1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52 static void free_swap_count_continuations(struct swap_info_struct *);
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
58 * Some modules use swappable objects and may try to swap them out under
59 * memory pressure (via the shrinker). Before doing so, they may wish to
60 * check to see if any swap space is available.
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66 unsigned long swapfile_maximum_size;
67 #ifdef CONFIG_MIGRATION
68 bool swap_migration_ad_supported;
69 #endif /* CONFIG_MIGRATION */
71 static const char Bad_file[] = "Bad swap file entry ";
72 static const char Unused_file[] = "Unused swap file entry ";
73 static const char Bad_offset[] = "Bad swap offset entry ";
74 static const char Unused_offset[] = "Unused swap offset entry ";
77 * all active swap_info_structs
78 * protected with swap_lock, and ordered by priority.
80 static PLIST_HEAD(swap_active_head);
83 * all available (active, not full) swap_info_structs
84 * protected with swap_avail_lock, ordered by priority.
85 * This is used by folio_alloc_swap() instead of swap_active_head
86 * because swap_active_head includes all swap_info_structs,
87 * but folio_alloc_swap() doesn't need to look at full ones.
88 * This uses its own lock instead of swap_lock because when a
89 * swap_info_struct changes between not-full/full, it needs to
90 * add/remove itself to/from this list, but the swap_info_struct->lock
91 * is held and the locking order requires swap_lock to be taken
92 * before any swap_info_struct->lock.
94 static struct plist_head *swap_avail_heads;
95 static DEFINE_SPINLOCK(swap_avail_lock);
97 struct swap_info_struct *swap_info[MAX_SWAPFILES];
99 static DEFINE_MUTEX(swapon_mutex);
101 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
102 /* Activity counter to indicate that a swapon or swapoff has occurred */
103 static atomic_t proc_poll_event = ATOMIC_INIT(0);
105 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
107 static struct swap_info_struct *swap_type_to_swap_info(int type)
109 if (type >= MAX_SWAPFILES)
112 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
115 static inline unsigned char swap_count(unsigned char ent)
117 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
120 /* Reclaim the swap entry anyway if possible */
121 #define TTRS_ANYWAY 0x1
123 * Reclaim the swap entry if there are no more mappings of the
126 #define TTRS_UNMAPPED 0x2
127 /* Reclaim the swap entry if swap is getting full*/
128 #define TTRS_FULL 0x4
130 /* returns 1 if swap entry is freed */
131 static int __try_to_reclaim_swap(struct swap_info_struct *si,
132 unsigned long offset, unsigned long flags)
134 swp_entry_t entry = swp_entry(si->type, offset);
138 folio = filemap_get_folio(swap_address_space(entry), offset);
142 * When this function is called from scan_swap_map_slots() and it's
143 * called by vmscan.c at reclaiming folios. So we hold a folio lock
144 * here. We have to use trylock for avoiding deadlock. This is a special
145 * case and you should use folio_free_swap() with explicit folio_lock()
146 * in usual operations.
148 if (folio_trylock(folio)) {
149 if ((flags & TTRS_ANYWAY) ||
150 ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
151 ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
152 ret = folio_free_swap(folio);
159 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
161 struct rb_node *rb = rb_first(&sis->swap_extent_root);
162 return rb_entry(rb, struct swap_extent, rb_node);
165 static inline struct swap_extent *next_se(struct swap_extent *se)
167 struct rb_node *rb = rb_next(&se->rb_node);
168 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
172 * swapon tell device that all the old swap contents can be discarded,
173 * to allow the swap device to optimize its wear-levelling.
175 static int discard_swap(struct swap_info_struct *si)
177 struct swap_extent *se;
178 sector_t start_block;
182 /* Do not discard the swap header page! */
184 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
185 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
187 err = blkdev_issue_discard(si->bdev, start_block,
188 nr_blocks, GFP_KERNEL);
194 for (se = next_se(se); se; se = next_se(se)) {
195 start_block = se->start_block << (PAGE_SHIFT - 9);
196 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
198 err = blkdev_issue_discard(si->bdev, start_block,
199 nr_blocks, GFP_KERNEL);
205 return err; /* That will often be -EOPNOTSUPP */
208 static struct swap_extent *
209 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
211 struct swap_extent *se;
214 rb = sis->swap_extent_root.rb_node;
216 se = rb_entry(rb, struct swap_extent, rb_node);
217 if (offset < se->start_page)
219 else if (offset >= se->start_page + se->nr_pages)
224 /* It *must* be present */
228 sector_t swap_page_sector(struct page *page)
230 struct swap_info_struct *sis = page_swap_info(page);
231 struct swap_extent *se;
235 offset = __page_file_index(page);
236 se = offset_to_swap_extent(sis, offset);
237 sector = se->start_block + (offset - se->start_page);
238 return sector << (PAGE_SHIFT - 9);
242 * swap allocation tell device that a cluster of swap can now be discarded,
243 * to allow the swap device to optimize its wear-levelling.
245 static void discard_swap_cluster(struct swap_info_struct *si,
246 pgoff_t start_page, pgoff_t nr_pages)
248 struct swap_extent *se = offset_to_swap_extent(si, start_page);
251 pgoff_t offset = start_page - se->start_page;
252 sector_t start_block = se->start_block + offset;
253 sector_t nr_blocks = se->nr_pages - offset;
255 if (nr_blocks > nr_pages)
256 nr_blocks = nr_pages;
257 start_page += nr_blocks;
258 nr_pages -= nr_blocks;
260 start_block <<= PAGE_SHIFT - 9;
261 nr_blocks <<= PAGE_SHIFT - 9;
262 if (blkdev_issue_discard(si->bdev, start_block,
263 nr_blocks, GFP_NOIO))
270 #ifdef CONFIG_THP_SWAP
271 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
273 #define swap_entry_size(size) (size)
275 #define SWAPFILE_CLUSTER 256
278 * Define swap_entry_size() as constant to let compiler to optimize
279 * out some code if !CONFIG_THP_SWAP
281 #define swap_entry_size(size) 1
283 #define LATENCY_LIMIT 256
285 static inline void cluster_set_flag(struct swap_cluster_info *info,
291 static inline unsigned int cluster_count(struct swap_cluster_info *info)
296 static inline void cluster_set_count(struct swap_cluster_info *info,
302 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
303 unsigned int c, unsigned int f)
309 static inline unsigned int cluster_next(struct swap_cluster_info *info)
314 static inline void cluster_set_next(struct swap_cluster_info *info,
320 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
321 unsigned int n, unsigned int f)
327 static inline bool cluster_is_free(struct swap_cluster_info *info)
329 return info->flags & CLUSTER_FLAG_FREE;
332 static inline bool cluster_is_null(struct swap_cluster_info *info)
334 return info->flags & CLUSTER_FLAG_NEXT_NULL;
337 static inline void cluster_set_null(struct swap_cluster_info *info)
339 info->flags = CLUSTER_FLAG_NEXT_NULL;
343 static inline bool cluster_is_huge(struct swap_cluster_info *info)
345 if (IS_ENABLED(CONFIG_THP_SWAP))
346 return info->flags & CLUSTER_FLAG_HUGE;
350 static inline void cluster_clear_huge(struct swap_cluster_info *info)
352 info->flags &= ~CLUSTER_FLAG_HUGE;
355 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
356 unsigned long offset)
358 struct swap_cluster_info *ci;
360 ci = si->cluster_info;
362 ci += offset / SWAPFILE_CLUSTER;
363 spin_lock(&ci->lock);
368 static inline void unlock_cluster(struct swap_cluster_info *ci)
371 spin_unlock(&ci->lock);
375 * Determine the locking method in use for this device. Return
376 * swap_cluster_info if SSD-style cluster-based locking is in place.
378 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
379 struct swap_info_struct *si, unsigned long offset)
381 struct swap_cluster_info *ci;
383 /* Try to use fine-grained SSD-style locking if available: */
384 ci = lock_cluster(si, offset);
385 /* Otherwise, fall back to traditional, coarse locking: */
387 spin_lock(&si->lock);
392 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
393 struct swap_cluster_info *ci)
398 spin_unlock(&si->lock);
401 static inline bool cluster_list_empty(struct swap_cluster_list *list)
403 return cluster_is_null(&list->head);
406 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
408 return cluster_next(&list->head);
411 static void cluster_list_init(struct swap_cluster_list *list)
413 cluster_set_null(&list->head);
414 cluster_set_null(&list->tail);
417 static void cluster_list_add_tail(struct swap_cluster_list *list,
418 struct swap_cluster_info *ci,
421 if (cluster_list_empty(list)) {
422 cluster_set_next_flag(&list->head, idx, 0);
423 cluster_set_next_flag(&list->tail, idx, 0);
425 struct swap_cluster_info *ci_tail;
426 unsigned int tail = cluster_next(&list->tail);
429 * Nested cluster lock, but both cluster locks are
430 * only acquired when we held swap_info_struct->lock
433 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
434 cluster_set_next(ci_tail, idx);
435 spin_unlock(&ci_tail->lock);
436 cluster_set_next_flag(&list->tail, idx, 0);
440 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
441 struct swap_cluster_info *ci)
445 idx = cluster_next(&list->head);
446 if (cluster_next(&list->tail) == idx) {
447 cluster_set_null(&list->head);
448 cluster_set_null(&list->tail);
450 cluster_set_next_flag(&list->head,
451 cluster_next(&ci[idx]), 0);
456 /* Add a cluster to discard list and schedule it to do discard */
457 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
461 * If scan_swap_map_slots() can't find a free cluster, it will check
462 * si->swap_map directly. To make sure the discarding cluster isn't
463 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
464 * It will be cleared after discard
466 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
467 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
469 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
471 schedule_work(&si->discard_work);
474 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
476 struct swap_cluster_info *ci = si->cluster_info;
478 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
479 cluster_list_add_tail(&si->free_clusters, ci, idx);
483 * Doing discard actually. After a cluster discard is finished, the cluster
484 * will be added to free cluster list. caller should hold si->lock.
