1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/frontswap.h>
39 #include <linux/swapfile.h>
40 #include <linux/export.h>
41 #include <linux/swap_slots.h>
42 #include <linux/sort.h>
43 #include <linux/completion.h>
45 #include <asm/tlbflush.h>
46 #include <linux/swapops.h>
47 #include <linux/swap_cgroup.h>
50 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
52 static void free_swap_count_continuations(struct swap_info_struct *);
54 static DEFINE_SPINLOCK(swap_lock);
55 static unsigned int nr_swapfiles;
56 atomic_long_t nr_swap_pages;
58 * Some modules use swappable objects and may try to swap them out under
59 * memory pressure (via the shrinker). Before doing so, they may wish to
60 * check to see if any swap space is available.
62 EXPORT_SYMBOL_GPL(nr_swap_pages);
63 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
64 long total_swap_pages;
65 static int least_priority = -1;
67 static const char Bad_file[] = "Bad swap file entry ";
68 static const char Unused_file[] = "Unused swap file entry ";
69 static const char Bad_offset[] = "Bad swap offset entry ";
70 static const char Unused_offset[] = "Unused swap offset entry ";
73 * all active swap_info_structs
74 * protected with swap_lock, and ordered by priority.
76 static PLIST_HEAD(swap_active_head);
79 * all available (active, not full) swap_info_structs
80 * protected with swap_avail_lock, ordered by priority.
81 * This is used by folio_alloc_swap() instead of swap_active_head
82 * because swap_active_head includes all swap_info_structs,
83 * but folio_alloc_swap() doesn't need to look at full ones.
84 * This uses its own lock instead of swap_lock because when a
85 * swap_info_struct changes between not-full/full, it needs to
86 * add/remove itself to/from this list, but the swap_info_struct->lock
87 * is held and the locking order requires swap_lock to be taken
88 * before any swap_info_struct->lock.
90 static struct plist_head *swap_avail_heads;
91 static DEFINE_SPINLOCK(swap_avail_lock);
93 struct swap_info_struct *swap_info[MAX_SWAPFILES];
95 static DEFINE_MUTEX(swapon_mutex);
97 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
98 /* Activity counter to indicate that a swapon or swapoff has occurred */
99 static atomic_t proc_poll_event = ATOMIC_INIT(0);
101 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
103 static struct swap_info_struct *swap_type_to_swap_info(int type)
105 if (type >= MAX_SWAPFILES)
108 return READ_ONCE(swap_info[type]); /* rcu_dereference() */
111 static inline unsigned char swap_count(unsigned char ent)
113 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY 0x1
119 * Reclaim the swap entry if there are no more mappings of the
122 #define TTRS_UNMAPPED 0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL 0x4
126 /* returns 1 if swap entry is freed */
127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 unsigned long offset, unsigned long flags)
130 swp_entry_t entry = swp_entry(si->type, offset);
134 page = find_get_page(swap_address_space(entry), offset);
138 * When this function is called from scan_swap_map_slots() and it's
139 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 * here. We have to use trylock for avoiding deadlock. This is a special
141 * case and you should use try_to_free_swap() with explicit lock_page()
142 * in usual operations.
144 if (trylock_page(page)) {
145 if ((flags & TTRS_ANYWAY) ||
146 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 ret = try_to_free_swap(page);
155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
157 struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 return rb_entry(rb, struct swap_extent, rb_node);
161 static inline struct swap_extent *next_se(struct swap_extent *se)
163 struct rb_node *rb = rb_next(&se->rb_node);
164 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
168 * swapon tell device that all the old swap contents can be discarded,
169 * to allow the swap device to optimize its wear-levelling.
