1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
44 #include <asm/tlbflush.h>
45 #include <linux/swapops.h>
46 #include <linux/swap_cgroup.h>
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
50 static void free_swap_count_continuations(struct swap_info_struct *);
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 static DEFINE_MUTEX(swapon_mutex);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 if (type >= MAX_SWAPFILES)
106 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
109 static inline unsigned char swap_count(unsigned char ent)
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY 0x1
117 * Reclaim the swap entry if there are no more mappings of the
120 #define TTRS_UNMAPPED 0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL 0x4
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
128 swp_entry_t entry = swp_entry(si->type, offset);
132 page = find_get_page(swap_address_space(entry), offset);
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
159 static inline struct swap_extent *next_se(struct swap_extent *se)
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
169 static int discard_swap(struct swap_info_struct *si)
171 struct swap_extent *se;
172 sector_t start_block;
176 /* Do not discard the swap header page! */
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
199 return err; /* That will often be -EOPNOTSUPP */
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 struct swap_extent *se;
208 rb = sis->swap_extent_root.rb_node;
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
213 else if (offset >= se->start_page + se->nr_pages)
218 /* It *must* be present */
222 sector_t swap_page_sector(struct page *page)
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
267 #define swap_entry_size(size) (size)
269 #define SWAPFILE_CLUSTER 256
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
275 #define swap_entry_size(size) 1
277 #define LATENCY_LIMIT 256
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
290 static inline void cluster_set_count(struct swap_cluster_info *info,
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
308 static inline void cluster_set_next(struct swap_cluster_info *info,
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 return info->flags & CLUSTER_FLAG_FREE;
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 static inline void cluster_set_null(struct swap_cluster_info *info)
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 info->flags &= ~CLUSTER_FLAG_HUGE;
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
352 struct swap_cluster_info *ci;
354 ci = si->cluster_info;
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 spin_unlock(&ci->lock);
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 struct swap_info_struct *si, unsigned long offset)
375 struct swap_cluster_info *ci;
377 /* Try to use fine-grained SSD-style locking if available: */
378 ci = lock_cluster(si, offset);
379 /* Otherwise, fall back to traditional, coarse locking: */
381 spin_lock(&si->lock);
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
392 spin_unlock(&si->lock);
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 return cluster_is_null(&list->head);
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 return cluster_next(&list->head);
405 static void cluster_list_init(struct swap_cluster_list *list)
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
419 struct swap_cluster_info *ci_tail;
420 unsigned int tail = cluster_next(&list->tail);
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
429 spin_unlock(&ci_tail->lock);
430 cluster_set_next_flag(&list->tail, idx, 0);
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
455 * If scan_swap_map_slots() can't find a free cluster, it will check
456 * si->swap_map directly. To make sure the discarding cluster isn't
457 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
458 * It will be cleared after discard
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465 schedule_work(&si->discard_work);
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 struct swap_cluster_info *ci = si->cluster_info;
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 struct swap_cluster_info *info, *ci;
485 info = si->cluster_info;
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
489 spin_unlock(&si->lock);
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 spin_lock(&si->lock);
495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 __free_cluster(si, idx);
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
503 static void swap_discard_work(struct work_struct *work)
505 struct swap_info_struct *si;
507 si = container_of(work, struct swap_info_struct, discard_work);
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
514 static void swap_users_ref_free(struct percpu_ref *ref)
516 struct swap_info_struct *si;
518 si = container_of(ref, struct swap_info_struct, users);
522 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
524 struct swap_cluster_info *ci = si->cluster_info;
526 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
527 cluster_list_del_first(&si->free_clusters, ci);
528 cluster_set_count_flag(ci + idx, 0, 0);
531 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
533 struct swap_cluster_info *ci = si->cluster_info + idx;
535 VM_BUG_ON(cluster_count(ci) != 0);
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
541 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
542 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
543 swap_cluster_schedule_discard(si, idx);
547 __free_cluster(si, idx);
551 * The cluster corresponding to page_nr will be used. The cluster will be
552 * removed from free cluster list and its usage counter will be increased.
554 static void inc_cluster_info_page(struct swap_info_struct *p,
555 struct swap_cluster_info *cluster_info, unsigned long page_nr)
557 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
561 if (cluster_is_free(&cluster_info[idx]))
562 alloc_cluster(p, idx);
564 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
565 cluster_set_count(&cluster_info[idx],
566 cluster_count(&cluster_info[idx]) + 1);
570 * The cluster corresponding to page_nr decreases one usage. If the usage
571 * counter becomes 0, which means no page in the cluster is in using, we can
572 * optionally discard the cluster and add it to free cluster list.
574 static void dec_cluster_info_page(struct swap_info_struct *p,
575 struct swap_cluster_info *cluster_info, unsigned long page_nr)
577 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
582 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
583 cluster_set_count(&cluster_info[idx],
584 cluster_count(&cluster_info[idx]) - 1);
586 if (cluster_count(&cluster_info[idx]) == 0)
587 free_cluster(p, idx);
591 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
592 * cluster list. Avoiding such abuse to avoid list corruption.
595 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
596 unsigned long offset)
598 struct percpu_cluster *percpu_cluster;
601 offset /= SWAPFILE_CLUSTER;
602 conflict = !cluster_list_empty(&si->free_clusters) &&
603 offset != cluster_list_first(&si->free_clusters) &&
604 cluster_is_free(&si->cluster_info[offset]);
609 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
610 cluster_set_null(&percpu_cluster->index);
615 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
616 * might involve allocating a new cluster for current CPU too.
618 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
619 unsigned long *offset, unsigned long *scan_base)
621 struct percpu_cluster *cluster;
622 struct swap_cluster_info *ci;
623 unsigned long tmp, max;
626 cluster = this_cpu_ptr(si->percpu_cluster);
627 if (cluster_is_null(&cluster->index)) {
628 if (!cluster_list_empty(&si->free_clusters)) {
629 cluster->index = si->free_clusters.head;
630 cluster->next = cluster_next(&cluster->index) *
632 } else if (!cluster_list_empty(&si->discard_clusters)) {
634 * we don't have free cluster but have some clusters in
635 * discarding, do discard now and reclaim them, then
636 * reread cluster_next_cpu since we dropped si->lock
638 swap_do_scheduled_discard(si);
639 *scan_base = this_cpu_read(*si->cluster_next_cpu);
640 *offset = *scan_base;
647 * Other CPUs can use our cluster if they can't find a free cluster,
648 * check if there is still free entry in the cluster
651 max = min_t(unsigned long, si->max,
652 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
654 ci = lock_cluster(si, tmp);
656 if (!si->swap_map[tmp])
663 cluster_set_null(&cluster->index);
666 cluster->next = tmp + 1;
672 static void __del_from_avail_list(struct swap_info_struct *p)
677 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
680 static void del_from_avail_list(struct swap_info_struct *p)
682 spin_lock(&swap_avail_lock);
683 __del_from_avail_list(p);
684 spin_unlock(&swap_avail_lock);
687 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
688 unsigned int nr_entries)
690 unsigned int end = offset + nr_entries - 1;
692 if (offset == si->lowest_bit)
693 si->lowest_bit += nr_entries;
694 if (end == si->highest_bit)
695 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
696 si->inuse_pages += nr_entries;
697 if (si->inuse_pages == si->pages) {
698 si->lowest_bit = si->max;
700 del_from_avail_list(si);
704 static void add_to_avail_list(struct swap_info_struct *p)
708 spin_lock(&swap_avail_lock);
710 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
711 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
713 spin_unlock(&swap_avail_lock);
716 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
717 unsigned int nr_entries)
719 unsigned long begin = offset;
720 unsigned long end = offset + nr_entries - 1;
721 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
723 if (offset < si->lowest_bit)
724 si->lowest_bit = offset;
725 if (end > si->highest_bit) {
726 bool was_full = !si->highest_bit;
728 WRITE_ONCE(si->highest_bit, end);
729 if (was_full && (si->flags & SWP_WRITEOK))
730 add_to_avail_list(si);
732 atomic_long_add(nr_entries, &nr_swap_pages);
733 si->inuse_pages -= nr_entries;
734 if (si->flags & SWP_BLKDEV)
735 swap_slot_free_notify =
736 si->bdev->bd_disk->fops->swap_slot_free_notify;
738 swap_slot_free_notify = NULL;
739 while (offset <= end) {
740 arch_swap_invalidate_page(si->type, offset);
741 frontswap_invalidate_page(si->type, offset);
742 if (swap_slot_free_notify)
743 swap_slot_free_notify(si->bdev, offset);
746 clear_shadow_from_swap_cache(si->type, begin, end);
749 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
753 if (!(si->flags & SWP_SOLIDSTATE)) {
754 si->cluster_next = next;
758 prev = this_cpu_read(*si->cluster_next_cpu);
760 * Cross the swap address space size aligned trunk, choose
761 * another trunk randomly to avoid lock contention on swap
762 * address space if possible.
764 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
765 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
766 /* No free swap slots available */
767 if (si->highest_bit <= si->lowest_bit)
769 next = si->lowest_bit +
770 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
771 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
772 next = max_t(unsigned int, next, si->lowest_bit);
774 this_cpu_write(*si->cluster_next_cpu, next);
777 static int scan_swap_map_slots(struct swap_info_struct *si,
778 unsigned char usage, int nr,
781 struct swap_cluster_info *ci;
782 unsigned long offset;
783 unsigned long scan_base;
784 unsigned long last_in_cluster = 0;
785 int latency_ration = LATENCY_LIMIT;
787 bool scanned_many = false;
790 * We try to cluster swap pages by allocating them sequentially
791 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
792 * way, however, we resort to first-free allocation, starting
793 * a new cluster. This prevents us from scattering swap pages
794 * all over the entire swap partition, so that we reduce
795 * overall disk seek times between swap pages. -- sct
796 * But we do now try to find an empty cluster. -Andrea
797 * And we let swap pages go all over an SSD partition. Hugh
800 si->flags += SWP_SCANNING;
802 * Use percpu scan base for SSD to reduce lock contention on
803 * cluster and swap cache. For HDD, sequential access is more
806 if (si->flags & SWP_SOLIDSTATE)
807 scan_base = this_cpu_read(*si->cluster_next_cpu);
809 scan_base = si->cluster_next;
813 if (si->cluster_info) {
814 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
816 } else if (unlikely(!si->cluster_nr--)) {
817 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
818 si->cluster_nr = SWAPFILE_CLUSTER - 1;
822 spin_unlock(&si->lock);
825 * If seek is expensive, start searching for new cluster from
826 * start of partition, to minimize the span of allocated swap.
