ASoC: mediatek: mt8192-mt6359: Make i2s9 share the clock from i2s8
[platform/kernel/linux-starfive.git] / mm / swapfile.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8
9 #include <linux/blkdev.h>
10 #include <linux/mm.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
44
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
48 #include "swap.h"
49
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
51                                  unsigned char);
52 static void free_swap_count_continuations(struct swap_info_struct *);
53
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
57 /*
58  * Some modules use swappable objects and may try to swap them out under
59  * memory pressure (via the shrinker). Before doing so, they may wish to
60  * check to see if any swap space is available.
61  */
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
66
67 static const char Bad_file[] = "Bad swap file entry ";
68 static const char Unused_file[] = "Unused swap file entry ";
69 static const char Bad_offset[] = "Bad swap offset entry ";
70 static const char Unused_offset[] = "Unused swap offset entry ";
71
72 /*
73  * all active swap_info_structs
74  * protected with swap_lock, and ordered by priority.
75  */
76 static PLIST_HEAD(swap_active_head);
77
78 /*
79  * all available (active, not full) swap_info_structs
80  * protected with swap_avail_lock, ordered by priority.
81  * This is used by folio_alloc_swap() instead of swap_active_head
82  * because swap_active_head includes all swap_info_structs,
83  * but folio_alloc_swap() doesn't need to look at full ones.
84  * This uses its own lock instead of swap_lock because when a
85  * swap_info_struct changes between not-full/full, it needs to
86  * add/remove itself to/from this list, but the swap_info_struct->lock
87  * is held and the locking order requires swap_lock to be taken
88  * before any swap_info_struct->lock.
89  */
90 static struct plist_head *swap_avail_heads;
91 static DEFINE_SPINLOCK(swap_avail_lock);
92
93 struct swap_info_struct *swap_info[MAX_SWAPFILES];
94
95 static DEFINE_MUTEX(swapon_mutex);
96
97 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
98 /* Activity counter to indicate that a swapon or swapoff has occurred */
99 static atomic_t proc_poll_event = ATOMIC_INIT(0);
100
101 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
102
103 static struct swap_info_struct *swap_type_to_swap_info(int type)
104 {
105         if (type >= MAX_SWAPFILES)
106                 return NULL;
107
108         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
109 }
110
111 static inline unsigned char swap_count(unsigned char ent)
112 {
113         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
114 }
115
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY             0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED           0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL               0x4
125
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128                                  unsigned long offset, unsigned long flags)
129 {
130         swp_entry_t entry = swp_entry(si->type, offset);
131         struct page *page;
132         int ret = 0;
133
134         page = find_get_page(swap_address_space(entry), offset);
135         if (!page)
136                 return 0;
137         /*
138          * When this function is called from scan_swap_map_slots() and it's
139          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140          * here. We have to use trylock for avoiding deadlock. This is a special
141          * case and you should use try_to_free_swap() with explicit lock_page()
142          * in usual operations.
143          */
144         if (trylock_page(page)) {
145                 if ((flags & TTRS_ANYWAY) ||
146                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148                         ret = try_to_free_swap(page);
149                 unlock_page(page);
150         }
151         put_page(page);
152         return ret;
153 }
154
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157         struct rb_node *rb = rb_first(&sis->swap_extent_root);
158         return rb_entry(rb, struct swap_extent, rb_node);
159 }
160
161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163         struct rb_node *rb = rb_next(&se->rb_node);
164         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static int discard_swap(struct swap_info_struct *si)
172 {
173         struct swap_extent *se;
174         sector_t start_block;
175         sector_t nr_blocks;
176         int err = 0;
177
178         /* Do not discard the swap header page! */
179         se = first_se(si);
180         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182         if (nr_blocks) {
183                 err = blkdev_issue_discard(si->bdev, start_block,
184                                 nr_blocks, GFP_KERNEL);
185                 if (err)
186                         return err;
187                 cond_resched();
188         }
189
190         for (se = next_se(se); se; se = next_se(se)) {
191                 start_block = se->start_block << (PAGE_SHIFT - 9);
192                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193
194                 err = blkdev_issue_discard(si->bdev, start_block,
195                                 nr_blocks, GFP_KERNEL);
196                 if (err)
197                         break;
198
199                 cond_resched();
200         }
201         return err;             /* That will often be -EOPNOTSUPP */
202 }
203
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207         struct swap_extent *se;
208         struct rb_node *rb;
209
210         rb = sis->swap_extent_root.rb_node;
211         while (rb) {
212                 se = rb_entry(rb, struct swap_extent, rb_node);
213                 if (offset < se->start_page)
214                         rb = rb->rb_left;
215                 else if (offset >= se->start_page + se->nr_pages)
216                         rb = rb->rb_right;
217                 else
218                         return se;
219         }
220         /* It *must* be present */
221         BUG();
222 }
223
224 sector_t swap_page_sector(struct page *page)
225 {
226         struct swap_info_struct *sis = page_swap_info(page);
227         struct swap_extent *se;
228         sector_t sector;
229         pgoff_t offset;
230
231         offset = __page_file_index(page);
232         se = offset_to_swap_extent(sis, offset);
233         sector = se->start_block + (offset - se->start_page);
234         return sector << (PAGE_SHIFT - 9);
235 }
236
237 /*
238  * swap allocation tell device that a cluster of swap can now be discarded,
239  * to allow the swap device to optimize its wear-levelling.
240  */
241 static void discard_swap_cluster(struct swap_info_struct *si,
242                                  pgoff_t start_page, pgoff_t nr_pages)
243 {
244         struct swap_extent *se = offset_to_swap_extent(si, start_page);
245
246         while (nr_pages) {
247                 pgoff_t offset = start_page - se->start_page;
248                 sector_t start_block = se->start_block + offset;
249                 sector_t nr_blocks = se->nr_pages - offset;
250
251                 if (nr_blocks > nr_pages)
252                         nr_blocks = nr_pages;
253                 start_page += nr_blocks;
254                 nr_pages -= nr_blocks;
255
256                 start_block <<= PAGE_SHIFT - 9;
257                 nr_blocks <<= PAGE_SHIFT - 9;
258                 if (blkdev_issue_discard(si->bdev, start_block,
259                                         nr_blocks, GFP_NOIO))
260                         break;
261
262                 se = next_se(se);
263         }
264 }
265
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
268
269 #define swap_entry_size(size)   (size)
270 #else
271 #define SWAPFILE_CLUSTER        256
272
273 /*
274  * Define swap_entry_size() as constant to let compiler to optimize
275  * out some code if !CONFIG_THP_SWAP
276  */
277 #define swap_entry_size(size)   1
278 #endif
279 #define LATENCY_LIMIT           256
280
281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282         unsigned int flag)
283 {
284         info->flags = flag;
285 }
286
287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289         return info->data;
290 }
291
292 static inline void cluster_set_count(struct swap_cluster_info *info,
293                                      unsigned int c)
294 {
295         info->data = c;
296 }
297
298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299                                          unsigned int c, unsigned int f)
300 {
301         info->flags = f;
302         info->data = c;
303 }
304
305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307         return info->data;
308 }
309
310 static inline void cluster_set_next(struct swap_cluster_info *info,
311                                     unsigned int n)
312 {
313         info->data = n;
314 }
315
316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317                                          unsigned int n, unsigned int f)
318 {
319         info->flags = f;
320         info->data = n;
321 }
322
323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325         return info->flags & CLUSTER_FLAG_FREE;
326 }
327
328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330         return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332
333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335         info->flags = CLUSTER_FLAG_NEXT_NULL;
336         info->data = 0;
337 }
338
339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341         if (IS_ENABLED(CONFIG_THP_SWAP))
342                 return info->flags & CLUSTER_FLAG_HUGE;
343         return false;
344 }
345
346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348         info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352                                                      unsigned long offset)
353 {
354         struct swap_cluster_info *ci;
355
356         ci = si->cluster_info;
357         if (ci) {
358                 ci += offset / SWAPFILE_CLUSTER;
359                 spin_lock(&ci->lock);
360         }
361         return ci;
362 }
363
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366         if (ci)
367                 spin_unlock(&ci->lock);
368 }
369
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375                 struct swap_info_struct *si, unsigned long offset)
376 {
377         struct swap_cluster_info *ci;
378
379         /* Try to use fine-grained SSD-style locking if available: */
380         ci = lock_cluster(si, offset);
381         /* Otherwise, fall back to traditional, coarse locking: */
382         if (!ci)
383                 spin_lock(&si->lock);
384
385         return ci;
386 }
387
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389                                                struct swap_cluster_info *ci)
390 {
391         if (ci)
392                 unlock_cluster(ci);
393         else
394                 spin_unlock(&si->lock);
395 }
396
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399         return cluster_is_null(&list->head);
400 }
401
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404         return cluster_next(&list->head);
405 }
406
407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409         cluster_set_null(&list->head);
410         cluster_set_null(&list->tail);
411 }
412
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414                                   struct swap_cluster_info *ci,
415                                   unsigned int idx)
416 {
417         if (cluster_list_empty(list)) {
418                 cluster_set_next_flag(&list->head, idx, 0);
419                 cluster_set_next_flag(&list->tail, idx, 0);
420         } else {
421                 struct swap_cluster_info *ci_tail;
422                 unsigned int tail = cluster_next(&list->tail);
423
424                 /*
425                  * Nested cluster lock, but both cluster locks are
426                  * only acquired when we held swap_info_struct->lock
427                  */
428                 ci_tail = ci + tail;
429                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430                 cluster_set_next(ci_tail, idx);
431                 spin_unlock(&ci_tail->lock);
432                 cluster_set_next_flag(&list->tail, idx, 0);
433         }
434 }
435
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437                                            struct swap_cluster_info *ci)
438 {
439         unsigned int idx;
440
441         idx = cluster_next(&list->head);
442         if (cluster_next(&list->tail) == idx) {
443                 cluster_set_null(&list->head);
444                 cluster_set_null(&list->tail);
445         } else
446                 cluster_set_next_flag(&list->head,
447                                       cluster_next(&ci[idx]), 0);
448
449         return idx;
450 }
451
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454                 unsigned int idx)
455 {
456         /*
457          * If scan_swap_map_slots() can't find a free cluster, it will check
458          * si->swap_map directly. To make sure the discarding cluster isn't
459          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460          * It will be cleared after discard
461          */
462         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464
465         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466
467         schedule_work(&si->discard_work);
468 }
469
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472         struct swap_cluster_info *ci = si->cluster_info;
473
474         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475         cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484         struct swap_cluster_info *info, *ci;
485         unsigned int idx;
486
487         info = si->cluster_info;
488
489         while (!cluster_list_empty(&si->discard_clusters)) {
490                 idx = cluster_list_del_first(&si->discard_clusters, info);
491                 spin_unlock(&si->lock);
492
493                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494                                 SWAPFILE_CLUSTER);
495
496                 spin_lock(&si->lock);
497                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498                 __free_cluster(si, idx);
499                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500                                 0, SWAPFILE_CLUSTER);
501                 unlock_cluster(ci);
502         }
503 }
504
505 static void swap_discard_work(struct work_struct *work)
506 {
507         struct swap_info_struct *si;
508
509         si = container_of(work, struct swap_info_struct, discard_work);
510
511         spin_lock(&si->lock);
512         swap_do_scheduled_discard(si);
513         spin_unlock(&si->lock);
514 }
515
516 static void swap_users_ref_free(struct percpu_ref *ref)
517 {
518         struct swap_info_struct *si;
519
520         si = container_of(ref, struct swap_info_struct, users);
521         complete(&si->comp);
522 }
523
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
525 {
526         struct swap_cluster_info *ci = si->cluster_info;
527
528         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529         cluster_list_del_first(&si->free_clusters, ci);
530         cluster_set_count_flag(ci + idx, 0, 0);
531 }
532
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
534 {
535         struct swap_cluster_info *ci = si->cluster_info + idx;
536
537         VM_BUG_ON(cluster_count(ci) != 0);
538         /*
539          * If the swap is discardable, prepare discard the cluster
540          * instead of free it immediately. The cluster will be freed
541          * after discard.
542          */
543         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545                 swap_cluster_schedule_discard(si, idx);
546                 return;
547         }
548
549         __free_cluster(si, idx);
550 }
551
552 /*
553  * The cluster corresponding to page_nr will be used. The cluster will be
554  * removed from free cluster list and its usage counter will be increased.
555  */
556 static void inc_cluster_info_page(struct swap_info_struct *p,
557         struct swap_cluster_info *cluster_info, unsigned long page_nr)
558 {
559         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
560
561         if (!cluster_info)
562                 return;
563         if (cluster_is_free(&cluster_info[idx]))
564                 alloc_cluster(p, idx);
565
566         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
567         cluster_set_count(&cluster_info[idx],
568                 cluster_count(&cluster_info[idx]) + 1);
569 }
570
571 /*
572  * The cluster corresponding to page_nr decreases one usage. If the usage
573  * counter becomes 0, which means no page in the cluster is in using, we can
574  * optionally discard the cluster and add it to free cluster list.
575  */
576 static void dec_cluster_info_page(struct swap_info_struct *p,
577         struct swap_cluster_info *cluster_info, unsigned long page_nr)
578 {
579         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
580
581         if (!cluster_info)
582                 return;
583
584         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
585         cluster_set_count(&cluster_info[idx],
586                 cluster_count(&cluster_info[idx]) - 1);
587
588         if (cluster_count(&cluster_info[idx]) == 0)
589                 free_cluster(p, idx);
590 }
591
592 /*
593  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
594  * cluster list. Avoiding such abuse to avoid list corruption.