486 static void swap_do_scheduled_discard(struct swap_info_struct *si)
488 struct swap_cluster_info *info, *ci;
491 info = si->cluster_info;
493 while (!cluster_list_empty(&si->discard_clusters)) {
494 idx = cluster_list_del_first(&si->discard_clusters, info);
495 spin_unlock(&si->lock);
497 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
500 spin_lock(&si->lock);
501 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
502 __free_cluster(si, idx);
503 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
504 0, SWAPFILE_CLUSTER);
509 static void swap_discard_work(struct work_struct *work)
511 struct swap_info_struct *si;
513 si = container_of(work, struct swap_info_struct, discard_work);
515 spin_lock(&si->lock);
516 swap_do_scheduled_discard(si);
517 spin_unlock(&si->lock);
520 static void swap_users_ref_free(struct percpu_ref *ref)
522 struct swap_info_struct *si;
524 si = container_of(ref, struct swap_info_struct, users);
528 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
530 struct swap_cluster_info *ci = si->cluster_info;
532 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
533 cluster_list_del_first(&si->free_clusters, ci);
534 cluster_set_count_flag(ci + idx, 0, 0);
537 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
539 struct swap_cluster_info *ci = si->cluster_info + idx;
541 VM_BUG_ON(cluster_count(ci) != 0);
543 * If the swap is discardable, prepare discard the cluster
544 * instead of free it immediately. The cluster will be freed
547 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
548 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
549 swap_cluster_schedule_discard(si, idx);
553 __free_cluster(si, idx);
557 * The cluster corresponding to page_nr will be used. The cluster will be
558 * removed from free cluster list and its usage counter will be increased.
560 static void inc_cluster_info_page(struct swap_info_struct *p,
561 struct swap_cluster_info *cluster_info, unsigned long page_nr)
563 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
567 if (cluster_is_free(&cluster_info[idx]))
568 alloc_cluster(p, idx);
570 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
571 cluster_set_count(&cluster_info[idx],
572 cluster_count(&cluster_info[idx]) + 1);
576 * The cluster corresponding to page_nr decreases one usage. If the usage
577 * counter becomes 0, which means no page in the cluster is in using, we can
578 * optionally discard the cluster and add it to free cluster list.
580 static void dec_cluster_info_page(struct swap_info_struct *p,
581 struct swap_cluster_info *cluster_info, unsigned long page_nr)
583 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
588 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
589 cluster_set_count(&cluster_info[idx],
590 cluster_count(&cluster_info[idx]) - 1);
592 if (cluster_count(&cluster_info[idx]) == 0)
593 free_cluster(p, idx);
597 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
598 * cluster list. Avoiding such abuse to avoid list corruption.
601 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
602 unsigned long offset)
604 struct percpu_cluster *percpu_cluster;
607 offset /= SWAPFILE_CLUSTER;
608 conflict = !cluster_list_empty(&si->free_clusters) &&
609 offset != cluster_list_first(&si->free_clusters) &&
610 cluster_is_free(&si->cluster_info[offset]);
615 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
616 cluster_set_null(&percpu_cluster->index);
621 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
622 * might involve allocating a new cluster for current CPU too.
624 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
625 unsigned long *offset, unsigned long *scan_base)
627 struct percpu_cluster *cluster;
628 struct swap_cluster_info *ci;
629 unsigned long tmp, max;
632 cluster = this_cpu_ptr(si->percpu_cluster);
633 if (cluster_is_null(&cluster->index)) {
634 if (!cluster_list_empty(&si->free_clusters)) {
635 cluster->index = si->free_clusters.head;
636 cluster->next = cluster_next(&cluster->index) *
638 } else if (!cluster_list_empty(&si->discard_clusters)) {
640 * we don't have free cluster but have some clusters in
641 * discarding, do discard now and reclaim them, then
642 * reread cluster_next_cpu since we dropped si->lock
644 swap_do_scheduled_discard(si);
645 *scan_base = this_cpu_read(*si->cluster_next_cpu);
646 *offset = *scan_base;
653 * Other CPUs can use our cluster if they can't find a free cluster,
654 * check if there is still free entry in the cluster
657 max = min_t(unsigned long, si->max,
658 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
660 ci = lock_cluster(si, tmp);
662 if (!si->swap_map[tmp])
669 cluster_set_null(&cluster->index);
672 cluster->next = tmp + 1;
678 static void __del_from_avail_list(struct swap_info_struct *p)
683 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
686 static void del_from_avail_list(struct swap_info_struct *p)
688 spin_lock(&swap_avail_lock);
689 __del_from_avail_list(p);
690 spin_unlock(&swap_avail_lock);
693 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
694 unsigned int nr_entries)
696 unsigned int end = offset + nr_entries - 1;
698 if (offset == si->lowest_bit)
699 si->lowest_bit += nr_entries;
700 if (end == si->highest_bit)
701 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
702 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
703 if (si->inuse_pages == si->pages) {
704 si->lowest_bit = si->max;
706 del_from_avail_list(si);
710 static void add_to_avail_list(struct swap_info_struct *p)
714 spin_lock(&swap_avail_lock);
716 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
717 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
719 spin_unlock(&swap_avail_lock);
722 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
723 unsigned int nr_entries)
725 unsigned long begin = offset;
726 unsigned long end = offset + nr_entries - 1;
727 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
729 if (offset < si->lowest_bit)
730 si->lowest_bit = offset;
731 if (end > si->highest_bit) {
732 bool was_full = !si->highest_bit;
734 WRITE_ONCE(si->highest_bit, end);
735 if (was_full && (si->flags & SWP_WRITEOK))
736 add_to_avail_list(si);
738 atomic_long_add(nr_entries, &nr_swap_pages);
739 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
740 if (si->flags & SWP_BLKDEV)
741 swap_slot_free_notify =
742 si->bdev->bd_disk->fops->swap_slot_free_notify;
744 swap_slot_free_notify = NULL;
745 while (offset <= end) {
746 arch_swap_invalidate_page(si->type, offset);
747 frontswap_invalidate_page(si->type, offset);
748 if (swap_slot_free_notify)
749 swap_slot_free_notify(si->bdev, offset);
752 clear_shadow_from_swap_cache(si->type, begin, end);
755 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
759 if (!(si->flags & SWP_SOLIDSTATE)) {
760 si->cluster_next = next;
764 prev = this_cpu_read(*si->cluster_next_cpu);
766 * Cross the swap address space size aligned trunk, choose
767 * another trunk randomly to avoid lock contention on swap
768 * address space if possible.
770 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
771 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
772 /* No free swap slots available */
773 if (si->highest_bit <= si->lowest_bit)
775 next = si->lowest_bit +
776 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
777 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
778 next = max_t(unsigned int, next, si->lowest_bit);
780 this_cpu_write(*si->cluster_next_cpu, next);
783 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
784 unsigned long offset)
786 if (data_race(!si->swap_map[offset])) {
787 spin_lock(&si->lock);
791 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
792 spin_lock(&si->lock);
799 static int scan_swap_map_slots(struct swap_info_struct *si,
800 unsigned char usage, int nr,
803 struct swap_cluster_info *ci;
804 unsigned long offset;
805 unsigned long scan_base;
806 unsigned long last_in_cluster = 0;
807 int latency_ration = LATENCY_LIMIT;
809 bool scanned_many = false;
812 * We try to cluster swap pages by allocating them sequentially
813 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
814 * way, however, we resort to first-free allocation, starting
815 * a new cluster. This prevents us from scattering swap pages
816 * all over the entire swap partition, so that we reduce
817 * overall disk seek times between swap pages. -- sct
818 * But we do now try to find an empty cluster. -Andrea
819 * And we let swap pages go all over an SSD partition. Hugh
822 si->flags += SWP_SCANNING;
824 * Use percpu scan base for SSD to reduce lock contention on
825 * cluster and swap cache. For HDD, sequential access is more
828 if (si->flags & SWP_SOLIDSTATE)
829 scan_base = this_cpu_read(*si->cluster_next_cpu);
831 scan_base = si->cluster_next;
835 if (si->cluster_info) {
836 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
838 } else if (unlikely(!si->cluster_nr--)) {
839 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
840 si->cluster_nr = SWAPFILE_CLUSTER - 1;
844 spin_unlock(&si->lock);
847 * If seek is expensive, start searching for new cluster from
848 * start of partition, to minimize the span of allocated swap.
849 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
850 * case, just handled by scan_swap_map_try_ssd_cluster() above.
852 scan_base = offset = si->lowest_bit;
853 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
855 /* Locate the first empty (unaligned) cluster */
856 for (; last_in_cluster <= si->highest_bit; offset++) {
857 if (si->swap_map[offset])
858 last_in_cluster = offset + SWAPFILE_CLUSTER;
859 else if (offset == last_in_cluster) {
860 spin_lock(&si->lock);
861 offset -= SWAPFILE_CLUSTER - 1;
862 si->cluster_next = offset;
863 si->cluster_nr = SWAPFILE_CLUSTER - 1;
866 if (unlikely(--latency_ration < 0)) {
868 latency_ration = LATENCY_LIMIT;
873 spin_lock(&si->lock);
874 si->cluster_nr = SWAPFILE_CLUSTER - 1;
878 if (si->cluster_info) {
879 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
880 /* take a break if we already got some slots */
883 if (!scan_swap_map_try_ssd_cluster(si, &offset,
888 if (!(si->flags & SWP_WRITEOK))
890 if (!si->highest_bit)
892 if (offset > si->highest_bit)
893 scan_base = offset = si->lowest_bit;
895 ci = lock_cluster(si, offset);
896 /* reuse swap entry of cache-only swap if not busy. */
897 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
900 spin_unlock(&si->lock);
901 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
902 spin_lock(&si->lock);
903 /* entry was freed successfully, try to use this again */
906 goto scan; /* check next one */
909 if (si->swap_map[offset]) {
916 WRITE_ONCE(si->swap_map[offset], usage);
917 inc_cluster_info_page(si, si->cluster_info, offset);
920 swap_range_alloc(si, offset, 1);
921 slots[n_ret++] = swp_entry(si->type, offset);
923 /* got enough slots or reach max slots? */
924 if ((n_ret == nr) || (offset >= si->highest_bit))
927 /* search for next available slot */
929 /* time to take a break? */
930 if (unlikely(--latency_ration < 0)) {
933 spin_unlock(&si->lock);
935 spin_lock(&si->lock);
936 latency_ration = LATENCY_LIMIT;
939 /* try to get more slots in cluster */
940 if (si->cluster_info) {
941 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
943 } else if (si->cluster_nr && !si->swap_map[++offset]) {
944 /* non-ssd case, still more slots in cluster? */
950 * Even if there's no free clusters available (fragmented),
951 * try to scan a little more quickly with lock held unless we
952 * have scanned too many slots already.
