prot omits write permission from any private vma.
1083  */
1084 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1085                 unsigned long addr, swp_entry_t entry, struct page *page)
1086 {
1087         struct page *swapcache;
1088         struct mem_cgroup *memcg;
1089         spinlock_t *ptl;
1090         pte_t *pte;
1091         int ret = 1;
1092
1093         swapcache = page;
1094         page = ksm_might_need_to_copy(page, vma, addr);
1095         if (unlikely(!page))
1096                 return -ENOMEM;
1097
1098         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page,
1099                                          GFP_KERNEL, &memcg)) {
1100                 ret = -ENOMEM;
1101                 goto out_nolock;
1102         }
1103
1104         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1105         if (unlikely(!maybe_same_pte(*pte, swp_entry_to_pte(entry)))) {
1106                 mem_cgroup_cancel_charge_swapin(memcg);
1107                 ret = 0;
1108                 goto out;
1109         }
1110
1111         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1112         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1113         get_page(page);
1114         set_pte_at(vma->vm_mm, addr, pte,
1115                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1116         if (page == swapcache)
1117                 page_add_anon_rmap(page, vma, addr);
1118         else /* ksm created a completely new copy */
1119                 page_add_new_anon_rmap(page, vma, addr);
1120         mem_cgroup_commit_charge_swapin(page, memcg);
1121         swap_free(entry);
1122         /*
1123          * Move the page to the active list so it is not
1124          * immediately swapped out again after swapon.
1125          */
1126         activate_page(page);
1127 out:
1128         pte_unmap_unlock(pte, ptl);
1129 out_nolock:
1130         if (page != swapcache) {
1131                 unlock_page(page);
1132                 put_page(page);
1133         }
1134         return ret;
1135 }
1136
1137 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1138                                 unsigned long addr, unsigned long end,
1139                                 swp_entry_t entry, struct page *page)
1140 {
1141         pte_t swp_pte = swp_entry_to_pte(entry);
1142         pte_t *pte;
1143         int ret = 0;
1144
1145         /*
1146          * We don't actually need pte lock while scanning for swp_pte: since
1147          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1148          * page table while we're scanning; though it could get zapped, and on
1149          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1150          * of unmatched parts which look like swp_pte, so unuse_pte must
1151          * recheck under pte lock.  Scanning without pte lock lets it be
1152          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1153          */
1154         pte = pte_offset_map(pmd, addr);
1155         do {
1156                 /*
1157                  * swapoff spends a _lot_ of time in this loop!
1158                  * Test inline before going to call unuse_pte.
1159                  */
1160                 if (unlikely(maybe_same_pte(*pte, swp_pte))) {
1161                         pte_unmap(pte);
1162                         ret = unuse_pte(vma, pmd, addr, entry, page);
1163                         if (ret)
1164                                 goto out;
1165                         pte = pte_offset_map(pmd, addr);
1166                 }
1167         } while (pte++, addr += PAGE_SIZE, addr != end);
1168         pte_unmap(pte - 1);
1169 out:
1170         return ret;
1171 }
1172
1173 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1174                                 unsigned long addr, unsigned long end,
1175                                 swp_entry_t entry, struct page *page)
1176 {
1177         pmd_t *pmd;
1178         unsigned long next;
1179         int ret;
1180
1181         pmd = pmd_offset(pud, addr);
1182         do {
1183                 next = pmd_addr_end(addr, end);
1184                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1185                         continue;
1186                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1187                 if (ret)
1188                         return ret;
1189         } while (pmd++, addr = next, addr != end);
1190         return 0;
1191 }
1192
1193 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
1194                                 unsigned long addr, unsigned long end,
1195                                 swp_entry_t entry, struct page *page)
1196 {
1197         pud_t *pud;
1198         unsigned long next;
1199         int ret;
1200
1201         pud = pud_offset(pgd, addr);
1202         do {
1203                 next = pud_addr_end(addr, end);
1204                 if (pud_none_or_clear_bad(pud))
1205                         continue;
1206                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1207                 if (ret)
1208                         return ret;
1209         } while (pud++, addr = next, addr != end);
1210         return 0;
1211 }
1212
1213 static int unuse_vma(struct vm_area_struct *vma,
1214                                 swp_entry_t entry, struct page *page)
1215 {
1216         pgd_t *pgd;
1217         unsigned long addr, end, next;
1218         int ret;
1219
1220         if (page_anon_vma(page)) {
1221                 addr = page_address_in_vma(page, vma);
1222                 if (addr == -EFAULT)
1223                         return 0;
1224                 else
1225                         end = addr + PAGE_SIZE;
1226         } else {
1227                 addr = vma->vm_start;
1228                 end = vma->vm_end;
1229         }
1230
1231         pgd = pgd_offset(vma->vm_mm, addr);
1232         do {
1233                 next = pgd_addr_end(addr, end);
1234                 if (pgd_none_or_clear_bad(pgd))
1235                         continue;
1236                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1237                 if (ret)
1238                         return ret;
1239         } while (pgd++, addr = next, addr != end);
1240         return 0;
1241 }
1242
1243 static int unuse_mm(struct mm_struct *mm,
1244                                 swp_entry_t entry, struct page *page)
1245 {
1246         struct vm_area_struct *vma;
1247         int ret = 0;
1248
1249         if (!down_read_trylock(&mm->mmap_sem)) {
1250                 /*
1251                  * Activate page so shrink_inactive_list is unlikely to unmap
1252                  * its ptes while lock is dropped, so swapoff can make progress.
1253                  */
1254                 activate_page(page);
1255                 unlock_page(page);
1256                 down_read(&mm->mmap_sem);
1257                 lock_page(page);
1258         }
1259         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1260                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1261                         break;
1262         }
1263         up_read(&mm->mmap_sem);
1264         return (ret < 0)? ret: 0;
1265 }
1266
1267 /*
1268  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1269  * from current position to next entry still in use.
1270  * Recycle to start on reaching the end, returning 0 when empty.
1271  */
1272 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1273                                         unsigned int prev, bool frontswap)
1274 {
1275         unsigned int max = si->max;
1276         unsigned int i = prev;
1277         unsigned char count;
1278
1279         /*
1280          * No need for swap_lock here: we're just looking
1281          * for whether an entry is in use, not modifying it; false
1282          * hits are okay, and sys_swapoff() has already prevented new
1283          * allocations from this area (while holding swap_lock).
1284          */
1285         for (;;) {
1286                 if (++i >= max) {
1287                         if (!prev) {
1288                                 i = 0;
1289                                 break;
1290                         }
1291                         /*
1292                          * No entries in use at top of swap_map,
1293                          * loop back to start and recheck there.
1294                          */
1295                         max = prev + 1;
1296                         prev = 0;
1297                         i = 1;
1298                 }
1299                 if (frontswap) {
1300                         if (frontswap_test(si, i))
1301                                 break;
1302                         else
1303                                 continue;
1304                 }
1305                 count = ACCESS_ONCE(si->swap_map[i]);
1306                 if (count && swap_count(count) != SWAP_MAP_BAD)
1307                         break;
1308         }
1309         return i;
1310 }
1311
1312 /*
1313  * We completely avoid races by reading each swap page in advance,
1314  * and then search for the process using it.  All the necessary
1315  * page table adjustments can then be made atomically.
1316  *
1317  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1318  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1319  */
1320 int try_to_unuse(unsigned int type, bool frontswap,
1321                  unsigned long pages_to_unuse)
1322 {
1323         struct swap_info_struct *si = swap_info[type];
1324         struct mm_struct *start_mm;
1325         volatile unsigned char *swap_map; /* swap_map is accessed without
1326                                            * locking. Mark it as volatile
1327                                            * to prevent compiler doing
1328                                            * something odd.