595  */
596 static bool
597 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
598         unsigned long offset)
599 {
600         struct percpu_cluster *percpu_cluster;
601         bool conflict;
602
603         offset /= SWAPFILE_CLUSTER;
604         conflict = !cluster_list_empty(&si->free_clusters) &&
605                 offset != cluster_list_first(&si->free_clusters) &&
606                 cluster_is_free(&si->cluster_info[offset]);
607
608         if (!conflict)
609                 return false;
610
611         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
612         cluster_set_null(&percpu_cluster->index);
613         return true;
614 }
615
616 /*
617  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
618  * might involve allocating a new cluster for current CPU too.
619  */
620 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
621         unsigned long *offset, unsigned long *scan_base)
622 {
623         struct percpu_cluster *cluster;
624         struct swap_cluster_info *ci;
625         unsigned long tmp, max;
626
627 new_cluster:
628         cluster = this_cpu_ptr(si->percpu_cluster);
629         if (cluster_is_null(&cluster->index)) {
630                 if (!cluster_list_empty(&si->free_clusters)) {
631                         cluster->index = si->free_clusters.head;
632                         cluster->next = cluster_next(&cluster->index) *
633                                         SWAPFILE_CLUSTER;
634                 } else if (!cluster_list_empty(&si->discard_clusters)) {
635                         /*
636                          * we don't have free cluster but have some clusters in
637                          * discarding, do discard now and reclaim them, then
638                          * reread cluster_next_cpu since we dropped si->lock
639                          */
640                         swap_do_scheduled_discard(si);
641                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
642                         *offset = *scan_base;
643                         goto new_cluster;
644                 } else
645                         return false;
646         }
647
648         /*
649          * Other CPUs can use our cluster if they can't find a free cluster,
650          * check if there is still free entry in the cluster
651          */
652         tmp = cluster->next;
653         max = min_t(unsigned long, si->max,
654                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
655         if (tmp < max) {
656                 ci = lock_cluster(si, tmp);
657                 while (tmp < max) {
658                         if (!si->swap_map[tmp])
659                                 break;
660                         tmp++;
661                 }
662                 unlock_cluster(ci);
663         }
664         if (tmp >= max) {
665                 cluster_set_null(&cluster->index);
666                 goto new_cluster;
667         }
668         cluster->next = tmp + 1;
669         *offset = tmp;
670         *scan_base = tmp;
671         return true;
672 }
673
674 static void __del_from_avail_list(struct swap_info_struct *p)
675 {
676         int nid;
677
678         for_each_node(nid)
679                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
680 }
681
682 static void del_from_avail_list(struct swap_info_struct *p)
683 {
684         spin_lock(&swap_avail_lock);
685         __del_from_avail_list(p);
686         spin_unlock(&swap_avail_lock);
687 }
688
689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
690                              unsigned int nr_entries)
691 {
692         unsigned int end = offset + nr_entries - 1;
693
694         if (offset == si->lowest_bit)
695                 si->lowest_bit += nr_entries;
696         if (end == si->highest_bit)
697                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
698         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
699         if (si->inuse_pages == si->pages) {
700                 si->lowest_bit = si->max;
701                 si->highest_bit = 0;
702                 del_from_avail_list(si);
703         }
704 }
705
706 static void add_to_avail_list(struct swap_info_struct *p)
707 {
708         int nid;
709
710         spin_lock(&swap_avail_lock);
711         for_each_node(nid) {
712                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
713                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
714         }
715         spin_unlock(&swap_avail_lock);
716 }
717
718 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
719                             unsigned int nr_entries)
720 {
721         unsigned long begin = offset;
722         unsigned long end = offset + nr_entries - 1;
723         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
724
725         if (offset < si->lowest_bit)
726                 si->lowest_bit = offset;
727         if (end > si->highest_bit) {
728                 bool was_full = !si->highest_bit;
729
730                 WRITE_ONCE(si->highest_bit, end);
731                 if (was_full && (si->flags & SWP_WRITEOK))
732                         add_to_avail_list(si);
733         }
734         atomic_long_add(nr_entries, &nr_swap_pages);
735         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
736         if (si->flags & SWP_BLKDEV)
737                 swap_slot_free_notify =
738                         si->bdev->bd_disk->fops->swap_slot_free_notify;
739         else
740                 swap_slot_free_notify = NULL;
741         while (offset <= end) {
742                 arch_swap_invalidate_page(si->type, offset);
743                 frontswap_invalidate_page(si->type, offset);
744                 if (swap_slot_free_notify)
745                         swap_slot_free_notify(si->bdev, offset);
746                 offset++;
747         }
748         clear_shadow_from_swap_cache(si->type, begin, end);
749 }
750
751 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
752 {
753         unsigned long prev;
754
755         if (!(si->flags & SWP_SOLIDSTATE)) {
756                 si->cluster_next = next;
757                 return;
758         }
759
760         prev = this_cpu_read(*si->cluster_next_cpu);
761         /*
762          * Cross the swap address space size aligned trunk, choose
763          * another trunk randomly to avoid lock contention on swap
764          * address space if possible.
765          */
766         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
767             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
768                 /* No free swap slots available */
769                 if (si->highest_bit <= si->lowest_bit)
770                         return;
771                 next = si->lowest_bit +
772                         prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
773                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
774                 next = max_t(unsigned int, next, si->lowest_bit);
775         }
776         this_cpu_write(*si->cluster_next_cpu, next);
777 }
778
779 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
780                                              unsigned long offset)
781 {
782         if (data_race(!si->swap_map[offset])) {
783                 spin_lock(&si->lock);
784                 return true;
785         }
786
787         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
788                 spin_lock(&si->lock);
789                 return true;
790         }
791
792         return false;
793 }
794
795 static int scan_swap_map_slots(struct swap_info_struct *si,
796                                unsigned char usage, int nr,
797                                swp_entry_t slots[])
798 {
799         struct swap_cluster_info *ci;
800         unsigned long offset;
801         unsigned long scan_base;
802         unsigned long last_in_cluster = 0;
803         int latency_ration = LATENCY_LIMIT;
804         int n_ret = 0;
805         bool scanned_many = false;
806
807         /*
808          * We try to cluster swap pages by allocating them sequentially
809          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
810          * way, however, we resort to first-free allocation, starting
811          * a new cluster.  This prevents us from scattering swap pages
812          * all over the entire swap partition, so that we reduce
813          * overall disk seek times between swap pages.  -- sct
814          * But we do now try to find an empty cluster.  -Andrea
815          * And we let swap pages go all over an SSD partition.  Hugh
816          */
817
818         si->flags += SWP_SCANNING;
819         /*
820          * Use percpu scan base for SSD to reduce lock contention on
821          * cluster and swap cache.  For HDD, sequential access is more
822          * important.
823          */
824         if (si->flags & SWP_SOLIDSTATE)
825                 scan_base = this_cpu_read(*si->cluster_next_cpu);
826         else
827                 scan_base = si->cluster_next;
828         offset = scan_base;
829
830         /* SSD algorithm */
831         if (si->cluster_info) {
832                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
833                         goto scan;
834         } else if (unlikely(!si->cluster_nr--)) {
835                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
836                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
837                         goto checks;
838                 }
839
840                 spin_unlock(&si->lock);
841
842                 /*
843                  * If seek is expensive, start searching for new cluster from
844                  * start of partition, to minimize the span of allocated swap.
845                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
846                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
847                  */
848                 scan_base = offset = si->lowest_bit;
849                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
850
851                 /* Locate the first empty (unaligned) cluster */
852                 for (; last_in_cluster <= si->highest_bit; offset++) {
853                         if (si->swap_map[offset])
854                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
855                         else if (offset == last_in_cluster) {
856                                 spin_lock(&si->lock);
857                                 offset -= SWAPFILE_CLUSTER - 1;
858                                 si->cluster_next = offset;
859                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
860                                 goto checks;
861                         }
862                         if (unlikely(--latency_ration < 0)) {
863                                 cond_resched();
864                                 latency_ration = LATENCY_LIMIT;
865                         }
866                 }
867
868                 offset = scan_base;
869                 spin_lock(&si->lock);
870                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
871         }
872
873 checks:
874         if (si->cluster_info) {
875                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
876                 /* take a break if we already got some slots */
877                         if (n_ret)
878                                 goto done;
879                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
880                                                         &scan_base))
881                                 goto scan;
882                 }
883         }
884         if (!(si->flags & SWP_WRITEOK))
885                 goto no_page;
886         if (!si->highest_bit)
887                 goto no_page;
888         if (offset > si->highest_bit)
889                 scan_base = offset = si->lowest_bit;
890
891         ci = lock_cluster(si, offset);
892         /* reuse swap entry of cache-only swap if not busy. */
893         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
894                 int swap_was_freed;
895                 unlock_cluster(ci);
896                 spin_unlock(&si->lock);
897                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
898                 spin_lock(&si->lock);
899                 /* entry was freed successfully, try to use this again */
900                 if (swap_was_freed)
901                         goto checks;
902                 goto scan; /* check next one */
903         }
904
905         if (si->swap_map[offset]) {
906                 unlock_cluster(ci);
907                 if (!n_ret)
908                         goto scan;
909                 else
910                         goto done;
911         }
912         WRITE_ONCE(si->swap_map[offset], usage);
913         inc_cluster_info_page(si, si->cluster_info, offset);
914         unlock_cluster(ci);
915
916         swap_range_alloc(si, offset, 1);
917         slots[n_ret++] = swp_entry(si->type, offset);
918
919         /* got enough slots or reach max slots? */
920         if ((n_ret == nr) || (offset >= si->highest_bit))
921                 goto done;
922
923         /* search for next available slot */
924
925         /* time to take a break? */
926         if (unlikely(--latency_ration < 0)) {
927                 if (n_ret)
928                         goto done;
929                 spin_unlock(&si->lock);
930                 cond_resched();
931                 spin_lock(&si->lock);
932                 latency_ration = LATENCY_LIMIT;
933         }
934
935         /* try to get more slots in cluster */
936         if (si->cluster_info) {
937                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
938                         goto checks;
939         } else if (si->cluster_nr && !si->swap_map[++offset]) {
940                 /* non-ssd case, still more slots in cluster? */
941                 --si->cluster_nr;
942                 goto checks;
943         }
944
945         /*
946          * Even if there's no free clusters available (fragmented),
947          * try to scan a little more quickly with lock held unless we
948          * have scanned too many slots already.
949          */
950         if (!scanned_many) {
951                 unsigned long scan_limit;
952
953                 if (offset < scan_base)
954                         scan_limit = scan_base;
955                 else
956                         scan_limit = si->highest_bit;
957                 for (; offset <= scan_limit && --latency_ration > 0;
958                      offset++) {
959                         if (!si->swap_map[offset])
960                                 goto checks;
961                 }
962         }
963
964 done:
965         set_cluster_next(si, offset + 1);
966         si->flags -= SWP_SCANNING;
967         return n_ret;
968
969 scan:
970         spin_unlock(&si->lock);
971         while (++offset <= READ_ONCE(si->highest_bit)) {
972                 if (swap_offset_available_and_locked(si, offset))
973                         goto checks;
974                 if (unlikely(--latency_ration < 0)) {
975                         cond_resched();
976                         latency_ration = LATENCY_LIMIT;
977                         scanned_many = true;
978                 }
979         }
980         offset = si->lowest_bit;
981         while (offset < scan_base) {
982                 if (swap_offset_available_and_locked(si, offset))
983                         goto checks;
984                 if (unlikely(--latency_ration < 0)) {
985                         cond_resched();
986                         latency_ration = LATENCY_LIMIT;
987                         scanned_many = true;
988                 }
989                 offset++;
990         }
991         spin_lock(&si->lock);
992
993 no_page:
994         si->flags -= SWP_SCANNING;
995         return n_ret;
996 }
997
998 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
999 {
1000         unsigned long idx;
1001         struct swap_cluster_info *ci;
1002         unsigned long offset;
1003
1004         /*
1005          * Should not even be attempting cluster allocations when huge
1006          * page swap is disabled.  Warn and fail the allocation.