955 unsigned long scan_limit;
957 if (offset < scan_base)
958 scan_limit = scan_base;
960 scan_limit = si->highest_bit;
961 for (; offset <= scan_limit && --latency_ration > 0;
963 if (!si->swap_map[offset])
969 set_cluster_next(si, offset + 1);
970 si->flags -= SWP_SCANNING;
974 spin_unlock(&si->lock);
975 while (++offset <= READ_ONCE(si->highest_bit)) {
976 if (swap_offset_available_and_locked(si, offset))
978 if (unlikely(--latency_ration < 0)) {
980 latency_ration = LATENCY_LIMIT;
984 offset = si->lowest_bit;
985 while (offset < scan_base) {
986 if (swap_offset_available_and_locked(si, offset))
988 if (unlikely(--latency_ration < 0)) {
990 latency_ration = LATENCY_LIMIT;
995 spin_lock(&si->lock);
998 si->flags -= SWP_SCANNING;
1002 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1005 struct swap_cluster_info *ci;
1006 unsigned long offset;
1009 * Should not even be attempting cluster allocations when huge
1010 * page swap is disabled. Warn and fail the allocation.
1012 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1017 if (cluster_list_empty(&si->free_clusters))
1020 idx = cluster_list_first(&si->free_clusters);
1021 offset = idx * SWAPFILE_CLUSTER;
1022 ci = lock_cluster(si, offset);
1023 alloc_cluster(si, idx);
1024 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1026 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1028 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1029 *slot = swp_entry(si->type, offset);
1034 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1036 unsigned long offset = idx * SWAPFILE_CLUSTER;
1037 struct swap_cluster_info *ci;
1039 ci = lock_cluster(si, offset);
1040 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1041 cluster_set_count_flag(ci, 0, 0);
1042 free_cluster(si, idx);
1044 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1047 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1049 unsigned long size = swap_entry_size(entry_size);
1050 struct swap_info_struct *si, *next;
1055 /* Only single cluster request supported */
1056 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1058 spin_lock(&swap_avail_lock);
1060 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1061 if (avail_pgs <= 0) {
1062 spin_unlock(&swap_avail_lock);
1066 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1068 atomic_long_sub(n_goal * size, &nr_swap_pages);
1071 node = numa_node_id();
1072 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1073 /* requeue si to after same-priority siblings */
1074 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1075 spin_unlock(&swap_avail_lock);
1076 spin_lock(&si->lock);
1077 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1078 spin_lock(&swap_avail_lock);
1079 if (plist_node_empty(&si->avail_lists[node])) {
1080 spin_unlock(&si->lock);
1083 WARN(!si->highest_bit,
1084 "swap_info %d in list but !highest_bit\n",
1086 WARN(!(si->flags & SWP_WRITEOK),
1087 "swap_info %d in list but !SWP_WRITEOK\n",
1089 __del_from_avail_list(si);
1090 spin_unlock(&si->lock);
1093 if (size == SWAPFILE_CLUSTER) {
1094 if (si->flags & SWP_BLKDEV)
1095 n_ret = swap_alloc_cluster(si, swp_entries);
1097 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1098 n_goal, swp_entries);
1099 spin_unlock(&si->lock);
1100 if (n_ret || size == SWAPFILE_CLUSTER)
1102 pr_debug("scan_swap_map of si %d failed to find offset\n",
1105 spin_lock(&swap_avail_lock);
1108 * if we got here, it's likely that si was almost full before,
1109 * and since scan_swap_map_slots() can drop the si->lock,
1110 * multiple callers probably all tried to get a page from the
1111 * same si and it filled up before we could get one; or, the si
1112 * filled up between us dropping swap_avail_lock and taking
1113 * si->lock. Since we dropped the swap_avail_lock, the
1114 * swap_avail_head list may have been modified; so if next is
1115 * still in the swap_avail_head list then try it, otherwise
1116 * start over if we have not gotten any slots.
1118 if (plist_node_empty(&next->avail_lists[node]))
1122 spin_unlock(&swap_avail_lock);
1126 atomic_long_add((long)(n_goal - n_ret) * size,
1132 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1134 struct swap_info_struct *p;
1135 unsigned long offset;
1139 p = swp_swap_info(entry);
1142 if (data_race(!(p->flags & SWP_USED)))
1144 offset = swp_offset(entry);
1145 if (offset >= p->max)
1147 if (data_race(!p->swap_map[swp_offset(entry)]))
1152 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1155 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1158 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1161 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1166 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1167 struct swap_info_struct *q)
1169 struct swap_info_struct *p;
1171 p = _swap_info_get(entry);
1175 spin_unlock(&q->lock);
1177 spin_lock(&p->lock);
1182 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1183 unsigned long offset,
1184 unsigned char usage)
1186 unsigned char count;
1187 unsigned char has_cache;
1189 count = p->swap_map[offset];
1191 has_cache = count & SWAP_HAS_CACHE;
1192 count &= ~SWAP_HAS_CACHE;
1194 if (usage == SWAP_HAS_CACHE) {
1195 VM_BUG_ON(!has_cache);
1197 } else if (count == SWAP_MAP_SHMEM) {
1199 * Or we could insist on shmem.c using a special
1200 * swap_shmem_free() and free_shmem_swap_and_cache()...
1203 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1204 if (count == COUNT_CONTINUED) {
1205 if (swap_count_continued(p, offset, count))
1206 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1208 count = SWAP_MAP_MAX;
1213 usage = count | has_cache;
1215 WRITE_ONCE(p->swap_map[offset], usage);
1217 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1223 * Check whether swap entry is valid in the swap device. If so,
1224 * return pointer to swap_info_struct, and keep the swap entry valid
1225 * via preventing the swap device from being swapoff, until
1226 * put_swap_device() is called. Otherwise return NULL.
1228 * Notice that swapoff or swapoff+swapon can still happen before the
1229 * percpu_ref_tryget_live() in get_swap_device() or after the
1230 * percpu_ref_put() in put_swap_device() if there isn't any other way
1231 * to prevent swapoff, such as page lock, page table lock, etc. The
1232 * caller must be prepared for that. For example, the following
1233 * situation is possible.
1237 * ... swapoff+swapon
1238 * __read_swap_cache_async()
1239 * swapcache_prepare()
1240 * __swap_duplicate()
1242 * // verify PTE not changed
1244 * In __swap_duplicate(), the swap_map need to be checked before
1245 * changing partly because the specified swap entry may be for another
1246 * swap device which has been swapoff. And in do_swap_page(), after
1247 * the page is read from the swap device, the PTE is verified not
1248 * changed with the page table locked to check whether the swap device
1249 * has been swapoff or swapoff+swapon.
1251 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1253 struct swap_info_struct *si;
1254 unsigned long offset;
1258 si = swp_swap_info(entry);
1261 if (!percpu_ref_tryget_live(&si->users))
1264 * Guarantee the si->users are checked before accessing other
1265 * fields of swap_info_struct.
1267 * Paired with the spin_unlock() after setup_swap_info() in
1268 * enable_swap_info().
1271 offset = swp_offset(entry);
1272 if (offset >= si->max)
1277 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1281 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1282 percpu_ref_put(&si->users);
1286 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1289 struct swap_cluster_info *ci;
1290 unsigned long offset = swp_offset(entry);
1291 unsigned char usage;
1293 ci = lock_cluster_or_swap_info(p, offset);
1294 usage = __swap_entry_free_locked(p, offset, 1);
1295 unlock_cluster_or_swap_info(p, ci);
1297 free_swap_slot(entry);
1302 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1304 struct swap_cluster_info *ci;
1305 unsigned long offset = swp_offset(entry);
1306 unsigned char count;
1308 ci = lock_cluster(p, offset);
1309 count = p->swap_map[offset];
1310 VM_BUG_ON(count != SWAP_HAS_CACHE);
1311 p->swap_map[offset] = 0;
1312 dec_cluster_info_page(p, p->cluster_info, offset);
1315 mem_cgroup_uncharge_swap(entry, 1);
1316 swap_range_free(p, offset, 1);
1320 * Caller has made sure that the swap device corresponding to entry
1321 * is still around or has not been recycled.
1323 void swap_free(swp_entry_t entry)
1325 struct swap_info_struct *p;
1327 p = _swap_info_get(entry);
1329 __swap_entry_free(p, entry);
1333 * Called after dropping swapcache to decrease refcnt to swap entries.
1335 void put_swap_folio(struct folio *folio, swp_entry_t entry)
1337 unsigned long offset = swp_offset(entry);
1338 unsigned long idx = offset / SWAPFILE_CLUSTER;
1339 struct swap_cluster_info *ci;
1340 struct swap_info_struct *si;
1342 unsigned int i, free_entries = 0;
1344 int size = swap_entry_size(folio_nr_pages(folio));
1346 si = _swap_info_get(entry);
1350 ci = lock_cluster_or_swap_info(si, offset);
1351 if (size == SWAPFILE_CLUSTER) {
1352 VM_BUG_ON(!cluster_is_huge(ci));
1353 map = si->swap_map + offset;
1354 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1356 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1357 if (val == SWAP_HAS_CACHE)
1360 cluster_clear_huge(ci);
1361 if (free_entries == SWAPFILE_CLUSTER) {
1362 unlock_cluster_or_swap_info(si, ci);
1363 spin_lock(&si->lock);
1364 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1365 swap_free_cluster(si, idx);
1366 spin_unlock(&si->lock);
1370 for (i = 0; i < size; i++, entry.val++) {
1371 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1372 unlock_cluster_or_swap_info(si, ci);
1373 free_swap_slot(entry);
1376 lock_cluster_or_swap_info(si, offset);
1379 unlock_cluster_or_swap_info(si, ci);
1382 #ifdef CONFIG_THP_SWAP
1383 int split_swap_cluster(swp_entry_t entry)
1385 struct swap_info_struct *si;
1386 struct swap_cluster_info *ci;
1387 unsigned long offset = swp_offset(entry);
1389 si = _swap_info_get(entry);
1392 ci = lock_cluster(si, offset);
1393 cluster_clear_huge(ci);
1399 static int swp_entry_cmp(const void *ent1, const void *ent2)
1401 const swp_entry_t *e1 = ent1, *e2 = ent2;
1403 return (int)swp_type(*e1) - (int)swp_type(*e2);
1406 void swapcache_free_entries(swp_entry_t *entries, int n)
1408 struct swap_info_struct *p, *prev;
1418 * Sort swap entries by swap device, so each lock is only taken once.