827 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
828 * case, just handled by scan_swap_map_try_ssd_cluster() above.
830 scan_base = offset = si->lowest_bit;
831 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
833 /* Locate the first empty (unaligned) cluster */
834 for (; last_in_cluster <= si->highest_bit; offset++) {
835 if (si->swap_map[offset])
836 last_in_cluster = offset + SWAPFILE_CLUSTER;
837 else if (offset == last_in_cluster) {
838 spin_lock(&si->lock);
839 offset -= SWAPFILE_CLUSTER - 1;
840 si->cluster_next = offset;
841 si->cluster_nr = SWAPFILE_CLUSTER - 1;
844 if (unlikely(--latency_ration < 0)) {
846 latency_ration = LATENCY_LIMIT;
851 spin_lock(&si->lock);
852 si->cluster_nr = SWAPFILE_CLUSTER - 1;
856 if (si->cluster_info) {
857 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
858 /* take a break if we already got some slots */
861 if (!scan_swap_map_try_ssd_cluster(si, &offset,
866 if (!(si->flags & SWP_WRITEOK))
868 if (!si->highest_bit)
870 if (offset > si->highest_bit)
871 scan_base = offset = si->lowest_bit;
873 ci = lock_cluster(si, offset);
874 /* reuse swap entry of cache-only swap if not busy. */
875 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 spin_unlock(&si->lock);
879 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
880 spin_lock(&si->lock);
881 /* entry was freed successfully, try to use this again */
884 goto scan; /* check next one */
887 if (si->swap_map[offset]) {
894 WRITE_ONCE(si->swap_map[offset], usage);
895 inc_cluster_info_page(si, si->cluster_info, offset);
898 swap_range_alloc(si, offset, 1);
899 slots[n_ret++] = swp_entry(si->type, offset);
901 /* got enough slots or reach max slots? */
902 if ((n_ret == nr) || (offset >= si->highest_bit))
905 /* search for next available slot */
907 /* time to take a break? */
908 if (unlikely(--latency_ration < 0)) {
911 spin_unlock(&si->lock);
913 spin_lock(&si->lock);
914 latency_ration = LATENCY_LIMIT;
917 /* try to get more slots in cluster */
918 if (si->cluster_info) {
919 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
921 } else if (si->cluster_nr && !si->swap_map[++offset]) {
922 /* non-ssd case, still more slots in cluster? */
928 * Even if there's no free clusters available (fragmented),
929 * try to scan a little more quickly with lock held unless we
930 * have scanned too many slots already.
933 unsigned long scan_limit;
935 if (offset < scan_base)
936 scan_limit = scan_base;
938 scan_limit = si->highest_bit;
939 for (; offset <= scan_limit && --latency_ration > 0;
941 if (!si->swap_map[offset])
947 set_cluster_next(si, offset + 1);
948 si->flags -= SWP_SCANNING;
952 spin_unlock(&si->lock);
953 while (++offset <= READ_ONCE(si->highest_bit)) {
954 if (data_race(!si->swap_map[offset])) {
955 spin_lock(&si->lock);
958 if (vm_swap_full() &&
959 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
960 spin_lock(&si->lock);
963 if (unlikely(--latency_ration < 0)) {
965 latency_ration = LATENCY_LIMIT;
969 offset = si->lowest_bit;
970 while (offset < scan_base) {
971 if (data_race(!si->swap_map[offset])) {
972 spin_lock(&si->lock);
975 if (vm_swap_full() &&
976 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
977 spin_lock(&si->lock);
980 if (unlikely(--latency_ration < 0)) {
982 latency_ration = LATENCY_LIMIT;
987 spin_lock(&si->lock);
990 si->flags -= SWP_SCANNING;
994 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
997 struct swap_cluster_info *ci;
998 unsigned long offset;
1001 * Should not even be attempting cluster allocations when huge
1002 * page swap is disabled. Warn and fail the allocation.
1004 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1009 if (cluster_list_empty(&si->free_clusters))
1012 idx = cluster_list_first(&si->free_clusters);
1013 offset = idx * SWAPFILE_CLUSTER;
1014 ci = lock_cluster(si, offset);
1015 alloc_cluster(si, idx);
1016 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1018 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1020 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1021 *slot = swp_entry(si->type, offset);
1026 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1028 unsigned long offset = idx * SWAPFILE_CLUSTER;
1029 struct swap_cluster_info *ci;
1031 ci = lock_cluster(si, offset);
1032 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1033 cluster_set_count_flag(ci, 0, 0);
1034 free_cluster(si, idx);
1036 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1039 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1041 unsigned long size = swap_entry_size(entry_size);
1042 struct swap_info_struct *si, *next;
1047 /* Only single cluster request supported */
1048 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1050 spin_lock(&swap_avail_lock);
1052 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1053 if (avail_pgs <= 0) {
1054 spin_unlock(&swap_avail_lock);
1058 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1060 atomic_long_sub(n_goal * size, &nr_swap_pages);
1063 node = numa_node_id();
1064 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1065 /* requeue si to after same-priority siblings */
1066 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1067 spin_unlock(&swap_avail_lock);
1068 spin_lock(&si->lock);
1069 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1070 spin_lock(&swap_avail_lock);
1071 if (plist_node_empty(&si->avail_lists[node])) {
1072 spin_unlock(&si->lock);
1075 WARN(!si->highest_bit,
1076 "swap_info %d in list but !highest_bit\n",
1078 WARN(!(si->flags & SWP_WRITEOK),
1079 "swap_info %d in list but !SWP_WRITEOK\n",
1081 __del_from_avail_list(si);
1082 spin_unlock(&si->lock);
1085 if (size == SWAPFILE_CLUSTER) {
1086 if (si->flags & SWP_BLKDEV)
1087 n_ret = swap_alloc_cluster(si, swp_entries);
1089 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1090 n_goal, swp_entries);
1091 spin_unlock(&si->lock);
1092 if (n_ret || size == SWAPFILE_CLUSTER)
1094 pr_debug("scan_swap_map of si %d failed to find offset\n",
1097 spin_lock(&swap_avail_lock);
1100 * if we got here, it's likely that si was almost full before,
1101 * and since scan_swap_map_slots() can drop the si->lock,
1102 * multiple callers probably all tried to get a page from the
1103 * same si and it filled up before we could get one; or, the si
1104 * filled up between us dropping swap_avail_lock and taking
1105 * si->lock. Since we dropped the swap_avail_lock, the
1106 * swap_avail_head list may have been modified; so if next is
1107 * still in the swap_avail_head list then try it, otherwise
1108 * start over if we have not gotten any slots.
1110 if (plist_node_empty(&next->avail_lists[node]))
1114 spin_unlock(&swap_avail_lock);
1118 atomic_long_add((long)(n_goal - n_ret) * size,
1124 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1126 struct swap_info_struct *p;
1127 unsigned long offset;
1131 p = swp_swap_info(entry);
1134 if (data_race(!(p->flags & SWP_USED)))
1136 offset = swp_offset(entry);
1137 if (offset >= p->max)
1142 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1145 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1148 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1153 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1155 struct swap_info_struct *p;
1157 p = __swap_info_get(entry);
1160 if (data_race(!p->swap_map[swp_offset(entry)]))
1165 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1170 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1172 struct swap_info_struct *p;
1174 p = _swap_info_get(entry);
1176 spin_lock(&p->lock);
1180 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1181 struct swap_info_struct *q)
1183 struct swap_info_struct *p;
1185 p = _swap_info_get(entry);
1189 spin_unlock(&q->lock);
1191 spin_lock(&p->lock);
1196 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1197 unsigned long offset,
1198 unsigned char usage)
1200 unsigned char count;
1201 unsigned char has_cache;
1203 count = p->swap_map[offset];
1205 has_cache = count & SWAP_HAS_CACHE;
1206 count &= ~SWAP_HAS_CACHE;
1208 if (usage == SWAP_HAS_CACHE) {
1209 VM_BUG_ON(!has_cache);
1211 } else if (count == SWAP_MAP_SHMEM) {
1213 * Or we could insist on shmem.c using a special
1214 * swap_shmem_free() and free_shmem_swap_and_cache()...
1217 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1218 if (count == COUNT_CONTINUED) {
1219 if (swap_count_continued(p, offset, count))
1220 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1222 count = SWAP_MAP_MAX;
1227 usage = count | has_cache;
1229 WRITE_ONCE(p->swap_map[offset], usage);
1231 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1237 * Check whether swap entry is valid in the swap device. If so,
1238 * return pointer to swap_info_struct, and keep the swap entry valid
1239 * via preventing the swap device from being swapoff, until
1240 * put_swap_device() is called. Otherwise return NULL.
1242 * Notice that swapoff or swapoff+swapon can still happen before the
1243 * percpu_ref_tryget_live() in get_swap_device() or after the
1244 * percpu_ref_put() in put_swap_device() if there isn't any other way
1245 * to prevent swapoff, such as page lock, page table lock, etc. The
1246 * caller must be prepared for that. For example, the following
1247 * situation is possible.