1329                                            */
1330         unsigned char swcount;
1331         struct page *page;
1332         swp_entry_t entry;
1333         unsigned int i = 0;
1334         int retval = 0;
1335
1336         /*
1337          * When searching mms for an entry, a good strategy is to
1338          * start at the first mm we freed the previous entry from
1339          * (though actually we don't notice whether we or coincidence
1340          * freed the entry).  Initialize this start_mm with a hold.
1341          *
1342          * A simpler strategy would be to start at the last mm we
1343          * freed the previous entry from; but that would take less
1344          * advantage of mmlist ordering, which clusters forked mms
1345          * together, child after parent.  If we race with dup_mmap(), we
1346          * prefer to resolve parent before child, lest we miss entries
1347          * duplicated after we scanned child: using last mm would invert
1348          * that.
1349          */
1350         start_mm = &init_mm;
1351         atomic_inc(&init_mm.mm_users);
1352
1353         /*
1354          * Keep on scanning until all entries have gone.  Usually,
1355          * one pass through swap_map is enough, but not necessarily:
1356          * there are races when an instance of an entry might be missed.
1357          */
1358         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1359                 if (signal_pending(current)) {
1360                         retval = -EINTR;
1361                         break;
1362                 }
1363
1364                 /*
1365                  * Get a page for the entry, using the existing swap
1366                  * cache page if there is one.  Otherwise, get a clean
1367                  * page and read the swap into it.
1368                  */
1369                 swap_map = &si->swap_map[i];
1370                 entry = swp_entry(type, i);
1371                 page = read_swap_cache_async(entry,
1372                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1373                 if (!page) {
1374                         /*
1375                          * Either swap_duplicate() failed because entry
1376                          * has been freed independently, and will not be
1377                          * reused since sys_swapoff() already disabled
1378                          * allocation from here, or alloc_page() failed.
1379                          */
1380                         swcount = *swap_map;
1381                         /*
1382                          * We don't hold lock here, so the swap entry could be
1383                          * SWAP_MAP_BAD (when the cluster is discarding).
1384                          * Instead of fail out, We can just skip the swap
1385                          * entry because swapoff will wait for discarding
1386                          * finish anyway.
1387                          */
1388                         if (!swcount || swcount == SWAP_MAP_BAD)
1389                                 continue;
1390                         retval = -ENOMEM;
1391                         break;
1392                 }
1393
1394                 /*
1395                  * Don't hold on to start_mm if it looks like exiting.
1396                  */
1397                 if (atomic_read(&start_mm->mm_users) == 1) {
1398                         mmput(start_mm);
1399                         start_mm = &init_mm;
1400                         atomic_inc(&init_mm.mm_users);
1401                 }
1402
1403                 /*
1404                  * Wait for and lock page.  When do_swap_page races with
1405                  * try_to_unuse, do_swap_page can handle the fault much
1406                  * faster than try_to_unuse can locate the entry.  This
1407                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1408                  * defer to do_swap_page in such a case - in some tests,
1409                  * do_swap_page and try_to_unuse repeatedly compete.
1410                  */
1411                 wait_on_page_locked(page);
1412                 wait_on_page_writeback(page);
1413                 lock_page(page);
1414                 wait_on_page_writeback(page);
1415
1416                 /*
1417                  * Remove all references to entry.
1418                  */
1419                 swcount = *swap_map;
1420                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1421                         retval = shmem_unuse(entry, page);
1422                         /* page has already been unlocked and released */
1423                         if (retval < 0)
1424                                 break;
1425                         continue;
1426                 }
1427                 if (swap_count(swcount) && start_mm != &init_mm)
1428                         retval = unuse_mm(start_mm, entry, page);
1429
1430                 if (swap_count(*swap_map)) {
1431                         int set_start_mm = (*swap_map >= swcount);
1432                         struct list_head *p = &start_mm->mmlist;
1433                         struct mm_struct *new_start_mm = start_mm;
1434                         struct mm_struct *prev_mm = start_mm;
1435                         struct mm_struct *mm;
1436
1437                         atomic_inc(&new_start_mm->mm_users);
1438                         atomic_inc(&prev_mm->mm_users);
1439                         spin_lock(&mmlist_lock);
1440                         while (swap_count(*swap_map) && !retval &&
1441                                         (p = p->next) != &start_mm->mmlist) {
1442                                 mm = list_entry(p, struct mm_struct, mmlist);
1443                                 if (!atomic_inc_not_zero(&mm->mm_users))
1444                                         continue;
1445                                 spin_unlock(&mmlist_lock);
1446                                 mmput(prev_mm);
1447                                 prev_mm = mm;
1448
1449                                 cond_resched();
1450
1451                                 swcount = *swap_map;
1452                                 if (!swap_count(swcount)) /* any usage ? */
1453                                         ;
1454                                 else if (mm == &init_mm)
1455                                         set_start_mm = 1;
1456                                 else
1457                                         retval = unuse_mm(mm, entry, page);
1458
1459                                 if (set_start_mm && *swap_map < swcount) {
1460                                         mmput(new_start_mm);
1461                                         atomic_inc(&mm->mm_users);
1462                                         new_start_mm = mm;
1463                                         set_start_mm = 0;
1464                                 }
1465                                 spin_lock(&mmlist_lock);
1466                         }
1467                         spin_unlock(&mmlist_lock);
1468                         mmput(prev_mm);
1469                         mmput(start_mm);
1470                         start_mm = new_start_mm;
1471                 }
1472                 if (retval) {
1473                         unlock_page(page);
1474                         page_cache_release(page);
1475                         break;
1476                 }
1477
1478                 /*
1479                  * If a reference remains (rare), we would like to leave
1480                  * the page in the swap cache; but try_to_unmap could
1481                  * then re-duplicate the entry once we drop page lock,
1482                  * so we might loop indefinitely; also, that page could
1483                  * not be swapped out to other storage meanwhile.  So:
1484                  * delete from cache even if there's another reference,
1485                  * after ensuring that the data has been saved to disk -
1486                  * since if the reference remains (rarer), it will be
1487                  * read from disk into another page.  Splitting into two
1488                  * pages would be incorrect if swap supported "shared
1489                  * private" pages, but they are handled by tmpfs files.
1490                  *
1491                  * Given how unuse_vma() targets one particular offset
1492                  * in an anon_vma, once the anon_vma has been determined,
1493                  * this splitting happens to be just what is needed to
1494                  * handle where KSM pages have been swapped out: re-reading
1495                  * is unnecessarily slow, but we can fix that later on.
1496                  */
1497                 if (swap_count(*swap_map) &&
1498                      PageDirty(page) && PageSwapCache(page)) {
1499                         struct writeback_control wbc = {
1500                                 .sync_mode = WB_SYNC_NONE,
1501                         };
1502
1503                         swap_writepage(page, &wbc);
1504                         lock_page(page);
1505                         wait_on_page_writeback(page);
1506                 }
1507
1508                 /*
1509                  * It is conceivable that a racing task removed this page from
1510                  * swap cache just before we acquired the page lock at the top,
1511                  * or while we dropped it in unuse_mm().  The page might even
1512                  * be back in swap cache on another swap area: that we must not
1513                  * delete, since it may not have been written out to swap yet.
1514                  */
1515                 if (PageSwapCache(page) &&
1516                     likely(page_private(page) == entry.val))
1517                         delete_from_swap_cache(page);
1518
1519                 /*
1520                  * So we could skip searching mms once swap count went
1521                  * to 1, we did not mark any present ptes as dirty: must
1522                  * mark page dirty so shrink_page_list will preserve it.