1419 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1420 * so low that it isn't necessary to optimize further.
1422 if (nr_swapfiles > 1)
1423 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1424 for (i = 0; i < n; ++i) {
1425 p = swap_info_get_cont(entries[i], prev);
1427 swap_entry_free(p, entries[i]);
1431 spin_unlock(&p->lock);
1434 int __swap_count(swp_entry_t entry)
1436 struct swap_info_struct *si;
1437 pgoff_t offset = swp_offset(entry);
1440 si = get_swap_device(entry);
1442 count = swap_count(si->swap_map[offset]);
1443 put_swap_device(si);
1449 * How many references to @entry are currently swapped out?
1450 * This does not give an exact answer when swap count is continued,
1451 * but does include the high COUNT_CONTINUED flag to allow for that.
1453 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1455 pgoff_t offset = swp_offset(entry);
1456 struct swap_cluster_info *ci;
1459 ci = lock_cluster_or_swap_info(si, offset);
1460 count = swap_count(si->swap_map[offset]);
1461 unlock_cluster_or_swap_info(si, ci);
1466 * How many references to @entry are currently swapped out?
1467 * This does not give an exact answer when swap count is continued,
1468 * but does include the high COUNT_CONTINUED flag to allow for that.
1470 int __swp_swapcount(swp_entry_t entry)
1473 struct swap_info_struct *si;
1475 si = get_swap_device(entry);
1477 count = swap_swapcount(si, entry);
1478 put_swap_device(si);
1484 * How many references to @entry are currently swapped out?
1485 * This considers COUNT_CONTINUED so it returns exact answer.
1487 int swp_swapcount(swp_entry_t entry)
1489 int count, tmp_count, n;
1490 struct swap_info_struct *p;
1491 struct swap_cluster_info *ci;
1496 p = _swap_info_get(entry);
1500 offset = swp_offset(entry);
1502 ci = lock_cluster_or_swap_info(p, offset);
1504 count = swap_count(p->swap_map[offset]);
1505 if (!(count & COUNT_CONTINUED))
1508 count &= ~COUNT_CONTINUED;
1509 n = SWAP_MAP_MAX + 1;
1511 page = vmalloc_to_page(p->swap_map + offset);
1512 offset &= ~PAGE_MASK;
1513 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1516 page = list_next_entry(page, lru);
1517 map = kmap_atomic(page);
1518 tmp_count = map[offset];
1521 count += (tmp_count & ~COUNT_CONTINUED) * n;
1522 n *= (SWAP_CONT_MAX + 1);
1523 } while (tmp_count & COUNT_CONTINUED);
1525 unlock_cluster_or_swap_info(p, ci);
1529 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1532 struct swap_cluster_info *ci;
1533 unsigned char *map = si->swap_map;
1534 unsigned long roffset = swp_offset(entry);
1535 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1539 ci = lock_cluster_or_swap_info(si, offset);
1540 if (!ci || !cluster_is_huge(ci)) {
1541 if (swap_count(map[roffset]))
1545 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1546 if (swap_count(map[offset + i])) {
1552 unlock_cluster_or_swap_info(si, ci);
1556 static bool folio_swapped(struct folio *folio)
1558 swp_entry_t entry = folio_swap_entry(folio);
1559 struct swap_info_struct *si = _swap_info_get(entry);
1564 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1565 return swap_swapcount(si, entry) != 0;
1567 return swap_page_trans_huge_swapped(si, entry);
1571 * folio_free_swap() - Free the swap space used for this folio.
1572 * @folio: The folio to remove.
1574 * If swap is getting full, or if there are no more mappings of this folio,
1575 * then call folio_free_swap to free its swap space.
1577 * Return: true if we were able to release the swap space.
1579 bool folio_free_swap(struct folio *folio)
1581 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1583 if (!folio_test_swapcache(folio))
1585 if (folio_test_writeback(folio))
1587 if (folio_swapped(folio))
1591 * Once hibernation has begun to create its image of memory,
1592 * there's a danger that one of the calls to folio_free_swap()
1593 * - most probably a call from __try_to_reclaim_swap() while
1594 * hibernation is allocating its own swap pages for the image,
1595 * but conceivably even a call from memory reclaim - will free
1596 * the swap from a folio which has already been recorded in the
1597 * image as a clean swapcache folio, and then reuse its swap for
1598 * another page of the image. On waking from hibernation, the
1599 * original folio might be freed under memory pressure, then
1600 * later read back in from swap, now with the wrong data.
1602 * Hibernation suspends storage while it is writing the image
1603 * to disk so check that here.
1605 if (pm_suspended_storage())
1608 delete_from_swap_cache(folio);
1609 folio_set_dirty(folio);
1614 * Free the swap entry like above, but also try to
1615 * free the page cache entry if it is the last user.
1617 int free_swap_and_cache(swp_entry_t entry)
1619 struct swap_info_struct *p;
1620 unsigned char count;
1622 if (non_swap_entry(entry))
1625 p = _swap_info_get(entry);
1627 count = __swap_entry_free(p, entry);
1628 if (count == SWAP_HAS_CACHE &&
1629 !swap_page_trans_huge_swapped(p, entry))
1630 __try_to_reclaim_swap(p, swp_offset(entry),
1631 TTRS_UNMAPPED | TTRS_FULL);
1636 #ifdef CONFIG_HIBERNATION
1638 swp_entry_t get_swap_page_of_type(int type)
1640 struct swap_info_struct *si = swap_type_to_swap_info(type);
1641 swp_entry_t entry = {0};
1646 /* This is called for allocating swap entry, not cache */
1647 spin_lock(&si->lock);
1648 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1649 atomic_long_dec(&nr_swap_pages);
1650 spin_unlock(&si->lock);
1656 * Find the swap type that corresponds to given device (if any).
1658 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659 * from 0, in which the swap header is expected to be located.
1661 * This is needed for the suspend to disk (aka swsusp).
1663 int swap_type_of(dev_t device, sector_t offset)
1670 spin_lock(&swap_lock);
1671 for (type = 0; type < nr_swapfiles; type++) {
1672 struct swap_info_struct *sis = swap_info[type];
1674 if (!(sis->flags & SWP_WRITEOK))
1677 if (device == sis->bdev->bd_dev) {
1678 struct swap_extent *se = first_se(sis);
1680 if (se->start_block == offset) {
1681 spin_unlock(&swap_lock);
1686 spin_unlock(&swap_lock);
1690 int find_first_swap(dev_t *device)
1694 spin_lock(&swap_lock);
1695 for (type = 0; type < nr_swapfiles; type++) {
1696 struct swap_info_struct *sis = swap_info[type];
1698 if (!(sis->flags & SWP_WRITEOK))
1700 *device = sis->bdev->bd_dev;
1701 spin_unlock(&swap_lock);
1704 spin_unlock(&swap_lock);
1709 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1710 * corresponding to given index in swap_info (swap type).
1712 sector_t swapdev_block(int type, pgoff_t offset)
1714 struct swap_info_struct *si = swap_type_to_swap_info(type);
1715 struct swap_extent *se;
1717 if (!si || !(si->flags & SWP_WRITEOK))
1719 se = offset_to_swap_extent(si, offset);
1720 return se->start_block + (offset - se->start_page);
1724 * Return either the total number of swap pages of given type, or the number
1725 * of free pages of that type (depending on @free)
1727 * This is needed for software suspend
1729 unsigned int count_swap_pages(int type, int free)
1733 spin_lock(&swap_lock);
1734 if ((unsigned int)type < nr_swapfiles) {
1735 struct swap_info_struct *sis = swap_info[type];
1737 spin_lock(&sis->lock);
1738 if (sis->flags & SWP_WRITEOK) {
1741 n -= sis->inuse_pages;
1743 spin_unlock(&sis->lock);
1745 spin_unlock(&swap_lock);
1748 #endif /* CONFIG_HIBERNATION */
1750 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1752 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1756 * No need to decide whether this PTE shares the swap entry with others,
1757 * just let do_wp_page work it out if a write is requested later - to
1758 * force COW, vm_page_prot omits write permission from any private vma.
1760 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1761 unsigned long addr, swp_entry_t entry, struct folio *folio)
1763 struct page *page = folio_file_page(folio, swp_offset(entry));
1764 struct page *swapcache;
1766 pte_t *pte, new_pte;
1770 page = ksm_might_need_to_copy(page, vma, addr);
1771 if (unlikely(!page))
1774 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1775 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1780 if (unlikely(!PageUptodate(page))) {
1783 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1785 set_pte_at(vma->vm_mm, addr, pte, pteval);
1791 /* See do_swap_page() */
1792 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1793 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1795 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1796 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1798 if (page == swapcache) {
1799 rmap_t rmap_flags = RMAP_NONE;
1802 * See do_swap_page(): PageWriteback() would be problematic.
1803 * However, we do a wait_on_page_writeback() just before this
1804 * call and have the page locked.