1251 * ... swapoff+swapon
1252 * __read_swap_cache_async()
1253 * swapcache_prepare()
1254 * __swap_duplicate()
1256 * // verify PTE not changed
1258 * In __swap_duplicate(), the swap_map need to be checked before
1259 * changing partly because the specified swap entry may be for another
1260 * swap device which has been swapoff. And in do_swap_page(), after
1261 * the page is read from the swap device, the PTE is verified not
1262 * changed with the page table locked to check whether the swap device
1263 * has been swapoff or swapoff+swapon.
1265 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1267 struct swap_info_struct *si;
1268 unsigned long offset;
1272 si = swp_swap_info(entry);
1275 if (!percpu_ref_tryget_live(&si->users))
1278 * Guarantee the si->users are checked before accessing other
1279 * fields of swap_info_struct.
1281 * Paired with the spin_unlock() after setup_swap_info() in
1282 * enable_swap_info().
1285 offset = swp_offset(entry);
1286 if (offset >= si->max)
1291 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1295 percpu_ref_put(&si->users);
1299 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1302 struct swap_cluster_info *ci;
1303 unsigned long offset = swp_offset(entry);
1304 unsigned char usage;
1306 ci = lock_cluster_or_swap_info(p, offset);
1307 usage = __swap_entry_free_locked(p, offset, 1);
1308 unlock_cluster_or_swap_info(p, ci);
1310 free_swap_slot(entry);
1315 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1317 struct swap_cluster_info *ci;
1318 unsigned long offset = swp_offset(entry);
1319 unsigned char count;
1321 ci = lock_cluster(p, offset);
1322 count = p->swap_map[offset];
1323 VM_BUG_ON(count != SWAP_HAS_CACHE);
1324 p->swap_map[offset] = 0;
1325 dec_cluster_info_page(p, p->cluster_info, offset);
1328 mem_cgroup_uncharge_swap(entry, 1);
1329 swap_range_free(p, offset, 1);
1333 * Caller has made sure that the swap device corresponding to entry
1334 * is still around or has not been recycled.
1336 void swap_free(swp_entry_t entry)
1338 struct swap_info_struct *p;
1340 p = _swap_info_get(entry);
1342 __swap_entry_free(p, entry);
1346 * Called after dropping swapcache to decrease refcnt to swap entries.
1348 void put_swap_page(struct page *page, swp_entry_t entry)
1350 unsigned long offset = swp_offset(entry);
1351 unsigned long idx = offset / SWAPFILE_CLUSTER;
1352 struct swap_cluster_info *ci;
1353 struct swap_info_struct *si;
1355 unsigned int i, free_entries = 0;
1357 int size = swap_entry_size(thp_nr_pages(page));
1359 si = _swap_info_get(entry);
1363 ci = lock_cluster_or_swap_info(si, offset);
1364 if (size == SWAPFILE_CLUSTER) {
1365 VM_BUG_ON(!cluster_is_huge(ci));
1366 map = si->swap_map + offset;
1367 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1369 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1370 if (val == SWAP_HAS_CACHE)
1373 cluster_clear_huge(ci);
1374 if (free_entries == SWAPFILE_CLUSTER) {
1375 unlock_cluster_or_swap_info(si, ci);
1376 spin_lock(&si->lock);
1377 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1378 swap_free_cluster(si, idx);
1379 spin_unlock(&si->lock);
1383 for (i = 0; i < size; i++, entry.val++) {
1384 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1385 unlock_cluster_or_swap_info(si, ci);
1386 free_swap_slot(entry);
1389 lock_cluster_or_swap_info(si, offset);
1392 unlock_cluster_or_swap_info(si, ci);
1395 #ifdef CONFIG_THP_SWAP
1396 int split_swap_cluster(swp_entry_t entry)
1398 struct swap_info_struct *si;
1399 struct swap_cluster_info *ci;
1400 unsigned long offset = swp_offset(entry);
1402 si = _swap_info_get(entry);
1405 ci = lock_cluster(si, offset);
1406 cluster_clear_huge(ci);
1412 static int swp_entry_cmp(const void *ent1, const void *ent2)
1414 const swp_entry_t *e1 = ent1, *e2 = ent2;
1416 return (int)swp_type(*e1) - (int)swp_type(*e2);
1419 void swapcache_free_entries(swp_entry_t *entries, int n)
1421 struct swap_info_struct *p, *prev;
1431 * Sort swap entries by swap device, so each lock is only taken once.
1432 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1433 * so low that it isn't necessary to optimize further.
1435 if (nr_swapfiles > 1)
1436 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1437 for (i = 0; i < n; ++i) {
1438 p = swap_info_get_cont(entries[i], prev);
1440 swap_entry_free(p, entries[i]);
1444 spin_unlock(&p->lock);
1448 * How many references to page are currently swapped out?
1449 * This does not give an exact answer when swap count is continued,
1450 * but does include the high COUNT_CONTINUED flag to allow for that.
1452 int page_swapcount(struct page *page)
1455 struct swap_info_struct *p;
1456 struct swap_cluster_info *ci;
1458 unsigned long offset;
1460 entry.val = page_private(page);
1461 p = _swap_info_get(entry);
1463 offset = swp_offset(entry);
1464 ci = lock_cluster_or_swap_info(p, offset);
1465 count = swap_count(p->swap_map[offset]);
1466 unlock_cluster_or_swap_info(p, ci);
1471 int __swap_count(swp_entry_t entry)
1473 struct swap_info_struct *si;
1474 pgoff_t offset = swp_offset(entry);
1477 si = get_swap_device(entry);
1479 count = swap_count(si->swap_map[offset]);
1480 put_swap_device(si);
1485 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1488 pgoff_t offset = swp_offset(entry);
1489 struct swap_cluster_info *ci;
1491 ci = lock_cluster_or_swap_info(si, offset);
1492 count = swap_count(si->swap_map[offset]);
1493 unlock_cluster_or_swap_info(si, ci);
1498 * How many references to @entry are currently swapped out?
1499 * This does not give an exact answer when swap count is continued,
1500 * but does include the high COUNT_CONTINUED flag to allow for that.
1502 int __swp_swapcount(swp_entry_t entry)
1505 struct swap_info_struct *si;
1507 si = get_swap_device(entry);
1509 count = swap_swapcount(si, entry);
1510 put_swap_device(si);
1516 * How many references to @entry are currently swapped out?
1517 * This considers COUNT_CONTINUED so it returns exact answer.
1519 int swp_swapcount(swp_entry_t entry)
1521 int count, tmp_count, n;
1522 struct swap_info_struct *p;
1523 struct swap_cluster_info *ci;
1528 p = _swap_info_get(entry);
1532 offset = swp_offset(entry);
1534 ci = lock_cluster_or_swap_info(p, offset);
1536 count = swap_count(p->swap_map[offset]);
1537 if (!(count & COUNT_CONTINUED))
1540 count &= ~COUNT_CONTINUED;
1541 n = SWAP_MAP_MAX + 1;
1543 page = vmalloc_to_page(p->swap_map + offset);
1544 offset &= ~PAGE_MASK;
1545 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1548 page = list_next_entry(page, lru);
1549 map = kmap_atomic(page);
1550 tmp_count = map[offset];
1553 count += (tmp_count & ~COUNT_CONTINUED) * n;
1554 n *= (SWAP_CONT_MAX + 1);
1555 } while (tmp_count & COUNT_CONTINUED);
1557 unlock_cluster_or_swap_info(p, ci);
1561 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1564 struct swap_cluster_info *ci;
1565 unsigned char *map = si->swap_map;
1566 unsigned long roffset = swp_offset(entry);
1567 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1571 ci = lock_cluster_or_swap_info(si, offset);
1572 if (!ci || !cluster_is_huge(ci)) {
1573 if (swap_count(map[roffset]))
1577 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1578 if (swap_count(map[offset + i])) {
1584 unlock_cluster_or_swap_info(si, ci);
1588 static bool page_swapped(struct page *page)
1591 struct swap_info_struct *si;
1593 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1594 return page_swapcount(page) != 0;
1596 page = compound_head(page);
1597 entry.val = page_private(page);
1598 si = _swap_info_get(entry);
1600 return swap_page_trans_huge_swapped(si, entry);
1604 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1605 int *total_swapcount)
1607 int i, map_swapcount, _total_mapcount, _total_swapcount;
1608 unsigned long offset = 0;
1609 struct swap_info_struct *si;
1610 struct swap_cluster_info *ci = NULL;
1611 unsigned char *map = NULL;
1612 int mapcount, swapcount = 0;
1614 /* hugetlbfs shouldn't call it */
1615 VM_BUG_ON_PAGE(PageHuge(page), page);
1617 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1618 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1619 if (PageSwapCache(page))
1620 swapcount = page_swapcount(page);
1621 if (total_swapcount)
1622 *total_swapcount = swapcount;
1623 return mapcount + swapcount;
1626 page = compound_head(page);
1628 _total_mapcount = _total_swapcount = map_swapcount = 0;
1629 if (PageSwapCache(page)) {
1632 entry.val = page_private(page);
1633 si = _swap_info_get(entry);
1636 offset = swp_offset(entry);
1640 ci = lock_cluster(si, offset);
1641 for (i = 0; i < HPAGE_PMD_NR; i++) {
1642 mapcount = atomic_read(&page[i]._mapcount) + 1;
1643 _total_mapcount += mapcount;
1645 swapcount = swap_count(map[offset + i]);
1646 _total_swapcount += swapcount;
1648 map_swapcount = max(map_swapcount, mapcount + swapcount);
1651 if (PageDoubleMap(page)) {
1653 _total_mapcount -= HPAGE_PMD_NR;
1655 mapcount = compound_mapcount(page);
1656 map_swapcount += mapcount;
1657 _total_mapcount += mapcount;
1659 *total_mapcount = _total_mapcount;
1660 if (total_swapcount)
1661 *total_swapcount = _total_swapcount;
1663 return map_swapcount;
1667 * We can write to an anon page without COW if there are no other references
1668 * to it. And as a side-effect, free up its swap: because the old content
1669 * on disk will never be read, and seeking back there to write new content
1670 * later would only waste time away from clustering.
