4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
50 static struct swap_list_t swap_list = {-1, -1};
52 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
54 static DEFINE_MUTEX(swapon_mutex);
56 static inline int swap_count(unsigned short ent)
58 return ent & ~SWAP_HAS_CACHE;
61 /* returns 1 if swap entry is freed */
63 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
65 swp_entry_t entry = swp_entry(si->type, offset);
69 page = find_get_page(&swapper_space, entry.val);
73 * This function is called from scan_swap_map() and it's called
74 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
75 * We have to use trylock for avoiding deadlock. This is a special
76 * case and you should use try_to_free_swap() with explicit lock_page()
77 * in usual operations.
79 if (trylock_page(page)) {
80 ret = try_to_free_swap(page);
83 page_cache_release(page);
88 * We need this because the bdev->unplug_fn can sleep and we cannot
89 * hold swap_lock while calling the unplug_fn. And swap_lock
90 * cannot be turned into a mutex.
92 static DECLARE_RWSEM(swap_unplug_sem);
94 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
98 down_read(&swap_unplug_sem);
99 entry.val = page_private(page);
100 if (PageSwapCache(page)) {
101 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
102 struct backing_dev_info *bdi;
105 * If the page is removed from swapcache from under us (with a
106 * racy try_to_unuse/swapoff) we need an additional reference
107 * count to avoid reading garbage from page_private(page) above.
108 * If the WARN_ON triggers during a swapoff it maybe the race
109 * condition and it's harmless. However if it triggers without
110 * swapoff it signals a problem.
112 WARN_ON(page_count(page) <= 1);
114 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
115 blk_run_backing_dev(bdi, page);
117 up_read(&swap_unplug_sem);
121 * swapon tell device that all the old swap contents can be discarded,
122 * to allow the swap device to optimize its wear-levelling.
124 static int discard_swap(struct swap_info_struct *si)
126 struct swap_extent *se;
127 sector_t start_block;
131 /* Do not discard the swap header page! */
132 se = &si->first_swap_extent;
133 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
134 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
136 err = blkdev_issue_discard(si->bdev, start_block,
137 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
143 list_for_each_entry(se, &si->first_swap_extent.list, list) {
144 start_block = se->start_block << (PAGE_SHIFT - 9);
145 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
147 err = blkdev_issue_discard(si->bdev, start_block,
148 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
154 return err; /* That will often be -EOPNOTSUPP */
158 * swap allocation tell device that a cluster of swap can now be discarded,
159 * to allow the swap device to optimize its wear-levelling.
161 static void discard_swap_cluster(struct swap_info_struct *si,
162 pgoff_t start_page, pgoff_t nr_pages)
164 struct swap_extent *se = si->curr_swap_extent;
165 int found_extent = 0;
168 struct list_head *lh;
170 if (se->start_page <= start_page &&
171 start_page < se->start_page + se->nr_pages) {
172 pgoff_t offset = start_page - se->start_page;
173 sector_t start_block = se->start_block + offset;
174 sector_t nr_blocks = se->nr_pages - offset;
176 if (nr_blocks > nr_pages)
177 nr_blocks = nr_pages;
178 start_page += nr_blocks;
179 nr_pages -= nr_blocks;
182 si->curr_swap_extent = se;
184 start_block <<= PAGE_SHIFT - 9;
185 nr_blocks <<= PAGE_SHIFT - 9;
186 if (blkdev_issue_discard(si->bdev, start_block,
187 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
192 se = list_entry(lh, struct swap_extent, list);
196 static int wait_for_discard(void *word)
202 #define SWAPFILE_CLUSTER 256
203 #define LATENCY_LIMIT 256
205 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
206 unsigned short usage)
208 unsigned long offset;
209 unsigned long scan_base;
210 unsigned long last_in_cluster = 0;
211 int latency_ration = LATENCY_LIMIT;
212 int found_free_cluster = 0;
215 * We try to cluster swap pages by allocating them sequentially
216 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
217 * way, however, we resort to first-free allocation, starting
218 * a new cluster. This prevents us from scattering swap pages
219 * all over the entire swap partition, so that we reduce
220 * overall disk seek times between swap pages. -- sct
221 * But we do now try to find an empty cluster. -Andrea
222 * And we let swap pages go all over an SSD partition. Hugh
225 si->flags += SWP_SCANNING;
226 scan_base = offset = si->cluster_next;
228 if (unlikely(!si->cluster_nr--)) {
229 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
230 si->cluster_nr = SWAPFILE_CLUSTER - 1;
233 if (si->flags & SWP_DISCARDABLE) {
235 * Start range check on racing allocations, in case
236 * they overlap the cluster we eventually decide on
237 * (we scan without swap_lock to allow preemption).
238 * It's hardly conceivable that cluster_nr could be
239 * wrapped during our scan, but don't depend on it.
241 if (si->lowest_alloc)
243 si->lowest_alloc = si->max;
244 si->highest_alloc = 0;
246 spin_unlock(&swap_lock);
249 * If seek is expensive, start searching for new cluster from
250 * start of partition, to minimize the span of allocated swap.
251 * But if seek is cheap, search from our current position, so
252 * that swap is allocated from all over the partition: if the
253 * Flash Translation Layer only remaps within limited zones,
254 * we don't want to wear out the first zone too quickly.