1806 VM_BUG_ON_PAGE(PageWriteback(page), page);
1807 if (pte_swp_exclusive(*pte))
1808 rmap_flags |= RMAP_EXCLUSIVE;
1810 page_add_anon_rmap(page, vma, addr, rmap_flags);
1811 } else { /* ksm created a completely new copy */
1812 page_add_new_anon_rmap(page, vma, addr);
1813 lru_cache_add_inactive_or_unevictable(page, vma);
1815 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1816 if (pte_swp_soft_dirty(*pte))
1817 new_pte = pte_mksoft_dirty(new_pte);
1818 if (pte_swp_uffd_wp(*pte))
1819 new_pte = pte_mkuffd_wp(new_pte);
1820 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1823 pte_unmap_unlock(pte, ptl);
1824 if (page != swapcache) {
1831 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1832 unsigned long addr, unsigned long end,
1837 struct swap_info_struct *si;
1839 volatile unsigned char *swap_map;
1841 si = swap_info[type];
1842 pte = pte_offset_map(pmd, addr);
1844 struct folio *folio;
1845 unsigned long offset;
1847 if (!is_swap_pte(*pte))
1850 entry = pte_to_swp_entry(*pte);
1851 if (swp_type(entry) != type)
1854 offset = swp_offset(entry);
1856 swap_map = &si->swap_map[offset];
1857 folio = swap_cache_get_folio(entry, vma, addr);
1860 struct vm_fault vmf = {
1863 .real_address = addr,
1867 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1870 folio = page_folio(page);
1873 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1879 folio_wait_writeback(folio);
1880 ret = unuse_pte(vma, pmd, addr, entry, folio);
1882 folio_unlock(folio);
1887 folio_free_swap(folio);
1888 folio_unlock(folio);
1891 pte = pte_offset_map(pmd, addr);
1892 } while (pte++, addr += PAGE_SIZE, addr != end);
1900 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1901 unsigned long addr, unsigned long end,
1908 pmd = pmd_offset(pud, addr);
1911 next = pmd_addr_end(addr, end);
1912 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1914 ret = unuse_pte_range(vma, pmd, addr, next, type);
1917 } while (pmd++, addr = next, addr != end);
1921 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1922 unsigned long addr, unsigned long end,
1929 pud = pud_offset(p4d, addr);
1931 next = pud_addr_end(addr, end);
1932 if (pud_none_or_clear_bad(pud))
1934 ret = unuse_pmd_range(vma, pud, addr, next, type);
1937 } while (pud++, addr = next, addr != end);
1941 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1942 unsigned long addr, unsigned long end,
1949 p4d = p4d_offset(pgd, addr);
1951 next = p4d_addr_end(addr, end);
1952 if (p4d_none_or_clear_bad(p4d))
1954 ret = unuse_pud_range(vma, p4d, addr, next, type);
1957 } while (p4d++, addr = next, addr != end);
1961 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1964 unsigned long addr, end, next;
1967 addr = vma->vm_start;
1970 pgd = pgd_offset(vma->vm_mm, addr);
1972 next = pgd_addr_end(addr, end);
1973 if (pgd_none_or_clear_bad(pgd))
1975 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1978 } while (pgd++, addr = next, addr != end);
1982 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1984 struct vm_area_struct *vma;
1986 VMA_ITERATOR(vmi, mm, 0);
1989 for_each_vma(vmi, vma) {
1990 if (vma->anon_vma) {
1991 ret = unuse_vma(vma, type);
1998 mmap_read_unlock(mm);
2003 * Scan swap_map from current position to next entry still in use.
2004 * Return 0 if there are no inuse entries after prev till end of
2007 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2011 unsigned char count;
2014 * No need for swap_lock here: we're just looking
2015 * for whether an entry is in use, not modifying it; false
2016 * hits are okay, and sys_swapoff() has already prevented new
2017 * allocations from this area (while holding swap_lock).
2019 for (i = prev + 1; i < si->max; i++) {
2020 count = READ_ONCE(si->swap_map[i]);
2021 if (count && swap_count(count) != SWAP_MAP_BAD)
2023 if ((i % LATENCY_LIMIT) == 0)
2033 static int try_to_unuse(unsigned int type)
2035 struct mm_struct *prev_mm;
2036 struct mm_struct *mm;
2037 struct list_head *p;
2039 struct swap_info_struct *si = swap_info[type];
2040 struct folio *folio;
2044 if (!READ_ONCE(si->inuse_pages))
2048 retval = shmem_unuse(type);
2055 spin_lock(&mmlist_lock);
2056 p = &init_mm.mmlist;
2057 while (READ_ONCE(si->inuse_pages) &&
2058 !signal_pending(current) &&
2059 (p = p->next) != &init_mm.mmlist) {
2061 mm = list_entry(p, struct mm_struct, mmlist);
2062 if (!mmget_not_zero(mm))
2064 spin_unlock(&mmlist_lock);
2067 retval = unuse_mm(mm, type);
2074 * Make sure that we aren't completely killing
2075 * interactive performance.
2078 spin_lock(&mmlist_lock);
2080 spin_unlock(&mmlist_lock);
2085 while (READ_ONCE(si->inuse_pages) &&
2086 !signal_pending(current) &&
2087 (i = find_next_to_unuse(si, i)) != 0) {
2089 entry = swp_entry(type, i);
2090 folio = filemap_get_folio(swap_address_space(entry), i);
2095 * It is conceivable that a racing task removed this folio from
2096 * swap cache just before we acquired the page lock. The folio
2097 * might even be back in swap cache on another swap area. But
2098 * that is okay, folio_free_swap() only removes stale folios.
2101 folio_wait_writeback(folio);
2102 folio_free_swap(folio);
2103 folio_unlock(folio);
2108 * Lets check again to see if there are still swap entries in the map.
2109 * If yes, we would need to do retry the unuse logic again.
2110 * Under global memory pressure, swap entries can be reinserted back
2111 * into process space after the mmlist loop above passes over them.
2113 * Limit the number of retries? No: when mmget_not_zero()
2114 * above fails, that mm is likely to be freeing swap from
2115 * exit_mmap(), which proceeds at its own independent pace;
2116 * and even shmem_writepage() could have been preempted after
2117 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2118 * and robust (though cpu-intensive) just to keep retrying.
2120 if (READ_ONCE(si->inuse_pages)) {
2121 if (!signal_pending(current))
2130 * After a successful try_to_unuse, if no swap is now in use, we know
2131 * we can empty the mmlist. swap_lock must be held on entry and exit.
2132 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2133 * added to the mmlist just after page_duplicate - before would be racy.
2135 static void drain_mmlist(void)
2137 struct list_head *p, *next;
2140 for (type = 0; type < nr_swapfiles; type++)
2141 if (swap_info[type]->inuse_pages)
2143 spin_lock(&mmlist_lock);
2144 list_for_each_safe(p, next, &init_mm.mmlist)
2146 spin_unlock(&mmlist_lock);
2150 * Free all of a swapdev's extent information
2152 static void destroy_swap_extents(struct swap_info_struct *sis)
2154 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2155 struct rb_node *rb = sis->swap_extent_root.rb_node;
2156 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2158 rb_erase(rb, &sis->swap_extent_root);
2162 if (sis->flags & SWP_ACTIVATED) {
2163 struct file *swap_file = sis->swap_file;
2164 struct address_space *mapping = swap_file->f_mapping;
2166 sis->flags &= ~SWP_ACTIVATED;
2167 if (mapping->a_ops->swap_deactivate)
2168 mapping->a_ops->swap_deactivate(swap_file);
2173 * Add a block range (and the corresponding page range) into this swapdev's
2176 * This function rather assumes that it is called in ascending page order.
2179 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2180 unsigned long nr_pages, sector_t start_block)
2182 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2183 struct swap_extent *se;
2184 struct swap_extent *new_se;
2187 * place the new node at the right most since the
2188 * function is called in ascending page order.
2192 link = &parent->rb_right;
2196 se = rb_entry(parent, struct swap_extent, rb_node);
2197 BUG_ON(se->start_page + se->nr_pages != start_page);
2198 if (se->start_block + se->nr_pages == start_block) {
2200 se->nr_pages += nr_pages;
2205 /* No merge, insert a new extent. */
2206 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2209 new_se->start_page = start_page;
2210 new_se->nr_pages = nr_pages;
2211 new_se->start_block = start_block;
2213 rb_link_node(&new_se->rb_node, parent, link);
2214 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2217 EXPORT_SYMBOL_GPL(add_swap_extent);
2220 * A `swap extent' is a simple thing which maps a contiguous range of pages
2221 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2222 * built at swapon time and is then used at swap_writepage/swap_readpage
2223 * time for locating where on disk a page belongs.
2225 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2226 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2227 * swap files identically.
2229 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2230 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2231 * swapfiles are handled *identically* after swapon time.
2233 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2234 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2235 * blocks are found which do not fall within the PAGE_SIZE alignment
2236 * requirements, they are simply tossed out - we will never use those blocks
2239 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2240 * prevents users from writing to the swap device, which will corrupt memory.
2242 * The amount of disk space which a single swap extent represents varies.
2243 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2244 * extents in the rbtree. - akpm.
2246 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2248 struct file *swap_file = sis->swap_file;
2249 struct address_space *mapping = swap_file->f_mapping;
2250 struct inode *inode = mapping->host;
2253 if (S_ISBLK(inode->i_mode)) {
2254 ret = add_swap_extent(sis, 0, sis->max, 0);
2259 if (mapping->a_ops->swap_activate) {
2260 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2263 sis->flags |= SWP_ACTIVATED;
2264 if ((sis->flags & SWP_FS_OPS) &&
2265 sio_pool_init() != 0) {
2266 destroy_swap_extents(sis);
2272 return generic_swapfile_activate(sis, swap_file, span);
2275 static int swap_node(struct swap_info_struct *p)
2277 struct block_device *bdev;
2282 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2284 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2287 static void setup_swap_info(struct swap_info_struct *p, int prio,
2288 unsigned char *swap_map,
2289 struct swap_cluster_info *cluster_info)
2296 p->prio = --least_priority;
2298 * the plist prio is negated because plist ordering is
2299 * low-to-high, while swap ordering is high-to-low
2301 p->list.prio = -p->prio;
2304 p->avail_lists[i].prio = -p->prio;
2306 if (swap_node(p) == i)
2307 p->avail_lists[i].prio = 1;
2309 p->avail_lists[i].prio = -p->prio;
2312 p->swap_map = swap_map;
2313 p->cluster_info = cluster_info;
2316 static void _enable_swap_info(struct swap_info_struct *p)
2318 p->flags |= SWP_WRITEOK;
2319 atomic_long_add(p->pages, &nr_swap_pages);
2320 total_swap_pages += p->pages;
2322 assert_spin_locked(&swap_lock);
2324 * both lists are plists, and thus priority ordered.
2325 * swap_active_head needs to be priority ordered for swapoff(),
2326 * which on removal of any swap_info_struct with an auto-assigned
2327 * (i.e. negative) priority increments the auto-assigned priority
2328 * of any lower-priority swap_info_structs.