1672 * NOTE: total_map_swapcount should not be relied upon by the caller if
1673 * reuse_swap_page() returns false, but it may be always overwritten
1674 * (see the other implementation for CONFIG_SWAP=n).
1676 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1678 int count, total_mapcount, total_swapcount;
1680 VM_BUG_ON_PAGE(!PageLocked(page), page);
1681 if (unlikely(PageKsm(page)))
1683 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1685 if (total_map_swapcount)
1686 *total_map_swapcount = total_mapcount + total_swapcount;
1687 if (count == 1 && PageSwapCache(page) &&
1688 (likely(!PageTransCompound(page)) ||
1689 /* The remaining swap count will be freed soon */
1690 total_swapcount == page_swapcount(page))) {
1691 if (!PageWriteback(page)) {
1692 page = compound_head(page);
1693 delete_from_swap_cache(page);
1697 struct swap_info_struct *p;
1699 entry.val = page_private(page);
1700 p = swap_info_get(entry);
1701 if (p->flags & SWP_STABLE_WRITES) {
1702 spin_unlock(&p->lock);
1705 spin_unlock(&p->lock);
1713 * If swap is getting full, or if there are no more mappings of this page,
1714 * then try_to_free_swap is called to free its swap space.
1716 int try_to_free_swap(struct page *page)
1718 VM_BUG_ON_PAGE(!PageLocked(page), page);
1720 if (!PageSwapCache(page))
1722 if (PageWriteback(page))
1724 if (page_swapped(page))
1728 * Once hibernation has begun to create its image of memory,
1729 * there's a danger that one of the calls to try_to_free_swap()
1730 * - most probably a call from __try_to_reclaim_swap() while
1731 * hibernation is allocating its own swap pages for the image,
1732 * but conceivably even a call from memory reclaim - will free
1733 * the swap from a page which has already been recorded in the
1734 * image as a clean swapcache page, and then reuse its swap for
1735 * another page of the image. On waking from hibernation, the
1736 * original page might be freed under memory pressure, then
1737 * later read back in from swap, now with the wrong data.
1739 * Hibernation suspends storage while it is writing the image
1740 * to disk so check that here.
1742 if (pm_suspended_storage())
1745 page = compound_head(page);
1746 delete_from_swap_cache(page);
1752 * Free the swap entry like above, but also try to
1753 * free the page cache entry if it is the last user.
1755 int free_swap_and_cache(swp_entry_t entry)
1757 struct swap_info_struct *p;
1758 unsigned char count;
1760 if (non_swap_entry(entry))
1763 p = _swap_info_get(entry);
1765 count = __swap_entry_free(p, entry);
1766 if (count == SWAP_HAS_CACHE &&
1767 !swap_page_trans_huge_swapped(p, entry))
1768 __try_to_reclaim_swap(p, swp_offset(entry),
1769 TTRS_UNMAPPED | TTRS_FULL);
1774 #ifdef CONFIG_HIBERNATION
1776 swp_entry_t get_swap_page_of_type(int type)
1778 struct swap_info_struct *si = swap_type_to_swap_info(type);
1779 swp_entry_t entry = {0};
1784 /* This is called for allocating swap entry, not cache */
1785 spin_lock(&si->lock);
1786 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1787 atomic_long_dec(&nr_swap_pages);
1788 spin_unlock(&si->lock);
1794 * Find the swap type that corresponds to given device (if any).
1796 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1797 * from 0, in which the swap header is expected to be located.
1799 * This is needed for the suspend to disk (aka swsusp).
1801 int swap_type_of(dev_t device, sector_t offset)
1808 spin_lock(&swap_lock);
1809 for (type = 0; type < nr_swapfiles; type++) {
1810 struct swap_info_struct *sis = swap_info[type];
1812 if (!(sis->flags & SWP_WRITEOK))
1815 if (device == sis->bdev->bd_dev) {
1816 struct swap_extent *se = first_se(sis);
1818 if (se->start_block == offset) {
1819 spin_unlock(&swap_lock);
1824 spin_unlock(&swap_lock);
1828 int find_first_swap(dev_t *device)
1832 spin_lock(&swap_lock);
1833 for (type = 0; type < nr_swapfiles; type++) {
1834 struct swap_info_struct *sis = swap_info[type];
1836 if (!(sis->flags & SWP_WRITEOK))
1838 *device = sis->bdev->bd_dev;
1839 spin_unlock(&swap_lock);
1842 spin_unlock(&swap_lock);
1847 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1848 * corresponding to given index in swap_info (swap type).
1850 sector_t swapdev_block(int type, pgoff_t offset)
1852 struct swap_info_struct *si = swap_type_to_swap_info(type);
1853 struct swap_extent *se;
1855 if (!si || !(si->flags & SWP_WRITEOK))
1857 se = offset_to_swap_extent(si, offset);
1858 return se->start_block + (offset - se->start_page);
1862 * Return either the total number of swap pages of given type, or the number
1863 * of free pages of that type (depending on @free)
1865 * This is needed for software suspend
1867 unsigned int count_swap_pages(int type, int free)
1871 spin_lock(&swap_lock);
1872 if ((unsigned int)type < nr_swapfiles) {
1873 struct swap_info_struct *sis = swap_info[type];
1875 spin_lock(&sis->lock);
1876 if (sis->flags & SWP_WRITEOK) {
1879 n -= sis->inuse_pages;
1881 spin_unlock(&sis->lock);
1883 spin_unlock(&swap_lock);
1886 #endif /* CONFIG_HIBERNATION */
1888 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1890 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1894 * No need to decide whether this PTE shares the swap entry with others,
1895 * just let do_wp_page work it out if a write is requested later - to
1896 * force COW, vm_page_prot omits write permission from any private vma.
1898 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1899 unsigned long addr, swp_entry_t entry, struct page *page)
1901 struct page *swapcache;
1907 page = ksm_might_need_to_copy(page, vma, addr);
1908 if (unlikely(!page))
1911 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1912 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1917 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1918 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1920 set_pte_at(vma->vm_mm, addr, pte,
1921 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1922 if (page == swapcache) {
1923 page_add_anon_rmap(page, vma, addr, false);
1924 } else { /* ksm created a completely new copy */
1925 page_add_new_anon_rmap(page, vma, addr, false);
1926 lru_cache_add_inactive_or_unevictable(page, vma);
1930 pte_unmap_unlock(pte, ptl);
1931 if (page != swapcache) {
1938 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1939 unsigned long addr, unsigned long end,
1940 unsigned int type, bool frontswap,
1941 unsigned long *fs_pages_to_unuse)
1946 struct swap_info_struct *si;
1947 unsigned long offset;
1949 volatile unsigned char *swap_map;
1951 si = swap_info[type];
1952 pte = pte_offset_map(pmd, addr);
1954 if (!is_swap_pte(*pte))
1957 entry = pte_to_swp_entry(*pte);
1958 if (swp_type(entry) != type)
1961 offset = swp_offset(entry);
1962 if (frontswap && !frontswap_test(si, offset))
1966 swap_map = &si->swap_map[offset];
1967 page = lookup_swap_cache(entry, vma, addr);
1969 struct vm_fault vmf = {
1975 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1979 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1985 wait_on_page_writeback(page);
1986 ret = unuse_pte(vma, pmd, addr, entry, page);
1993 try_to_free_swap(page);
1997 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1998 ret = FRONTSWAP_PAGES_UNUSED;
2002 pte = pte_offset_map(pmd, addr);
2003 } while (pte++, addr += PAGE_SIZE, addr != end);
2011 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2012 unsigned long addr, unsigned long end,
2013 unsigned int type, bool frontswap,
2014 unsigned long *fs_pages_to_unuse)
2020 pmd = pmd_offset(pud, addr);
2023 next = pmd_addr_end(addr, end);
2024 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2026 ret = unuse_pte_range(vma, pmd, addr, next, type,
2027 frontswap, fs_pages_to_unuse);
2030 } while (pmd++, addr = next, addr != end);
2034 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2035 unsigned long addr, unsigned long end,
2036 unsigned int type, bool frontswap,
2037 unsigned long *fs_pages_to_unuse)
2043 pud = pud_offset(p4d, addr);
2045 next = pud_addr_end(addr, end);
2046 if (pud_none_or_clear_bad(pud))
2048 ret = unuse_pmd_range(vma, pud, addr, next, type,
2049 frontswap, fs_pages_to_unuse);
2052 } while (pud++, addr = next, addr != end);
2056 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2057 unsigned long addr, unsigned long end,
2058 unsigned int type, bool frontswap,
2059 unsigned long *fs_pages_to_unuse)
2065 p4d = p4d_offset(pgd, addr);
2067 next = p4d_addr_end(addr, end);
2068 if (p4d_none_or_clear_bad(p4d))
2070 ret = unuse_pud_range(vma, p4d, addr, next, type,
2071 frontswap, fs_pages_to_unuse);
2074 } while (p4d++, addr = next, addr != end);
2078 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2079 bool frontswap, unsigned long *fs_pages_to_unuse)
2082 unsigned long addr, end, next;
2085 addr = vma->vm_start;
2088 pgd = pgd_offset(vma->vm_mm, addr);
2090 next = pgd_addr_end(addr, end);
2091 if (pgd_none_or_clear_bad(pgd))
2093 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2094 frontswap, fs_pages_to_unuse);
2097 } while (pgd++, addr = next, addr != end);
2101 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2102 bool frontswap, unsigned long *fs_pages_to_unuse)
2104 struct vm_area_struct *vma;
2108 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2109 if (vma->anon_vma) {
2110 ret = unuse_vma(vma, type, frontswap,
2117 mmap_read_unlock(mm);
2122 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2123 * from current position to next entry still in use. Return 0
2124 * if there are no inuse entries after prev till end of the map.