1007          */
1008         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1009                 VM_WARN_ON_ONCE(1);
1010                 return 0;
1011         }
1012
1013         if (cluster_list_empty(&si->free_clusters))
1014                 return 0;
1015
1016         idx = cluster_list_first(&si->free_clusters);
1017         offset = idx * SWAPFILE_CLUSTER;
1018         ci = lock_cluster(si, offset);
1019         alloc_cluster(si, idx);
1020         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1021
1022         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1023         unlock_cluster(ci);
1024         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1025         *slot = swp_entry(si->type, offset);
1026
1027         return 1;
1028 }
1029
1030 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1031 {
1032         unsigned long offset = idx * SWAPFILE_CLUSTER;
1033         struct swap_cluster_info *ci;
1034
1035         ci = lock_cluster(si, offset);
1036         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1037         cluster_set_count_flag(ci, 0, 0);
1038         free_cluster(si, idx);
1039         unlock_cluster(ci);
1040         swap_range_free(si, offset, SWAPFILE_CLUSTER);
1041 }
1042
1043 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1044 {
1045         unsigned long size = swap_entry_size(entry_size);
1046         struct swap_info_struct *si, *next;
1047         long avail_pgs;
1048         int n_ret = 0;
1049         int node;
1050
1051         /* Only single cluster request supported */
1052         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1053
1054         spin_lock(&swap_avail_lock);
1055
1056         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1057         if (avail_pgs <= 0) {
1058                 spin_unlock(&swap_avail_lock);
1059                 goto noswap;
1060         }
1061
1062         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1063
1064         atomic_long_sub(n_goal * size, &nr_swap_pages);
1065
1066 start_over:
1067         node = numa_node_id();
1068         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1069                 /* requeue si to after same-priority siblings */
1070                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1071                 spin_unlock(&swap_avail_lock);
1072                 spin_lock(&si->lock);
1073                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1074                         spin_lock(&swap_avail_lock);
1075                         if (plist_node_empty(&si->avail_lists[node])) {
1076                                 spin_unlock(&si->lock);
1077                                 goto nextsi;
1078                         }
1079                         WARN(!si->highest_bit,
1080                              "swap_info %d in list but !highest_bit\n",
1081                              si->type);
1082                         WARN(!(si->flags & SWP_WRITEOK),
1083                              "swap_info %d in list but !SWP_WRITEOK\n",
1084                              si->type);
1085                         __del_from_avail_list(si);
1086                         spin_unlock(&si->lock);
1087                         goto nextsi;
1088                 }
1089                 if (size == SWAPFILE_CLUSTER) {
1090                         if (si->flags & SWP_BLKDEV)
1091                                 n_ret = swap_alloc_cluster(si, swp_entries);
1092                 } else
1093                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1094                                                     n_goal, swp_entries);
1095                 spin_unlock(&si->lock);
1096                 if (n_ret || size == SWAPFILE_CLUSTER)
1097                         goto check_out;
1098                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1099                         si->type);
1100
1101                 spin_lock(&swap_avail_lock);
1102 nextsi:
1103                 /*
1104                  * if we got here, it's likely that si was almost full before,
1105                  * and since scan_swap_map_slots() can drop the si->lock,
1106                  * multiple callers probably all tried to get a page from the
1107                  * same si and it filled up before we could get one; or, the si
1108                  * filled up between us dropping swap_avail_lock and taking
1109                  * si->lock. Since we dropped the swap_avail_lock, the
1110                  * swap_avail_head list may have been modified; so if next is
1111                  * still in the swap_avail_head list then try it, otherwise
1112                  * start over if we have not gotten any slots.
1113                  */
1114                 if (plist_node_empty(&next->avail_lists[node]))
1115                         goto start_over;
1116         }
1117
1118         spin_unlock(&swap_avail_lock);
1119
1120 check_out:
1121         if (n_ret < n_goal)
1122                 atomic_long_add((long)(n_goal - n_ret) * size,
1123                                 &nr_swap_pages);
1124 noswap:
1125         return n_ret;
1126 }
1127
1128 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1129 {
1130         struct swap_info_struct *p;
1131         unsigned long offset;
1132
1133         if (!entry.val)
1134                 goto out;
1135         p = swp_swap_info(entry);
1136         if (!p)
1137                 goto bad_nofile;
1138         if (data_race(!(p->flags & SWP_USED)))
1139                 goto bad_device;
1140         offset = swp_offset(entry);
1141         if (offset >= p->max)
1142                 goto bad_offset;
1143         if (data_race(!p->swap_map[swp_offset(entry)]))
1144                 goto bad_free;
1145         return p;
1146
1147 bad_free:
1148         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1149         goto out;
1150 bad_offset:
1151         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1152         goto out;
1153 bad_device:
1154         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1155         goto out;
1156 bad_nofile:
1157         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1158 out:
1159         return NULL;
1160 }
1161
1162 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1163                                         struct swap_info_struct *q)
1164 {
1165         struct swap_info_struct *p;
1166
1167         p = _swap_info_get(entry);
1168
1169         if (p != q) {
1170                 if (q != NULL)
1171                         spin_unlock(&q->lock);
1172                 if (p != NULL)
1173                         spin_lock(&p->lock);
1174         }
1175         return p;
1176 }
1177
1178 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1179                                               unsigned long offset,
1180                                               unsigned char usage)
1181 {
1182         unsigned char count;
1183         unsigned char has_cache;
1184
1185         count = p->swap_map[offset];
1186
1187         has_cache = count & SWAP_HAS_CACHE;
1188         count &= ~SWAP_HAS_CACHE;
1189
1190         if (usage == SWAP_HAS_CACHE) {
1191                 VM_BUG_ON(!has_cache);
1192                 has_cache = 0;
1193         } else if (count == SWAP_MAP_SHMEM) {
1194                 /*
1195                  * Or we could insist on shmem.c using a special
1196                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1197                  */
1198                 count = 0;
1199         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1200                 if (count == COUNT_CONTINUED) {
1201                         if (swap_count_continued(p, offset, count))
1202                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1203                         else
1204                                 count = SWAP_MAP_MAX;
1205                 } else
1206                         count--;
1207         }
1208
1209         usage = count | has_cache;
1210         if (usage)
1211                 WRITE_ONCE(p->swap_map[offset], usage);
1212         else
1213                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1214
1215         return usage;
1216 }
1217
1218 /*
1219  * Check whether swap entry is valid in the swap device.  If so,
1220  * return pointer to swap_info_struct, and keep the swap entry valid
1221  * via preventing the swap device from being swapoff, until
1222  * put_swap_device() is called.  Otherwise return NULL.
1223  *
1224  * Notice that swapoff or swapoff+swapon can still happen before the
1225  * percpu_ref_tryget_live() in get_swap_device() or after the
1226  * percpu_ref_put() in put_swap_device() if there isn't any other way
1227  * to prevent swapoff, such as page lock, page table lock, etc.  The
1228  * caller must be prepared for that.  For example, the following
1229  * situation is possible.
1230  *
1231  *   CPU1                               CPU2
1232  *   do_swap_page()
1233  *     ...                              swapoff+swapon
1234  *     __read_swap_cache_async()
1235  *       swapcache_prepare()
1236  *         __swap_duplicate()
1237  *           // check swap_map
1238  *     // verify PTE not changed
1239  *
1240  * In __swap_duplicate(), the swap_map need to be checked before
1241  * changing partly because the specified swap entry may be for another
1242  * swap device which has been swapoff.  And in do_swap_page(), after
1243  * the page is read from the swap device, the PTE is verified not
1244  * changed with the page table locked to check whether the swap device
1245  * has been swapoff or swapoff+swapon.
1246  */
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1248 {
1249         struct swap_info_struct *si;
1250         unsigned long offset;
1251
1252         if (!entry.val)
1253                 goto out;
1254         si = swp_swap_info(entry);
1255         if (!si)
1256                 goto bad_nofile;
1257         if (!percpu_ref_tryget_live(&si->users))
1258                 goto out;
1259         /*
1260          * Guarantee the si->users are checked before accessing other
1261          * fields of swap_info_struct.
1262          *
1263          * Paired with the spin_unlock() after setup_swap_info() in
1264          * enable_swap_info().
1265          */
1266         smp_rmb();
1267         offset = swp_offset(entry);
1268         if (offset >= si->max)
1269                 goto put_out;
1270
1271         return si;
1272 bad_nofile:
1273         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1274 out:
1275         return NULL;
1276 put_out:
1277         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1278         percpu_ref_put(&si->users);
1279         return NULL;
1280 }
1281
1282 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1283                                        swp_entry_t entry)
1284 {
1285         struct swap_cluster_info *ci;
1286         unsigned long offset = swp_offset(entry);
1287         unsigned char usage;
1288
1289         ci = lock_cluster_or_swap_info(p, offset);
1290         usage = __swap_entry_free_locked(p, offset, 1);
1291         unlock_cluster_or_swap_info(p, ci);
1292         if (!usage)
1293                 free_swap_slot(entry);
1294
1295         return usage;
1296 }
1297
1298 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1299 {
1300         struct swap_cluster_info *ci;
1301         unsigned long offset = swp_offset(entry);
1302         unsigned char count;
1303
1304         ci = lock_cluster(p, offset);
1305         count = p->swap_map[offset];
1306         VM_BUG_ON(count != SWAP_HAS_CACHE);
1307         p->swap_map[offset] = 0;
1308         dec_cluster_info_page(p, p->cluster_info, offset);
1309         unlock_cluster(ci);
1310
1311         mem_cgroup_uncharge_swap(entry, 1);
1312         swap_range_free(p, offset, 1);
1313 }
1314
1315 /*
1316  * Caller has made sure that the swap device corresponding to entry
1317  * is still around or has not been recycled.
1318  */
1319 void swap_free(swp_entry_t entry)
1320 {
1321         struct swap_info_struct *p;
1322
1323         p = _swap_info_get(entry);
1324         if (p)
1325                 __swap_entry_free(p, entry);
1326 }
1327
1328 /*
1329  * Called after dropping swapcache to decrease refcnt to swap entries.
1330  */
1331 void put_swap_page(struct page *page, swp_entry_t entry)
1332 {
1333         unsigned long offset = swp_offset(entry);
1334         unsigned long idx = offset / SWAPFILE_CLUSTER;
1335         struct swap_cluster_info *ci;
1336         struct swap_info_struct *si;
1337         unsigned char *map;
1338         unsigned int i, free_entries = 0;
1339         unsigned char val;
1340         int size = swap_entry_size(thp_nr_pages(page));
1341
1342         si = _swap_info_get(entry);
1343         if (!si)
1344                 return;
1345
1346         ci = lock_cluster_or_swap_info(si, offset);
1347         if (size == SWAPFILE_CLUSTER) {
1348                 VM_BUG_ON(!cluster_is_huge(ci));
1349                 map = si->swap_map + offset;
1350                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1351                         val = map[i];
1352                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1353                         if (val == SWAP_HAS_CACHE)
1354                                 free_entries++;
1355                 }
1356                 cluster_clear_huge(ci);
1357                 if (free_entries == SWAPFILE_CLUSTER) {
1358                         unlock_cluster_or_swap_info(si, ci);
1359                         spin_lock(&si->lock);
1360                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1361                         swap_free_cluster(si, idx);
1362                         spin_unlock(&si->lock);
1363                         return;
1364                 }
1365         }
1366         for (i = 0; i < size; i++, entry.val++) {
1367                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1368                         unlock_cluster_or_swap_info(si, ci);
1369                         free_swap_slot(entry);
1370                         if (i == size - 1)
1371                                 return;
1372                         lock_cluster_or_swap_info(si, offset);
1373                 }
1374         }
1375         unlock_cluster_or_swap_info(si, ci);
1376 }
1377
1378 #ifdef CONFIG_THP_SWAP
1379 int split_swap_cluster(swp_entry_t entry)
1380 {
1381         struct swap_info_struct *si;
1382         struct swap_cluster_info *ci;
1383         unsigned long offset = swp_offset(entry);
1384
1385         si = _swap_info_get(entry);
1386         if (!si)
1387                 return -EBUSY;
1388         ci = lock_cluster(si, offset);
1389         cluster_clear_huge(ci);
1390         unlock_cluster(ci);
1391         return 0;
1392 }
1393 #endif
1394
1395 static int swp_entry_cmp(const void *ent1, const void *ent2)
1396 {
1397         const swp_entry_t *e1 = ent1, *e2 = ent2;
1398
1399         return (int)swp_type(*e1) - (int)swp_type(*e2);
1400 }
1401
1402 void swapcache_free_entries(swp_entry_t *entries, int n)
1403 {
1404         struct swap_info_struct *p, *prev;
1405         int i;
1406
1407         if (n <= 0)
1408                 return;
1409
1410         prev = NULL;
1411         p = NULL;
1412
1413         /*
1414          * Sort swap entries by swap device, so each lock is only taken once.
1415          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1416          * so low that it isn't necessary to optimize further.
1417          */
1418         if (nr_swapfiles > 1)
1419                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1420         for (i = 0; i < n; ++i) {
1421                 p = swap_info_get_cont(entries[i], prev);
1422                 if (p)
1423                         swap_entry_free(p, entries[i]);
1424                 prev = p;
1425         }
1426         if (p)
1427                 spin_unlock(&p->lock);
1428 }
1429
1430 /*
1431  * How many references to page are currently swapped out?
1432  * This does not give an exact answer when swap count is continued,
1433  * but does include the high COUNT_CONTINUED flag to allow for that.
1434  */
1435 static int page_swapcount(struct page *page)
1436 {
1437         int count = 0;
1438         struct swap_info_struct *p;
1439         struct swap_cluster_info *ci;
1440         swp_entry_t entry;
1441         unsigned long offset;
1442
1443         entry.val = page_private(page);
1444         p = _swap_info_get(entry);
1445         if (p) {
1446                 offset = swp_offset(entry);
1447                 ci = lock_cluster_or_swap_info(p, offset);
1448                 count = swap_count(p->swap_map[offset]);
1449                 unlock_cluster_or_swap_info(p, ci);
1450         }
1451         return count;
1452 }
1453
1454 int __swap_count(swp_entry_t entry)
1455 {
1456         struct swap_info_struct *si;
1457         pgoff_t offset = swp_offset(entry);
1458         int count = 0;
1459
1460         si = get_swap_device(entry);
1461         if (si) {
1462                 count = swap_count(si->swap_map[offset]);
1463                 put_swap_device(si);
1464         }
1465         return count;
1466 }
1467
1468 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1469 {
1470         int count = 0;
1471         pgoff_t offset = swp_offset(entry);
1472         struct swap_cluster_info *ci;
1473
1474         ci = lock_cluster_or_swap_info(si, offset);
1475         count = swap_count(si->swap_map[offset]);
1476         unlock_cluster_or_swap_info(si, ci);
1477         return count;
1478 }
1479
1480 /*
1481  * How many references to @entry are currently swapped out?
1482  * This does not give an exact answer when swap count is continued,
1483  * but does include the high COUNT_CONTINUED flag to allow for that.