1523                  */
1524                 SetPageDirty(page);
1525                 unlock_page(page);
1526                 page_cache_release(page);
1527
1528                 /*
1529                  * Make sure that we aren't completely killing
1530                  * interactive performance.
1531                  */
1532                 cond_resched();
1533                 if (frontswap && pages_to_unuse > 0) {
1534                         if (!--pages_to_unuse)
1535                                 break;
1536                 }
1537         }
1538
1539         mmput(start_mm);
1540         return retval;
1541 }
1542
1543 /*
1544  * After a successful try_to_unuse, if no swap is now in use, we know
1545  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1546  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1547  * added to the mmlist just after page_duplicate - before would be racy.
1548  */
1549 static void drain_mmlist(void)
1550 {
1551         struct list_head *p, *next;
1552         unsigned int type;
1553
1554         for (type = 0; type < nr_swapfiles; type++)
1555                 if (swap_info[type]->inuse_pages)
1556                         return;
1557         spin_lock(&mmlist_lock);
1558         list_for_each_safe(p, next, &init_mm.mmlist)
1559                 list_del_init(p);
1560         spin_unlock(&mmlist_lock);
1561 }
1562
1563 /*
1564  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1565  * corresponds to page offset for the specified swap entry.
1566  * Note that the type of this function is sector_t, but it returns page offset
1567  * into the bdev, not sector offset.
1568  */
1569 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1570 {
1571         struct swap_info_struct *sis;
1572         struct swap_extent *start_se;
1573         struct swap_extent *se;
1574         pgoff_t offset;
1575
1576         sis = swap_info[swp_type(entry)];
1577         *bdev = sis->bdev;
1578
1579         offset = swp_offset(entry);
1580         start_se = sis->curr_swap_extent;
1581         se = start_se;
1582
1583         for ( ; ; ) {
1584                 struct list_head *lh;
1585
1586                 if (se->start_page <= offset &&
1587                                 offset < (se->start_page + se->nr_pages)) {
1588                         return se->start_block + (offset - se->start_page);
1589                 }
1590                 lh = se->list.next;
1591                 se = list_entry(lh, struct swap_extent, list);
1592                 sis->curr_swap_extent = se;
1593                 BUG_ON(se == start_se);         /* It *must* be present */
1594         }
1595 }
1596
1597 /*
1598  * Returns the page offset into bdev for the specified page's swap entry.
1599  */
1600 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1601 {
1602         swp_entry_t entry;
1603         entry.val = page_private(page);
1604         return map_swap_entry(entry, bdev);
1605 }
1606
1607 /*
1608  * Free all of a swapdev's extent information
1609  */
1610 static void destroy_swap_extents(struct swap_info_struct *sis)
1611 {
1612         while (!list_empty(&sis->first_swap_extent.list)) {
1613                 struct swap_extent *se;
1614
1615                 se = list_entry(sis->first_swap_extent.list.next,
1616                                 struct swap_extent, list);
1617                 list_del(&se->list);
1618                 kfree(se);
1619         }
1620
1621         if (sis->flags & SWP_FILE) {
1622                 struct file *swap_file = sis->swap_file;
1623                 struct address_space *mapping = swap_file->f_mapping;
1624
1625                 sis->flags &= ~SWP_FILE;
1626                 mapping->a_ops->swap_deactivate(swap_file);
1627         }
1628 }
1629
1630 /*
1631  * Add a block range (and the corresponding page range) into this swapdev's
1632  * extent list.  The extent list is kept sorted in page order.
1633  *
1634  * This function rather assumes that it is called in ascending page order.
1635  */
1636 int
1637 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1638                 unsigned long nr_pages, sector_t start_block)
1639 {
1640         struct swap_extent *se;
1641         struct swap_extent *new_se;
1642         struct list_head *lh;
1643
1644         if (start_page == 0) {
1645                 se = &sis->first_swap_extent;
1646                 sis->curr_swap_extent = se;
1647                 se->start_page = 0;
1648                 se->nr_pages = nr_pages;
1649                 se->start_block = start_block;
1650                 return 1;
1651         } else {
1652                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
1653                 se = list_entry(lh, struct swap_extent, list);
1654                 BUG_ON(se->start_page + se->nr_pages != start_page);
1655                 if (se->start_block + se->nr_pages == start_block) {
1656                         /* Merge it */
1657                         se->nr_pages += nr_pages;
1658                         return 0;
1659                 }
1660         }
1661
1662         /*
1663          * No merge.  Insert a new extent, preserving ordering.
1664          */
1665         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1666         if (new_se == NULL)
1667                 return -ENOMEM;
1668         new_se->start_page = start_page;
1669         new_se->nr_pages = nr_pages;
1670         new_se->start_block = start_block;
1671
1672         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1673         return 1;
1674 }
1675
1676 /*
1677  * A `swap extent' is a simple thing which maps a contiguous range of pages
1678  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1679  * is built at swapon time and is then used at swap_writepage/swap_readpage
1680  * time for locating where on disk a page belongs.
1681  *
1682  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1683  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1684  * swap files identically.
1685  *
1686  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1687  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1688  * swapfiles are handled *identically* after swapon time.
1689  *
1690  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1691  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1692  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1693  * requirements, they are simply tossed out - we will never use those blocks
1694  * for swapping.
1695  *
1696  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1697  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1698  * which will scribble on the fs.
1699  *
1700  * The amount of disk space which a single swap extent represents varies.
1701  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1702  * extents in the list.  To avoid much list walking, we cache the previous
1703  * search location in `curr_swap_extent', and start new searches from there.