2126 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2127 unsigned int prev, bool frontswap)
2130 unsigned char count;
2133 * No need for swap_lock here: we're just looking
2134 * for whether an entry is in use, not modifying it; false
2135 * hits are okay, and sys_swapoff() has already prevented new
2136 * allocations from this area (while holding swap_lock).
2138 for (i = prev + 1; i < si->max; i++) {
2139 count = READ_ONCE(si->swap_map[i]);
2140 if (count && swap_count(count) != SWAP_MAP_BAD)
2141 if (!frontswap || frontswap_test(si, i))
2143 if ((i % LATENCY_LIMIT) == 0)
2154 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2155 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2157 int try_to_unuse(unsigned int type, bool frontswap,
2158 unsigned long pages_to_unuse)
2160 struct mm_struct *prev_mm;
2161 struct mm_struct *mm;
2162 struct list_head *p;
2164 struct swap_info_struct *si = swap_info[type];
2169 if (!READ_ONCE(si->inuse_pages))
2176 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2183 spin_lock(&mmlist_lock);
2184 p = &init_mm.mmlist;
2185 while (READ_ONCE(si->inuse_pages) &&
2186 !signal_pending(current) &&
2187 (p = p->next) != &init_mm.mmlist) {
2189 mm = list_entry(p, struct mm_struct, mmlist);
2190 if (!mmget_not_zero(mm))
2192 spin_unlock(&mmlist_lock);
2195 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2203 * Make sure that we aren't completely killing
2204 * interactive performance.
2207 spin_lock(&mmlist_lock);
2209 spin_unlock(&mmlist_lock);
2214 while (READ_ONCE(si->inuse_pages) &&
2215 !signal_pending(current) &&
2216 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2218 entry = swp_entry(type, i);
2219 page = find_get_page(swap_address_space(entry), i);
2224 * It is conceivable that a racing task removed this page from
2225 * swap cache just before we acquired the page lock. The page
2226 * might even be back in swap cache on another swap area. But
2227 * that is okay, try_to_free_swap() only removes stale pages.
2230 wait_on_page_writeback(page);
2231 try_to_free_swap(page);
2236 * For frontswap, we just need to unuse pages_to_unuse, if
2237 * it was specified. Need not check frontswap again here as
2238 * we already zeroed out pages_to_unuse if not frontswap.
2240 if (pages_to_unuse && --pages_to_unuse == 0)
2245 * Lets check again to see if there are still swap entries in the map.
2246 * If yes, we would need to do retry the unuse logic again.
2247 * Under global memory pressure, swap entries can be reinserted back
2248 * into process space after the mmlist loop above passes over them.
2250 * Limit the number of retries? No: when mmget_not_zero() above fails,
2251 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2252 * at its own independent pace; and even shmem_writepage() could have
2253 * been preempted after get_swap_page(), temporarily hiding that swap.
2254 * It's easy and robust (though cpu-intensive) just to keep retrying.
2256 if (READ_ONCE(si->inuse_pages)) {
2257 if (!signal_pending(current))
2262 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2266 * After a successful try_to_unuse, if no swap is now in use, we know
2267 * we can empty the mmlist. swap_lock must be held on entry and exit.
2268 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2269 * added to the mmlist just after page_duplicate - before would be racy.
2271 static void drain_mmlist(void)
2273 struct list_head *p, *next;
2276 for (type = 0; type < nr_swapfiles; type++)
2277 if (swap_info[type]->inuse_pages)
2279 spin_lock(&mmlist_lock);
2280 list_for_each_safe(p, next, &init_mm.mmlist)
2282 spin_unlock(&mmlist_lock);
2286 * Free all of a swapdev's extent information
2288 static void destroy_swap_extents(struct swap_info_struct *sis)
2290 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2291 struct rb_node *rb = sis->swap_extent_root.rb_node;
2292 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2294 rb_erase(rb, &sis->swap_extent_root);
2298 if (sis->flags & SWP_ACTIVATED) {
2299 struct file *swap_file = sis->swap_file;
2300 struct address_space *mapping = swap_file->f_mapping;
2302 sis->flags &= ~SWP_ACTIVATED;
2303 if (mapping->a_ops->swap_deactivate)
2304 mapping->a_ops->swap_deactivate(swap_file);
2309 * Add a block range (and the corresponding page range) into this swapdev's
2312 * This function rather assumes that it is called in ascending page order.
2315 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2316 unsigned long nr_pages, sector_t start_block)
2318 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2319 struct swap_extent *se;
2320 struct swap_extent *new_se;
2323 * place the new node at the right most since the
2324 * function is called in ascending page order.
2328 link = &parent->rb_right;
2332 se = rb_entry(parent, struct swap_extent, rb_node);
2333 BUG_ON(se->start_page + se->nr_pages != start_page);
2334 if (se->start_block + se->nr_pages == start_block) {
2336 se->nr_pages += nr_pages;
2341 /* No merge, insert a new extent. */
2342 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2345 new_se->start_page = start_page;
2346 new_se->nr_pages = nr_pages;
2347 new_se->start_block = start_block;
2349 rb_link_node(&new_se->rb_node, parent, link);
2350 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2353 EXPORT_SYMBOL_GPL(add_swap_extent);
2356 * A `swap extent' is a simple thing which maps a contiguous range of pages
2357 * onto a contiguous range of disk blocks. An ordered list of swap extents
2358 * is built at swapon time and is then used at swap_writepage/swap_readpage
2359 * time for locating where on disk a page belongs.
2361 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2362 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2363 * swap files identically.
2365 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2366 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2367 * swapfiles are handled *identically* after swapon time.
2369 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2370 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2371 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2372 * requirements, they are simply tossed out - we will never use those blocks
2375 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2376 * prevents users from writing to the swap device, which will corrupt memory.
2378 * The amount of disk space which a single swap extent represents varies.
2379 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2380 * extents in the list. To avoid much list walking, we cache the previous
2381 * search location in `curr_swap_extent', and start new searches from there.
2382 * This is extremely effective. The average number of iterations in
2383 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2385 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2387 struct file *swap_file = sis->swap_file;
2388 struct address_space *mapping = swap_file->f_mapping;
2389 struct inode *inode = mapping->host;
2392 if (S_ISBLK(inode->i_mode)) {
2393 ret = add_swap_extent(sis, 0, sis->max, 0);
2398 if (mapping->a_ops->swap_activate) {
2399 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2401 sis->flags |= SWP_ACTIVATED;
2403 sis->flags |= SWP_FS_OPS;
2404 ret = add_swap_extent(sis, 0, sis->max, 0);
2410 return generic_swapfile_activate(sis, swap_file, span);
2413 static int swap_node(struct swap_info_struct *p)
2415 struct block_device *bdev;
2420 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2422 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2425 static void setup_swap_info(struct swap_info_struct *p, int prio,
2426 unsigned char *swap_map,
2427 struct swap_cluster_info *cluster_info)
2434 p->prio = --least_priority;
2436 * the plist prio is negated because plist ordering is
2437 * low-to-high, while swap ordering is high-to-low
2439 p->list.prio = -p->prio;
2442 p->avail_lists[i].prio = -p->prio;
2444 if (swap_node(p) == i)
2445 p->avail_lists[i].prio = 1;
2447 p->avail_lists[i].prio = -p->prio;
2450 p->swap_map = swap_map;
2451 p->cluster_info = cluster_info;
2454 static void _enable_swap_info(struct swap_info_struct *p)
2456 p->flags |= SWP_WRITEOK;
2457 atomic_long_add(p->pages, &nr_swap_pages);
2458 total_swap_pages += p->pages;
2460 assert_spin_locked(&swap_lock);
2462 * both lists are plists, and thus priority ordered.
2463 * swap_active_head needs to be priority ordered for swapoff(),
2464 * which on removal of any swap_info_struct with an auto-assigned
2465 * (i.e. negative) priority increments the auto-assigned priority
2466 * of any lower-priority swap_info_structs.
2467 * swap_avail_head needs to be priority ordered for get_swap_page(),
2468 * which allocates swap pages from the highest available priority
2471 plist_add(&p->list, &swap_active_head);
2472 add_to_avail_list(p);
2475 static void enable_swap_info(struct swap_info_struct *p, int prio,
2476 unsigned char *swap_map,
2477 struct swap_cluster_info *cluster_info,
2478 unsigned long *frontswap_map)
2480 frontswap_init(p->type, frontswap_map);
2481 spin_lock(&swap_lock);
2482 spin_lock(&p->lock);
2483 setup_swap_info(p, prio, swap_map, cluster_info);
2484 spin_unlock(&p->lock);
2485 spin_unlock(&swap_lock);
2487 * Finished initializing swap device, now it's safe to reference it.