256 if (!(si->flags & SWP_SOLIDSTATE))
257 scan_base = offset = si->lowest_bit;
258 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
260 /* Locate the first empty (unaligned) cluster */
261 for (; last_in_cluster <= si->highest_bit; offset++) {
262 if (si->swap_map[offset])
263 last_in_cluster = offset + SWAPFILE_CLUSTER;
264 else if (offset == last_in_cluster) {
265 spin_lock(&swap_lock);
266 offset -= SWAPFILE_CLUSTER - 1;
267 si->cluster_next = offset;
268 si->cluster_nr = SWAPFILE_CLUSTER - 1;
269 found_free_cluster = 1;
272 if (unlikely(--latency_ration < 0)) {
274 latency_ration = LATENCY_LIMIT;
278 offset = si->lowest_bit;
279 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
281 /* Locate the first empty (unaligned) cluster */
282 for (; last_in_cluster < scan_base; offset++) {
283 if (si->swap_map[offset])
284 last_in_cluster = offset + SWAPFILE_CLUSTER;
285 else if (offset == last_in_cluster) {
286 spin_lock(&swap_lock);
287 offset -= SWAPFILE_CLUSTER - 1;
288 si->cluster_next = offset;
289 si->cluster_nr = SWAPFILE_CLUSTER - 1;
290 found_free_cluster = 1;
293 if (unlikely(--latency_ration < 0)) {
295 latency_ration = LATENCY_LIMIT;
300 spin_lock(&swap_lock);
301 si->cluster_nr = SWAPFILE_CLUSTER - 1;
302 si->lowest_alloc = 0;
306 if (!(si->flags & SWP_WRITEOK))
308 if (!si->highest_bit)
310 if (offset > si->highest_bit)
311 scan_base = offset = si->lowest_bit;
313 /* reuse swap entry of cache-only swap if not busy. */
314 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
316 spin_unlock(&swap_lock);
317 swap_was_freed = __try_to_reclaim_swap(si, offset);
318 spin_lock(&swap_lock);
319 /* entry was freed successfully, try to use this again */
322 goto scan; /* check next one */
325 if (si->swap_map[offset])
328 if (offset == si->lowest_bit)
330 if (offset == si->highest_bit)
333 if (si->inuse_pages == si->pages) {
334 si->lowest_bit = si->max;
337 si->swap_map[offset] = usage;
338 si->cluster_next = offset + 1;
339 si->flags -= SWP_SCANNING;
341 if (si->lowest_alloc) {
343 * Only set when SWP_DISCARDABLE, and there's a scan
344 * for a free cluster in progress or just completed.
346 if (found_free_cluster) {
348 * To optimize wear-levelling, discard the
349 * old data of the cluster, taking care not to
350 * discard any of its pages that have already
351 * been allocated by racing tasks (offset has
352 * already stepped over any at the beginning).
354 if (offset < si->highest_alloc &&
355 si->lowest_alloc <= last_in_cluster)
356 last_in_cluster = si->lowest_alloc - 1;
357 si->flags |= SWP_DISCARDING;
358 spin_unlock(&swap_lock);
360 if (offset < last_in_cluster)
361 discard_swap_cluster(si, offset,
362 last_in_cluster - offset + 1);
364 spin_lock(&swap_lock);
365 si->lowest_alloc = 0;
366 si->flags &= ~SWP_DISCARDING;
368 smp_mb(); /* wake_up_bit advises this */
369 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
371 } else if (si->flags & SWP_DISCARDING) {
373 * Delay using pages allocated by racing tasks
374 * until the whole discard has been issued. We
375 * could defer that delay until swap_writepage,
376 * but it's easier to keep this self-contained.
378 spin_unlock(&swap_lock);
379 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
380 wait_for_discard, TASK_UNINTERRUPTIBLE);
381 spin_lock(&swap_lock);
384 * Note pages allocated by racing tasks while
385 * scan for a free cluster is in progress, so
386 * that its final discard can exclude them.
388 if (offset < si->lowest_alloc)
389 si->lowest_alloc = offset;
390 if (offset > si->highest_alloc)
391 si->highest_alloc = offset;
397 spin_unlock(&swap_lock);
398 while (++offset <= si->highest_bit) {
399 if (!si->swap_map[offset]) {
400 spin_lock(&swap_lock);
403 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
404 spin_lock(&swap_lock);
407 if (unlikely(--latency_ration < 0)) {
409 latency_ration = LATENCY_LIMIT;
412 offset = si->lowest_bit;
413 while (++offset < scan_base) {
414 if (!si->swap_map[offset]) {
415 spin_lock(&swap_lock);
418 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
419 spin_lock(&swap_lock);
422 if (unlikely(--latency_ration < 0)) {
424 latency_ration = LATENCY_LIMIT;
427 spin_lock(&swap_lock);
430 si->flags -= SWP_SCANNING;
434 swp_entry_t get_swap_page(void)
436 struct swap_info_struct *si;
441 spin_lock(&swap_lock);
442 if (nr_swap_pages <= 0)
446 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
447 si = swap_info[type];
450 (!wrapped && si->prio != swap_info[next]->prio)) {
451 next = swap_list.head;
455 if (!si->highest_bit)
457 if (!(si->flags & SWP_WRITEOK))
460 swap_list.next = next;
461 /* This is called for allocating swap entry for cache */
462 offset = scan_swap_map(si, SWAP_HAS_CACHE);
464 spin_unlock(&swap_lock);
465 return swp_entry(type, offset);
467 next = swap_list.next;
472 spin_unlock(&swap_lock);
473 return (swp_entry_t) {0};
476 /* The only caller of this function is now susupend routine */
477 swp_entry_t get_swap_page_of_type(int type)
479 struct swap_info_struct *si;
482 spin_lock(&swap_lock);
483 si = swap_info[type];
484 if (si && (si->flags & SWP_WRITEOK)) {
486 /* This is called for allocating swap entry, not cache */
487 offset = scan_swap_map(si, 1);
489 spin_unlock(&swap_lock);
490 return swp_entry(type, offset);
494 spin_unlock(&swap_lock);
495 return (swp_entry_t) {0};
498 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
500 struct swap_info_struct *p;
501 unsigned long offset, type;
505 type = swp_type(entry);
506 if (type >= nr_swapfiles)
509 if (!(p->flags & SWP_USED))
511 offset = swp_offset(entry);
512 if (offset >= p->max)
514 if (!p->swap_map[offset])
516 spin_lock(&swap_lock);
520 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
523 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
526 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
529 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
534 static unsigned short swap_entry_free(struct swap_info_struct *p,
535 swp_entry_t entry, unsigned short usage)
537 unsigned long offset = swp_offset(entry);
538 unsigned short count;
539 unsigned short has_cache;
541 count = p->swap_map[offset];
542 has_cache = count & SWAP_HAS_CACHE;
543 count &= ~SWAP_HAS_CACHE;
545 if (usage == SWAP_HAS_CACHE) {
546 VM_BUG_ON(!has_cache);
548 } else if (count < SWAP_MAP_MAX)
552 mem_cgroup_uncharge_swap(entry);
554 usage = count | has_cache;
555 p->swap_map[offset] = usage;
557 /* free if no reference */
559 if (offset < p->lowest_bit)
560 p->lowest_bit = offset;
561 if (offset > p->highest_bit)
562 p->highest_bit = offset;
563 if (swap_list.next >= 0 &&
564 p->prio > swap_info[swap_list.next]->prio)
565 swap_list.next = p->type;
574 * Caller has made sure that the swapdevice corresponding to entry
575 * is still around or has not been recycled.