1484  */
1485 int __swp_swapcount(swp_entry_t entry)
1486 {
1487         int count = 0;
1488         struct swap_info_struct *si;
1489
1490         si = get_swap_device(entry);
1491         if (si) {
1492                 count = swap_swapcount(si, entry);
1493                 put_swap_device(si);
1494         }
1495         return count;
1496 }
1497
1498 /*
1499  * How many references to @entry are currently swapped out?
1500  * This considers COUNT_CONTINUED so it returns exact answer.
1501  */
1502 int swp_swapcount(swp_entry_t entry)
1503 {
1504         int count, tmp_count, n;
1505         struct swap_info_struct *p;
1506         struct swap_cluster_info *ci;
1507         struct page *page;
1508         pgoff_t offset;
1509         unsigned char *map;
1510
1511         p = _swap_info_get(entry);
1512         if (!p)
1513                 return 0;
1514
1515         offset = swp_offset(entry);
1516
1517         ci = lock_cluster_or_swap_info(p, offset);
1518
1519         count = swap_count(p->swap_map[offset]);
1520         if (!(count & COUNT_CONTINUED))
1521                 goto out;
1522
1523         count &= ~COUNT_CONTINUED;
1524         n = SWAP_MAP_MAX + 1;
1525
1526         page = vmalloc_to_page(p->swap_map + offset);
1527         offset &= ~PAGE_MASK;
1528         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1529
1530         do {
1531                 page = list_next_entry(page, lru);
1532                 map = kmap_atomic(page);
1533                 tmp_count = map[offset];
1534                 kunmap_atomic(map);
1535
1536                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1537                 n *= (SWAP_CONT_MAX + 1);
1538         } while (tmp_count & COUNT_CONTINUED);
1539 out:
1540         unlock_cluster_or_swap_info(p, ci);
1541         return count;
1542 }
1543
1544 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1545                                          swp_entry_t entry)
1546 {
1547         struct swap_cluster_info *ci;
1548         unsigned char *map = si->swap_map;
1549         unsigned long roffset = swp_offset(entry);
1550         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1551         int i;
1552         bool ret = false;
1553
1554         ci = lock_cluster_or_swap_info(si, offset);
1555         if (!ci || !cluster_is_huge(ci)) {
1556                 if (swap_count(map[roffset]))
1557                         ret = true;
1558                 goto unlock_out;
1559         }
1560         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1561                 if (swap_count(map[offset + i])) {
1562                         ret = true;
1563                         break;
1564                 }
1565         }
1566 unlock_out:
1567         unlock_cluster_or_swap_info(si, ci);
1568         return ret;
1569 }
1570
1571 static bool folio_swapped(struct folio *folio)
1572 {
1573         swp_entry_t entry;
1574         struct swap_info_struct *si;
1575
1576         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1577                 return page_swapcount(&folio->page) != 0;
1578
1579         entry = folio_swap_entry(folio);
1580         si = _swap_info_get(entry);
1581         if (si)
1582                 return swap_page_trans_huge_swapped(si, entry);
1583         return false;
1584 }
1585
1586 /*
1587  * If swap is getting full, or if there are no more mappings of this page,
1588  * then try_to_free_swap is called to free its swap space.
1589  */
1590 int try_to_free_swap(struct page *page)
1591 {
1592         struct folio *folio = page_folio(page);
1593         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1594
1595         if (!folio_test_swapcache(folio))
1596                 return 0;
1597         if (folio_test_writeback(folio))
1598                 return 0;
1599         if (folio_swapped(folio))
1600                 return 0;
1601
1602         /*
1603          * Once hibernation has begun to create its image of memory,
1604          * there's a danger that one of the calls to try_to_free_swap()
1605          * - most probably a call from __try_to_reclaim_swap() while
1606          * hibernation is allocating its own swap pages for the image,
1607          * but conceivably even a call from memory reclaim - will free
1608          * the swap from a page which has already been recorded in the
1609          * image as a clean swapcache page, and then reuse its swap for
1610          * another page of the image.  On waking from hibernation, the
1611          * original page might be freed under memory pressure, then
1612          * later read back in from swap, now with the wrong data.
1613          *
1614          * Hibernation suspends storage while it is writing the image
1615          * to disk so check that here.
1616          */
1617         if (pm_suspended_storage())
1618                 return 0;
1619
1620         delete_from_swap_cache(folio);
1621         folio_set_dirty(folio);
1622         return 1;
1623 }
1624
1625 /*
1626  * Free the swap entry like above, but also try to
1627  * free the page cache entry if it is the last user.
1628  */
1629 int free_swap_and_cache(swp_entry_t entry)
1630 {
1631         struct swap_info_struct *p;
1632         unsigned char count;
1633
1634         if (non_swap_entry(entry))
1635                 return 1;
1636
1637         p = _swap_info_get(entry);
1638         if (p) {
1639                 count = __swap_entry_free(p, entry);
1640                 if (count == SWAP_HAS_CACHE &&
1641                     !swap_page_trans_huge_swapped(p, entry))
1642                         __try_to_reclaim_swap(p, swp_offset(entry),
1643                                               TTRS_UNMAPPED | TTRS_FULL);
1644         }
1645         return p != NULL;
1646 }
1647
1648 #ifdef CONFIG_HIBERNATION
1649
1650 swp_entry_t get_swap_page_of_type(int type)
1651 {
1652         struct swap_info_struct *si = swap_type_to_swap_info(type);
1653         swp_entry_t entry = {0};
1654
1655         if (!si)
1656                 goto fail;
1657
1658         /* This is called for allocating swap entry, not cache */
1659         spin_lock(&si->lock);
1660         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1661                 atomic_long_dec(&nr_swap_pages);
1662         spin_unlock(&si->lock);
1663 fail:
1664         return entry;
1665 }
1666
1667 /*
1668  * Find the swap type that corresponds to given device (if any).
1669  *
1670  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1671  * from 0, in which the swap header is expected to be located.
1672  *
1673  * This is needed for the suspend to disk (aka swsusp).
1674  */
1675 int swap_type_of(dev_t device, sector_t offset)
1676 {
1677         int type;
1678
1679         if (!device)
1680                 return -1;
1681
1682         spin_lock(&swap_lock);
1683         for (type = 0; type < nr_swapfiles; type++) {
1684                 struct swap_info_struct *sis = swap_info[type];
1685
1686                 if (!(sis->flags & SWP_WRITEOK))
1687                         continue;
1688
1689                 if (device == sis->bdev->bd_dev) {
1690                         struct swap_extent *se = first_se(sis);
1691
1692                         if (se->start_block == offset) {
1693                                 spin_unlock(&swap_lock);
1694                                 return type;
1695                         }
1696                 }
1697         }
1698         spin_unlock(&swap_lock);
1699         return -ENODEV;
1700 }
1701
1702 int find_first_swap(dev_t *device)
1703 {
1704         int type;
1705
1706         spin_lock(&swap_lock);
1707         for (type = 0; type < nr_swapfiles; type++) {
1708                 struct swap_info_struct *sis = swap_info[type];
1709
1710                 if (!(sis->flags & SWP_WRITEOK))
1711                         continue;
1712                 *device = sis->bdev->bd_dev;
1713                 spin_unlock(&swap_lock);
1714                 return type;
1715         }
1716         spin_unlock(&swap_lock);
1717         return -ENODEV;
1718 }
1719
1720 /*
1721  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1722  * corresponding to given index in swap_info (swap type).
1723  */
1724 sector_t swapdev_block(int type, pgoff_t offset)
1725 {
1726         struct swap_info_struct *si = swap_type_to_swap_info(type);
1727         struct swap_extent *se;
1728
1729         if (!si || !(si->flags & SWP_WRITEOK))
1730                 return 0;
1731         se = offset_to_swap_extent(si, offset);
1732         return se->start_block + (offset - se->start_page);
1733 }
1734
1735 /*
1736  * Return either the total number of swap pages of given type, or the number
1737  * of free pages of that type (depending on @free)
1738  *
1739  * This is needed for software suspend
1740  */
1741 unsigned int count_swap_pages(int type, int free)
1742 {
1743         unsigned int n = 0;
1744
1745         spin_lock(&swap_lock);
1746         if ((unsigned int)type < nr_swapfiles) {
1747                 struct swap_info_struct *sis = swap_info[type];
1748
1749                 spin_lock(&sis->lock);
1750                 if (sis->flags & SWP_WRITEOK) {
1751                         n = sis->pages;
1752                         if (free)
1753                                 n -= sis->inuse_pages;
1754                 }
1755                 spin_unlock(&sis->lock);
1756         }
1757         spin_unlock(&swap_lock);
1758         return n;
1759 }
1760 #endif /* CONFIG_HIBERNATION */
1761
1762 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1763 {
1764         return pte_same(pte_swp_clear_flags(pte), swp_pte);
1765 }
1766
1767 /*
1768  * No need to decide whether this PTE shares the swap entry with others,
1769  * just let do_wp_page work it out if a write is requested later - to
1770  * force COW, vm_page_prot omits write permission from any private vma.
1771  */
1772 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1773                 unsigned long addr, swp_entry_t entry, struct page *page)
1774 {
1775         struct page *swapcache;
1776         spinlock_t *ptl;
1777         pte_t *pte, new_pte;
1778         int ret = 1;
1779
1780         swapcache = page;
1781         page = ksm_might_need_to_copy(page, vma, addr);
1782         if (unlikely(!page))
1783                 return -ENOMEM;
1784
1785         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1786         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1787                 ret = 0;
1788                 goto out;
1789         }
1790
1791         if (unlikely(!PageUptodate(page))) {
1792                 pte_t pteval;
1793
1794                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795                 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1796                 set_pte_at(vma->vm_mm, addr, pte, pteval);
1797                 swap_free(entry);
1798                 ret = 0;
1799                 goto out;
1800         }
1801
1802         /* See do_swap_page() */
1803         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1804         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1805
1806         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1807         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1808         get_page(page);
1809         if (page == swapcache) {
1810                 rmap_t rmap_flags = RMAP_NONE;
1811
1812                 /*
1813                  * See do_swap_page(): PageWriteback() would be problematic.
1814                  * However, we do a wait_on_page_writeback() just before this
1815                  * call and have the page locked.
1816                  */
1817                 VM_BUG_ON_PAGE(PageWriteback(page), page);
1818                 if (pte_swp_exclusive(*pte))
1819                         rmap_flags |= RMAP_EXCLUSIVE;
1820
1821                 page_add_anon_rmap(page, vma, addr, rmap_flags);
1822         } else { /* ksm created a completely new copy */
1823                 page_add_new_anon_rmap(page, vma, addr);
1824                 lru_cache_add_inactive_or_unevictable(page, vma);
1825         }
1826         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1827         if (pte_swp_soft_dirty(*pte))
1828                 new_pte = pte_mksoft_dirty(new_pte);
1829         if (pte_swp_uffd_wp(*pte))
1830                 new_pte = pte_mkuffd_wp(new_pte);
1831         set_pte_at(vma->vm_mm, addr, pte, new_pte);
1832         swap_free(entry);
1833 out:
1834         pte_unmap_unlock(pte, ptl);
1835         if (page != swapcache) {
1836                 unlock_page(page);
1837                 put_page(page);
1838         }
1839         return ret;
1840 }
1841
1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1843                         unsigned long addr, unsigned long end,
1844                         unsigned int type)
1845 {
1846         struct page *page;
1847         swp_entry_t entry;
1848         pte_t *pte;
1849         struct swap_info_struct *si;
1850         unsigned long offset;
1851         int ret = 0;
1852         volatile unsigned char *swap_map;
1853
1854         si = swap_info[type];
1855         pte = pte_offset_map(pmd, addr);
1856         do {
1857                 if (!is_swap_pte(*pte))
1858                         continue;
1859
1860                 entry = pte_to_swp_entry(*pte);
1861                 if (swp_type(entry) != type)
1862                         continue;
1863
1864                 offset = swp_offset(entry);
1865                 pte_unmap(pte);
1866                 swap_map = &si->swap_map[offset];
1867                 page = lookup_swap_cache(entry, vma, addr);
1868                 if (!page) {
1869                         struct vm_fault vmf = {
1870                                 .vma = vma,
1871                                 .address = addr,
1872                                 .real_address = addr,
1873                                 .pmd = pmd,
1874                         };
1875
1876                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1877                                                 &vmf);
1878                 }
1879                 if (!page) {
1880                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1881                                 goto try_next;
1882                         return -ENOMEM;
1883                 }
1884
1885                 lock_page(page);
1886                 wait_on_page_writeback(page);
1887                 ret = unuse_pte(vma, pmd, addr, entry, page);
1888                 if (ret < 0) {
1889                         unlock_page(page);
1890                         put_page(page);
1891                         goto out;
1892                 }
1893
1894                 try_to_free_swap(page);
1895                 unlock_page(page);
1896                 put_page(page);
1897 try_next:
1898                 pte = pte_offset_map(pmd, addr);
1899         } while (pte++, addr += PAGE_SIZE, addr != end);
1900         pte_unmap(pte - 1);
1901
1902         ret = 0;
1903 out:
1904         return ret;
1905 }
1906
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908                                 unsigned long addr, unsigned long end,
1909                                 unsigned int type)
1910 {
1911         pmd_t *pmd;
1912         unsigned long next;
1913         int ret;
1914
1915         pmd = pmd_offset(pud, addr);
1916         do {
1917                 cond_resched();
1918                 next = pmd_addr_end(addr, end);
1919                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1920                         continue;
1921                 ret = unuse_pte_range(vma, pmd, addr, next, type);
1922                 if (ret)
1923                         return ret;
1924         } while (pmd++, addr = next, addr != end);
1925         return 0;
1926 }
1927
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929                                 unsigned long addr, unsigned long end,
1930                                 unsigned int type)
1931 {
1932         pud_t *pud;
1933         unsigned long next;
1934         int ret;
1935
1936         pud = pud_offset(p4d, addr);
1937         do {
1938                 next = pud_addr_end(addr, end);
1939                 if (pud_none_or_clear_bad(pud))
1940                         continue;
1941                 ret = unuse_pmd_range(vma, pud, addr, next, type);
1942                 if (ret)
1943                         return ret;
1944         } while (pud++, addr = next, addr != end);
1945         return 0;
1946 }
1947
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949                                 unsigned long addr, unsigned long end,
1950                                 unsigned int type)
1951 {
1952         p4d_t *p4d;
1953         unsigned long next;
1954         int ret;
1955
1956         p4d = p4d_offset(pgd, addr);
1957         do {
1958                 next = p4d_addr_end(addr, end);
1959                 if (p4d_none_or_clear_bad(p4d))
1960                         continue;
1961                 ret = unuse_pud_range(vma, p4d, addr, next, type);
1962                 if (ret)
1963                         return ret;
1964         } while (p4d++, addr = next, addr != end);
1965         return 0;
1966 }
1967
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1969 {
1970         pgd_t *pgd;
1971         unsigned long addr, end, next;
1972         int ret;
1973
1974         addr = vma->vm_start;
1975         end = vma->vm_end;
1976
1977         pgd = pgd_offset(vma->vm_mm, addr);
1978         do {
1979                 next = pgd_addr_end(addr, end);
1980                 if (pgd_none_or_clear_bad(pgd))
1981                         continue;
1982                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1983                 if (ret)
1984                         return ret;
1985         } while (pgd++, addr = next, addr != end);
1986         return 0;
1987 }
1988
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1990 {
1991         struct vm_area_struct *vma;
1992         int ret = 0;
1993
1994         mmap_read_lock(mm);
1995         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996                 if (vma->anon_vma) {
1997                         ret = unuse_vma(vma, type);
1998                         if (ret)
1999                                 break;
2000                 }
2001                 cond_resched();
2002         }
2003         mmap_read_unlock(mm);
2004         return ret;
2005 }
2006
2007 /*
2008  * Scan swap_map from current position to next entry still in use.