1704  * This is extremely effective.  The average number of iterations in
1705  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1706  */
1707 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1708 {
1709         struct file *swap_file = sis->swap_file;
1710         struct address_space *mapping = swap_file->f_mapping;
1711         struct inode *inode = mapping->host;
1712         int ret;
1713
1714         if (S_ISBLK(inode->i_mode)) {
1715                 ret = add_swap_extent(sis, 0, sis->max, 0);
1716                 *span = sis->pages;
1717                 return ret;
1718         }
1719
1720         if (mapping->a_ops->swap_activate) {
1721                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
1722                 if (!ret) {
1723                         sis->flags |= SWP_FILE;
1724                         ret = add_swap_extent(sis, 0, sis->max, 0);
1725                         *span = sis->pages;
1726                 }
1727                 return ret;
1728         }
1729
1730         return generic_swapfile_activate(sis, swap_file, span);
1731 }
1732
1733 static void _enable_swap_info(struct swap_info_struct *p, int prio,
1734                                 unsigned char *swap_map,
1735                                 struct swap_cluster_info *cluster_info)
1736 {
1737         struct swap_info_struct *si;
1738
1739         if (prio >= 0)
1740                 p->prio = prio;
1741         else
1742                 p->prio = --least_priority;
1743         p->swap_map = swap_map;
1744         p->cluster_info = cluster_info;
1745         p->flags |= SWP_WRITEOK;
1746         atomic_long_add(p->pages, &nr_swap_pages);
1747         total_swap_pages += p->pages;
1748
1749         assert_spin_locked(&swap_lock);
1750         BUG_ON(!list_empty(&p->list));
1751         /*
1752          * insert into swap list; the list is in priority order,
1753          * so that get_swap_page() can get a page from the highest
1754          * priority swap_info_struct with available page(s), and
1755          * swapoff can adjust the auto-assigned (i.e. negative) prio
1756          * values for any lower-priority swap_info_structs when
1757          * removing a negative-prio swap_info_struct
1758          */
1759         list_for_each_entry(si, &swap_list_head, list) {
1760                 if (p->prio >= si->prio) {
1761                         list_add_tail(&p->list, &si->list);
1762                         return;
1763                 }
1764         }
1765         /*
1766          * this covers two cases:
1767          * 1) p->prio is less than all existing prio
1768          * 2) the swap list is empty
1769          */
1770         list_add_tail(&p->list, &swap_list_head);
1771 }
1772
1773 static void enable_swap_info(struct swap_info_struct *p, int prio,
1774                                 unsigned char *swap_map,
1775                                 struct swap_cluster_info *cluster_info,
1776                                 unsigned long *frontswap_map)
1777 {
1778         frontswap_init(p->type, frontswap_map);
1779         spin_lock(&swap_lock);
1780         spin_lock(&p->lock);
1781          _enable_swap_info(p, prio, swap_map, cluster_info);
1782         spin_unlock(&p->lock);
1783         spin_unlock(&swap_lock);
1784 }
1785
1786 static void reinsert_swap_info(struct swap_info_struct *p)
1787 {
1788         spin_lock(&swap_lock);
1789         spin_lock(&p->lock);
1790         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
1791         spin_unlock(&p->lock);
1792         spin_unlock(&swap_lock);
1793 }
1794
1795 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1796 {
1797         struct swap_info_struct *p = NULL;
1798         unsigned char *swap_map;
1799         struct swap_cluster_info *cluster_info;
1800         unsigned long *frontswap_map;
1801         struct file *swap_file, *victim;
1802         struct address_space *mapping;
1803         struct inode *inode;
1804         struct filename *pathname;
1805         int err, found = 0;
1806         unsigned int old_block_size;
1807
1808         if (!capable(CAP_SYS_ADMIN))
1809                 return -EPERM;
1810
1811         BUG_ON(!current->mm);
1812
1813         pathname = getname(specialfile);
1814         if (IS_ERR(pathname))
1815                 return PTR_ERR(pathname);
1816
1817         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1818         err = PTR_ERR(victim);
1819         if (IS_ERR(victim))
1820                 goto out;
1821
1822         mapping = victim->f_mapping;
1823         spin_lock(&swap_lock);
1824         list_for_each_entry(p, &swap_list_head, list) {
1825                 if (p->flags & SWP_WRITEOK) {
1826                         if (p->swap_file->f_mapping == mapping) {
1827                                 found = 1;
1828                                 break;
1829                         }
1830                 }
1831         }
1832         if (!found) {
1833                 err = -EINVAL;
1834                 spin_unlock(&swap_lock);
1835                 goto out_dput;
1836         }
1837         if (!security_vm_enough_memory_mm(current->mm, p->pages))
1838                 vm_unacct_memory(p->pages);
1839         else {
1840                 err = -ENOMEM;
1841                 spin_unlock(&swap_lock);
1842                 goto out_dput;
1843         }
1844         spin_lock(&p->lock);
1845         if (p->prio < 0) {
1846                 struct swap_info_struct *si = p;
1847
1848                 list_for_each_entry_continue(si, &swap_list_head, list) {
1849                         si->prio++;
1850                 }
1851                 least_priority++;
1852         }
1853         list_del_init(&p->list);
1854         atomic_long_sub(p->pages, &nr_swap_pages);
1855         total_swap_pages -= p->pages;
1856         p->flags &= ~SWP_WRITEOK;
1857         spin_unlock(&p->lock);
1858         spin_unlock(&swap_lock);
1859
1860         set_current_oom_origin();
1861         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
1862         clear_current_oom_origin();
1863
1864         if (err) {
1865                 /* re-insert swap space back into swap_list */
1866                 reinsert_swap_info(p);
1867                 goto out_dput;
1868         }
1869
1870         flush_work(&p->discard_work);
1871
1872         destroy_swap_extents(p);
1873         if (p->flags & SWP_CONTINUED)
1874                 free_swap_count_continuations(p);
1875
1876         mutex_lock(&swapon_mutex);
1877         spin_lock(&swap_lock);
1878         spin_lock(&p->lock);
1879         drain_mmlist();
1880
1881         /* wait for anyone still in scan_swap_map */
1882         p->highest_bit = 0;             /* cuts scans short */
1883         while (p->flags >= SWP_SCANNING) {
1884                 spin_unlock(&p->lock);
1885                 spin_unlock(&swap_lock);
1886                 schedule_timeout_uninterruptible(1);
1887                 spin_lock(&swap_lock);
1888                 spin_lock(&p->lock);
1889         }
1890
1891         swap_file = p->swap_file;
1892         old_block_size = p->old_block_size;
1893         p->swap_file = NULL;
1894         p->max = 0;
1895         swap_map = p->swap_map;
1896         p->swap_map = NULL;
1897         cluster_info = p->cluster_info;
1898         p->cluster_info = NULL;
1899         frontswap_map = frontswap_map_get(p);
1900         spin_unlock(&p->lock);
1901         spin_unlock(&swap_lock);
1902         frontswap_invalidate_area(p->type);
1903         frontswap_map_set(p, NULL);
1904         mutex_unlock(&swapon_mutex);
1905         free_percpu(p->percpu_cluster);
1906         p->percpu_cluster = NULL;
1907         vfree(swap_map);
1908         vfree(cluster_info);
1909         vfree(frontswap_map);
1910         /* Destroy swap account information */
1911         swap_cgroup_swapoff(p->type);
1912
1913         inode = mapping->host;
1914         if (S_ISBLK(inode->i_mode)) {
1915                 struct block_device *bdev = I_BDEV(inode);
1916                 set_blocksize(bdev, old_block_size);
1917                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1918         } else {
1919                 mutex_lock(&inode->i_mutex);
1920                 inode->i_flags &= ~S_SWAPFILE;
1921                 mutex_unlock(&inode->i_mutex);
1922         }
1923         filp_close(swap_file, NULL);
1924
1925         /*
1926          * Clear the SWP_USED flag after all resources are freed so that swapon
1927          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
1928          * not hold p->lock after we cleared its SWP_WRITEOK.
1929          */
1930         spin_lock(&swap_lock);
1931         p->flags = 0;
1932         spin_unlock(&swap_lock);
1933
1934         err = 0;
1935         atomic_inc(&proc_poll_event);
1936         wake_up_interruptible(&proc_poll_wait);
1937
1938 out_dput:
1939         filp_close(victim, NULL);
1940 out:
1941         putname(pathname);
1942         return err;
1943 }
1944
1945 #ifdef CONFIG_PROC_FS
1946 static unsigned swaps_poll(struct file *file, poll_table *wait)
1947 {
1948         struct seq_file *seq = file->private_data;
1949
1950         poll_wait(file, &proc_poll_wait, wait);
1951
1952         if (seq->poll_event != atomic_read(&proc_poll_event)) {
1953                 seq->poll_event = atomic_read(&proc_poll_event);
1954                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1955         }
1956
1957         return POLLIN | POLLRDNORM;
1958 }
1959
1960 /* iterator */
1961 static void *swap_start(struct seq_file *swap, loff_t *pos)
1962 {
1963         struct swap_info_struct *si;
1964         int type;
1965         loff_t l = *pos;
1966
1967         mutex_lock(&swapon_mutex);
1968
1969         if (!l)
1970                 return SEQ_START_TOKEN;
1971
1972         for (type = 0; type < nr_swapfiles; type++) {
1973                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1974                 si = swap_info[type];
1975                 if (!(si->flags & SWP_USED) || !si->swap_map)
1976                         continue;
1977                 if (!--l)
1978                         return si;
1979         }
1980
1981         return NULL;
1982 }
1983
1984 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1985 {
1986         struct swap_info_struct *si = v;
1987         int type;
1988
1989         if (v == SEQ_START_TOKEN)
1990                 type = 0;
1991         else
1992                 type = si->type + 1;
1993
1994         for (; type < nr_swapfiles; type++) {
1995                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
1996                 si = swap_info[type];
1997                 if (!(si->flags & SWP_USED) || !si->swap_map)
1998                         continue;
1999                 ++*pos;
2000                 return si;
2001         }
2002
2003         return NULL;
2004 }
2005
2006 static void swap_stop(struct seq_file *swap, void *v)
2007 {
2008         mutex_unlock(&swapon_mutex);
2009 }
2010
2011 static int swap_show(struct seq_file *swap, void *v)
2012 {
2013         struct swap_info_struct *si = v;
2014         struct file *file;
2015         int len;
2016
2017         if (si == SEQ_START_TOKEN) {
2018                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2019                 return 0;
2020         }
2021
2022         file = si->swap_file;
2023         len = seq_path(swap, &file->f_path, " \t\n\\");
2024         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2025                         len < 40 ? 40 - len : 1, " ",