577 void swap_free(swp_entry_t entry)
579 struct swap_info_struct *p;
581 p = swap_info_get(entry);
583 swap_entry_free(p, entry, 1);
584 spin_unlock(&swap_lock);
589 * Called after dropping swapcache to decrease refcnt to swap entries.
591 void swapcache_free(swp_entry_t entry, struct page *page)
593 struct swap_info_struct *p;
594 unsigned short count;
596 p = swap_info_get(entry);
598 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
600 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
601 spin_unlock(&swap_lock);
606 * How many references to page are currently swapped out?
608 static inline int page_swapcount(struct page *page)
611 struct swap_info_struct *p;
614 entry.val = page_private(page);
615 p = swap_info_get(entry);
617 count = swap_count(p->swap_map[swp_offset(entry)]);
618 spin_unlock(&swap_lock);
624 * We can write to an anon page without COW if there are no other references
625 * to it. And as a side-effect, free up its swap: because the old content
626 * on disk will never be read, and seeking back there to write new content
627 * later would only waste time away from clustering.
629 int reuse_swap_page(struct page *page)
633 VM_BUG_ON(!PageLocked(page));
634 count = page_mapcount(page);
635 if (count <= 1 && PageSwapCache(page)) {
636 count += page_swapcount(page);
637 if (count == 1 && !PageWriteback(page)) {
638 delete_from_swap_cache(page);
646 * If swap is getting full, or if there are no more mappings of this page,
647 * then try_to_free_swap is called to free its swap space.
649 int try_to_free_swap(struct page *page)
651 VM_BUG_ON(!PageLocked(page));
653 if (!PageSwapCache(page))
655 if (PageWriteback(page))
657 if (page_swapcount(page))
660 delete_from_swap_cache(page);
666 * Free the swap entry like above, but also try to
667 * free the page cache entry if it is the last user.
669 int free_swap_and_cache(swp_entry_t entry)
671 struct swap_info_struct *p;
672 struct page *page = NULL;
674 if (non_swap_entry(entry))
677 p = swap_info_get(entry);
679 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
680 page = find_get_page(&swapper_space, entry.val);
681 if (page && !trylock_page(page)) {
682 page_cache_release(page);
686 spin_unlock(&swap_lock);
690 * Not mapped elsewhere, or swap space full? Free it!
691 * Also recheck PageSwapCache now page is locked (above).
693 if (PageSwapCache(page) && !PageWriteback(page) &&
694 (!page_mapped(page) || vm_swap_full())) {
695 delete_from_swap_cache(page);
699 page_cache_release(page);
704 #ifdef CONFIG_HIBERNATION
706 * Find the swap type that corresponds to given device (if any).
708 * @offset - number of the PAGE_SIZE-sized block of the device, starting
709 * from 0, in which the swap header is expected to be located.
711 * This is needed for the suspend to disk (aka swsusp).
713 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
715 struct block_device *bdev = NULL;
719 bdev = bdget(device);
721 spin_lock(&swap_lock);
722 for (type = 0; type < nr_swapfiles; type++) {
723 struct swap_info_struct *sis = swap_info[type];
725 if (!(sis->flags & SWP_WRITEOK))
730 *bdev_p = bdgrab(sis->bdev);
732 spin_unlock(&swap_lock);
735 if (bdev == sis->bdev) {
736 struct swap_extent *se = &sis->first_swap_extent;
738 if (se->start_block == offset) {
740 *bdev_p = bdgrab(sis->bdev);
742 spin_unlock(&swap_lock);
748 spin_unlock(&swap_lock);
756 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
757 * corresponding to given index in swap_info (swap type).
759 sector_t swapdev_block(int type, pgoff_t offset)
761 struct block_device *bdev;
763 if ((unsigned int)type >= nr_swapfiles)
765 if (!(swap_info[type]->flags & SWP_WRITEOK))
767 return map_swap_page(swp_entry(type, offset), &bdev);
771 * Return either the total number of swap pages of given type, or the number
772 * of free pages of that type (depending on @free)
774 * This is needed for software suspend
776 unsigned int count_swap_pages(int type, int free)
780 spin_lock(&swap_lock);
781 if ((unsigned int)type < nr_swapfiles) {
782 struct swap_info_struct *sis = swap_info[type];
784 if (sis->flags & SWP_WRITEOK) {
787 n -= sis->inuse_pages;
790 spin_unlock(&swap_lock);
793 #endif /* CONFIG_HIBERNATION */
796 * No need to decide whether this PTE shares the swap entry with others,
797 * just let do_wp_page work it out if a write is requested later - to
798 * force COW, vm_page_prot omits write permission from any private vma.
800 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
801 unsigned long addr, swp_entry_t entry, struct page *page)
803 struct mem_cgroup *ptr = NULL;
808 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
813 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
814 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
816 mem_cgroup_cancel_charge_swapin(ptr);
821 inc_mm_counter(vma->vm_mm, anon_rss);
823 set_pte_at(vma->vm_mm, addr, pte,
824 pte_mkold(mk_pte(page, vma->vm_page_prot)));
825 page_add_anon_rmap(page, vma, addr);
826 mem_cgroup_commit_charge_swapin(page, ptr);
829 * Move the page to the active list so it is not
830 * immediately swapped out again after swapon.
834 pte_unmap_unlock(pte, ptl);
839 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
840 unsigned long addr, unsigned long end,
841 swp_entry_t entry, struct page *page)
843 pte_t swp_pte = swp_entry_to_pte(entry);
848 * We don't actually need pte lock while scanning for swp_pte: since
849 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
850 * page table while we're scanning; though it could get zapped, and on
851 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
852 * of unmatched parts which look like swp_pte, so unuse_pte must
853 * recheck under pte lock. Scanning without pte lock lets it be
854 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
856 pte = pte_offset_map(pmd, addr);
859 * swapoff spends a _lot_ of time in this loop!
860 * Test inline before going to call unuse_pte.