2009  * Return 0 if there are no inuse entries after prev till end of
2010  * the map.
2011  */
2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2013                                         unsigned int prev)
2014 {
2015         unsigned int i;
2016         unsigned char count;
2017
2018         /*
2019          * No need for swap_lock here: we're just looking
2020          * for whether an entry is in use, not modifying it; false
2021          * hits are okay, and sys_swapoff() has already prevented new
2022          * allocations from this area (while holding swap_lock).
2023          */
2024         for (i = prev + 1; i < si->max; i++) {
2025                 count = READ_ONCE(si->swap_map[i]);
2026                 if (count && swap_count(count) != SWAP_MAP_BAD)
2027                         break;
2028                 if ((i % LATENCY_LIMIT) == 0)
2029                         cond_resched();
2030         }
2031
2032         if (i == si->max)
2033                 i = 0;
2034
2035         return i;
2036 }
2037
2038 static int try_to_unuse(unsigned int type)
2039 {
2040         struct mm_struct *prev_mm;
2041         struct mm_struct *mm;
2042         struct list_head *p;
2043         int retval = 0;
2044         struct swap_info_struct *si = swap_info[type];
2045         struct page *page;
2046         swp_entry_t entry;
2047         unsigned int i;
2048
2049         if (!READ_ONCE(si->inuse_pages))
2050                 return 0;
2051
2052 retry:
2053         retval = shmem_unuse(type);
2054         if (retval)
2055                 return retval;
2056
2057         prev_mm = &init_mm;
2058         mmget(prev_mm);
2059
2060         spin_lock(&mmlist_lock);
2061         p = &init_mm.mmlist;
2062         while (READ_ONCE(si->inuse_pages) &&
2063                !signal_pending(current) &&
2064                (p = p->next) != &init_mm.mmlist) {
2065
2066                 mm = list_entry(p, struct mm_struct, mmlist);
2067                 if (!mmget_not_zero(mm))
2068                         continue;
2069                 spin_unlock(&mmlist_lock);
2070                 mmput(prev_mm);
2071                 prev_mm = mm;
2072                 retval = unuse_mm(mm, type);
2073                 if (retval) {
2074                         mmput(prev_mm);
2075                         return retval;
2076                 }
2077
2078                 /*
2079                  * Make sure that we aren't completely killing
2080                  * interactive performance.
2081                  */
2082                 cond_resched();
2083                 spin_lock(&mmlist_lock);
2084         }
2085         spin_unlock(&mmlist_lock);
2086
2087         mmput(prev_mm);
2088
2089         i = 0;
2090         while (READ_ONCE(si->inuse_pages) &&
2091                !signal_pending(current) &&
2092                (i = find_next_to_unuse(si, i)) != 0) {
2093
2094                 entry = swp_entry(type, i);
2095                 page = find_get_page(swap_address_space(entry), i);
2096                 if (!page)
2097                         continue;
2098
2099                 /*
2100                  * It is conceivable that a racing task removed this page from
2101                  * swap cache just before we acquired the page lock. The page
2102                  * might even be back in swap cache on another swap area. But
2103                  * that is okay, try_to_free_swap() only removes stale pages.
2104                  */
2105                 lock_page(page);
2106                 wait_on_page_writeback(page);
2107                 try_to_free_swap(page);
2108                 unlock_page(page);
2109                 put_page(page);
2110         }
2111
2112         /*
2113          * Lets check again to see if there are still swap entries in the map.
2114          * If yes, we would need to do retry the unuse logic again.
2115          * Under global memory pressure, swap entries can be reinserted back
2116          * into process space after the mmlist loop above passes over them.
2117          *
2118          * Limit the number of retries? No: when mmget_not_zero()
2119          * above fails, that mm is likely to be freeing swap from
2120          * exit_mmap(), which proceeds at its own independent pace;
2121          * and even shmem_writepage() could have been preempted after
2122          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
2123          * and robust (though cpu-intensive) just to keep retrying.
2124          */
2125         if (READ_ONCE(si->inuse_pages)) {
2126                 if (!signal_pending(current))
2127                         goto retry;
2128                 return -EINTR;
2129         }
2130
2131         return 0;
2132 }
2133
2134 /*
2135  * After a successful try_to_unuse, if no swap is now in use, we know
2136  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2137  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138  * added to the mmlist just after page_duplicate - before would be racy.
2139  */
2140 static void drain_mmlist(void)
2141 {
2142         struct list_head *p, *next;
2143         unsigned int type;
2144
2145         for (type = 0; type < nr_swapfiles; type++)
2146                 if (swap_info[type]->inuse_pages)
2147                         return;
2148         spin_lock(&mmlist_lock);
2149         list_for_each_safe(p, next, &init_mm.mmlist)
2150                 list_del_init(p);
2151         spin_unlock(&mmlist_lock);
2152 }
2153
2154 /*
2155  * Free all of a swapdev's extent information
2156  */
2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2158 {
2159         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160                 struct rb_node *rb = sis->swap_extent_root.rb_node;
2161                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2162
2163                 rb_erase(rb, &sis->swap_extent_root);
2164                 kfree(se);
2165         }
2166
2167         if (sis->flags & SWP_ACTIVATED) {
2168                 struct file *swap_file = sis->swap_file;
2169                 struct address_space *mapping = swap_file->f_mapping;
2170
2171                 sis->flags &= ~SWP_ACTIVATED;
2172                 if (mapping->a_ops->swap_deactivate)
2173                         mapping->a_ops->swap_deactivate(swap_file);
2174         }
2175 }
2176
2177 /*
2178  * Add a block range (and the corresponding page range) into this swapdev's
2179  * extent tree.
2180  *
2181  * This function rather assumes that it is called in ascending page order.
2182  */
2183 int
2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185                 unsigned long nr_pages, sector_t start_block)
2186 {
2187         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188         struct swap_extent *se;
2189         struct swap_extent *new_se;
2190
2191         /*
2192          * place the new node at the right most since the
2193          * function is called in ascending page order.
2194          */
2195         while (*link) {
2196                 parent = *link;
2197                 link = &parent->rb_right;
2198         }
2199
2200         if (parent) {
2201                 se = rb_entry(parent, struct swap_extent, rb_node);
2202                 BUG_ON(se->start_page + se->nr_pages != start_page);
2203                 if (se->start_block + se->nr_pages == start_block) {
2204                         /* Merge it */
2205                         se->nr_pages += nr_pages;
2206                         return 0;
2207                 }
2208         }
2209
2210         /* No merge, insert a new extent. */
2211         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2212         if (new_se == NULL)
2213                 return -ENOMEM;
2214         new_se->start_page = start_page;
2215         new_se->nr_pages = nr_pages;
2216         new_se->start_block = start_block;
2217
2218         rb_link_node(&new_se->rb_node, parent, link);
2219         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2220         return 1;
2221 }
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2223
2224 /*
2225  * A `swap extent' is a simple thing which maps a contiguous range of pages
2226  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
2227  * built at swapon time and is then used at swap_writepage/swap_readpage
2228  * time for locating where on disk a page belongs.
2229  *
2230  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232  * swap files identically.
2233  *
2234  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2236  * swapfiles are handled *identically* after swapon time.
2237  *
2238  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
2240  * blocks are found which do not fall within the PAGE_SIZE alignment
2241  * requirements, they are simply tossed out - we will never use those blocks
2242  * for swapping.
2243  *
2244  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2245  * prevents users from writing to the swap device, which will corrupt memory.
2246  *
2247  * The amount of disk space which a single swap extent represents varies.
2248  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2249  * extents in the rbtree. - akpm.
2250  */
2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2252 {
2253         struct file *swap_file = sis->swap_file;
2254         struct address_space *mapping = swap_file->f_mapping;
2255         struct inode *inode = mapping->host;
2256         int ret;
2257
2258         if (S_ISBLK(inode->i_mode)) {
2259                 ret = add_swap_extent(sis, 0, sis->max, 0);
2260                 *span = sis->pages;
2261                 return ret;
2262         }
2263
2264         if (mapping->a_ops->swap_activate) {
2265                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2266                 if (ret < 0)
2267                         return ret;
2268                 sis->flags |= SWP_ACTIVATED;
2269                 if ((sis->flags & SWP_FS_OPS) &&
2270                     sio_pool_init() != 0) {
2271                         destroy_swap_extents(sis);
2272                         return -ENOMEM;
2273                 }
2274                 return ret;
2275         }
2276
2277         return generic_swapfile_activate(sis, swap_file, span);
2278 }
2279
2280 static int swap_node(struct swap_info_struct *p)
2281 {
2282         struct block_device *bdev;
2283
2284         if (p->bdev)
2285                 bdev = p->bdev;
2286         else
2287                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2288
2289         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2290 }
2291
2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293                             unsigned char *swap_map,
2294                             struct swap_cluster_info *cluster_info)
2295 {
2296         int i;
2297
2298         if (prio >= 0)
2299                 p->prio = prio;
2300         else
2301                 p->prio = --least_priority;
2302         /*
2303          * the plist prio is negated because plist ordering is
2304          * low-to-high, while swap ordering is high-to-low
2305          */
2306         p->list.prio = -p->prio;
2307         for_each_node(i) {
2308                 if (p->prio >= 0)
2309                         p->avail_lists[i].prio = -p->prio;
2310                 else {
2311                         if (swap_node(p) == i)
2312                                 p->avail_lists[i].prio = 1;
2313                         else
2314                                 p->avail_lists[i].prio = -p->prio;
2315                 }
2316         }
2317         p->swap_map = swap_map;
2318         p->cluster_info = cluster_info;
2319 }
2320
2321 static void _enable_swap_info(struct swap_info_struct *p)
2322 {
2323         p->flags |= SWP_WRITEOK;
2324         atomic_long_add(p->pages, &nr_swap_pages);
2325         total_swap_pages += p->pages;
2326
2327         assert_spin_locked(&swap_lock);
2328         /*
2329          * both lists are plists, and thus priority ordered.
2330          * swap_active_head needs to be priority ordered for swapoff(),
2331          * which on removal of any swap_info_struct with an auto-assigned
2332          * (i.e. negative) priority increments the auto-assigned priority
2333          * of any lower-priority swap_info_structs.
2334          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335          * which allocates swap pages from the highest available priority
2336          * swap_info_struct.
2337          */
2338         plist_add(&p->list, &swap_active_head);
2339         add_to_avail_list(p);
2340 }
2341
2342 static void enable_swap_info(struct swap_info_struct *p, int prio,
2343                                 unsigned char *swap_map,
2344                                 struct swap_cluster_info *cluster_info,
2345                                 unsigned long *frontswap_map)
2346 {
2347         if (IS_ENABLED(CONFIG_FRONTSWAP))
2348                 frontswap_init(p->type, frontswap_map);
2349         spin_lock(&swap_lock);
2350         spin_lock(&p->lock);
2351         setup_swap_info(p, prio, swap_map, cluster_info);
2352         spin_unlock(&p->lock);
2353         spin_unlock(&swap_lock);
2354         /*
2355          * Finished initializing swap device, now it's safe to reference it.