2026                         S_ISBLK(file_inode(file)->i_mode) ?
2027                                 "partition" : "file\t",
2028                         si->pages << (PAGE_SHIFT - 10),
2029                         si->inuse_pages << (PAGE_SHIFT - 10),
2030                         si->prio);
2031         return 0;
2032 }
2033
2034 static const struct seq_operations swaps_op = {
2035         .start =        swap_start,
2036         .next =         swap_next,
2037         .stop =         swap_stop,
2038         .show =         swap_show
2039 };
2040
2041 static int swaps_open(struct inode *inode, struct file *file)
2042 {
2043         struct seq_file *seq;
2044         int ret;
2045
2046         ret = seq_open(file, &swaps_op);
2047         if (ret)
2048                 return ret;
2049
2050         seq = file->private_data;
2051         seq->poll_event = atomic_read(&proc_poll_event);
2052         return 0;
2053 }
2054
2055 static const struct file_operations proc_swaps_operations = {
2056         .open           = swaps_open,
2057         .read           = seq_read,
2058         .llseek         = seq_lseek,
2059         .release        = seq_release,
2060         .poll           = swaps_poll,
2061 };
2062
2063 static int __init procswaps_init(void)
2064 {
2065         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2066         return 0;
2067 }
2068 __initcall(procswaps_init);
2069 #endif /* CONFIG_PROC_FS */
2070
2071 #ifdef MAX_SWAPFILES_CHECK
2072 static int __init max_swapfiles_check(void)
2073 {
2074         MAX_SWAPFILES_CHECK();
2075         return 0;
2076 }
2077 late_initcall(max_swapfiles_check);
2078 #endif
2079
2080 static struct swap_info_struct *alloc_swap_info(void)
2081 {
2082         struct swap_info_struct *p;
2083         unsigned int type;
2084
2085         p = kzalloc(sizeof(*p), GFP_KERNEL);
2086         if (!p)
2087                 return ERR_PTR(-ENOMEM);
2088
2089         spin_lock(&swap_lock);
2090         for (type = 0; type < nr_swapfiles; type++) {
2091                 if (!(swap_info[type]->flags & SWP_USED))
2092                         break;
2093         }
2094         if (type >= MAX_SWAPFILES) {
2095                 spin_unlock(&swap_lock);
2096                 kfree(p);
2097                 return ERR_PTR(-EPERM);
2098         }
2099         if (type >= nr_swapfiles) {
2100                 p->type = type;
2101                 swap_info[type] = p;
2102                 /*
2103                  * Write swap_info[type] before nr_swapfiles, in case a
2104                  * racing procfs swap_start() or swap_next() is reading them.
2105                  * (We never shrink nr_swapfiles, we never free this entry.)
2106                  */
2107                 smp_wmb();
2108                 nr_swapfiles++;
2109         } else {
2110                 kfree(p);
2111                 p = swap_info[type];
2112                 /*
2113                  * Do not memset this entry: a racing procfs swap_next()
2114                  * would be relying on p->type to remain valid.
2115                  */
2116         }
2117         INIT_LIST_HEAD(&p->first_swap_extent.list);
2118         INIT_LIST_HEAD(&p->list);
2119         p->flags = SWP_USED;
2120         spin_unlock(&swap_lock);
2121         spin_lock_init(&p->lock);
2122
2123         return p;
2124 }
2125
2126 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2127 {
2128         int error;
2129
2130         if (S_ISBLK(inode->i_mode)) {
2131                 p->bdev = bdgrab(I_BDEV(inode));
2132                 error = blkdev_get(p->bdev,
2133                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL,
2134                                    sys_swapon);
2135                 if (error < 0) {
2136                         p->bdev = NULL;
2137                         return -EINVAL;
2138                 }
2139                 p->old_block_size = block_size(p->bdev);
2140                 error = set_blocksize(p->bdev, PAGE_SIZE);
2141                 if (error < 0)
2142                         return error;
2143                 p->flags |= SWP_BLKDEV;
2144         } else if (S_ISREG(inode->i_mode)) {
2145                 p->bdev = inode->i_sb->s_bdev;
2146                 mutex_lock(&inode->i_mutex);
2147                 if (IS_SWAPFILE(inode))
2148                         return -EBUSY;
2149         } else
2150                 return -EINVAL;
2151
2152         return 0;
2153 }
2154
2155 static unsigned long read_swap_header(struct swap_info_struct *p,
2156                                         union swap_header *swap_header,
2157                                         struct inode *inode)
2158 {
2159         int i;
2160         unsigned long maxpages;
2161         unsigned long swapfilepages;
2162         unsigned long last_page;
2163
2164         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2165                 pr_err("Unable to find swap-space signature\n");
2166                 return 0;
2167         }
2168
2169         /* swap partition endianess hack... */
2170         if (swab32(swap_header->info.version) == 1) {
2171                 swab32s(&swap_header->info.version);
2172                 swab32s(&swap_header->info.last_page);
2173                 swab32s(&swap_header->info.nr_badpages);
2174                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2175                         swab32s(&swap_header->info.badpages[i]);
2176         }
2177         /* Check the swap header's sub-version */
2178         if (swap_header->info.version != 1) {
2179                 pr_warn("Unable to handle swap header version %d\n",
2180                         swap_header->info.version);
2181                 return 0;
2182         }
2183
2184         p->lowest_bit  = 1;
2185         p->cluster_next = 1;
2186         p->cluster_nr = 0;
2187
2188         /*
2189          * Find out how many pages are allowed for a single swap
2190          * device. There are two limiting factors: 1) the number
2191          * of bits for the swap offset in the swp_entry_t type, and
2192          * 2) the number of bits in the swap pte as defined by the
2193          * different architectures. In order to find the
2194          * largest possible bit mask, a swap entry with swap type 0
2195          * and swap offset ~0UL is created, encoded to a swap pte,
2196          * decoded to a swp_entry_t again, and finally the swap
2197          * offset is extracted. This will mask all the bits from
2198          * the initial ~0UL mask that can't be encoded in either
2199          * the swp_entry_t or the architecture definition of a
2200          * swap pte.