862 if (unlikely(pte_same(*pte, swp_pte))) {
864 ret = unuse_pte(vma, pmd, addr, entry, page);
867 pte = pte_offset_map(pmd, addr);
869 } while (pte++, addr += PAGE_SIZE, addr != end);
875 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
876 unsigned long addr, unsigned long end,
877 swp_entry_t entry, struct page *page)
883 pmd = pmd_offset(pud, addr);
885 next = pmd_addr_end(addr, end);
886 if (pmd_none_or_clear_bad(pmd))
888 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
891 } while (pmd++, addr = next, addr != end);
895 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
896 unsigned long addr, unsigned long end,
897 swp_entry_t entry, struct page *page)
903 pud = pud_offset(pgd, addr);
905 next = pud_addr_end(addr, end);
906 if (pud_none_or_clear_bad(pud))
908 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
911 } while (pud++, addr = next, addr != end);
915 static int unuse_vma(struct vm_area_struct *vma,
916 swp_entry_t entry, struct page *page)
919 unsigned long addr, end, next;
923 addr = page_address_in_vma(page, vma);
927 end = addr + PAGE_SIZE;
929 addr = vma->vm_start;
933 pgd = pgd_offset(vma->vm_mm, addr);
935 next = pgd_addr_end(addr, end);
936 if (pgd_none_or_clear_bad(pgd))
938 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
941 } while (pgd++, addr = next, addr != end);
945 static int unuse_mm(struct mm_struct *mm,
946 swp_entry_t entry, struct page *page)
948 struct vm_area_struct *vma;
951 if (!down_read_trylock(&mm->mmap_sem)) {
953 * Activate page so shrink_inactive_list is unlikely to unmap
954 * its ptes while lock is dropped, so swapoff can make progress.
958 down_read(&mm->mmap_sem);
961 for (vma = mm->mmap; vma; vma = vma->vm_next) {
962 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
965 up_read(&mm->mmap_sem);
966 return (ret < 0)? ret: 0;
970 * Scan swap_map from current position to next entry still in use.
971 * Recycle to start on reaching the end, returning 0 when empty.
973 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
976 unsigned int max = si->max;
977 unsigned int i = prev;
981 * No need for swap_lock here: we're just looking
982 * for whether an entry is in use, not modifying it; false
983 * hits are okay, and sys_swapoff() has already prevented new
984 * allocations from this area (while holding swap_lock).
993 * No entries in use at top of swap_map,
994 * loop back to start and recheck there.
1000 count = si->swap_map[i];
1001 if (count && swap_count(count) != SWAP_MAP_BAD)
1008 * We completely avoid races by reading each swap page in advance,
1009 * and then search for the process using it. All the necessary
1010 * page table adjustments can then be made atomically.
1012 static int try_to_unuse(unsigned int type)
1014 struct swap_info_struct *si = swap_info[type];
1015 struct mm_struct *start_mm;
1016 unsigned short *swap_map;
1017 unsigned short swcount;
1022 int reset_overflow = 0;
1026 * When searching mms for an entry, a good strategy is to
1027 * start at the first mm we freed the previous entry from
1028 * (though actually we don't notice whether we or coincidence
1029 * freed the entry). Initialize this start_mm with a hold.
1031 * A simpler strategy would be to start at the last mm we
1032 * freed the previous entry from; but that would take less
1033 * advantage of mmlist ordering, which clusters forked mms
1034 * together, child after parent. If we race with dup_mmap(), we
1035 * prefer to resolve parent before child, lest we miss entries
1036 * duplicated after we scanned child: using last mm would invert
1037 * that. Though it's only a serious concern when an overflowed
1038 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1040 start_mm = &init_mm;
1041 atomic_inc(&init_mm.mm_users);
1044 * Keep on scanning until all entries have gone. Usually,
1045 * one pass through swap_map is enough, but not necessarily:
1046 * there are races when an instance of an entry might be missed.
1048 while ((i = find_next_to_unuse(si, i)) != 0) {
1049 if (signal_pending(current)) {
1055 * Get a page for the entry, using the existing swap
1056 * cache page if there is one. Otherwise, get a clean
1057 * page and read the swap into it.
1059 swap_map = &si->swap_map[i];
1060 entry = swp_entry(type, i);
1061 page = read_swap_cache_async(entry,
1062 GFP_HIGHUSER_MOVABLE, NULL, 0);
1065 * Either swap_duplicate() failed because entry
1066 * has been freed independently, and will not be
1067 * reused since sys_swapoff() already disabled
1068 * allocation from here, or alloc_page() failed.
1077 * Don't hold on to start_mm if it looks like exiting.
1079 if (atomic_read(&start_mm->mm_users) == 1) {
1081 start_mm = &init_mm;
1082 atomic_inc(&init_mm.mm_users);
1086 * Wait for and lock page. When do_swap_page races with
1087 * try_to_unuse, do_swap_page can handle the fault much
1088 * faster than try_to_unuse can locate the entry. This
1089 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1090 * defer to do_swap_page in such a case - in some tests,
1091 * do_swap_page and try_to_unuse repeatedly compete.
1093 wait_on_page_locked(page);
1094 wait_on_page_writeback(page);
1096 wait_on_page_writeback(page);
1099 * Remove all references to entry.
1100 * Whenever we reach init_mm, there's no address space
1101 * to search, but use it as a reminder to search shmem.
1104 swcount = *swap_map;
1105 if (swap_count(swcount)) {
1106 if (start_mm == &init_mm)
1107 shmem = shmem_unuse(entry, page);
1109 retval = unuse_mm(start_mm, entry, page);
1111 if (swap_count(*swap_map)) {
1112 int set_start_mm = (*swap_map >= swcount);
1113 struct list_head *p = &start_mm->mmlist;
1114 struct mm_struct *new_start_mm = start_mm;
1115 struct mm_struct *prev_mm = start_mm;
1116 struct mm_struct *mm;
1118 atomic_inc(&new_start_mm->mm_users);
1119 atomic_inc(&prev_mm->mm_users);
1120 spin_lock(&mmlist_lock);
1121 while (swap_count(*swap_map) && !retval && !shmem &&
1122 (p = p->next) != &start_mm->mmlist) {
1123 mm = list_entry(p, struct mm_struct, mmlist);
1124 if (!atomic_inc_not_zero(&mm->mm_users))
1126 spin_unlock(&mmlist_lock);
1132 swcount = *swap_map;
1133 if (!swap_count(swcount)) /* any usage ? */
1135 else if (mm == &init_mm) {
1137 shmem = shmem_unuse(entry, page);
1139 retval = unuse_mm(mm, entry, page);
1141 if (set_start_mm && *swap_map < swcount) {
1142 mmput(new_start_mm);
1143 atomic_inc(&mm->mm_users);
1147 spin_lock(&mmlist_lock);
1149 spin_unlock(&mmlist_lock);
1152 start_mm = new_start_mm;
1155 /* page has already been unlocked and released */
1163 page_cache_release(page);
1168 * How could swap count reach 0x7ffe ?