2329 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2330 * which allocates swap pages from the highest available priority
2333 plist_add(&p->list, &swap_active_head);
2334 add_to_avail_list(p);
2337 static void enable_swap_info(struct swap_info_struct *p, int prio,
2338 unsigned char *swap_map,
2339 struct swap_cluster_info *cluster_info,
2340 unsigned long *frontswap_map)
2342 if (IS_ENABLED(CONFIG_FRONTSWAP))
2343 frontswap_init(p->type, frontswap_map);
2344 spin_lock(&swap_lock);
2345 spin_lock(&p->lock);
2346 setup_swap_info(p, prio, swap_map, cluster_info);
2347 spin_unlock(&p->lock);
2348 spin_unlock(&swap_lock);
2350 * Finished initializing swap device, now it's safe to reference it.
2352 percpu_ref_resurrect(&p->users);
2353 spin_lock(&swap_lock);
2354 spin_lock(&p->lock);
2355 _enable_swap_info(p);
2356 spin_unlock(&p->lock);
2357 spin_unlock(&swap_lock);
2360 static void reinsert_swap_info(struct swap_info_struct *p)
2362 spin_lock(&swap_lock);
2363 spin_lock(&p->lock);
2364 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2365 _enable_swap_info(p);
2366 spin_unlock(&p->lock);
2367 spin_unlock(&swap_lock);
2370 bool has_usable_swap(void)
2374 spin_lock(&swap_lock);
2375 if (plist_head_empty(&swap_active_head))
2377 spin_unlock(&swap_lock);
2381 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2383 struct swap_info_struct *p = NULL;
2384 unsigned char *swap_map;
2385 struct swap_cluster_info *cluster_info;
2386 unsigned long *frontswap_map;
2387 struct file *swap_file, *victim;
2388 struct address_space *mapping;
2389 struct inode *inode;
2390 struct filename *pathname;
2392 unsigned int old_block_size;
2394 if (!capable(CAP_SYS_ADMIN))
2397 BUG_ON(!current->mm);
2399 pathname = getname(specialfile);
2400 if (IS_ERR(pathname))
2401 return PTR_ERR(pathname);
2403 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2404 err = PTR_ERR(victim);
2408 mapping = victim->f_mapping;
2409 spin_lock(&swap_lock);
2410 plist_for_each_entry(p, &swap_active_head, list) {
2411 if (p->flags & SWP_WRITEOK) {
2412 if (p->swap_file->f_mapping == mapping) {
2420 spin_unlock(&swap_lock);
2423 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2424 vm_unacct_memory(p->pages);
2427 spin_unlock(&swap_lock);
2430 del_from_avail_list(p);
2431 spin_lock(&p->lock);
2433 struct swap_info_struct *si = p;
2436 plist_for_each_entry_continue(si, &swap_active_head, list) {
2439 for_each_node(nid) {
2440 if (si->avail_lists[nid].prio != 1)
2441 si->avail_lists[nid].prio--;
2446 plist_del(&p->list, &swap_active_head);
2447 atomic_long_sub(p->pages, &nr_swap_pages);
2448 total_swap_pages -= p->pages;
2449 p->flags &= ~SWP_WRITEOK;
2450 spin_unlock(&p->lock);
2451 spin_unlock(&swap_lock);
2453 disable_swap_slots_cache_lock();
2455 set_current_oom_origin();
2456 err = try_to_unuse(p->type);
2457 clear_current_oom_origin();
2460 /* re-insert swap space back into swap_list */
2461 reinsert_swap_info(p);
2462 reenable_swap_slots_cache_unlock();
2466 reenable_swap_slots_cache_unlock();
2469 * Wait for swap operations protected by get/put_swap_device()
2472 * We need synchronize_rcu() here to protect the accessing to
2473 * the swap cache data structure.
2475 percpu_ref_kill(&p->users);
2477 wait_for_completion(&p->comp);
2479 flush_work(&p->discard_work);
2481 destroy_swap_extents(p);
2482 if (p->flags & SWP_CONTINUED)
2483 free_swap_count_continuations(p);
2485 if (!p->bdev || !bdev_nonrot(p->bdev))
2486 atomic_dec(&nr_rotate_swap);
2488 mutex_lock(&swapon_mutex);
2489 spin_lock(&swap_lock);
2490 spin_lock(&p->lock);
2493 /* wait for anyone still in scan_swap_map_slots */
2494 p->highest_bit = 0; /* cuts scans short */
2495 while (p->flags >= SWP_SCANNING) {
2496 spin_unlock(&p->lock);
2497 spin_unlock(&swap_lock);
2498 schedule_timeout_uninterruptible(1);
2499 spin_lock(&swap_lock);
2500 spin_lock(&p->lock);
2503 swap_file = p->swap_file;
2504 old_block_size = p->old_block_size;
2505 p->swap_file = NULL;
2507 swap_map = p->swap_map;
2509 cluster_info = p->cluster_info;
2510 p->cluster_info = NULL;
2511 frontswap_map = frontswap_map_get(p);
2512 spin_unlock(&p->lock);
2513 spin_unlock(&swap_lock);
2514 arch_swap_invalidate_area(p->type);
2515 frontswap_invalidate_area(p->type);
2516 frontswap_map_set(p, NULL);
2517 mutex_unlock(&swapon_mutex);
2518 free_percpu(p->percpu_cluster);
2519 p->percpu_cluster = NULL;
2520 free_percpu(p->cluster_next_cpu);
2521 p->cluster_next_cpu = NULL;
2523 kvfree(cluster_info);
2524 kvfree(frontswap_map);
2525 /* Destroy swap account information */
2526 swap_cgroup_swapoff(p->type);
2527 exit_swap_address_space(p->type);
2529 inode = mapping->host;
2530 if (S_ISBLK(inode->i_mode)) {
2531 struct block_device *bdev = I_BDEV(inode);
2533 set_blocksize(bdev, old_block_size);
2534 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2538 inode->i_flags &= ~S_SWAPFILE;
2539 inode_unlock(inode);
2540 filp_close(swap_file, NULL);
2543 * Clear the SWP_USED flag after all resources are freed so that swapon
2544 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2545 * not hold p->lock after we cleared its SWP_WRITEOK.
2547 spin_lock(&swap_lock);
2549 spin_unlock(&swap_lock);
2552 atomic_inc(&proc_poll_event);
2553 wake_up_interruptible(&proc_poll_wait);
2556 filp_close(victim, NULL);
2562 #ifdef CONFIG_PROC_FS
2563 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2565 struct seq_file *seq = file->private_data;
2567 poll_wait(file, &proc_poll_wait, wait);
2569 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2570 seq->poll_event = atomic_read(&proc_poll_event);
2571 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2574 return EPOLLIN | EPOLLRDNORM;
2578 static void *swap_start(struct seq_file *swap, loff_t *pos)
2580 struct swap_info_struct *si;
2584 mutex_lock(&swapon_mutex);
2587 return SEQ_START_TOKEN;
2589 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2590 if (!(si->flags & SWP_USED) || !si->swap_map)
2599 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2601 struct swap_info_struct *si = v;
2604 if (v == SEQ_START_TOKEN)
2607 type = si->type + 1;
2610 for (; (si = swap_type_to_swap_info(type)); type++) {
2611 if (!(si->flags & SWP_USED) || !si->swap_map)
2619 static void swap_stop(struct seq_file *swap, void *v)
2621 mutex_unlock(&swapon_mutex);
2624 static int swap_show(struct seq_file *swap, void *v)
2626 struct swap_info_struct *si = v;
2629 unsigned long bytes, inuse;
2631 if (si == SEQ_START_TOKEN) {
2632 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2636 bytes = si->pages << (PAGE_SHIFT - 10);
2637 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2639 file = si->swap_file;
2640 len = seq_file_path(swap, file, " \t\n\\");
2641 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2642 len < 40 ? 40 - len : 1, " ",
2643 S_ISBLK(file_inode(file)->i_mode) ?
2644 "partition" : "file\t",
2645 bytes, bytes < 10000000 ? "\t" : "",
2646 inuse, inuse < 10000000 ? "\t" : "",
2651 static const struct seq_operations swaps_op = {
2652 .start = swap_start,
2658 static int swaps_open(struct inode *inode, struct file *file)
2660 struct seq_file *seq;
2663 ret = seq_open(file, &swaps_op);
2667 seq = file->private_data;
2668 seq->poll_event = atomic_read(&proc_poll_event);
2672 static const struct proc_ops swaps_proc_ops = {
2673 .proc_flags = PROC_ENTRY_PERMANENT,
2674 .proc_open = swaps_open,
2675 .proc_read = seq_read,
2676 .proc_lseek = seq_lseek,
2677 .proc_release = seq_release,
2678 .proc_poll = swaps_poll,
2681 static int __init procswaps_init(void)
2683 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2686 __initcall(procswaps_init);
2687 #endif /* CONFIG_PROC_FS */
2689 #ifdef MAX_SWAPFILES_CHECK
2690 static int __init max_swapfiles_check(void)
2692 MAX_SWAPFILES_CHECK();
2695 late_initcall(max_swapfiles_check);
2698 static struct swap_info_struct *alloc_swap_info(void)
2700 struct swap_info_struct *p;
2701 struct swap_info_struct *defer = NULL;
2705 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2707 return ERR_PTR(-ENOMEM);
2709 if (percpu_ref_init(&p->users, swap_users_ref_free,
2710 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2712 return ERR_PTR(-ENOMEM);
2715 spin_lock(&swap_lock);
2716 for (type = 0; type < nr_swapfiles; type++) {
2717 if (!(swap_info[type]->flags & SWP_USED))
2720 if (type >= MAX_SWAPFILES) {
2721 spin_unlock(&swap_lock);
2722 percpu_ref_exit(&p->users);
2724 return ERR_PTR(-EPERM);
2726 if (type >= nr_swapfiles) {
2729 * Publish the swap_info_struct after initializing it.
2730 * Note that kvzalloc() above zeroes all its fields.
2732 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2736 p = swap_info[type];
2738 * Do not memset this entry: a racing procfs swap_next()
2739 * would be relying on p->type to remain valid.
2742 p->swap_extent_root = RB_ROOT;
2743 plist_node_init(&p->list, 0);
2745 plist_node_init(&p->avail_lists[i], 0);
2746 p->flags = SWP_USED;
2747 spin_unlock(&swap_lock);
2749 percpu_ref_exit(&defer->users);
2752 spin_lock_init(&p->lock);
2753 spin_lock_init(&p->cont_lock);
2754 init_completion(&p->comp);
2759 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2763 if (S_ISBLK(inode->i_mode)) {
2764 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2765 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2766 if (IS_ERR(p->bdev)) {
2767 error = PTR_ERR(p->bdev);
2771 p->old_block_size = block_size(p->bdev);
2772 error = set_blocksize(p->bdev, PAGE_SIZE);
2776 * Zoned block devices contain zones that have a sequential
2777 * write only restriction. Hence zoned block devices are not
2778 * suitable for swapping. Disallow them here.