2201          */
2202         maxpages = swp_offset(pte_to_swp_entry(
2203                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2204         last_page = swap_header->info.last_page;
2205         if (last_page > maxpages) {
2206                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2207                         maxpages << (PAGE_SHIFT - 10),
2208                         last_page << (PAGE_SHIFT - 10));
2209         }
2210         if (maxpages > last_page) {
2211                 maxpages = last_page + 1;
2212                 /* p->max is an unsigned int: don't overflow it */
2213                 if ((unsigned int)maxpages == 0)
2214                         maxpages = UINT_MAX;
2215         }
2216         p->highest_bit = maxpages - 1;
2217
2218         if (!maxpages)
2219                 return 0;
2220         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2221         if (swapfilepages && maxpages > swapfilepages) {
2222                 pr_warn("Swap area shorter than signature indicates\n");
2223                 return 0;
2224         }
2225         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2226                 return 0;
2227         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2228                 return 0;
2229
2230         return maxpages;
2231 }
2232
2233 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2234                                         union swap_header *swap_header,
2235                                         unsigned char *swap_map,
2236                                         struct swap_cluster_info *cluster_info,
2237                                         unsigned long maxpages,
2238                                         sector_t *span)
2239 {
2240         int i;
2241         unsigned int nr_good_pages;
2242         int nr_extents;
2243         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2244         unsigned long idx = p->cluster_next / SWAPFILE_CLUSTER;
2245
2246         nr_good_pages = maxpages - 1;   /* omit header page */
2247
2248         cluster_set_null(&p->free_cluster_head);
2249         cluster_set_null(&p->free_cluster_tail);
2250         cluster_set_null(&p->discard_cluster_head);
2251         cluster_set_null(&p->discard_cluster_tail);
2252
2253         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2254                 unsigned int page_nr = swap_header->info.badpages[i];
2255                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2256                         return -EINVAL;
2257                 if (page_nr < maxpages) {
2258                         swap_map[page_nr] = SWAP_MAP_BAD;
2259                         nr_good_pages--;
2260                         /*
2261                          * Haven't marked the cluster free yet, no list
2262                          * operation involved
2263                          */
2264                         inc_cluster_info_page(p, cluster_info, page_nr);
2265                 }
2266         }
2267
2268         /* Haven't marked the cluster free yet, no list operation involved */
2269         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2270                 inc_cluster_info_page(p, cluster_info, i);
2271
2272         if (nr_good_pages) {
2273                 swap_map[0] = SWAP_MAP_BAD;
2274                 /*
2275                  * Not mark the cluster free yet, no list
2276                  * operation involved
2277                  */
2278                 inc_cluster_info_page(p, cluster_info, 0);
2279                 p->max = maxpages;
2280                 p->pages = nr_good_pages;
2281                 nr_extents = setup_swap_extents(p, span);
2282                 if (nr_extents < 0)
2283                         return nr_extents;
2284                 nr_good_pages = p->pages;
2285         }
2286         if (!nr_good_pages) {
2287                 pr_warn("Empty swap-file\n");
2288                 return -EINVAL;
2289         }
2290
2291         if (!cluster_info)
2292                 return nr_extents;
2293
2294         for (i = 0; i < nr_clusters; i++) {
2295                 if (!cluster_count(&cluster_info[idx])) {
2296                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2297                         if (cluster_is_null(&p->free_cluster_head)) {
2298                                 cluster_set_next_flag(&p->free_cluster_head,
2299                                                                 idx, 0);
2300                                 cluster_set_next_flag(&p->free_cluster_tail,
2301                                                                 idx, 0);
2302                         } else {
2303                                 unsigned int tail;
2304
2305                                 tail = cluster_next(&p->free_cluster_tail);
2306                                 cluster_set_next(&cluster_info[tail], idx);
2307                                 cluster_set_next_flag(&p->free_cluster_tail,
2308                                                                 idx, 0);
2309                         }
2310                 }
2311                 idx++;
2312                 if (idx == nr_clusters)
2313                         idx = 0;
2314         }
2315         return nr_extents;
2316 }
2317
2318 /*
2319  * Helper to sys_swapon determining if a given swap
2320  * backing device queue supports DISCARD operations.
2321  */
2322 static bool swap_discardable(struct swap_info_struct *si)
2323 {
2324         struct request_queue *q = bdev_get_queue(si->bdev);
2325
2326         if (!q || !blk_queue_discard(q))
2327                 return false;
2328
2329         return true;
2330 }
2331
2332 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2333 {
2334         struct swap_info_struct *p;
2335         struct filename *name;
2336         struct file *swap_file = NULL;
2337         struct address_space *mapping;
2338         int i;
2339         int prio;
2340         int error;
2341         union swap_header *swap_header;
2342         int nr_extents;
2343         sector_t span;
2344         unsigned long maxpages;
2345         unsigned char *swap_map = NULL;
2346         struct swap_cluster_info *cluster_info = NULL;
2347         unsigned long *frontswap_map = NULL;
2348         struct page *page = NULL;
2349         struct inode *inode = NULL;
2350
2351         if (swap_flags & ~SWAP_FLAGS_VALID)
2352                 return -EINVAL;
2353
2354         if (!capable(CAP_SYS_ADMIN))
2355                 return -EPERM;
2356
2357         p = alloc_swap_info();
2358         if (IS_ERR(p))
2359                 return PTR_ERR(p);
2360
2361         INIT_WORK(&p->discard_work, swap_discard_work);
2362
2363         name = getname(specialfile);
2364         if (IS_ERR(name)) {
2365                 error = PTR_ERR(name);
2366                 name = NULL;
2367                 goto bad_swap;
2368         }
2369         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2370         if (IS_ERR(swap_file)) {
2371                 error = PTR_ERR(swap_file);
2372                 swap_file = NULL;
2373                 goto bad_swap;
2374         }
2375
2376         p->swap_file = swap_file;
2377         mapping = swap_file->f_mapping;
2378
2379         for (i = 0; i < nr_swapfiles; i++) {
2380                 struct swap_info_struct *q = swap_info[i];
2381
2382                 if (q == p || !q->swap_file)
2383                         continue;
2384                 if (mapping == q->swap_file->f_mapping) {
2385                         error = -EBUSY;
2386                         goto bad_swap;
2387                 }
2388         }
2389
2390         inode = mapping->host;
2391         /* If S_ISREG(inode->i_mode) will do mutex_lock(&inode->i_mutex); */
2392         error = claim_swapfile(p, inode);
2393         if (unlikely(error))
2394                 goto bad_swap;
2395
2396         /*
2397          * Read the swap header.
2398          */
2399         if (!mapping->a_ops->readpage) {
2400                 error = -EINVAL;
2401                 goto bad_swap;
2402         }
2403         page = read_mapping_page(mapping, 0, swap_file);
2404         if (IS_ERR(page)) {
2405                 error = PTR_ERR(page);
2406                 goto bad_swap;
2407         }
2408         swap_header = kmap(page);
2409
2410         maxpages = read_swap_header(p, swap_header, inode);
2411         if (unlikely(!maxpages)) {
2412                 error = -EINVAL;
2413                 goto bad_swap;
2414         }
2415
2416         /* OK, set up the swap map and apply the bad block list */
2417         swap_map = vzalloc(maxpages);
2418         if (!swap_map) {
2419                 error = -ENOMEM;
2420                 goto bad_swap;
2421         }
2422         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2423                 p->flags |= SWP_SOLIDSTATE;
2424                 /*
2425                  * select a random position to start with to help wear leveling
2426                  * SSD
2427                  */
2428                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2429
2430                 cluster_info = vzalloc(DIV_ROUND_UP(maxpages,
2431                         SWAPFILE_CLUSTER) * sizeof(*cluster_info));
2432                 if (!cluster_info) {
2433                         error = -ENOMEM;
2434                         goto bad_swap;
2435                 }
2436                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2437                 if (!p->percpu_cluster) {
2438                         error = -ENOMEM;
2439                         goto bad_swap;
2440                 }
2441                 for_each_possible_cpu(i) {
2442                         struct percpu_cluster *cluster;
2443                         cluster = per_cpu_ptr(p->percpu_cluster, i);
2444                         cluster_set_null(&cluster->index);
2445                 }
2446         }
2447
2448         error = swap_cgroup_swapon(p->type, maxpages);
2449         if (error)
2450                 goto bad_swap;
2451
2452         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2453                 cluster_info, maxpages, &span);
2454         if (unlikely(nr_extents < 0)) {
2455                 error = nr_extents;
2456                 goto bad_swap;
2457         }
2458         /* frontswap enabled? set up bit-per-page map for frontswap */
2459         if (frontswap_enabled)
2460                 frontswap_map = vzalloc(BITS_TO_LONGS(maxpages) * sizeof(long));
2461
2462         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2463                 /*
2464                  * When discard is enabled for swap with no particular
2465                  * policy flagged, we set all swap discard flags here in
2466                  * order to sustain backward compatibility with older
2467                  * swapon(8) releases.