1169 * There's no way to repeat a swap page within an mm
1170 * (except in shmem, where it's the shared object which takes
1171 * the reference count)?
1172 * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1173 * short is too small....)
1174 * If that's wrong, then we should worry more about
1175 * exit_mmap() and do_munmap() cases described above:
1176 * we might be resetting SWAP_MAP_MAX too early here.
1177 * We know "Undead"s can happen, they're okay, so don't
1178 * report them; but do report if we reset SWAP_MAP_MAX.
1180 /* We might release the lock_page() in unuse_mm(). */
1181 if (!PageSwapCache(page) || page_private(page) != entry.val)
1184 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1185 spin_lock(&swap_lock);
1186 *swap_map = SWAP_HAS_CACHE;
1187 spin_unlock(&swap_lock);
1192 * If a reference remains (rare), we would like to leave
1193 * the page in the swap cache; but try_to_unmap could
1194 * then re-duplicate the entry once we drop page lock,
1195 * so we might loop indefinitely; also, that page could
1196 * not be swapped out to other storage meanwhile. So:
1197 * delete from cache even if there's another reference,
1198 * after ensuring that the data has been saved to disk -
1199 * since if the reference remains (rarer), it will be
1200 * read from disk into another page. Splitting into two
1201 * pages would be incorrect if swap supported "shared
1202 * private" pages, but they are handled by tmpfs files.
1204 if (swap_count(*swap_map) &&
1205 PageDirty(page) && PageSwapCache(page)) {
1206 struct writeback_control wbc = {
1207 .sync_mode = WB_SYNC_NONE,
1210 swap_writepage(page, &wbc);
1212 wait_on_page_writeback(page);
1216 * It is conceivable that a racing task removed this page from
1217 * swap cache just before we acquired the page lock at the top,
1218 * or while we dropped it in unuse_mm(). The page might even
1219 * be back in swap cache on another swap area: that we must not
1220 * delete, since it may not have been written out to swap yet.
1222 if (PageSwapCache(page) &&
1223 likely(page_private(page) == entry.val))
1224 delete_from_swap_cache(page);
1227 * So we could skip searching mms once swap count went
1228 * to 1, we did not mark any present ptes as dirty: must
1229 * mark page dirty so shrink_page_list will preserve it.
1234 page_cache_release(page);
1237 * Make sure that we aren't completely killing
1238 * interactive performance.
1244 if (reset_overflow) {
1245 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1252 * After a successful try_to_unuse, if no swap is now in use, we know
1253 * we can empty the mmlist. swap_lock must be held on entry and exit.
1254 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1255 * added to the mmlist just after page_duplicate - before would be racy.
1257 static void drain_mmlist(void)
1259 struct list_head *p, *next;
1262 for (type = 0; type < nr_swapfiles; type++)
1263 if (swap_info[type]->inuse_pages)
1265 spin_lock(&mmlist_lock);
1266 list_for_each_safe(p, next, &init_mm.mmlist)
1268 spin_unlock(&mmlist_lock);
1272 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1273 * corresponds to page offset `offset'. Note that the type of this function
1274 * is sector_t, but it returns page offset into the bdev, not sector offset.
1276 sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1278 struct swap_info_struct *sis;
1279 struct swap_extent *start_se;
1280 struct swap_extent *se;
1283 sis = swap_info[swp_type(entry)];
1286 offset = swp_offset(entry);
1287 start_se = sis->curr_swap_extent;
1291 struct list_head *lh;
1293 if (se->start_page <= offset &&
1294 offset < (se->start_page + se->nr_pages)) {
1295 return se->start_block + (offset - se->start_page);
1298 se = list_entry(lh, struct swap_extent, list);
1299 sis->curr_swap_extent = se;
1300 BUG_ON(se == start_se); /* It *must* be present */
1305 * Free all of a swapdev's extent information
1307 static void destroy_swap_extents(struct swap_info_struct *sis)
1309 while (!list_empty(&sis->first_swap_extent.list)) {
1310 struct swap_extent *se;
1312 se = list_entry(sis->first_swap_extent.list.next,
1313 struct swap_extent, list);
1314 list_del(&se->list);
1320 * Add a block range (and the corresponding page range) into this swapdev's
1321 * extent list. The extent list is kept sorted in page order.
1323 * This function rather assumes that it is called in ascending page order.
1326 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1327 unsigned long nr_pages, sector_t start_block)
1329 struct swap_extent *se;
1330 struct swap_extent *new_se;
1331 struct list_head *lh;
1333 if (start_page == 0) {
1334 se = &sis->first_swap_extent;
1335 sis->curr_swap_extent = se;
1337 se->nr_pages = nr_pages;
1338 se->start_block = start_block;
1341 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1342 se = list_entry(lh, struct swap_extent, list);
1343 BUG_ON(se->start_page + se->nr_pages != start_page);
1344 if (se->start_block + se->nr_pages == start_block) {
1346 se->nr_pages += nr_pages;
1352 * No merge. Insert a new extent, preserving ordering.
1354 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1357 new_se->start_page = start_page;
1358 new_se->nr_pages = nr_pages;
1359 new_se->start_block = start_block;
1361 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1366 * A `swap extent' is a simple thing which maps a contiguous range of pages
1367 * onto a contiguous range of disk blocks. An ordered list of swap extents
1368 * is built at swapon time and is then used at swap_writepage/swap_readpage
1369 * time for locating where on disk a page belongs.
1371 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1372 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1373 * swap files identically.
1375 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1376 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1377 * swapfiles are handled *identically* after swapon time.