2356          */
2357         percpu_ref_resurrect(&p->users);
2358         spin_lock(&swap_lock);
2359         spin_lock(&p->lock);
2360         _enable_swap_info(p);
2361         spin_unlock(&p->lock);
2362         spin_unlock(&swap_lock);
2363 }
2364
2365 static void reinsert_swap_info(struct swap_info_struct *p)
2366 {
2367         spin_lock(&swap_lock);
2368         spin_lock(&p->lock);
2369         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2370         _enable_swap_info(p);
2371         spin_unlock(&p->lock);
2372         spin_unlock(&swap_lock);
2373 }
2374
2375 bool has_usable_swap(void)
2376 {
2377         bool ret = true;
2378
2379         spin_lock(&swap_lock);
2380         if (plist_head_empty(&swap_active_head))
2381                 ret = false;
2382         spin_unlock(&swap_lock);
2383         return ret;
2384 }
2385
2386 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2387 {
2388         struct swap_info_struct *p = NULL;
2389         unsigned char *swap_map;
2390         struct swap_cluster_info *cluster_info;
2391         unsigned long *frontswap_map;
2392         struct file *swap_file, *victim;
2393         struct address_space *mapping;
2394         struct inode *inode;
2395         struct filename *pathname;
2396         int err, found = 0;
2397         unsigned int old_block_size;
2398
2399         if (!capable(CAP_SYS_ADMIN))
2400                 return -EPERM;
2401
2402         BUG_ON(!current->mm);
2403
2404         pathname = getname(specialfile);
2405         if (IS_ERR(pathname))
2406                 return PTR_ERR(pathname);
2407
2408         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2409         err = PTR_ERR(victim);
2410         if (IS_ERR(victim))
2411                 goto out;
2412
2413         mapping = victim->f_mapping;
2414         spin_lock(&swap_lock);
2415         plist_for_each_entry(p, &swap_active_head, list) {
2416                 if (p->flags & SWP_WRITEOK) {
2417                         if (p->swap_file->f_mapping == mapping) {
2418                                 found = 1;
2419                                 break;
2420                         }
2421                 }
2422         }
2423         if (!found) {
2424                 err = -EINVAL;
2425                 spin_unlock(&swap_lock);
2426                 goto out_dput;
2427         }
2428         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2429                 vm_unacct_memory(p->pages);
2430         else {
2431                 err = -ENOMEM;
2432                 spin_unlock(&swap_lock);
2433                 goto out_dput;
2434         }
2435         del_from_avail_list(p);
2436         spin_lock(&p->lock);
2437         if (p->prio < 0) {
2438                 struct swap_info_struct *si = p;
2439                 int nid;
2440
2441                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2442                         si->prio++;
2443                         si->list.prio--;
2444                         for_each_node(nid) {
2445                                 if (si->avail_lists[nid].prio != 1)
2446                                         si->avail_lists[nid].prio--;
2447                         }
2448                 }
2449                 least_priority++;
2450         }
2451         plist_del(&p->list, &swap_active_head);
2452         atomic_long_sub(p->pages, &nr_swap_pages);
2453         total_swap_pages -= p->pages;
2454         p->flags &= ~SWP_WRITEOK;
2455         spin_unlock(&p->lock);
2456         spin_unlock(&swap_lock);
2457
2458         disable_swap_slots_cache_lock();
2459
2460         set_current_oom_origin();
2461         err = try_to_unuse(p->type);
2462         clear_current_oom_origin();
2463
2464         if (err) {
2465                 /* re-insert swap space back into swap_list */
2466                 reinsert_swap_info(p);
2467                 reenable_swap_slots_cache_unlock();
2468                 goto out_dput;
2469         }
2470
2471         reenable_swap_slots_cache_unlock();
2472
2473         /*
2474          * Wait for swap operations protected by get/put_swap_device()
2475          * to complete.
2476          *
2477          * We need synchronize_rcu() here to protect the accessing to
2478          * the swap cache data structure.
2479          */
2480         percpu_ref_kill(&p->users);
2481         synchronize_rcu();
2482         wait_for_completion(&p->comp);
2483
2484         flush_work(&p->discard_work);
2485
2486         destroy_swap_extents(p);
2487         if (p->flags & SWP_CONTINUED)
2488                 free_swap_count_continuations(p);
2489
2490         if (!p->bdev || !bdev_nonrot(p->bdev))
2491                 atomic_dec(&nr_rotate_swap);
2492
2493         mutex_lock(&swapon_mutex);
2494         spin_lock(&swap_lock);
2495         spin_lock(&p->lock);
2496         drain_mmlist();
2497
2498         /* wait for anyone still in scan_swap_map_slots */
2499         p->highest_bit = 0;             /* cuts scans short */
2500         while (p->flags >= SWP_SCANNING) {
2501                 spin_unlock(&p->lock);
2502                 spin_unlock(&swap_lock);
2503                 schedule_timeout_uninterruptible(1);
2504                 spin_lock(&swap_lock);
2505                 spin_lock(&p->lock);
2506         }
2507
2508         swap_file = p->swap_file;
2509         old_block_size = p->old_block_size;
2510         p->swap_file = NULL;
2511         p->max = 0;
2512         swap_map = p->swap_map;
2513         p->swap_map = NULL;
2514         cluster_info = p->cluster_info;
2515         p->cluster_info = NULL;
2516         frontswap_map = frontswap_map_get(p);
2517         spin_unlock(&p->lock);
2518         spin_unlock(&swap_lock);
2519         arch_swap_invalidate_area(p->type);
2520         frontswap_invalidate_area(p->type);
2521         frontswap_map_set(p, NULL);
2522         mutex_unlock(&swapon_mutex);
2523         free_percpu(p->percpu_cluster);
2524         p->percpu_cluster = NULL;
2525         free_percpu(p->cluster_next_cpu);
2526         p->cluster_next_cpu = NULL;
2527         vfree(swap_map);
2528         kvfree(cluster_info);
2529         kvfree(frontswap_map);
2530         /* Destroy swap account information */
2531         swap_cgroup_swapoff(p->type);
2532         exit_swap_address_space(p->type);
2533
2534         inode = mapping->host;
2535         if (S_ISBLK(inode->i_mode)) {
2536                 struct block_device *bdev = I_BDEV(inode);
2537
2538                 set_blocksize(bdev, old_block_size);
2539                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2540         }
2541
2542         inode_lock(inode);
2543         inode->i_flags &= ~S_SWAPFILE;
2544         inode_unlock(inode);
2545         filp_close(swap_file, NULL);
2546
2547         /*
2548          * Clear the SWP_USED flag after all resources are freed so that swapon
2549          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2550          * not hold p->lock after we cleared its SWP_WRITEOK.
2551          */
2552         spin_lock(&swap_lock);
2553         p->flags = 0;
2554         spin_unlock(&swap_lock);
2555
2556         err = 0;
2557         atomic_inc(&proc_poll_event);
2558         wake_up_interruptible(&proc_poll_wait);
2559
2560 out_dput:
2561         filp_close(victim, NULL);
2562 out:
2563         putname(pathname);
2564         return err;
2565 }
2566
2567 #ifdef CONFIG_PROC_FS
2568 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2569 {
2570         struct seq_file *seq = file->private_data;
2571
2572         poll_wait(file, &proc_poll_wait, wait);
2573
2574         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2575                 seq->poll_event = atomic_read(&proc_poll_event);
2576                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2577         }
2578
2579         return EPOLLIN | EPOLLRDNORM;
2580 }
2581
2582 /* iterator */
2583 static void *swap_start(struct seq_file *swap, loff_t *pos)
2584 {
2585         struct swap_info_struct *si;
2586         int type;
2587         loff_t l = *pos;
2588
2589         mutex_lock(&swapon_mutex);
2590
2591         if (!l)
2592                 return SEQ_START_TOKEN;
2593
2594         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2595                 if (!(si->flags & SWP_USED) || !si->swap_map)
2596                         continue;
2597                 if (!--l)
2598                         return si;
2599         }
2600
2601         return NULL;
2602 }
2603
2604 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2605 {
2606         struct swap_info_struct *si = v;
2607         int type;
2608
2609         if (v == SEQ_START_TOKEN)
2610                 type = 0;
2611         else
2612                 type = si->type + 1;
2613
2614         ++(*pos);
2615         for (; (si = swap_type_to_swap_info(type)); type++) {
2616                 if (!(si->flags & SWP_USED) || !si->swap_map)
2617                         continue;
2618                 return si;
2619         }
2620
2621         return NULL;
2622 }
2623
2624 static void swap_stop(struct seq_file *swap, void *v)
2625 {
2626         mutex_unlock(&swapon_mutex);
2627 }
2628
2629 static int swap_show(struct seq_file *swap, void *v)
2630 {
2631         struct swap_info_struct *si = v;
2632         struct file *file;
2633         int len;
2634         unsigned long bytes, inuse;
2635
2636         if (si == SEQ_START_TOKEN) {
2637                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2638                 return 0;
2639         }
2640
2641         bytes = si->pages << (PAGE_SHIFT - 10);
2642         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2643
2644         file = si->swap_file;
2645         len = seq_file_path(swap, file, " \t\n\\");
2646         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2647                         len < 40 ? 40 - len : 1, " ",
2648                         S_ISBLK(file_inode(file)->i_mode) ?
2649                                 "partition" : "file\t",
2650                         bytes, bytes < 10000000 ? "\t" : "",
2651                         inuse, inuse < 10000000 ? "\t" : "",
2652                         si->prio);
2653         return 0;
2654 }
2655
2656 static const struct seq_operations swaps_op = {
2657         .start =        swap_start,
2658         .next =         swap_next,
2659         .stop =         swap_stop,
2660         .show =         swap_show
2661 };
2662
2663 static int swaps_open(struct inode *inode, struct file *file)
2664 {
2665         struct seq_file *seq;
2666         int ret;
2667
2668         ret = seq_open(file, &swaps_op);
2669         if (ret)
2670                 return ret;
2671
2672         seq = file->private_data;
2673         seq->poll_event = atomic_read(&proc_poll_event);
2674         return 0;
2675 }
2676
2677 static const struct proc_ops swaps_proc_ops = {
2678         .proc_flags     = PROC_ENTRY_PERMANENT,
2679         .proc_open      = swaps_open,
2680         .proc_read      = seq_read,
2681         .proc_lseek     = seq_lseek,
2682         .proc_release   = seq_release,
2683         .proc_poll      = swaps_poll,
2684 };
2685
2686 static int __init procswaps_init(void)
2687 {
2688         proc_create("swaps", 0, NULL, &swaps_proc_ops);
2689         return 0;
2690 }
2691 __initcall(procswaps_init);
2692 #endif /* CONFIG_PROC_FS */
2693
2694 #ifdef MAX_SWAPFILES_CHECK
2695 static int __init max_swapfiles_check(void)
2696 {
2697         MAX_SWAPFILES_CHECK();
2698         return 0;
2699 }
2700 late_initcall(max_swapfiles_check);
2701 #endif
2702
2703 static struct swap_info_struct *alloc_swap_info(void)
2704 {
2705         struct swap_info_struct *p;
2706         struct swap_info_struct *defer = NULL;
2707         unsigned int type;
2708         int i;
2709
2710         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2711         if (!p)
2712                 return ERR_PTR(-ENOMEM);
2713
2714         if (percpu_ref_init(&p->users, swap_users_ref_free,
2715                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2716                 kvfree(p);
2717                 return ERR_PTR(-ENOMEM);
2718         }
2719
2720         spin_lock(&swap_lock);
2721         for (type = 0; type < nr_swapfiles; type++) {
2722                 if (!(swap_info[type]->flags & SWP_USED))
2723                         break;
2724         }
2725         if (type >= MAX_SWAPFILES) {
2726                 spin_unlock(&swap_lock);
2727                 percpu_ref_exit(&p->users);
2728                 kvfree(p);
2729                 return ERR_PTR(-EPERM);
2730         }
2731         if (type >= nr_swapfiles) {
2732                 p->type = type;
2733                 /*
2734                  * Publish the swap_info_struct after initializing it.
2735                  * Note that kvzalloc() above zeroes all its fields.
2736                  */
2737                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2738                 nr_swapfiles++;
2739         } else {
2740                 defer = p;
2741                 p = swap_info[type];
2742                 /*
2743                  * Do not memset this entry: a racing procfs swap_next()
2744                  * would be relying on p->type to remain valid.
2745                  */
2746         }
2747         p->swap_extent_root = RB_ROOT;
2748         plist_node_init(&p->list, 0);
2749         for_each_node(i)
2750                 plist_node_init(&p->avail_lists[i], 0);
2751         p->flags = SWP_USED;
2752         spin_unlock(&swap_lock);
2753         if (defer) {
2754                 percpu_ref_exit(&defer->users);
2755                 kvfree(defer);
2756         }
2757         spin_lock_init(&p->lock);
2758         spin_lock_init(&p->cont_lock);
2759         init_completion(&p->comp);
2760
2761         return p;
2762 }
2763
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765 {
2766         int error;
2767
2768         if (S_ISBLK(inode->i_mode)) {
2769                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2770                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2771                 if (IS_ERR(p->bdev)) {
2772                         error = PTR_ERR(p->bdev);
2773                         p->bdev = NULL;
2774                         return error;
2775                 }
2776                 p->old_block_size = block_size(p->bdev);
2777                 error = set_blocksize(p->bdev, PAGE_SIZE);
2778                 if (error < 0)
2779                         return error;
2780                 /*
2781                  * Zoned block devices contain zones that have a sequential
2782                  * write only restriction.  Hence zoned block devices are not
2783                  * suitable for swapping.  Disallow them here.
2784                  */
2785                 if (bdev_is_zoned(p->bdev))
2786                         return -EINVAL;
2787                 p->flags |= SWP_BLKDEV;
2788         } else if (S_ISREG(inode->i_mode)) {
2789                 p->bdev = inode->i_sb->s_bdev;
2790         }
2791
2792         return 0;
2793 }
2794
2795
2796 /*
2797  * Find out how many pages are allowed for a single swap device. There
2798  * are two limiting factors:
2799  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800  * 2) the number of bits in the swap pte, as defined by the different
2801  * architectures.