2468                  */
2469                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2470                              SWP_PAGE_DISCARD);
2471
2472                 /*
2473                  * By flagging sys_swapon, a sysadmin can tell us to
2474                  * either do single-time area discards only, or to just
2475                  * perform discards for released swap page-clusters.
2476                  * Now it's time to adjust the p->flags accordingly.
2477                  */
2478                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
2479                         p->flags &= ~SWP_PAGE_DISCARD;
2480                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
2481                         p->flags &= ~SWP_AREA_DISCARD;
2482
2483                 /* issue a swapon-time discard if it's still required */
2484                 if (p->flags & SWP_AREA_DISCARD) {
2485                         int err = discard_swap(p);
2486                         if (unlikely(err))
2487                                 pr_err("swapon: discard_swap(%p): %d\n",
2488                                         p, err);
2489                 }
2490         }
2491
2492         mutex_lock(&swapon_mutex);
2493         prio = -1;
2494         if (swap_flags & SWAP_FLAG_PREFER)
2495                 prio =
2496                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2497         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
2498
2499         pr_info("Adding %uk swap on %s.  "
2500                         "Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
2501                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
2502                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2503                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2504                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
2505                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
2506                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
2507                 (frontswap_map) ? "FS" : "");
2508
2509         mutex_unlock(&swapon_mutex);
2510         atomic_inc(&proc_poll_event);
2511         wake_up_interruptible(&proc_poll_wait);
2512
2513         if (S_ISREG(inode->i_mode))
2514                 inode->i_flags |= S_SWAPFILE;
2515         error = 0;
2516         goto out;
2517 bad_swap:
2518         free_percpu(p->percpu_cluster);
2519         p->percpu_cluster = NULL;
2520         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
2521                 set_blocksize(p->bdev, p->old_block_size);
2522                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2523         }
2524         destroy_swap_extents(p);
2525         swap_cgroup_swapoff(p->type);
2526         spin_lock(&swap_lock);
2527         p->swap_file = NULL;
2528         p->flags = 0;
2529         spin_unlock(&swap_lock);
2530         vfree(swap_map);
2531         vfree(cluster_info);
2532         if (swap_file) {
2533                 if (inode && S_ISREG(inode->i_mode)) {
2534                         mutex_unlock(&inode->i_mutex);
2535                         inode = NULL;
2536                 }
2537                 filp_close(swap_file, NULL);
2538         }
2539 out:
2540         if (page && !IS_ERR(page)) {
2541                 kunmap(page);
2542                 page_cache_release(page);
2543         }
2544         if (name)
2545                 putname(name);
2546         if (inode && S_ISREG(inode->i_mode))
2547                 mutex_unlock(&inode->i_mutex);
2548         return error;
2549 }
2550
2551 void si_swapinfo(struct sysinfo *val)
2552 {
2553         unsigned int type;
2554         unsigned long nr_to_be_unused = 0;
2555
2556         spin_lock(&swap_lock);
2557         for (type = 0; type < nr_swapfiles; type++) {
2558                 struct swap_info_struct *si = swap_info[type];
2559
2560                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2561                         nr_to_be_unused += si->inuse_pages;
2562         }
2563         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
2564         val->totalswap = total_swap_pages + nr_to_be_unused;
2565         spin_unlock(&swap_lock);
2566 }
2567
2568 /*
2569  * Verify that a swap entry is valid and increment its swap map count.
2570  *
2571  * Returns error code in following case.
2572  * - success -> 0
2573  * - swp_entry is invalid -> EINVAL
2574  * - swp_entry is migration entry -> EINVAL
2575  * - swap-cache reference is requested but there is already one. -> EEXIST
2576  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2577  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2578  */
2579 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2580 {
2581         struct swap_info_struct *p;
2582         unsigned long offset, type;
2583         unsigned char count;
2584         unsigned char has_cache;
2585         int err = -EINVAL;
2586
2587         if (non_swap_entry(entry))
2588                 goto out;
2589
2590         type = swp_type(entry);
2591         if (type >= nr_swapfiles)
2592                 goto bad_file;
2593         p = swap_info[type];
2594         offset = swp_offset(entry);
2595
2596         spin_lock(&p->lock);
2597         if (unlikely(offset >= p->max))
2598                 goto unlock_out;
2599
2600         count = p->swap_map[offset];
2601
2602         /*
2603          * swapin_readahead() doesn't check if a swap entry is valid, so the
2604          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
2605          */
2606         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
2607                 err = -ENOENT;
2608                 goto unlock_out;
2609         }
2610
2611         has_cache = count & SWAP_HAS_CACHE;
2612         count &= ~SWAP_HAS_CACHE;
2613         err = 0;
2614
2615         if (usage == SWAP_HAS_CACHE) {
2616
2617                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2618                 if (!has_cache && count)
2619                         has_cache = SWAP_HAS_CACHE;
2620                 else if (has_cache)             /* someone else added cache */
2621                         err = -EEXIST;
2622                 else                            /* no users remaining */
2623                         err = -ENOENT;
2624
2625         } else if (count || has_cache) {
2626
2627                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2628                         count += usage;
2629                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2630                         err = -EINVAL;
2631                 else if (swap_count_continued(p, offset, count))
2632                         count = COUNT_CONTINUED;
2633                 else
2634                         err = -ENOMEM;
2635         } else
2636                 err = -ENOENT;                  /* unused swap entry */
2637
2638         p->swap_map[offset] = count | has_cache;
2639
2640 unlock_out:
2641         spin_unlock(&p->lock);
2642 out:
2643         return err;
2644
2645 bad_file:
2646         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
2647         goto out;
2648 }
2649
2650 /*
2651  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2652  * (in which case its reference count is never incremented).
2653  */
2654 void swap_shmem_alloc(swp_entry_t entry)
2655 {
2656         __swap_duplicate(entry, SWAP_MAP_SHMEM);
2657 }
2658
2659 /*
2660  * Increase reference count of swap entry by 1.
2661  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2662  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
2663  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2664  * might occur if a page table entry has got corrupted.
2665  */
2666 int swap_duplicate(swp_entry_t entry)
2667 {
2668         int err = 0;
2669
2670         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2671                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2672         return err;
2673 }
2674
2675 /*
2676  * @entry: swap entry for which we allocate swap cache.
2677  *
2678  * Called when allocating swap cache for existing swap entry,
2679  * This can return error codes. Returns 0 at success.
2680  * -EBUSY means there is a swap cache.
2681  * Note: return code is different from swap_duplicate().
2682  */
2683 int swapcache_prepare(swp_entry_t entry)
2684 {
2685         return __swap_duplicate(entry, SWAP_HAS_CACHE);
2686 }
2687
2688 struct swap_info_struct *page_swap_info(struct page *page)
2689 {
2690         swp_entry_t swap = { .val = page_private(page) };
2691         BUG_ON(!PageSwapCache(page));
2692         return swap_info[swp_type(swap)];
2693 }
2694
2695 /*
2696  * out-of-line __page_file_ methods to avoid include hell.