2489 percpu_ref_resurrect(&p->users);
2490 spin_lock(&swap_lock);
2491 spin_lock(&p->lock);
2492 _enable_swap_info(p);
2493 spin_unlock(&p->lock);
2494 spin_unlock(&swap_lock);
2497 static void reinsert_swap_info(struct swap_info_struct *p)
2499 spin_lock(&swap_lock);
2500 spin_lock(&p->lock);
2501 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2502 _enable_swap_info(p);
2503 spin_unlock(&p->lock);
2504 spin_unlock(&swap_lock);
2507 bool has_usable_swap(void)
2511 spin_lock(&swap_lock);
2512 if (plist_head_empty(&swap_active_head))
2514 spin_unlock(&swap_lock);
2518 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2520 struct swap_info_struct *p = NULL;
2521 unsigned char *swap_map;
2522 struct swap_cluster_info *cluster_info;
2523 unsigned long *frontswap_map;
2524 struct file *swap_file, *victim;
2525 struct address_space *mapping;
2526 struct inode *inode;
2527 struct filename *pathname;
2529 unsigned int old_block_size;
2531 if (!capable(CAP_SYS_ADMIN))
2534 BUG_ON(!current->mm);
2536 pathname = getname(specialfile);
2537 if (IS_ERR(pathname))
2538 return PTR_ERR(pathname);
2540 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2541 err = PTR_ERR(victim);
2545 mapping = victim->f_mapping;
2546 spin_lock(&swap_lock);
2547 plist_for_each_entry(p, &swap_active_head, list) {
2548 if (p->flags & SWP_WRITEOK) {
2549 if (p->swap_file->f_mapping == mapping) {
2557 spin_unlock(&swap_lock);
2560 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2561 vm_unacct_memory(p->pages);
2564 spin_unlock(&swap_lock);
2567 del_from_avail_list(p);
2568 spin_lock(&p->lock);
2570 struct swap_info_struct *si = p;
2573 plist_for_each_entry_continue(si, &swap_active_head, list) {
2576 for_each_node(nid) {
2577 if (si->avail_lists[nid].prio != 1)
2578 si->avail_lists[nid].prio--;
2583 plist_del(&p->list, &swap_active_head);
2584 atomic_long_sub(p->pages, &nr_swap_pages);
2585 total_swap_pages -= p->pages;
2586 p->flags &= ~SWP_WRITEOK;
2587 spin_unlock(&p->lock);
2588 spin_unlock(&swap_lock);
2590 disable_swap_slots_cache_lock();
2592 set_current_oom_origin();
2593 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2594 clear_current_oom_origin();
2597 /* re-insert swap space back into swap_list */
2598 reinsert_swap_info(p);
2599 reenable_swap_slots_cache_unlock();
2603 reenable_swap_slots_cache_unlock();
2606 * Wait for swap operations protected by get/put_swap_device()
2609 * We need synchronize_rcu() here to protect the accessing to
2610 * the swap cache data structure.
2612 percpu_ref_kill(&p->users);
2614 wait_for_completion(&p->comp);
2616 flush_work(&p->discard_work);
2618 destroy_swap_extents(p);
2619 if (p->flags & SWP_CONTINUED)
2620 free_swap_count_continuations(p);
2622 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2623 atomic_dec(&nr_rotate_swap);
2625 mutex_lock(&swapon_mutex);
2626 spin_lock(&swap_lock);
2627 spin_lock(&p->lock);
2630 /* wait for anyone still in scan_swap_map_slots */
2631 p->highest_bit = 0; /* cuts scans short */
2632 while (p->flags >= SWP_SCANNING) {
2633 spin_unlock(&p->lock);
2634 spin_unlock(&swap_lock);
2635 schedule_timeout_uninterruptible(1);
2636 spin_lock(&swap_lock);
2637 spin_lock(&p->lock);
2640 swap_file = p->swap_file;
2641 old_block_size = p->old_block_size;
2642 p->swap_file = NULL;
2644 swap_map = p->swap_map;
2646 cluster_info = p->cluster_info;
2647 p->cluster_info = NULL;
2648 frontswap_map = frontswap_map_get(p);
2649 spin_unlock(&p->lock);
2650 spin_unlock(&swap_lock);
2651 arch_swap_invalidate_area(p->type);
2652 frontswap_invalidate_area(p->type);
2653 frontswap_map_set(p, NULL);
2654 mutex_unlock(&swapon_mutex);
2655 free_percpu(p->percpu_cluster);
2656 p->percpu_cluster = NULL;
2657 free_percpu(p->cluster_next_cpu);
2658 p->cluster_next_cpu = NULL;
2660 kvfree(cluster_info);
2661 kvfree(frontswap_map);
2662 /* Destroy swap account information */
2663 swap_cgroup_swapoff(p->type);
2664 exit_swap_address_space(p->type);
2666 inode = mapping->host;
2667 if (S_ISBLK(inode->i_mode)) {
2668 struct block_device *bdev = I_BDEV(inode);
2670 set_blocksize(bdev, old_block_size);
2671 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2675 inode->i_flags &= ~S_SWAPFILE;
2676 inode_unlock(inode);
2677 filp_close(swap_file, NULL);
2680 * Clear the SWP_USED flag after all resources are freed so that swapon
2681 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2682 * not hold p->lock after we cleared its SWP_WRITEOK.
2684 spin_lock(&swap_lock);
2686 spin_unlock(&swap_lock);
2689 atomic_inc(&proc_poll_event);
2690 wake_up_interruptible(&proc_poll_wait);
2693 filp_close(victim, NULL);
2699 #ifdef CONFIG_PROC_FS
2700 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2702 struct seq_file *seq = file->private_data;
2704 poll_wait(file, &proc_poll_wait, wait);
2706 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707 seq->poll_event = atomic_read(&proc_poll_event);
2708 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2711 return EPOLLIN | EPOLLRDNORM;
2715 static void *swap_start(struct seq_file *swap, loff_t *pos)
2717 struct swap_info_struct *si;
2721 mutex_lock(&swapon_mutex);
2724 return SEQ_START_TOKEN;
2726 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2727 if (!(si->flags & SWP_USED) || !si->swap_map)
2736 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2738 struct swap_info_struct *si = v;
2741 if (v == SEQ_START_TOKEN)
2744 type = si->type + 1;
2747 for (; (si = swap_type_to_swap_info(type)); type++) {
2748 if (!(si->flags & SWP_USED) || !si->swap_map)
2756 static void swap_stop(struct seq_file *swap, void *v)
2758 mutex_unlock(&swapon_mutex);
2761 static int swap_show(struct seq_file *swap, void *v)
2763 struct swap_info_struct *si = v;
2766 unsigned int bytes, inuse;
2768 if (si == SEQ_START_TOKEN) {
2769 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2773 bytes = si->pages << (PAGE_SHIFT - 10);
2774 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2776 file = si->swap_file;
2777 len = seq_file_path(swap, file, " \t\n\\");
2778 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2779 len < 40 ? 40 - len : 1, " ",
2780 S_ISBLK(file_inode(file)->i_mode) ?
2781 "partition" : "file\t",
2782 bytes, bytes < 10000000 ? "\t" : "",
2783 inuse, inuse < 10000000 ? "\t" : "",
2788 static const struct seq_operations swaps_op = {
2789 .start = swap_start,
2795 static int swaps_open(struct inode *inode, struct file *file)
2797 struct seq_file *seq;
2800 ret = seq_open(file, &swaps_op);
2804 seq = file->private_data;
2805 seq->poll_event = atomic_read(&proc_poll_event);
2809 static const struct proc_ops swaps_proc_ops = {
2810 .proc_flags = PROC_ENTRY_PERMANENT,
2811 .proc_open = swaps_open,
2812 .proc_read = seq_read,
2813 .proc_lseek = seq_lseek,
2814 .proc_release = seq_release,
2815 .proc_poll = swaps_poll,
2818 static int __init procswaps_init(void)
2820 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2823 __initcall(procswaps_init);
2824 #endif /* CONFIG_PROC_FS */
2826 #ifdef MAX_SWAPFILES_CHECK
2827 static int __init max_swapfiles_check(void)
2829 MAX_SWAPFILES_CHECK();
2832 late_initcall(max_swapfiles_check);
2835 static struct swap_info_struct *alloc_swap_info(void)
2837 struct swap_info_struct *p;
2838 struct swap_info_struct *defer = NULL;
2842 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2844 return ERR_PTR(-ENOMEM);
2846 if (percpu_ref_init(&p->users, swap_users_ref_free,
2847 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2849 return ERR_PTR(-ENOMEM);
2852 spin_lock(&swap_lock);
2853 for (type = 0; type < nr_swapfiles; type++) {
2854 if (!(swap_info[type]->flags & SWP_USED))
2857 if (type >= MAX_SWAPFILES) {
2858 spin_unlock(&swap_lock);
2859 percpu_ref_exit(&p->users);
2861 return ERR_PTR(-EPERM);
2863 if (type >= nr_swapfiles) {
2866 * Publish the swap_info_struct after initializing it.
2867 * Note that kvzalloc() above zeroes all its fields.
2869 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2873 p = swap_info[type];
2875 * Do not memset this entry: a racing procfs swap_next()
2876 * would be relying on p->type to remain valid.
2879 p->swap_extent_root = RB_ROOT;
2880 plist_node_init(&p->list, 0);
2882 plist_node_init(&p->avail_lists[i], 0);
2883 p->flags = SWP_USED;
2884 spin_unlock(&swap_lock);
2886 percpu_ref_exit(&defer->users);
2889 spin_lock_init(&p->lock);
2890 spin_lock_init(&p->cont_lock);
2891 init_completion(&p->comp);
2896 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2900 if (S_ISBLK(inode->i_mode)) {
2901 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2902 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2903 if (IS_ERR(p->bdev)) {
2904 error = PTR_ERR(p->bdev);
2908 p->old_block_size = block_size(p->bdev);
2909 error = set_blocksize(p->bdev, PAGE_SIZE);
2913 * Zoned block devices contain zones that have a sequential
2914 * write only restriction. Hence zoned block devices are not
2915 * suitable for swapping. Disallow them here.