171 static int discard_swap(struct swap_info_struct *si)
173 struct swap_extent *se;
174 sector_t start_block;
178 /* Do not discard the swap header page! */
180 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
183 err = blkdev_issue_discard(si->bdev, start_block,
184 nr_blocks, GFP_KERNEL);
190 for (se = next_se(se); se; se = next_se(se)) {
191 start_block = se->start_block << (PAGE_SHIFT - 9);
192 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
194 err = blkdev_issue_discard(si->bdev, start_block,
195 nr_blocks, GFP_KERNEL);
201 return err; /* That will often be -EOPNOTSUPP */
204 static struct swap_extent *
205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
207 struct swap_extent *se;
210 rb = sis->swap_extent_root.rb_node;
212 se = rb_entry(rb, struct swap_extent, rb_node);
213 if (offset < se->start_page)
215 else if (offset >= se->start_page + se->nr_pages)
220 /* It *must* be present */
224 sector_t swap_page_sector(struct page *page)
226 struct swap_info_struct *sis = page_swap_info(page);
227 struct swap_extent *se;
231 offset = __page_file_index(page);
232 se = offset_to_swap_extent(sis, offset);
233 sector = se->start_block + (offset - se->start_page);
234 return sector << (PAGE_SHIFT - 9);
238 * swap allocation tell device that a cluster of swap can now be discarded,
239 * to allow the swap device to optimize its wear-levelling.
241 static void discard_swap_cluster(struct swap_info_struct *si,
242 pgoff_t start_page, pgoff_t nr_pages)
244 struct swap_extent *se = offset_to_swap_extent(si, start_page);
247 pgoff_t offset = start_page - se->start_page;
248 sector_t start_block = se->start_block + offset;
249 sector_t nr_blocks = se->nr_pages - offset;
251 if (nr_blocks > nr_pages)
252 nr_blocks = nr_pages;
253 start_page += nr_blocks;
254 nr_pages -= nr_blocks;
256 start_block <<= PAGE_SHIFT - 9;
257 nr_blocks <<= PAGE_SHIFT - 9;
258 if (blkdev_issue_discard(si->bdev, start_block,
259 nr_blocks, GFP_NOIO))
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
269 #define swap_entry_size(size) (size)
271 #define SWAPFILE_CLUSTER 256
274 * Define swap_entry_size() as constant to let compiler to optimize
275 * out some code if !CONFIG_THP_SWAP
277 #define swap_entry_size(size) 1
279 #define LATENCY_LIMIT 256
281 static inline void cluster_set_flag(struct swap_cluster_info *info,
287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
292 static inline void cluster_set_count(struct swap_cluster_info *info,
298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 unsigned int c, unsigned int f)
305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
310 static inline void cluster_set_next(struct swap_cluster_info *info,
316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 unsigned int n, unsigned int f)
323 static inline bool cluster_is_free(struct swap_cluster_info *info)
325 return info->flags & CLUSTER_FLAG_FREE;
328 static inline bool cluster_is_null(struct swap_cluster_info *info)
330 return info->flags & CLUSTER_FLAG_NEXT_NULL;
333 static inline void cluster_set_null(struct swap_cluster_info *info)
335 info->flags = CLUSTER_FLAG_NEXT_NULL;
339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
341 if (IS_ENABLED(CONFIG_THP_SWAP))
342 return info->flags & CLUSTER_FLAG_HUGE;
346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
348 info->flags &= ~CLUSTER_FLAG_HUGE;
351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 unsigned long offset)
354 struct swap_cluster_info *ci;
356 ci = si->cluster_info;
358 ci += offset / SWAPFILE_CLUSTER;
359 spin_lock(&ci->lock);
364 static inline void unlock_cluster(struct swap_cluster_info *ci)
367 spin_unlock(&ci->lock);
371 * Determine the locking method in use for this device. Return
372 * swap_cluster_info if SSD-style cluster-based locking is in place.