2697  */
2698 struct address_space *__page_file_mapping(struct page *page)
2699 {
2700         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2701         return page_swap_info(page)->swap_file->f_mapping;
2702 }
2703 EXPORT_SYMBOL_GPL(__page_file_mapping);
2704
2705 pgoff_t __page_file_index(struct page *page)
2706 {
2707         swp_entry_t swap = { .val = page_private(page) };
2708         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
2709         return swp_offset(swap);
2710 }
2711 EXPORT_SYMBOL_GPL(__page_file_index);
2712
2713 /*
2714  * add_swap_count_continuation - called when a swap count is duplicated
2715  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2716  * page of the original vmalloc'ed swap_map, to hold the continuation count
2717  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
2718  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2719  *
2720  * These continuation pages are seldom referenced: the common paths all work
2721  * on the original swap_map, only referring to a continuation page when the
2722  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2723  *
2724  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2725  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2726  * can be called after dropping locks.
2727  */
2728 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2729 {
2730         struct swap_info_struct *si;
2731         struct page *head;
2732         struct page *page;
2733         struct page *list_page;
2734         pgoff_t offset;
2735         unsigned char count;
2736
2737         /*
2738          * When debugging, it's easier to use __GFP_ZERO here; but it's better
2739          * for latency not to zero a page while GFP_ATOMIC and holding locks.
2740          */
2741         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2742
2743         si = swap_info_get(entry);
2744         if (!si) {
2745                 /*
2746                  * An acceptable race has occurred since the failing
2747                  * __swap_duplicate(): the swap entry has been freed,
2748                  * perhaps even the whole swap_map cleared for swapoff.
2749                  */
2750                 goto outer;
2751         }
2752
2753         offset = swp_offset(entry);
2754         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2755
2756         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2757                 /*
2758                  * The higher the swap count, the more likely it is that tasks
2759                  * will race to add swap count continuation: we need to avoid
2760                  * over-provisioning.
2761                  */
2762                 goto out;
2763         }
2764
2765         if (!page) {
2766                 spin_unlock(&si->lock);
2767                 return -ENOMEM;
2768         }
2769
2770         /*
2771          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2772          * no architecture is using highmem pages for kernel page tables: so it
2773          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
2774          */
2775         head = vmalloc_to_page(si->swap_map + offset);
2776         offset &= ~PAGE_MASK;
2777
2778         /*
2779          * Page allocation does not initialize the page's lru field,
2780          * but it does always reset its private field.
2781          */
2782         if (!page_private(head)) {
2783                 BUG_ON(count & COUNT_CONTINUED);
2784                 INIT_LIST_HEAD(&head->lru);
2785                 set_page_private(head, SWP_CONTINUED);
2786                 si->flags |= SWP_CONTINUED;
2787         }
2788
2789         list_for_each_entry(list_page, &head->lru, lru) {
2790                 unsigned char *map;
2791
2792                 /*
2793                  * If the previous map said no continuation, but we've found
2794                  * a continuation page, free our allocation and use this one.
2795                  */
2796                 if (!(count & COUNT_CONTINUED))
2797                         goto out;
2798
2799                 map = kmap_atomic(list_page) + offset;
2800                 count = *map;
2801                 kunmap_atomic(map);
2802
2803                 /*
2804                  * If this continuation count now has some space in it,
2805                  * free our allocation and use this one.
2806                  */
2807                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2808                         goto out;
2809         }
2810
2811         list_add_tail(&page->lru, &head->lru);
2812         page = NULL;                    /* now it's attached, don't free it */
2813 out:
2814         spin_unlock(&si->lock);
2815 outer:
2816         if (page)
2817                 __free_page(page);
2818         return 0;
2819 }
2820
2821 /*
2822  * swap_count_continued - when the original swap_map count is incremented
2823  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2824  * into, carry if so, or else fail until a new continuation page is allocated;
2825  * when the original swap_map count is decremented from 0 with continuation,
2826  * borrow from the continuation and report whether it still holds more.
2827  * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2828  */
2829 static bool swap_count_continued(struct swap_info_struct *si,
2830                                  pgoff_t offset, unsigned char count)
2831 {
2832         struct page *head;
2833         struct page *page;
2834         unsigned char *map;
2835
2836         head = vmalloc_to_page(si->swap_map + offset);
2837         if (page_private(head) != SWP_CONTINUED) {
2838                 BUG_ON(count & COUNT_CONTINUED);
2839                 return false;           /* need to add count continuation */
2840         }
2841
2842         offset &= ~PAGE_MASK;
2843         page = list_entry(head->lru.next, struct page, lru);
2844         map = kmap_atomic(page) + offset;
2845
2846         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
2847                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
2848
2849         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2850                 /*
2851                  * Think of how you add 1 to 999
2852                  */
2853                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2854                         kunmap_atomic(map);
2855                         page = list_entry(page->lru.next, struct page, lru);
2856                         BUG_ON(page == head);
2857                         map = kmap_atomic(page) + offset;
2858                 }
2859                 if (*map == SWAP_CONT_MAX) {
2860                         kunmap_atomic(map);
2861                         page = list_entry(page->lru.next, struct page, lru);
2862                         if (page == head)
2863                                 return false;   /* add count continuation */
2864                         map = kmap_atomic(page) + offset;
2865 init_map:               *map = 0;               /* we didn't zero the page */
2866                 }
2867                 *map += 1;
2868                 kunmap_atomic(map);
2869                 page = list_entry(page->lru.prev, struct page, lru);
2870                 while (page != head) {
2871                         map = kmap_atomic(page) + offset;
2872                         *map = COUNT_CONTINUED;
2873                         kunmap_atomic(map);
2874                         page = list_entry(page->lru.prev, struct page, lru);
2875                 }
2876                 return true;                    /* incremented */
2877
2878         } else {                                /* decrementing */
2879                 /*
2880                  * Think of how you subtract 1 from 1000
2881                  */
2882                 BUG_ON(count != COUNT_CONTINUED);
2883                 while (*map == COUNT_CONTINUED) {
2884                         kunmap_atomic(map);
2885                         page = list_entry(page->lru.next, struct page, lru);
2886                         BUG_ON(page == head);
2887                         map = kmap_atomic(page) + offset;
2888                 }
2889                 BUG_ON(*map == 0);
2890                 *map -= 1;
2891                 if (*map == 0)
2892                         count = 0;
2893                 kunmap_atomic(map);
2894                 page = list_entry(page->lru.prev, struct page, lru);
2895                 while (page != head) {
2896                         map = kmap_atomic(page) + offset;
2897                         *map = SWAP_CONT_MAX | count;
2898                         count = COUNT_CONTINUED;
2899                         kunmap_atomic(map);
2900                         page = list_entry(page->lru.prev, struct page, lru);
2901                 }
2902                 return count == COUNT_CONTINUED;
2903         }
2904 }
2905
2906 /*
2907  * free_swap_count_continuations - swapoff free all the continuation pages
2908  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2909  */
2910 static void free_swap_count_continuations(struct swap_info_struct *si)
2911 {
2912         pgoff_t offset;
2913
2914         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2915                 struct page *head;
2916                 head = vmalloc_to_page(si->swap_map + offset);
2917                 if (page_private(head)) {
2918                         struct list_head *this, *next;
2919                         list_for_each_safe(this, next, &head->lru) {
2920                                 struct page *page;
2921                                 page = list_entry(this, struct page, lru);
2922                                 list_del(this);
2923                                 __free_page(page);
2924                         }
2925                 }
2926         }
2927 }