1379 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1380 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1381 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1382 * requirements, they are simply tossed out - we will never use those blocks
1385 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1386 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1387 * which will scribble on the fs.
1389 * The amount of disk space which a single swap extent represents varies.
1390 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1391 * extents in the list. To avoid much list walking, we cache the previous
1392 * search location in `curr_swap_extent', and start new searches from there.
1393 * This is extremely effective. The average number of iterations in
1394 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1396 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1398 struct inode *inode;
1399 unsigned blocks_per_page;
1400 unsigned long page_no;
1402 sector_t probe_block;
1403 sector_t last_block;
1404 sector_t lowest_block = -1;
1405 sector_t highest_block = 0;
1409 inode = sis->swap_file->f_mapping->host;
1410 if (S_ISBLK(inode->i_mode)) {
1411 ret = add_swap_extent(sis, 0, sis->max, 0);
1416 blkbits = inode->i_blkbits;
1417 blocks_per_page = PAGE_SIZE >> blkbits;
1420 * Map all the blocks into the extent list. This code doesn't try
1425 last_block = i_size_read(inode) >> blkbits;
1426 while ((probe_block + blocks_per_page) <= last_block &&
1427 page_no < sis->max) {
1428 unsigned block_in_page;
1429 sector_t first_block;
1431 first_block = bmap(inode, probe_block);
1432 if (first_block == 0)
1436 * It must be PAGE_SIZE aligned on-disk
1438 if (first_block & (blocks_per_page - 1)) {
1443 for (block_in_page = 1; block_in_page < blocks_per_page;
1447 block = bmap(inode, probe_block + block_in_page);
1450 if (block != first_block + block_in_page) {
1457 first_block >>= (PAGE_SHIFT - blkbits);
1458 if (page_no) { /* exclude the header page */
1459 if (first_block < lowest_block)
1460 lowest_block = first_block;
1461 if (first_block > highest_block)
1462 highest_block = first_block;
1466 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1468 ret = add_swap_extent(sis, page_no, 1, first_block);
1473 probe_block += blocks_per_page;
1478 *span = 1 + highest_block - lowest_block;
1480 page_no = 1; /* force Empty message */
1482 sis->pages = page_no - 1;
1483 sis->highest_bit = page_no - 1;
1487 printk(KERN_ERR "swapon: swapfile has holes\n");
1492 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1494 struct swap_info_struct *p = NULL;
1495 unsigned short *swap_map;
1496 struct file *swap_file, *victim;
1497 struct address_space *mapping;
1498 struct inode *inode;
1503 if (!capable(CAP_SYS_ADMIN))
1506 pathname = getname(specialfile);
1507 err = PTR_ERR(pathname);
1508 if (IS_ERR(pathname))
1511 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1513 err = PTR_ERR(victim);
1517 mapping = victim->f_mapping;
1519 spin_lock(&swap_lock);
1520 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1521 p = swap_info[type];
1522 if (p->flags & SWP_WRITEOK) {
1523 if (p->swap_file->f_mapping == mapping)
1530 spin_unlock(&swap_lock);
1533 if (!security_vm_enough_memory(p->pages))
1534 vm_unacct_memory(p->pages);
1537 spin_unlock(&swap_lock);
1541 swap_list.head = p->next;
1543 swap_info[prev]->next = p->next;
1544 if (type == swap_list.next) {
1545 /* just pick something that's safe... */
1546 swap_list.next = swap_list.head;
1549 for (i = p->next; i >= 0; i = swap_info[i]->next)
1550 swap_info[i]->prio = p->prio--;
1553 nr_swap_pages -= p->pages;
1554 total_swap_pages -= p->pages;
1555 p->flags &= ~SWP_WRITEOK;
1556 spin_unlock(&swap_lock);
1558 current->flags |= PF_OOM_ORIGIN;
1559 err = try_to_unuse(type);
1560 current->flags &= ~PF_OOM_ORIGIN;
1563 /* re-insert swap space back into swap_list */
1564 spin_lock(&swap_lock);
1566 p->prio = --least_priority;
1568 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1569 if (p->prio >= swap_info[i]->prio)
1575 swap_list.head = swap_list.next = type;
1577 swap_info[prev]->next = type;
1578 nr_swap_pages += p->pages;
1579 total_swap_pages += p->pages;
1580 p->flags |= SWP_WRITEOK;
1581 spin_unlock(&swap_lock);
1585 /* wait for any unplug function to finish */
1586 down_write(&swap_unplug_sem);
1587 up_write(&swap_unplug_sem);
1589 destroy_swap_extents(p);
1590 mutex_lock(&swapon_mutex);
1591 spin_lock(&swap_lock);
1594 /* wait for anyone still in scan_swap_map */
1595 p->highest_bit = 0; /* cuts scans short */
1596 while (p->flags >= SWP_SCANNING) {
1597 spin_unlock(&swap_lock);
1598 schedule_timeout_uninterruptible(1);
1599 spin_lock(&swap_lock);
1602 swap_file = p->swap_file;
1603 p->swap_file = NULL;
1605 swap_map = p->swap_map;
1608 spin_unlock(&swap_lock);
1609 mutex_unlock(&swapon_mutex);
1611 /* Destroy swap account informatin */
1612 swap_cgroup_swapoff(type);
1614 inode = mapping->host;
1615 if (S_ISBLK(inode->i_mode)) {
1616 struct block_device *bdev = I_BDEV(inode);
1617 set_blocksize(bdev, p->old_block_size);
1620 mutex_lock(&inode->i_mutex);
1621 inode->i_flags &= ~S_SWAPFILE;
1622 mutex_unlock(&inode->i_mutex);
1624 filp_close(swap_file, NULL);
1628 filp_close(victim, NULL);
1633 #ifdef CONFIG_PROC_FS
1635 static void *swap_start(struct seq_file *swap, loff_t *pos)
1637 struct swap_info_struct *si;
1641 mutex_lock(&swapon_mutex);
1644 return SEQ_START_TOKEN;
1646 for (type = 0; type < nr_swapfiles; type++) {
1647 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1648 si = swap_info[type];
1649 if (!(si->flags & SWP_USED) || !si->swap_map)
1658 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1660 struct swap_info_struct *si = v;
1663 if (v == SEQ_START_TOKEN)
1666 type = si->type + 1;
1668 for (; type < nr_swapfiles; type++) {
1669 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1670 si = swap_info[type];