2780 if (bdev_is_zoned(p->bdev))
2782 p->flags |= SWP_BLKDEV;
2783 } else if (S_ISREG(inode->i_mode)) {
2784 p->bdev = inode->i_sb->s_bdev;
2792 * Find out how many pages are allowed for a single swap device. There
2793 * are two limiting factors:
2794 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2795 * 2) the number of bits in the swap pte, as defined by the different
2798 * In order to find the largest possible bit mask, a swap entry with
2799 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2800 * decoded to a swp_entry_t again, and finally the swap offset is
2803 * This will mask all the bits from the initial ~0UL mask that can't
2804 * be encoded in either the swp_entry_t or the architecture definition
2807 unsigned long generic_max_swapfile_size(void)
2809 return swp_offset(pte_to_swp_entry(
2810 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 /* Can be overridden by an architecture for additional checks. */
2814 __weak unsigned long arch_max_swapfile_size(void)
2816 return generic_max_swapfile_size();
2819 static unsigned long read_swap_header(struct swap_info_struct *p,
2820 union swap_header *swap_header,
2821 struct inode *inode)
2824 unsigned long maxpages;
2825 unsigned long swapfilepages;
2826 unsigned long last_page;
2828 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2829 pr_err("Unable to find swap-space signature\n");
2833 /* swap partition endianness hack... */
2834 if (swab32(swap_header->info.version) == 1) {
2835 swab32s(&swap_header->info.version);
2836 swab32s(&swap_header->info.last_page);
2837 swab32s(&swap_header->info.nr_badpages);
2838 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2840 for (i = 0; i < swap_header->info.nr_badpages; i++)
2841 swab32s(&swap_header->info.badpages[i]);
2843 /* Check the swap header's sub-version */
2844 if (swap_header->info.version != 1) {
2845 pr_warn("Unable to handle swap header version %d\n",
2846 swap_header->info.version);
2851 p->cluster_next = 1;
2854 maxpages = swapfile_maximum_size;
2855 last_page = swap_header->info.last_page;
2857 pr_warn("Empty swap-file\n");
2860 if (last_page > maxpages) {
2861 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2862 maxpages << (PAGE_SHIFT - 10),
2863 last_page << (PAGE_SHIFT - 10));
2865 if (maxpages > last_page) {
2866 maxpages = last_page + 1;
2867 /* p->max is an unsigned int: don't overflow it */
2868 if ((unsigned int)maxpages == 0)
2869 maxpages = UINT_MAX;
2871 p->highest_bit = maxpages - 1;
2875 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2876 if (swapfilepages && maxpages > swapfilepages) {
2877 pr_warn("Swap area shorter than signature indicates\n");
2880 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2882 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2888 #define SWAP_CLUSTER_INFO_COLS \
2889 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2890 #define SWAP_CLUSTER_SPACE_COLS \
2891 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2892 #define SWAP_CLUSTER_COLS \
2893 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2895 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2896 union swap_header *swap_header,
2897 unsigned char *swap_map,
2898 struct swap_cluster_info *cluster_info,
2899 unsigned long maxpages,
2903 unsigned int nr_good_pages;
2905 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2906 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2907 unsigned long i, idx;
2909 nr_good_pages = maxpages - 1; /* omit header page */
2911 cluster_list_init(&p->free_clusters);
2912 cluster_list_init(&p->discard_clusters);
2914 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2915 unsigned int page_nr = swap_header->info.badpages[i];
2916 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2918 if (page_nr < maxpages) {
2919 swap_map[page_nr] = SWAP_MAP_BAD;
2922 * Haven't marked the cluster free yet, no list
2923 * operation involved
2925 inc_cluster_info_page(p, cluster_info, page_nr);
2929 /* Haven't marked the cluster free yet, no list operation involved */
2930 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2931 inc_cluster_info_page(p, cluster_info, i);
2933 if (nr_good_pages) {
2934 swap_map[0] = SWAP_MAP_BAD;
2936 * Not mark the cluster free yet, no list
2937 * operation involved
2939 inc_cluster_info_page(p, cluster_info, 0);
2941 p->pages = nr_good_pages;
2942 nr_extents = setup_swap_extents(p, span);
2945 nr_good_pages = p->pages;
2947 if (!nr_good_pages) {
2948 pr_warn("Empty swap-file\n");
2957 * Reduce false cache line sharing between cluster_info and
2958 * sharing same address space.
2960 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2961 j = (k + col) % SWAP_CLUSTER_COLS;
2962 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2963 idx = i * SWAP_CLUSTER_COLS + j;
2964 if (idx >= nr_clusters)
2966 if (cluster_count(&cluster_info[idx]))
2968 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2969 cluster_list_add_tail(&p->free_clusters, cluster_info,
2976 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2978 struct swap_info_struct *p;
2979 struct filename *name;
2980 struct file *swap_file = NULL;
2981 struct address_space *mapping;
2982 struct dentry *dentry;
2985 union swap_header *swap_header;
2988 unsigned long maxpages;
2989 unsigned char *swap_map = NULL;
2990 struct swap_cluster_info *cluster_info = NULL;
2991 unsigned long *frontswap_map = NULL;
2992 struct page *page = NULL;
2993 struct inode *inode = NULL;
2994 bool inced_nr_rotate_swap = false;
2996 if (swap_flags & ~SWAP_FLAGS_VALID)
2999 if (!capable(CAP_SYS_ADMIN))
3002 if (!swap_avail_heads)
3005 p = alloc_swap_info();
3009 INIT_WORK(&p->discard_work, swap_discard_work);
3011 name = getname(specialfile);
3013 error = PTR_ERR(name);
3017 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3018 if (IS_ERR(swap_file)) {
3019 error = PTR_ERR(swap_file);
3024 p->swap_file = swap_file;
3025 mapping = swap_file->f_mapping;
3026 dentry = swap_file->f_path.dentry;
3027 inode = mapping->host;
3029 error = claim_swapfile(p, inode);
3030 if (unlikely(error))
3034 if (d_unlinked(dentry) || cant_mount(dentry)) {
3036 goto bad_swap_unlock_inode;
3038 if (IS_SWAPFILE(inode)) {
3040 goto bad_swap_unlock_inode;
3044 * Read the swap header.
3046 if (!mapping->a_ops->read_folio) {
3048 goto bad_swap_unlock_inode;
3050 page = read_mapping_page(mapping, 0, swap_file);
3052 error = PTR_ERR(page);
3053 goto bad_swap_unlock_inode;
3055 swap_header = kmap(page);
3057 maxpages = read_swap_header(p, swap_header, inode);
3058 if (unlikely(!maxpages)) {
3060 goto bad_swap_unlock_inode;
3063 /* OK, set up the swap map and apply the bad block list */
3064 swap_map = vzalloc(maxpages);
3067 goto bad_swap_unlock_inode;
3070 if (p->bdev && bdev_stable_writes(p->bdev))
3071 p->flags |= SWP_STABLE_WRITES;
3073 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3074 p->flags |= SWP_SYNCHRONOUS_IO;
3076 if (p->bdev && bdev_nonrot(p->bdev)) {
3078 unsigned long ci, nr_cluster;
3080 p->flags |= SWP_SOLIDSTATE;
3081 p->cluster_next_cpu = alloc_percpu(unsigned int);
3082 if (!p->cluster_next_cpu) {
3084 goto bad_swap_unlock_inode;
3087 * select a random position to start with to help wear leveling
3090 for_each_possible_cpu(cpu) {
3091 per_cpu(*p->cluster_next_cpu, cpu) =
3092 1 + prandom_u32_max(p->highest_bit);
3094 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3096 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3098 if (!cluster_info) {
3100 goto bad_swap_unlock_inode;
3103 for (ci = 0; ci < nr_cluster; ci++)
3104 spin_lock_init(&((cluster_info + ci)->lock));
3106 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3107 if (!p->percpu_cluster) {
3109 goto bad_swap_unlock_inode;
3111 for_each_possible_cpu(cpu) {
3112 struct percpu_cluster *cluster;
3113 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3114 cluster_set_null(&cluster->index);
3117 atomic_inc(&nr_rotate_swap);
3118 inced_nr_rotate_swap = true;
3121 error = swap_cgroup_swapon(p->type, maxpages);
3123 goto bad_swap_unlock_inode;
3125 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3126 cluster_info, maxpages, &span);
3127 if (unlikely(nr_extents < 0)) {
3129 goto bad_swap_unlock_inode;
3131 /* frontswap enabled? set up bit-per-page map for frontswap */
3132 if (IS_ENABLED(CONFIG_FRONTSWAP))
3133 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3137 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3138 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3140 * When discard is enabled for swap with no particular
3141 * policy flagged, we set all swap discard flags here in
3142 * order to sustain backward compatibility with older
3143 * swapon(8) releases.
3145 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3149 * By flagging sys_swapon, a sysadmin can tell us to
3150 * either do single-time area discards only, or to just
3151 * perform discards for released swap page-clusters.
3152 * Now it's time to adjust the p->flags accordingly.