2802  *
2803  * In order to find the largest possible bit mask, a swap entry with
2804  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805  * decoded to a swp_entry_t again, and finally the swap offset is
2806  * extracted.
2807  *
2808  * This will mask all the bits from the initial ~0UL mask that can't
2809  * be encoded in either the swp_entry_t or the architecture definition
2810  * of a swap pte.
2811  */
2812 unsigned long generic_max_swapfile_size(void)
2813 {
2814         return swp_offset(pte_to_swp_entry(
2815                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2816 }
2817
2818 /* Can be overridden by an architecture for additional checks. */
2819 __weak unsigned long max_swapfile_size(void)
2820 {
2821         return generic_max_swapfile_size();
2822 }
2823
2824 static unsigned long read_swap_header(struct swap_info_struct *p,
2825                                         union swap_header *swap_header,
2826                                         struct inode *inode)
2827 {
2828         int i;
2829         unsigned long maxpages;
2830         unsigned long swapfilepages;
2831         unsigned long last_page;
2832
2833         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834                 pr_err("Unable to find swap-space signature\n");
2835                 return 0;
2836         }
2837
2838         /* swap partition endianness hack... */
2839         if (swab32(swap_header->info.version) == 1) {
2840                 swab32s(&swap_header->info.version);
2841                 swab32s(&swap_header->info.last_page);
2842                 swab32s(&swap_header->info.nr_badpages);
2843                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2844                         return 0;
2845                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2846                         swab32s(&swap_header->info.badpages[i]);
2847         }
2848         /* Check the swap header's sub-version */
2849         if (swap_header->info.version != 1) {
2850                 pr_warn("Unable to handle swap header version %d\n",
2851                         swap_header->info.version);
2852                 return 0;
2853         }
2854
2855         p->lowest_bit  = 1;
2856         p->cluster_next = 1;
2857         p->cluster_nr = 0;
2858
2859         maxpages = max_swapfile_size();
2860         last_page = swap_header->info.last_page;
2861         if (!last_page) {
2862                 pr_warn("Empty swap-file\n");
2863                 return 0;
2864         }
2865         if (last_page > maxpages) {
2866                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867                         maxpages << (PAGE_SHIFT - 10),
2868                         last_page << (PAGE_SHIFT - 10));
2869         }
2870         if (maxpages > last_page) {
2871                 maxpages = last_page + 1;
2872                 /* p->max is an unsigned int: don't overflow it */
2873                 if ((unsigned int)maxpages == 0)
2874                         maxpages = UINT_MAX;
2875         }
2876         p->highest_bit = maxpages - 1;
2877
2878         if (!maxpages)
2879                 return 0;
2880         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2881         if (swapfilepages && maxpages > swapfilepages) {
2882                 pr_warn("Swap area shorter than signature indicates\n");
2883                 return 0;
2884         }
2885         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2886                 return 0;
2887         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2888                 return 0;
2889
2890         return maxpages;
2891 }
2892
2893 #define SWAP_CLUSTER_INFO_COLS                                          \
2894         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2895 #define SWAP_CLUSTER_SPACE_COLS                                         \
2896         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2897 #define SWAP_CLUSTER_COLS                                               \
2898         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2899
2900 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2901                                         union swap_header *swap_header,
2902                                         unsigned char *swap_map,
2903                                         struct swap_cluster_info *cluster_info,
2904                                         unsigned long maxpages,
2905                                         sector_t *span)
2906 {
2907         unsigned int j, k;
2908         unsigned int nr_good_pages;
2909         int nr_extents;
2910         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2911         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2912         unsigned long i, idx;
2913
2914         nr_good_pages = maxpages - 1;   /* omit header page */
2915
2916         cluster_list_init(&p->free_clusters);
2917         cluster_list_init(&p->discard_clusters);
2918
2919         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2920                 unsigned int page_nr = swap_header->info.badpages[i];
2921                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2922                         return -EINVAL;
2923                 if (page_nr < maxpages) {
2924                         swap_map[page_nr] = SWAP_MAP_BAD;
2925                         nr_good_pages--;
2926                         /*
2927                          * Haven't marked the cluster free yet, no list
2928                          * operation involved
2929                          */
2930                         inc_cluster_info_page(p, cluster_info, page_nr);
2931                 }
2932         }
2933
2934         /* Haven't marked the cluster free yet, no list operation involved */
2935         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2936                 inc_cluster_info_page(p, cluster_info, i);
2937
2938         if (nr_good_pages) {
2939                 swap_map[0] = SWAP_MAP_BAD;
2940                 /*
2941                  * Not mark the cluster free yet, no list
2942                  * operation involved
2943                  */
2944                 inc_cluster_info_page(p, cluster_info, 0);
2945                 p->max = maxpages;
2946                 p->pages = nr_good_pages;
2947                 nr_extents = setup_swap_extents(p, span);
2948                 if (nr_extents < 0)
2949                         return nr_extents;
2950                 nr_good_pages = p->pages;
2951         }
2952         if (!nr_good_pages) {
2953                 pr_warn("Empty swap-file\n");
2954                 return -EINVAL;
2955         }
2956
2957         if (!cluster_info)
2958                 return nr_extents;
2959
2960
2961         /*
2962          * Reduce false cache line sharing between cluster_info and
2963          * sharing same address space.
2964          */
2965         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2966                 j = (k + col) % SWAP_CLUSTER_COLS;
2967                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2968                         idx = i * SWAP_CLUSTER_COLS + j;
2969                         if (idx >= nr_clusters)
2970                                 continue;
2971                         if (cluster_count(&cluster_info[idx]))
2972                                 continue;
2973                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2974                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2975                                               idx);
2976                 }
2977         }
2978         return nr_extents;
2979 }
2980
2981 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2982 {
2983         struct swap_info_struct *p;
2984         struct filename *name;
2985         struct file *swap_file = NULL;
2986         struct address_space *mapping;
2987         struct dentry *dentry;
2988         int prio;
2989         int error;
2990         union swap_header *swap_header;
2991         int nr_extents;
2992         sector_t span;
2993         unsigned long maxpages;
2994         unsigned char *swap_map = NULL;
2995         struct swap_cluster_info *cluster_info = NULL;
2996         unsigned long *frontswap_map = NULL;
2997         struct page *page = NULL;
2998         struct inode *inode = NULL;
2999         bool inced_nr_rotate_swap = false;
3000
3001         if (swap_flags & ~SWAP_FLAGS_VALID)
3002                 return -EINVAL;
3003
3004         if (!capable(CAP_SYS_ADMIN))
3005                 return -EPERM;
3006
3007         if (!swap_avail_heads)
3008                 return -ENOMEM;
3009
3010         p = alloc_swap_info();
3011         if (IS_ERR(p))
3012                 return PTR_ERR(p);
3013
3014         INIT_WORK(&p->discard_work, swap_discard_work);
3015
3016         name = getname(specialfile);
3017         if (IS_ERR(name)) {
3018                 error = PTR_ERR(name);
3019                 name = NULL;
3020                 goto bad_swap;
3021         }
3022         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3023         if (IS_ERR(swap_file)) {
3024                 error = PTR_ERR(swap_file);
3025                 swap_file = NULL;
3026                 goto bad_swap;
3027         }
3028
3029         p->swap_file = swap_file;
3030         mapping = swap_file->f_mapping;
3031         dentry = swap_file->f_path.dentry;
3032         inode = mapping->host;
3033
3034         error = claim_swapfile(p, inode);
3035         if (unlikely(error))
3036                 goto bad_swap;
3037
3038         inode_lock(inode);
3039         if (d_unlinked(dentry) || cant_mount(dentry)) {
3040                 error = -ENOENT;
3041                 goto bad_swap_unlock_inode;
3042         }
3043         if (IS_SWAPFILE(inode)) {
3044                 error = -EBUSY;
3045                 goto bad_swap_unlock_inode;
3046         }
3047
3048         /*
3049          * Read the swap header.
3050          */
3051         if (!mapping->a_ops->read_folio) {
3052                 error = -EINVAL;
3053                 goto bad_swap_unlock_inode;
3054         }
3055         page = read_mapping_page(mapping, 0, swap_file);
3056         if (IS_ERR(page)) {
3057                 error = PTR_ERR(page);
3058                 goto bad_swap_unlock_inode;
3059         }
3060         swap_header = kmap(page);
3061
3062         maxpages = read_swap_header(p, swap_header, inode);
3063         if (unlikely(!maxpages)) {
3064                 error = -EINVAL;
3065                 goto bad_swap_unlock_inode;
3066         }
3067
3068         /* OK, set up the swap map and apply the bad block list */
3069         swap_map = vzalloc(maxpages);
3070         if (!swap_map) {
3071                 error = -ENOMEM;
3072                 goto bad_swap_unlock_inode;
3073         }
3074
3075         if (p->bdev && bdev_stable_writes(p->bdev))
3076                 p->flags |= SWP_STABLE_WRITES;
3077
3078         if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3079                 p->flags |= SWP_SYNCHRONOUS_IO;
3080
3081         if (p->bdev && bdev_nonrot(p->bdev)) {
3082                 int cpu;
3083                 unsigned long ci, nr_cluster;
3084
3085                 p->flags |= SWP_SOLIDSTATE;
3086                 p->cluster_next_cpu = alloc_percpu(unsigned int);
3087                 if (!p->cluster_next_cpu) {
3088                         error = -ENOMEM;
3089                         goto bad_swap_unlock_inode;
3090                 }
3091                 /*
3092                  * select a random position to start with to help wear leveling
3093                  * SSD
3094                  */
3095                 for_each_possible_cpu(cpu) {
3096                         per_cpu(*p->cluster_next_cpu, cpu) =
3097                                 1 + prandom_u32_max(p->highest_bit);
3098                 }
3099                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3100
3101                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3102                                         GFP_KERNEL);
3103                 if (!cluster_info) {
3104                         error = -ENOMEM;
3105                         goto bad_swap_unlock_inode;
3106                 }
3107
3108                 for (ci = 0; ci < nr_cluster; ci++)
3109                         spin_lock_init(&((cluster_info + ci)->lock));
3110
3111                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3112                 if (!p->percpu_cluster) {
3113                         error = -ENOMEM;
3114                         goto bad_swap_unlock_inode;
3115                 }
3116                 for_each_possible_cpu(cpu) {
3117                         struct percpu_cluster *cluster;
3118                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3119                         cluster_set_null(&cluster->index);
3120                 }
3121         } else {
3122                 atomic_inc(&nr_rotate_swap);
3123                 inced_nr_rotate_swap = true;
3124         }
3125
3126         error = swap_cgroup_swapon(p->type, maxpages);
3127         if (error)
3128                 goto bad_swap_unlock_inode;
3129
3130         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3131                 cluster_info, maxpages, &span);
3132         if (unlikely(nr_extents < 0)) {
3133                 error = nr_extents;
3134                 goto bad_swap_unlock_inode;
3135         }
3136         /* frontswap enabled? set up bit-per-page map for frontswap */
3137         if (IS_ENABLED(CONFIG_FRONTSWAP))
3138                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3139                                          sizeof(long),
3140                                          GFP_KERNEL);
3141
3142         if ((swap_flags & SWAP_FLAG_DISCARD) &&
3143             p->bdev && bdev_max_discard_sectors(p->bdev)) {
3144                 /*
3145                  * When discard is enabled for swap with no particular
3146                  * policy flagged, we set all swap discard flags here in
3147                  * order to sustain backward compatibility with older
3148                  * swapon(8) releases.
3149                  */
3150                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3151                              SWP_PAGE_DISCARD);
3152
3153                 /*
3154                  * By flagging sys_swapon, a sysadmin can tell us to
3155                  * either do single-time area discards only, or to just
3156                  * perform discards for released swap page-clusters.
3157                  * Now it's time to adjust the p->flags accordingly.
3158                  */
3159                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3160                         p->flags &= ~SWP_PAGE_DISCARD;
3161                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3162                         p->flags &= ~SWP_AREA_DISCARD;
3163
3164                 /* issue a swapon-time discard if it's still required */
3165                 if (p->flags & SWP_AREA_DISCARD) {
3166                         int err = discard_swap(p);
3167                         if (unlikely(err))
3168                                 pr_err("swapon: discard_swap(%p): %d\n",
3169                                         p, err);
3170                 }
3171         }
3172
3173         error = init_swap_address_space(p->type, maxpages);
3174         if (error)
3175                 goto bad_swap_unlock_inode;
3176
3177         /*
3178          * Flush any pending IO and dirty mappings before we start using this
3179          * swap device.