1671 if (!(si->flags & SWP_USED) || !si->swap_map)
1680 static void swap_stop(struct seq_file *swap, void *v)
1682 mutex_unlock(&swapon_mutex);
1685 static int swap_show(struct seq_file *swap, void *v)
1687 struct swap_info_struct *si = v;
1691 if (si == SEQ_START_TOKEN) {
1692 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1696 file = si->swap_file;
1697 len = seq_path(swap, &file->f_path, " \t\n\\");
1698 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1699 len < 40 ? 40 - len : 1, " ",
1700 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1701 "partition" : "file\t",
1702 si->pages << (PAGE_SHIFT - 10),
1703 si->inuse_pages << (PAGE_SHIFT - 10),
1708 static const struct seq_operations swaps_op = {
1709 .start = swap_start,
1715 static int swaps_open(struct inode *inode, struct file *file)
1717 return seq_open(file, &swaps_op);
1720 static const struct file_operations proc_swaps_operations = {
1723 .llseek = seq_lseek,
1724 .release = seq_release,
1727 static int __init procswaps_init(void)
1729 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1732 __initcall(procswaps_init);
1733 #endif /* CONFIG_PROC_FS */
1735 #ifdef MAX_SWAPFILES_CHECK
1736 static int __init max_swapfiles_check(void)
1738 MAX_SWAPFILES_CHECK();
1741 late_initcall(max_swapfiles_check);
1745 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1747 * The swapon system call
1749 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1751 struct swap_info_struct *p;
1753 struct block_device *bdev = NULL;
1754 struct file *swap_file = NULL;
1755 struct address_space *mapping;
1759 union swap_header *swap_header = NULL;
1760 unsigned int nr_good_pages = 0;
1763 unsigned long maxpages = 1;
1764 unsigned long swapfilepages;
1765 unsigned short *swap_map = NULL;
1766 struct page *page = NULL;
1767 struct inode *inode = NULL;
1770 if (!capable(CAP_SYS_ADMIN))
1773 p = kzalloc(sizeof(*p), GFP_KERNEL);
1777 spin_lock(&swap_lock);
1778 for (type = 0; type < nr_swapfiles; type++) {
1779 if (!(swap_info[type]->flags & SWP_USED))
1783 if (type >= MAX_SWAPFILES) {
1784 spin_unlock(&swap_lock);
1788 if (type >= nr_swapfiles) {
1790 swap_info[type] = p;
1792 * Write swap_info[type] before nr_swapfiles, in case a
1793 * racing procfs swap_start() or swap_next() is reading them.
1794 * (We never shrink nr_swapfiles, we never free this entry.)
1800 p = swap_info[type];
1802 * Do not memset this entry: a racing procfs swap_next()
1803 * would be relying on p->type to remain valid.
1806 INIT_LIST_HEAD(&p->first_swap_extent.list);
1807 p->flags = SWP_USED;
1809 spin_unlock(&swap_lock);
1811 name = getname(specialfile);
1812 error = PTR_ERR(name);
1817 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1818 error = PTR_ERR(swap_file);
1819 if (IS_ERR(swap_file)) {
1824 p->swap_file = swap_file;
1825 mapping = swap_file->f_mapping;
1826 inode = mapping->host;
1829 for (i = 0; i < nr_swapfiles; i++) {
1830 struct swap_info_struct *q = swap_info[i];
1832 if (i == type || !q->swap_file)
1834 if (mapping == q->swap_file->f_mapping)
1839 if (S_ISBLK(inode->i_mode)) {
1840 bdev = I_BDEV(inode);
1841 error = bd_claim(bdev, sys_swapon);
1847 p->old_block_size = block_size(bdev);
1848 error = set_blocksize(bdev, PAGE_SIZE);
1852 } else if (S_ISREG(inode->i_mode)) {
1853 p->bdev = inode->i_sb->s_bdev;
1854 mutex_lock(&inode->i_mutex);
1856 if (IS_SWAPFILE(inode)) {
1864 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1867 * Read the swap header.
1869 if (!mapping->a_ops->readpage) {
1873 page = read_mapping_page(mapping, 0, swap_file);
1875 error = PTR_ERR(page);
1878 swap_header = kmap(page);
1880 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1881 printk(KERN_ERR "Unable to find swap-space signature\n");
1886 /* swap partition endianess hack... */
1887 if (swab32(swap_header->info.version) == 1) {
1888 swab32s(&swap_header->info.version);
1889 swab32s(&swap_header->info.last_page);
1890 swab32s(&swap_header->info.nr_badpages);
1891 for (i = 0; i < swap_header->info.nr_badpages; i++)
1892 swab32s(&swap_header->info.badpages[i]);
1894 /* Check the swap header's sub-version */
1895 if (swap_header->info.version != 1) {
1897 "Unable to handle swap header version %d\n",
1898 swap_header->info.version);
1904 p->cluster_next = 1;
1908 * Find out how many pages are allowed for a single swap
1909 * device. There are two limiting factors: 1) the number of
1910 * bits for the swap offset in the swp_entry_t type and
1911 * 2) the number of bits in the a swap pte as defined by
1912 * the different architectures. In order to find the
1913 * largest possible bit mask a swap entry with swap type 0
1914 * and swap offset ~0UL is created, encoded to a swap pte,
1915 * decoded to a swp_entry_t again and finally the swap
1916 * offset is extracted. This will mask all the bits from
1917 * the initial ~0UL mask that can't be encoded in either
1918 * the swp_entry_t or the architecture definition of a
1921 maxpages = swp_offset(pte_to_swp_entry(
1922 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1923 if (maxpages > swap_header->info.last_page)
1924 maxpages = swap_header->info.last_page;
1925 p->highest_bit = maxpages - 1;
1930 if (swapfilepages && maxpages > swapfilepages) {
1932 "Swap area shorter than signature indicates\n");
1935 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1937 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1940 /* OK, set up the swap map and apply the bad block list */
1941 swap_map = vmalloc(maxpages * sizeof(short));
1947 memset(swap_map, 0, maxpages * sizeof(short));
1948 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1949 int page_nr = swap_header->info.badpages[i];
1950 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1954 swap_map[page_nr] = SWAP_MAP_BAD;
1957 error = swap_cgroup_swapon(type, maxpages);