3154 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3155 p->flags &= ~SWP_PAGE_DISCARD;
3156 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3157 p->flags &= ~SWP_AREA_DISCARD;
3159 /* issue a swapon-time discard if it's still required */
3160 if (p->flags & SWP_AREA_DISCARD) {
3161 int err = discard_swap(p);
3163 pr_err("swapon: discard_swap(%p): %d\n",
3168 error = init_swap_address_space(p->type, maxpages);
3170 goto bad_swap_unlock_inode;
3173 * Flush any pending IO and dirty mappings before we start using this
3176 inode->i_flags |= S_SWAPFILE;
3177 error = inode_drain_writes(inode);
3179 inode->i_flags &= ~S_SWAPFILE;
3180 goto free_swap_address_space;
3183 mutex_lock(&swapon_mutex);
3185 if (swap_flags & SWAP_FLAG_PREFER)
3187 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3188 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3190 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3191 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3192 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3193 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3194 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3195 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3196 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3197 (frontswap_map) ? "FS" : "");
3199 mutex_unlock(&swapon_mutex);
3200 atomic_inc(&proc_poll_event);
3201 wake_up_interruptible(&proc_poll_wait);
3205 free_swap_address_space:
3206 exit_swap_address_space(p->type);
3207 bad_swap_unlock_inode:
3208 inode_unlock(inode);
3210 free_percpu(p->percpu_cluster);
3211 p->percpu_cluster = NULL;
3212 free_percpu(p->cluster_next_cpu);
3213 p->cluster_next_cpu = NULL;
3214 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3215 set_blocksize(p->bdev, p->old_block_size);
3216 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3219 destroy_swap_extents(p);
3220 swap_cgroup_swapoff(p->type);
3221 spin_lock(&swap_lock);
3222 p->swap_file = NULL;
3224 spin_unlock(&swap_lock);
3226 kvfree(cluster_info);
3227 kvfree(frontswap_map);
3228 if (inced_nr_rotate_swap)
3229 atomic_dec(&nr_rotate_swap);
3231 filp_close(swap_file, NULL);
3233 if (page && !IS_ERR(page)) {
3240 inode_unlock(inode);
3242 enable_swap_slots_cache();
3246 void si_swapinfo(struct sysinfo *val)
3249 unsigned long nr_to_be_unused = 0;
3251 spin_lock(&swap_lock);
3252 for (type = 0; type < nr_swapfiles; type++) {
3253 struct swap_info_struct *si = swap_info[type];
3255 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3256 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3258 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3259 val->totalswap = total_swap_pages + nr_to_be_unused;
3260 spin_unlock(&swap_lock);
3264 * Verify that a swap entry is valid and increment its swap map count.
3266 * Returns error code in following case.
3268 * - swp_entry is invalid -> EINVAL
3269 * - swp_entry is migration entry -> EINVAL
3270 * - swap-cache reference is requested but there is already one. -> EEXIST
3271 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3272 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3274 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3276 struct swap_info_struct *p;
3277 struct swap_cluster_info *ci;
3278 unsigned long offset;
3279 unsigned char count;
3280 unsigned char has_cache;
3283 p = get_swap_device(entry);
3287 offset = swp_offset(entry);
3288 ci = lock_cluster_or_swap_info(p, offset);
3290 count = p->swap_map[offset];
3293 * swapin_readahead() doesn't check if a swap entry is valid, so the
3294 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3296 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3301 has_cache = count & SWAP_HAS_CACHE;
3302 count &= ~SWAP_HAS_CACHE;
3305 if (usage == SWAP_HAS_CACHE) {
3307 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3308 if (!has_cache && count)
3309 has_cache = SWAP_HAS_CACHE;
3310 else if (has_cache) /* someone else added cache */
3312 else /* no users remaining */
3315 } else if (count || has_cache) {
3317 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3319 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3321 else if (swap_count_continued(p, offset, count))
3322 count = COUNT_CONTINUED;
3326 err = -ENOENT; /* unused swap entry */
3328 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3331 unlock_cluster_or_swap_info(p, ci);
3337 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3338 * (in which case its reference count is never incremented).
3340 void swap_shmem_alloc(swp_entry_t entry)
3342 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3346 * Increase reference count of swap entry by 1.
3347 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3348 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3349 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3350 * might occur if a page table entry has got corrupted.
3352 int swap_duplicate(swp_entry_t entry)
3356 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3357 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3362 * @entry: swap entry for which we allocate swap cache.
3364 * Called when allocating swap cache for existing swap entry,
3365 * This can return error codes. Returns 0 at success.
3366 * -EEXIST means there is a swap cache.
3367 * Note: return code is different from swap_duplicate().
3369 int swapcache_prepare(swp_entry_t entry)
3371 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3374 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3376 return swap_type_to_swap_info(swp_type(entry));
3379 struct swap_info_struct *page_swap_info(struct page *page)
3381 swp_entry_t entry = { .val = page_private(page) };
3382 return swp_swap_info(entry);
3386 * out-of-line methods to avoid include hell.
3388 struct address_space *swapcache_mapping(struct folio *folio)
3390 return page_swap_info(&folio->page)->swap_file->f_mapping;
3392 EXPORT_SYMBOL_GPL(swapcache_mapping);
3394 pgoff_t __page_file_index(struct page *page)
3396 swp_entry_t swap = { .val = page_private(page) };
3397 return swp_offset(swap);
3399 EXPORT_SYMBOL_GPL(__page_file_index);
3402 * add_swap_count_continuation - called when a swap count is duplicated
3403 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3404 * page of the original vmalloc'ed swap_map, to hold the continuation count
3405 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3406 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3408 * These continuation pages are seldom referenced: the common paths all work
3409 * on the original swap_map, only referring to a continuation page when the
3410 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3412 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3413 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3414 * can be called after dropping locks.
3416 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3418 struct swap_info_struct *si;
3419 struct swap_cluster_info *ci;
3422 struct page *list_page;
3424 unsigned char count;
3428 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3429 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3431 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3433 si = get_swap_device(entry);
3436 * An acceptable race has occurred since the failing
3437 * __swap_duplicate(): the swap device may be swapoff
3441 spin_lock(&si->lock);
3443 offset = swp_offset(entry);
3445 ci = lock_cluster(si, offset);
3447 count = swap_count(si->swap_map[offset]);
3449 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3451 * The higher the swap count, the more likely it is that tasks
3452 * will race to add swap count continuation: we need to avoid
3453 * over-provisioning.
3464 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3465 * no architecture is using highmem pages for kernel page tables: so it
3466 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3468 head = vmalloc_to_page(si->swap_map + offset);
3469 offset &= ~PAGE_MASK;
3471 spin_lock(&si->cont_lock);
3473 * Page allocation does not initialize the page's lru field,
3474 * but it does always reset its private field.
3476 if (!page_private(head)) {
3477 BUG_ON(count & COUNT_CONTINUED);
3478 INIT_LIST_HEAD(&head->lru);
3479 set_page_private(head, SWP_CONTINUED);
3480 si->flags |= SWP_CONTINUED;
3483 list_for_each_entry(list_page, &head->lru, lru) {
3487 * If the previous map said no continuation, but we've found
3488 * a continuation page, free our allocation and use this one.
3490 if (!(count & COUNT_CONTINUED))
3491 goto out_unlock_cont;
3493 map = kmap_atomic(list_page) + offset;
3498 * If this continuation count now has some space in it,
3499 * free our allocation and use this one.
3501 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3502 goto out_unlock_cont;
3505 list_add_tail(&page->lru, &head->lru);
3506 page = NULL; /* now it's attached, don't free it */
3508 spin_unlock(&si->cont_lock);
3511 spin_unlock(&si->lock);
3512 put_swap_device(si);
3520 * swap_count_continued - when the original swap_map count is incremented
3521 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3522 * into, carry if so, or else fail until a new continuation page is allocated;
3523 * when the original swap_map count is decremented from 0 with continuation,
3524 * borrow from the continuation and report whether it still holds more.
3525 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3528 static bool swap_count_continued(struct swap_info_struct *si,
3529 pgoff_t offset, unsigned char count)
3536 head = vmalloc_to_page(si->swap_map + offset);
3537 if (page_private(head) != SWP_CONTINUED) {
3538 BUG_ON(count & COUNT_CONTINUED);
3539 return false; /* need to add count continuation */
3542 spin_lock(&si->cont_lock);
3543 offset &= ~PAGE_MASK;
3544 page = list_next_entry(head, lru);
3545 map = kmap_atomic(page) + offset;
3547 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3548 goto init_map; /* jump over SWAP_CONT_MAX checks */
3550 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3552 * Think of how you add 1 to 999
3554 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3556 page = list_next_entry(page, lru);
3557 BUG_ON(page == head);
3558 map = kmap_atomic(page) + offset;
3560 if (*map == SWAP_CONT_MAX) {
3562 page = list_next_entry(page, lru);
3564 ret = false; /* add count continuation */
3567 map = kmap_atomic(page) + offset;
3568 init_map: *map = 0; /* we didn't zero the page */
3572 while ((page = list_prev_entry(page, lru)) != head) {
3573 map = kmap_atomic(page) + offset;
3574 *map = COUNT_CONTINUED;
3577 ret = true; /* incremented */
3579 } else { /* decrementing */
3581 * Think of how you subtract 1 from 1000
3583 BUG_ON(count != COUNT_CONTINUED);
3584 while (*map == COUNT_CONTINUED) {
3586 page = list_next_entry(page, lru);
3587 BUG_ON(page == head);
3588 map = kmap_atomic(page) + offset;
3595 while ((page = list_prev_entry(page, lru)) != head) {
3596 map = kmap_atomic(page) + offset;
3597 *map = SWAP_CONT_MAX | count;
3598 count = COUNT_CONTINUED;
3601 ret = count == COUNT_CONTINUED;
3604 spin_unlock(&si->cont_lock);
3609 * free_swap_count_continuations - swapoff free all the continuation pages
3610 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3612 static void free_swap_count_continuations(struct swap_info_struct *si)
3616 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3618 head = vmalloc_to_page(si->swap_map + offset);
3619 if (page_private(head)) {
3620 struct page *page, *next;
3622 list_for_each_entry_safe(page, next, &head->lru, lru) {
3623 list_del(&page->lru);
3630 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3631 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3633 struct swap_info_struct *si, *next;
3634 int nid = page_to_nid(page);
3636 if (!(gfp_mask & __GFP_IO))
3639 if (!blk_cgroup_congested())
3643 * We've already scheduled a throttle, avoid taking the global swap
3646 if (current->throttle_queue)
3649 spin_lock(&swap_avail_lock);
3650 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3653 blkcg_schedule_throttle(si->bdev->bd_disk, true);
3657 spin_unlock(&swap_avail_lock);
3661 static int __init swapfile_init(void)
3665 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3667 if (!swap_avail_heads) {
3668 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3673 plist_head_init(&swap_avail_heads[nid]);
3675 swapfile_maximum_size = arch_max_swapfile_size();
3677 #ifdef CONFIG_MIGRATION
3678 if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
3679 swap_migration_ad_supported = true;
3680 #endif /* CONFIG_MIGRATION */
3684 subsys_initcall(swapfile_init);