3180          */
3181         inode->i_flags |= S_SWAPFILE;
3182         error = inode_drain_writes(inode);
3183         if (error) {
3184                 inode->i_flags &= ~S_SWAPFILE;
3185                 goto free_swap_address_space;
3186         }
3187
3188         mutex_lock(&swapon_mutex);
3189         prio = -1;
3190         if (swap_flags & SWAP_FLAG_PREFER)
3191                 prio =
3192                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3193         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3194
3195         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3196                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3197                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3198                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3199                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3200                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3201                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3202                 (frontswap_map) ? "FS" : "");
3203
3204         mutex_unlock(&swapon_mutex);
3205         atomic_inc(&proc_poll_event);
3206         wake_up_interruptible(&proc_poll_wait);
3207
3208         error = 0;
3209         goto out;
3210 free_swap_address_space:
3211         exit_swap_address_space(p->type);
3212 bad_swap_unlock_inode:
3213         inode_unlock(inode);
3214 bad_swap:
3215         free_percpu(p->percpu_cluster);
3216         p->percpu_cluster = NULL;
3217         free_percpu(p->cluster_next_cpu);
3218         p->cluster_next_cpu = NULL;
3219         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3220                 set_blocksize(p->bdev, p->old_block_size);
3221                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3222         }
3223         inode = NULL;
3224         destroy_swap_extents(p);
3225         swap_cgroup_swapoff(p->type);
3226         spin_lock(&swap_lock);
3227         p->swap_file = NULL;
3228         p->flags = 0;
3229         spin_unlock(&swap_lock);
3230         vfree(swap_map);
3231         kvfree(cluster_info);
3232         kvfree(frontswap_map);
3233         if (inced_nr_rotate_swap)
3234                 atomic_dec(&nr_rotate_swap);
3235         if (swap_file)
3236                 filp_close(swap_file, NULL);
3237 out:
3238         if (page && !IS_ERR(page)) {
3239                 kunmap(page);
3240                 put_page(page);
3241         }
3242         if (name)
3243                 putname(name);
3244         if (inode)
3245                 inode_unlock(inode);
3246         if (!error)
3247                 enable_swap_slots_cache();
3248         return error;
3249 }
3250
3251 void si_swapinfo(struct sysinfo *val)
3252 {
3253         unsigned int type;
3254         unsigned long nr_to_be_unused = 0;
3255
3256         spin_lock(&swap_lock);
3257         for (type = 0; type < nr_swapfiles; type++) {
3258                 struct swap_info_struct *si = swap_info[type];
3259
3260                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3261                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
3262         }
3263         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3264         val->totalswap = total_swap_pages + nr_to_be_unused;
3265         spin_unlock(&swap_lock);
3266 }
3267
3268 /*
3269  * Verify that a swap entry is valid and increment its swap map count.
3270  *
3271  * Returns error code in following case.
3272  * - success -> 0
3273  * - swp_entry is invalid -> EINVAL
3274  * - swp_entry is migration entry -> EINVAL
3275  * - swap-cache reference is requested but there is already one. -> EEXIST
3276  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3277  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3278  */
3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3280 {
3281         struct swap_info_struct *p;
3282         struct swap_cluster_info *ci;
3283         unsigned long offset;
3284         unsigned char count;
3285         unsigned char has_cache;
3286         int err;
3287
3288         p = get_swap_device(entry);
3289         if (!p)
3290                 return -EINVAL;
3291
3292         offset = swp_offset(entry);
3293         ci = lock_cluster_or_swap_info(p, offset);
3294
3295         count = p->swap_map[offset];
3296
3297         /*
3298          * swapin_readahead() doesn't check if a swap entry is valid, so the
3299          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3300          */
3301         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3302                 err = -ENOENT;
3303                 goto unlock_out;
3304         }
3305
3306         has_cache = count & SWAP_HAS_CACHE;
3307         count &= ~SWAP_HAS_CACHE;
3308         err = 0;
3309
3310         if (usage == SWAP_HAS_CACHE) {
3311
3312                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3313                 if (!has_cache && count)
3314                         has_cache = SWAP_HAS_CACHE;
3315                 else if (has_cache)             /* someone else added cache */
3316                         err = -EEXIST;
3317                 else                            /* no users remaining */
3318                         err = -ENOENT;
3319
3320         } else if (count || has_cache) {
3321
3322                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3323                         count += usage;
3324                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3325                         err = -EINVAL;
3326                 else if (swap_count_continued(p, offset, count))
3327                         count = COUNT_CONTINUED;
3328                 else
3329                         err = -ENOMEM;
3330         } else
3331                 err = -ENOENT;                  /* unused swap entry */
3332
3333         WRITE_ONCE(p->swap_map[offset], count | has_cache);
3334
3335 unlock_out:
3336         unlock_cluster_or_swap_info(p, ci);
3337         put_swap_device(p);
3338         return err;
3339 }
3340
3341 /*
3342  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3343  * (in which case its reference count is never incremented).
3344  */
3345 void swap_shmem_alloc(swp_entry_t entry)
3346 {
3347         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3348 }
3349
3350 /*
3351  * Increase reference count of swap entry by 1.
3352  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3353  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3354  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3355  * might occur if a page table entry has got corrupted.
3356  */
3357 int swap_duplicate(swp_entry_t entry)
3358 {
3359         int err = 0;
3360
3361         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3362                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3363         return err;
3364 }
3365
3366 /*
3367  * @entry: swap entry for which we allocate swap cache.
3368  *
3369  * Called when allocating swap cache for existing swap entry,
3370  * This can return error codes. Returns 0 at success.
3371  * -EEXIST means there is a swap cache.
3372  * Note: return code is different from swap_duplicate().
3373  */
3374 int swapcache_prepare(swp_entry_t entry)
3375 {
3376         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3377 }
3378
3379 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3380 {
3381         return swap_type_to_swap_info(swp_type(entry));
3382 }
3383
3384 struct swap_info_struct *page_swap_info(struct page *page)
3385 {
3386         swp_entry_t entry = { .val = page_private(page) };
3387         return swp_swap_info(entry);
3388 }
3389
3390 /*
3391  * out-of-line methods to avoid include hell.
3392  */
3393 struct address_space *swapcache_mapping(struct folio *folio)
3394 {
3395         return page_swap_info(&folio->page)->swap_file->f_mapping;
3396 }
3397 EXPORT_SYMBOL_GPL(swapcache_mapping);
3398
3399 pgoff_t __page_file_index(struct page *page)
3400 {
3401         swp_entry_t swap = { .val = page_private(page) };
3402         return swp_offset(swap);
3403 }
3404 EXPORT_SYMBOL_GPL(__page_file_index);
3405
3406 /*
3407  * add_swap_count_continuation - called when a swap count is duplicated
3408  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3409  * page of the original vmalloc'ed swap_map, to hold the continuation count
3410  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3411  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3412  *
3413  * These continuation pages are seldom referenced: the common paths all work
3414  * on the original swap_map, only referring to a continuation page when the
3415  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3416  *
3417  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3418  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3419  * can be called after dropping locks.
3420  */
3421 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3422 {
3423         struct swap_info_struct *si;
3424         struct swap_cluster_info *ci;
3425         struct page *head;
3426         struct page *page;
3427         struct page *list_page;
3428         pgoff_t offset;
3429         unsigned char count;
3430         int ret = 0;
3431
3432         /*
3433          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3434          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3435          */
3436         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3437
3438         si = get_swap_device(entry);
3439         if (!si) {
3440                 /*
3441                  * An acceptable race has occurred since the failing
3442                  * __swap_duplicate(): the swap device may be swapoff
3443                  */
3444                 goto outer;
3445         }
3446         spin_lock(&si->lock);
3447
3448         offset = swp_offset(entry);
3449
3450         ci = lock_cluster(si, offset);
3451
3452         count = swap_count(si->swap_map[offset]);
3453
3454         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3455                 /*
3456                  * The higher the swap count, the more likely it is that tasks
3457                  * will race to add swap count continuation: we need to avoid
3458                  * over-provisioning.
3459                  */
3460                 goto out;
3461         }
3462
3463         if (!page) {
3464                 ret = -ENOMEM;
3465                 goto out;
3466         }
3467
3468         /*
3469          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3470          * no architecture is using highmem pages for kernel page tables: so it
3471          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3472          */
3473         head = vmalloc_to_page(si->swap_map + offset);
3474         offset &= ~PAGE_MASK;
3475
3476         spin_lock(&si->cont_lock);
3477         /*
3478          * Page allocation does not initialize the page's lru field,
3479          * but it does always reset its private field.
3480          */
3481         if (!page_private(head)) {
3482                 BUG_ON(count & COUNT_CONTINUED);
3483                 INIT_LIST_HEAD(&head->lru);
3484                 set_page_private(head, SWP_CONTINUED);
3485                 si->flags |= SWP_CONTINUED;
3486         }
3487
3488         list_for_each_entry(list_page, &head->lru, lru) {
3489                 unsigned char *map;
3490
3491                 /*
3492                  * If the previous map said no continuation, but we've found
3493                  * a continuation page, free our allocation and use this one.
3494                  */
3495                 if (!(count & COUNT_CONTINUED))
3496                         goto out_unlock_cont;
3497
3498                 map = kmap_atomic(list_page) + offset;
3499                 count = *map;
3500                 kunmap_atomic(map);
3501
3502                 /*
3503                  * If this continuation count now has some space in it,
3504                  * free our allocation and use this one.
3505                  */
3506                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3507                         goto out_unlock_cont;
3508         }
3509
3510         list_add_tail(&page->lru, &head->lru);
3511         page = NULL;                    /* now it's attached, don't free it */
3512 out_unlock_cont:
3513         spin_unlock(&si->cont_lock);
3514 out:
3515         unlock_cluster(ci);
3516         spin_unlock(&si->lock);
3517         put_swap_device(si);
3518 outer:
3519         if (page)
3520                 __free_page(page);
3521         return ret;
3522 }
3523
3524 /*
3525  * swap_count_continued - when the original swap_map count is incremented
3526  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3527  * into, carry if so, or else fail until a new continuation page is allocated;
3528  * when the original swap_map count is decremented from 0 with continuation,
3529  * borrow from the continuation and report whether it still holds more.
3530  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3531  * lock.
3532  */
3533 static bool swap_count_continued(struct swap_info_struct *si,
3534                                  pgoff_t offset, unsigned char count)
3535 {
3536         struct page *head;
3537         struct page *page;
3538         unsigned char *map;
3539         bool ret;
3540
3541         head = vmalloc_to_page(si->swap_map + offset);
3542         if (page_private(head) != SWP_CONTINUED) {
3543                 BUG_ON(count & COUNT_CONTINUED);
3544                 return false;           /* need to add count continuation */
3545         }
3546
3547         spin_lock(&si->cont_lock);
3548         offset &= ~PAGE_MASK;
3549         page = list_next_entry(head, lru);
3550         map = kmap_atomic(page) + offset;
3551
3552         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3553                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3554
3555         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3556                 /*
3557                  * Think of how you add 1 to 999
3558                  */
3559                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3560                         kunmap_atomic(map);
3561                         page = list_next_entry(page, lru);
3562                         BUG_ON(page == head);
3563                         map = kmap_atomic(page) + offset;
3564                 }
3565                 if (*map == SWAP_CONT_MAX) {
3566                         kunmap_atomic(map);
3567                         page = list_next_entry(page, lru);
3568                         if (page == head) {
3569                                 ret = false;    /* add count continuation */
3570                                 goto out;
3571                         }
3572                         map = kmap_atomic(page) + offset;
3573 init_map:               *map = 0;               /* we didn't zero the page */
3574                 }
3575                 *map += 1;
3576                 kunmap_atomic(map);
3577                 while ((page = list_prev_entry(page, lru)) != head) {
3578                         map = kmap_atomic(page) + offset;
3579                         *map = COUNT_CONTINUED;
3580                         kunmap_atomic(map);
3581                 }
3582                 ret = true;                     /* incremented */
3583
3584         } else {                                /* decrementing */
3585                 /*
3586                  * Think of how you subtract 1 from 1000
3587                  */
3588                 BUG_ON(count != COUNT_CONTINUED);
3589                 while (*map == COUNT_CONTINUED) {
3590                         kunmap_atomic(map);
3591                         page = list_next_entry(page, lru);
3592                         BUG_ON(page == head);
3593                         map = kmap_atomic(page) + offset;
3594                 }
3595                 BUG_ON(*map == 0);
3596                 *map -= 1;
3597                 if (*map == 0)
3598                         count = 0;
3599                 kunmap_atomic(map);
3600                 while ((page = list_prev_entry(page, lru)) != head) {
3601                         map = kmap_atomic(page) + offset;
3602                         *map = SWAP_CONT_MAX | count;
3603                         count = COUNT_CONTINUED;
3604                         kunmap_atomic(map);
3605                 }
3606                 ret = count == COUNT_CONTINUED;
3607         }
3608 out:
3609         spin_unlock(&si->cont_lock);
3610         return ret;
3611 }
3612
3613 /*
3614  * free_swap_count_continuations - swapoff free all the continuation pages
3615  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3616  */
3617 static void free_swap_count_continuations(struct swap_info_struct *si)
3618 {
3619         pgoff_t offset;
3620
3621         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3622                 struct page *head;
3623                 head = vmalloc_to_page(si->swap_map + offset);
3624                 if (page_private(head)) {
3625                         struct page *page, *next;
3626
3627                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3628                                 list_del(&page->lru);
3629                                 __free_page(page);
3630                         }
3631                 }
3632         }
3633 }
3634
3635 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3636 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3637 {
3638         struct swap_info_struct *si, *next;
3639         int nid = page_to_nid(page);
3640
3641         if (!(gfp_mask & __GFP_IO))
3642                 return;
3643
3644         if (!blk_cgroup_congested())
3645                 return;
3646
3647         /*
3648          * We've already scheduled a throttle, avoid taking the global swap
3649          * lock.
3650          */
3651         if (current->throttle_queue)
3652                 return;
3653
3654         spin_lock(&swap_avail_lock);
3655         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3656                                   avail_lists[nid]) {
3657                 if (si->bdev) {
3658                         blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3659                         break;
3660                 }
3661         }
3662         spin_unlock(&swap_avail_lock);
3663 }
3664 #endif
3665
3666 static int __init swapfile_init(void)
3667 {
3668         int nid;
3669
3670         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3671                                          GFP_KERNEL);
3672         if (!swap_avail_heads) {
3673                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3674                 return -ENOMEM;
3675         }
3676
3677         for_each_node(nid)
3678                 plist_head_init(&swap_avail_heads[nid]);
3679
3680         return 0;
3681 }
3682 subsys_initcall(swapfile_init);