1961 nr_good_pages = swap_header->info.last_page -
1962 swap_header->info.nr_badpages -
1963 1 /* header page */;
1965 if (nr_good_pages) {
1966 swap_map[0] = SWAP_MAP_BAD;
1968 p->pages = nr_good_pages;
1969 nr_extents = setup_swap_extents(p, &span);
1970 if (nr_extents < 0) {
1974 nr_good_pages = p->pages;
1976 if (!nr_good_pages) {
1977 printk(KERN_WARNING "Empty swap-file\n");
1983 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1984 p->flags |= SWP_SOLIDSTATE;
1985 p->cluster_next = 1 + (random32() % p->highest_bit);
1987 if (discard_swap(p) == 0)
1988 p->flags |= SWP_DISCARDABLE;
1991 mutex_lock(&swapon_mutex);
1992 spin_lock(&swap_lock);
1993 if (swap_flags & SWAP_FLAG_PREFER)
1995 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1997 p->prio = --least_priority;
1998 p->swap_map = swap_map;
1999 p->flags |= SWP_WRITEOK;
2000 nr_swap_pages += nr_good_pages;
2001 total_swap_pages += nr_good_pages;
2003 printk(KERN_INFO "Adding %uk swap on %s. "
2004 "Priority:%d extents:%d across:%lluk %s%s\n",
2005 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2006 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2007 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2008 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2010 /* insert swap space into swap_list: */
2012 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2013 if (p->prio >= swap_info[i]->prio)
2019 swap_list.head = swap_list.next = type;
2021 swap_info[prev]->next = type;
2022 spin_unlock(&swap_lock);
2023 mutex_unlock(&swapon_mutex);
2028 set_blocksize(bdev, p->old_block_size);
2031 destroy_swap_extents(p);
2032 swap_cgroup_swapoff(type);
2034 spin_lock(&swap_lock);
2035 p->swap_file = NULL;
2037 spin_unlock(&swap_lock);
2040 filp_close(swap_file, NULL);
2042 if (page && !IS_ERR(page)) {
2044 page_cache_release(page);
2050 inode->i_flags |= S_SWAPFILE;
2051 mutex_unlock(&inode->i_mutex);
2056 void si_swapinfo(struct sysinfo *val)
2059 unsigned long nr_to_be_unused = 0;
2061 spin_lock(&swap_lock);
2062 for (type = 0; type < nr_swapfiles; type++) {
2063 struct swap_info_struct *si = swap_info[type];
2065 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2066 nr_to_be_unused += si->inuse_pages;
2068 val->freeswap = nr_swap_pages + nr_to_be_unused;
2069 val->totalswap = total_swap_pages + nr_to_be_unused;
2070 spin_unlock(&swap_lock);
2074 * Verify that a swap entry is valid and increment its swap map count.
2076 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2077 * "permanent", but will be reclaimed by the next swapoff.
2078 * Returns error code in following case.
2080 * - swp_entry is invalid -> EINVAL
2081 * - swp_entry is migration entry -> EINVAL
2082 * - swap-cache reference is requested but there is already one. -> EEXIST
2083 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2085 static int __swap_duplicate(swp_entry_t entry, unsigned short usage)
2087 struct swap_info_struct *p;
2088 unsigned long offset, type;
2089 unsigned short count;
2090 unsigned short has_cache;
2093 if (non_swap_entry(entry))
2096 type = swp_type(entry);
2097 if (type >= nr_swapfiles)
2099 p = swap_info[type];
2100 offset = swp_offset(entry);
2102 spin_lock(&swap_lock);
2103 if (unlikely(offset >= p->max))
2106 count = p->swap_map[offset];
2107 has_cache = count & SWAP_HAS_CACHE;
2108 count &= ~SWAP_HAS_CACHE;
2111 if (usage == SWAP_HAS_CACHE) {
2113 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2114 if (!has_cache && count)
2115 has_cache = SWAP_HAS_CACHE;
2116 else if (has_cache) /* someone else added cache */
2118 else /* no users remaining */
2121 } else if (count || has_cache) {
2123 if (count < SWAP_MAP_MAX - 1)
2125 else if (count <= SWAP_MAP_MAX) {
2126 if (swap_overflow++ < 5)
2128 "swap_dup: swap entry overflow\n");
2129 count = SWAP_MAP_MAX;
2133 err = -ENOENT; /* unused swap entry */
2135 p->swap_map[offset] = count | has_cache;
2138 spin_unlock(&swap_lock);
2143 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2148 * increase reference count of swap entry by 1.
2150 void swap_duplicate(swp_entry_t entry)
2152 __swap_duplicate(entry, 1);
2156 * @entry: swap entry for which we allocate swap cache.
2158 * Called when allocating swap cache for existing swap entry,
2159 * This can return error codes. Returns 0 at success.
2160 * -EBUSY means there is a swap cache.
2161 * Note: return code is different from swap_duplicate().
2163 int swapcache_prepare(swp_entry_t entry)
2165 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2169 * swap_lock prevents swap_map being freed. Don't grab an extra
2170 * reference on the swaphandle, it doesn't matter if it becomes unused.
2172 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2174 struct swap_info_struct *si;
2175 int our_page_cluster = page_cluster;
2176 pgoff_t target, toff;
2180 if (!our_page_cluster) /* no readahead */
2183 si = swap_info[swp_type(entry)];
2184 target = swp_offset(entry);
2185 base = (target >> our_page_cluster) << our_page_cluster;
2186 end = base + (1 << our_page_cluster);
2187 if (!base) /* first page is swap header */
2190 spin_lock(&swap_lock);
2191 if (end > si->max) /* don't go beyond end of map */
2194 /* Count contiguous allocated slots above our target */
2195 for (toff = target; ++toff < end; nr_pages++) {
2196 /* Don't read in free or bad pages */
2197 if (!si->swap_map[toff])
2199 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2202 /* Count contiguous allocated slots below our target */
2203 for (toff = target; --toff >= base; nr_pages++) {
2204 /* Don't read in free or bad pages */
2205 if (!si->swap_map[toff])
2207 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2210 spin_unlock(&swap_lock);
2213 * Indicate starting offset, and return number of pages to get:
2214 * if only 1, say 0, since there's then no readahead to be done.
2217 return nr_pages? ++nr_pages: 0;