2917 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2919 p->flags |= SWP_BLKDEV;
2920 } else if (S_ISREG(inode->i_mode)) {
2921 p->bdev = inode->i_sb->s_bdev;
2929 * Find out how many pages are allowed for a single swap device. There
2930 * are two limiting factors:
2931 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2932 * 2) the number of bits in the swap pte, as defined by the different
2935 * In order to find the largest possible bit mask, a swap entry with
2936 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2937 * decoded to a swp_entry_t again, and finally the swap offset is
2940 * This will mask all the bits from the initial ~0UL mask that can't
2941 * be encoded in either the swp_entry_t or the architecture definition
2944 unsigned long generic_max_swapfile_size(void)
2946 return swp_offset(pte_to_swp_entry(
2947 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2950 /* Can be overridden by an architecture for additional checks. */
2951 __weak unsigned long max_swapfile_size(void)
2953 return generic_max_swapfile_size();
2956 static unsigned long read_swap_header(struct swap_info_struct *p,
2957 union swap_header *swap_header,
2958 struct inode *inode)
2961 unsigned long maxpages;
2962 unsigned long swapfilepages;
2963 unsigned long last_page;
2965 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2966 pr_err("Unable to find swap-space signature\n");
2970 /* swap partition endianness hack... */
2971 if (swab32(swap_header->info.version) == 1) {
2972 swab32s(&swap_header->info.version);
2973 swab32s(&swap_header->info.last_page);
2974 swab32s(&swap_header->info.nr_badpages);
2975 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2977 for (i = 0; i < swap_header->info.nr_badpages; i++)
2978 swab32s(&swap_header->info.badpages[i]);
2980 /* Check the swap header's sub-version */
2981 if (swap_header->info.version != 1) {
2982 pr_warn("Unable to handle swap header version %d\n",
2983 swap_header->info.version);
2988 p->cluster_next = 1;
2991 maxpages = max_swapfile_size();
2992 last_page = swap_header->info.last_page;
2994 pr_warn("Empty swap-file\n");
2997 if (last_page > maxpages) {
2998 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2999 maxpages << (PAGE_SHIFT - 10),
3000 last_page << (PAGE_SHIFT - 10));
3002 if (maxpages > last_page) {
3003 maxpages = last_page + 1;
3004 /* p->max is an unsigned int: don't overflow it */
3005 if ((unsigned int)maxpages == 0)
3006 maxpages = UINT_MAX;
3008 p->highest_bit = maxpages - 1;
3012 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3013 if (swapfilepages && maxpages > swapfilepages) {
3014 pr_warn("Swap area shorter than signature indicates\n");
3017 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3019 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3025 #define SWAP_CLUSTER_INFO_COLS \
3026 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3027 #define SWAP_CLUSTER_SPACE_COLS \
3028 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3029 #define SWAP_CLUSTER_COLS \
3030 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3032 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3033 union swap_header *swap_header,
3034 unsigned char *swap_map,
3035 struct swap_cluster_info *cluster_info,
3036 unsigned long maxpages,
3040 unsigned int nr_good_pages;
3042 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3043 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3044 unsigned long i, idx;
3046 nr_good_pages = maxpages - 1; /* omit header page */
3048 cluster_list_init(&p->free_clusters);
3049 cluster_list_init(&p->discard_clusters);
3051 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3052 unsigned int page_nr = swap_header->info.badpages[i];
3053 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3055 if (page_nr < maxpages) {
3056 swap_map[page_nr] = SWAP_MAP_BAD;
3059 * Haven't marked the cluster free yet, no list
3060 * operation involved
3062 inc_cluster_info_page(p, cluster_info, page_nr);
3066 /* Haven't marked the cluster free yet, no list operation involved */
3067 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3068 inc_cluster_info_page(p, cluster_info, i);
3070 if (nr_good_pages) {
3071 swap_map[0] = SWAP_MAP_BAD;
3073 * Not mark the cluster free yet, no list
3074 * operation involved
3076 inc_cluster_info_page(p, cluster_info, 0);
3078 p->pages = nr_good_pages;
3079 nr_extents = setup_swap_extents(p, span);
3082 nr_good_pages = p->pages;
3084 if (!nr_good_pages) {
3085 pr_warn("Empty swap-file\n");
3094 * Reduce false cache line sharing between cluster_info and
3095 * sharing same address space.
3097 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3098 j = (k + col) % SWAP_CLUSTER_COLS;
3099 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3100 idx = i * SWAP_CLUSTER_COLS + j;
3101 if (idx >= nr_clusters)
3103 if (cluster_count(&cluster_info[idx]))
3105 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3106 cluster_list_add_tail(&p->free_clusters, cluster_info,
3114 * Helper to sys_swapon determining if a given swap
3115 * backing device queue supports DISCARD operations.
3117 static bool swap_discardable(struct swap_info_struct *si)
3119 struct request_queue *q = bdev_get_queue(si->bdev);
3121 if (!q || !blk_queue_discard(q))
3127 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3129 struct swap_info_struct *p;
3130 struct filename *name;
3131 struct file *swap_file = NULL;
3132 struct address_space *mapping;
3133 struct dentry *dentry;
3136 union swap_header *swap_header;
3139 unsigned long maxpages;
3140 unsigned char *swap_map = NULL;
3141 struct swap_cluster_info *cluster_info = NULL;
3142 unsigned long *frontswap_map = NULL;
3143 struct page *page = NULL;
3144 struct inode *inode = NULL;
3145 bool inced_nr_rotate_swap = false;
3147 if (swap_flags & ~SWAP_FLAGS_VALID)
3150 if (!capable(CAP_SYS_ADMIN))
3153 if (!swap_avail_heads)
3156 p = alloc_swap_info();
3160 INIT_WORK(&p->discard_work, swap_discard_work);
3162 name = getname(specialfile);
3164 error = PTR_ERR(name);
3168 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3169 if (IS_ERR(swap_file)) {
3170 error = PTR_ERR(swap_file);
3175 p->swap_file = swap_file;
3176 mapping = swap_file->f_mapping;
3177 dentry = swap_file->f_path.dentry;
3178 inode = mapping->host;
3180 error = claim_swapfile(p, inode);
3181 if (unlikely(error))
3185 if (d_unlinked(dentry) || cant_mount(dentry)) {
3187 goto bad_swap_unlock_inode;
3189 if (IS_SWAPFILE(inode)) {
3191 goto bad_swap_unlock_inode;
3195 * Read the swap header.
3197 if (!mapping->a_ops->readpage) {
3199 goto bad_swap_unlock_inode;
3201 page = read_mapping_page(mapping, 0, swap_file);
3203 error = PTR_ERR(page);
3204 goto bad_swap_unlock_inode;
3206 swap_header = kmap(page);
3208 maxpages = read_swap_header(p, swap_header, inode);
3209 if (unlikely(!maxpages)) {
3211 goto bad_swap_unlock_inode;
3214 /* OK, set up the swap map and apply the bad block list */
3215 swap_map = vzalloc(maxpages);
3218 goto bad_swap_unlock_inode;
3221 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3222 p->flags |= SWP_STABLE_WRITES;
3224 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3225 p->flags |= SWP_SYNCHRONOUS_IO;
3227 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3229 unsigned long ci, nr_cluster;
3231 p->flags |= SWP_SOLIDSTATE;
3232 p->cluster_next_cpu = alloc_percpu(unsigned int);
3233 if (!p->cluster_next_cpu) {
3235 goto bad_swap_unlock_inode;
3238 * select a random position to start with to help wear leveling
3241 for_each_possible_cpu(cpu) {
3242 per_cpu(*p->cluster_next_cpu, cpu) =
3243 1 + prandom_u32_max(p->highest_bit);
3245 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3247 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3249 if (!cluster_info) {
3251 goto bad_swap_unlock_inode;
3254 for (ci = 0; ci < nr_cluster; ci++)
3255 spin_lock_init(&((cluster_info + ci)->lock));
3257 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3258 if (!p->percpu_cluster) {
3260 goto bad_swap_unlock_inode;
3262 for_each_possible_cpu(cpu) {
3263 struct percpu_cluster *cluster;
3264 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3265 cluster_set_null(&cluster->index);
3268 atomic_inc(&nr_rotate_swap);
3269 inced_nr_rotate_swap = true;
3272 error = swap_cgroup_swapon(p->type, maxpages);
3274 goto bad_swap_unlock_inode;
3276 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3277 cluster_info, maxpages, &span);
3278 if (unlikely(nr_extents < 0)) {
3280 goto bad_swap_unlock_inode;
3282 /* frontswap enabled? set up bit-per-page map for frontswap */
3283 if (IS_ENABLED(CONFIG_FRONTSWAP))
3284 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3288 if (p->bdev && (swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3290 * When discard is enabled for swap with no particular
3291 * policy flagged, we set all swap discard flags here in
3292 * order to sustain backward compatibility with older
3293 * swapon(8) releases.
3295 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3299 * By flagging sys_swapon, a sysadmin can tell us to
3300 * either do single-time area discards only, or to just
3301 * perform discards for released swap page-clusters.
3302 * Now it's time to adjust the p->flags accordingly.
3304 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3305 p->flags &= ~SWP_PAGE_DISCARD;
3306 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3307 p->flags &= ~SWP_AREA_DISCARD;
3309 /* issue a swapon-time discard if it's still required */
3310 if (p->flags & SWP_AREA_DISCARD) {
3311 int err = discard_swap(p);
3313 pr_err("swapon: discard_swap(%p): %d\n",
3318 error = init_swap_address_space(p->type, maxpages);
3320 goto bad_swap_unlock_inode;
3323 * Flush any pending IO and dirty mappings before we start using this
3326 inode->i_flags |= S_SWAPFILE;
3327 error = inode_drain_writes(inode);
3329 inode->i_flags &= ~S_SWAPFILE;
3330 goto free_swap_address_space;
3333 mutex_lock(&swapon_mutex);
3335 if (swap_flags & SWAP_FLAG_PREFER)
3337 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3338 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3340 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3341 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3342 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3343 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3344 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3345 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3346 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3347 (frontswap_map) ? "FS" : "");
3349 mutex_unlock(&swapon_mutex);
3350 atomic_inc(&proc_poll_event);
3351 wake_up_interruptible(&proc_poll_wait);
3355 free_swap_address_space:
3356 exit_swap_address_space(p->type);
3357 bad_swap_unlock_inode:
3358 inode_unlock(inode);
3360 free_percpu(p->percpu_cluster);
3361 p->percpu_cluster = NULL;
3362 free_percpu(p->cluster_next_cpu);
3363 p->cluster_next_cpu = NULL;
3364 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3365 set_blocksize(p->bdev, p->old_block_size);
3366 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3369 destroy_swap_extents(p);
3370 swap_cgroup_swapoff(p->type);
3371 spin_lock(&swap_lock);
3372 p->swap_file = NULL;
3374 spin_unlock(&swap_lock);
3376 kvfree(cluster_info);
3377 kvfree(frontswap_map);
3378 if (inced_nr_rotate_swap)
3379 atomic_dec(&nr_rotate_swap);
3381 filp_close(swap_file, NULL);
3383 if (page && !IS_ERR(page)) {
3390 inode_unlock(inode);
3392 enable_swap_slots_cache();
3396 void si_swapinfo(struct sysinfo *val)
3399 unsigned long nr_to_be_unused = 0;
3401 spin_lock(&swap_lock);
3402 for (type = 0; type < nr_swapfiles; type++) {
3403 struct swap_info_struct *si = swap_info[type];
3405 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3406 nr_to_be_unused += si->inuse_pages;
3408 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3409 val->totalswap = total_swap_pages + nr_to_be_unused;
3410 spin_unlock(&swap_lock);
3414 * Verify that a swap entry is valid and increment its swap map count.
3416 * Returns error code in following case.
3418 * - swp_entry is invalid -> EINVAL
3419 * - swp_entry is migration entry -> EINVAL
3420 * - swap-cache reference is requested but there is already one. -> EEXIST
3421 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3422 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3424 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3426 struct swap_info_struct *p;
3427 struct swap_cluster_info *ci;
3428 unsigned long offset;
3429 unsigned char count;
3430 unsigned char has_cache;
3433 p = get_swap_device(entry);
3437 offset = swp_offset(entry);
3438 ci = lock_cluster_or_swap_info(p, offset);
3440 count = p->swap_map[offset];
3443 * swapin_readahead() doesn't check if a swap entry is valid, so the
3444 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3446 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3451 has_cache = count & SWAP_HAS_CACHE;
3452 count &= ~SWAP_HAS_CACHE;
3455 if (usage == SWAP_HAS_CACHE) {
3457 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3458 if (!has_cache && count)
3459 has_cache = SWAP_HAS_CACHE;
3460 else if (has_cache) /* someone else added cache */
3462 else /* no users remaining */
3465 } else if (count || has_cache) {
3467 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3469 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3471 else if (swap_count_continued(p, offset, count))
3472 count = COUNT_CONTINUED;
3476 err = -ENOENT; /* unused swap entry */
3478 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3481 unlock_cluster_or_swap_info(p, ci);
3488 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3489 * (in which case its reference count is never incremented).
3491 void swap_shmem_alloc(swp_entry_t entry)
3493 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3497 * Increase reference count of swap entry by 1.
3498 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3499 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3500 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3501 * might occur if a page table entry has got corrupted.
3503 int swap_duplicate(swp_entry_t entry)
3507 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3508 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3513 * @entry: swap entry for which we allocate swap cache.
3515 * Called when allocating swap cache for existing swap entry,
3516 * This can return error codes. Returns 0 at success.
3517 * -EEXIST means there is a swap cache.
3518 * Note: return code is different from swap_duplicate().
3520 int swapcache_prepare(swp_entry_t entry)
3522 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3525 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3527 return swap_type_to_swap_info(swp_type(entry));
3530 struct swap_info_struct *page_swap_info(struct page *page)
3532 swp_entry_t entry = { .val = page_private(page) };
3533 return swp_swap_info(entry);
3537 * out-of-line __page_file_ methods to avoid include hell.
3539 struct address_space *__page_file_mapping(struct page *page)
3541 return page_swap_info(page)->swap_file->f_mapping;
3543 EXPORT_SYMBOL_GPL(__page_file_mapping);
3545 pgoff_t __page_file_index(struct page *page)
3547 swp_entry_t swap = { .val = page_private(page) };
3548 return swp_offset(swap);
3550 EXPORT_SYMBOL_GPL(__page_file_index);
3553 * add_swap_count_continuation - called when a swap count is duplicated
3554 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3555 * page of the original vmalloc'ed swap_map, to hold the continuation count
3556 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3557 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3559 * These continuation pages are seldom referenced: the common paths all work
3560 * on the original swap_map, only referring to a continuation page when the
3561 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3563 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3564 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3565 * can be called after dropping locks.
3567 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3569 struct swap_info_struct *si;
3570 struct swap_cluster_info *ci;
3573 struct page *list_page;
3575 unsigned char count;
3579 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3580 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3582 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3584 si = get_swap_device(entry);
3587 * An acceptable race has occurred since the failing
3588 * __swap_duplicate(): the swap device may be swapoff
3592 spin_lock(&si->lock);
3594 offset = swp_offset(entry);
3596 ci = lock_cluster(si, offset);
3598 count = swap_count(si->swap_map[offset]);
3600 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3602 * The higher the swap count, the more likely it is that tasks
3603 * will race to add swap count continuation: we need to avoid
3604 * over-provisioning.
3615 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3616 * no architecture is using highmem pages for kernel page tables: so it
3617 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3619 head = vmalloc_to_page(si->swap_map + offset);
3620 offset &= ~PAGE_MASK;
3622 spin_lock(&si->cont_lock);
3624 * Page allocation does not initialize the page's lru field,
3625 * but it does always reset its private field.
3627 if (!page_private(head)) {
3628 BUG_ON(count & COUNT_CONTINUED);
3629 INIT_LIST_HEAD(&head->lru);
3630 set_page_private(head, SWP_CONTINUED);
3631 si->flags |= SWP_CONTINUED;
3634 list_for_each_entry(list_page, &head->lru, lru) {
3638 * If the previous map said no continuation, but we've found
3639 * a continuation page, free our allocation and use this one.
3641 if (!(count & COUNT_CONTINUED))
3642 goto out_unlock_cont;
3644 map = kmap_atomic(list_page) + offset;
3649 * If this continuation count now has some space in it,
3650 * free our allocation and use this one.
3652 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3653 goto out_unlock_cont;
3656 list_add_tail(&page->lru, &head->lru);
3657 page = NULL; /* now it's attached, don't free it */
3659 spin_unlock(&si->cont_lock);
3662 spin_unlock(&si->lock);
3663 put_swap_device(si);
3671 * swap_count_continued - when the original swap_map count is incremented
3672 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3673 * into, carry if so, or else fail until a new continuation page is allocated;
3674 * when the original swap_map count is decremented from 0 with continuation,
3675 * borrow from the continuation and report whether it still holds more.
3676 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3679 static bool swap_count_continued(struct swap_info_struct *si,
3680 pgoff_t offset, unsigned char count)
3687 head = vmalloc_to_page(si->swap_map + offset);
3688 if (page_private(head) != SWP_CONTINUED) {
3689 BUG_ON(count & COUNT_CONTINUED);
3690 return false; /* need to add count continuation */
3693 spin_lock(&si->cont_lock);
3694 offset &= ~PAGE_MASK;
3695 page = list_next_entry(head, lru);
3696 map = kmap_atomic(page) + offset;
3698 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3699 goto init_map; /* jump over SWAP_CONT_MAX checks */
3701 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3703 * Think of how you add 1 to 999
3705 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3707 page = list_next_entry(page, lru);
3708 BUG_ON(page == head);
3709 map = kmap_atomic(page) + offset;
3711 if (*map == SWAP_CONT_MAX) {
3713 page = list_next_entry(page, lru);
3715 ret = false; /* add count continuation */
3718 map = kmap_atomic(page) + offset;
3719 init_map: *map = 0; /* we didn't zero the page */
3723 while ((page = list_prev_entry(page, lru)) != head) {
3724 map = kmap_atomic(page) + offset;
3725 *map = COUNT_CONTINUED;
3728 ret = true; /* incremented */
3730 } else { /* decrementing */
3732 * Think of how you subtract 1 from 1000
3734 BUG_ON(count != COUNT_CONTINUED);
3735 while (*map == COUNT_CONTINUED) {
3737 page = list_next_entry(page, lru);
3738 BUG_ON(page == head);
3739 map = kmap_atomic(page) + offset;
3746 while ((page = list_prev_entry(page, lru)) != head) {
3747 map = kmap_atomic(page) + offset;
3748 *map = SWAP_CONT_MAX | count;
3749 count = COUNT_CONTINUED;
3752 ret = count == COUNT_CONTINUED;
3755 spin_unlock(&si->cont_lock);
3760 * free_swap_count_continuations - swapoff free all the continuation pages
3761 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3763 static void free_swap_count_continuations(struct swap_info_struct *si)
3767 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3769 head = vmalloc_to_page(si->swap_map + offset);
3770 if (page_private(head)) {
3771 struct page *page, *next;
3773 list_for_each_entry_safe(page, next, &head->lru, lru) {
3774 list_del(&page->lru);
3781 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3782 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3784 struct swap_info_struct *si, *next;
3785 int nid = page_to_nid(page);
3787 if (!(gfp_mask & __GFP_IO))
3790 if (!blk_cgroup_congested())
3794 * We've already scheduled a throttle, avoid taking the global swap
3797 if (current->throttle_queue)
3800 spin_lock(&swap_avail_lock);
3801 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3804 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3808 spin_unlock(&swap_avail_lock);
3812 static int __init swapfile_init(void)
3816 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3818 if (!swap_avail_heads) {
3819 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3824 plist_head_init(&swap_avail_heads[nid]);
3828 subsys_initcall(swapfile_init);