374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 struct swap_info_struct *si, unsigned long offset)
377 struct swap_cluster_info *ci;
379 /* Try to use fine-grained SSD-style locking if available: */
380 ci = lock_cluster(si, offset);
381 /* Otherwise, fall back to traditional, coarse locking: */
383 spin_lock(&si->lock);
388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 struct swap_cluster_info *ci)
394 spin_unlock(&si->lock);
397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
399 return cluster_is_null(&list->head);
402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
404 return cluster_next(&list->head);
407 static void cluster_list_init(struct swap_cluster_list *list)
409 cluster_set_null(&list->head);
410 cluster_set_null(&list->tail);
413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 struct swap_cluster_info *ci,
417 if (cluster_list_empty(list)) {
418 cluster_set_next_flag(&list->head, idx, 0);
419 cluster_set_next_flag(&list->tail, idx, 0);
421 struct swap_cluster_info *ci_tail;
422 unsigned int tail = cluster_next(&list->tail);
425 * Nested cluster lock, but both cluster locks are
426 * only acquired when we held swap_info_struct->lock
429 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 cluster_set_next(ci_tail, idx);
431 spin_unlock(&ci_tail->lock);
432 cluster_set_next_flag(&list->tail, idx, 0);
436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 struct swap_cluster_info *ci)
441 idx = cluster_next(&list->head);
442 if (cluster_next(&list->tail) == idx) {
443 cluster_set_null(&list->head);
444 cluster_set_null(&list->tail);
446 cluster_set_next_flag(&list->head,
447 cluster_next(&ci[idx]), 0);
452 /* Add a cluster to discard list and schedule it to do discard */
453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
457 * If scan_swap_map_slots() can't find a free cluster, it will check
458 * si->swap_map directly. To make sure the discarding cluster isn't
459 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
460 * It will be cleared after discard
462 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
465 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
467 schedule_work(&si->discard_work);
470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
472 struct swap_cluster_info *ci = si->cluster_info;
474 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 cluster_list_add_tail(&si->free_clusters, ci, idx);
479 * Doing discard actually. After a cluster discard is finished, the cluster
480 * will be added to free cluster list. caller should hold si->lock.
482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
484 struct swap_cluster_info *info, *ci;
487 info = si->cluster_info;
489 while (!cluster_list_empty(&si->discard_clusters)) {
490 idx = cluster_list_del_first(&si->discard_clusters, info);
491 spin_unlock(&si->lock);
493 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
496 spin_lock(&si->lock);
497 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 __free_cluster(si, idx);
499 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 0, SWAPFILE_CLUSTER);
505 static void swap_discard_work(struct work_struct *work)
507 struct swap_info_struct *si;
509 si = container_of(work, struct swap_info_struct, discard_work);
511 spin_lock(&si->lock);
512 swap_do_scheduled_discard(si);
513 spin_unlock(&si->lock);
516 static void swap_users_ref_free(struct percpu_ref *ref)
518 struct swap_info_struct *si;
520 si = container_of(ref, struct swap_info_struct, users);
524 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
526 struct swap_cluster_info *ci = si->cluster_info;
528 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
529 cluster_list_del_first(&si->free_clusters, ci);
530 cluster_set_count_flag(ci + idx, 0, 0);
533 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
535 struct swap_cluster_info *ci = si->cluster_info + idx;
537 VM_BUG_ON(cluster_count(ci) != 0);
539 * If the swap is discardable, prepare discard the cluster
540 * instead of free it immediately. The cluster will be freed
543 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
544 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
545 swap_cluster_schedule_discard(si, idx);
549 __free_cluster(si, idx);
553 * The cluster corresponding to page_nr will be used. The cluster will be
554 * removed from free cluster list and its usage counter will be increased.
556 static void inc_cluster_info_page(struct swap_info_struct *p,
557 struct swap_cluster_info *cluster_info, unsigned long page_nr)
559 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
563 if (cluster_is_free(&cluster_info[idx]))
564 alloc_cluster(p, idx);
566 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
567 cluster_set_count(&cluster_info[idx],
568 cluster_count(&cluster_info[idx]) + 1);
572 * The cluster corresponding to page_nr decreases one usage. If the usage
573 * counter becomes 0, which means no page in the cluster is in using, we can
574 * optionally discard the cluster and add it to free cluster list.
576 static void dec_cluster_info_page(struct swap_info_struct *p,
577 struct swap_cluster_info *cluster_info, unsigned long page_nr)
579 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
584 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
585 cluster_set_count(&cluster_info[idx],
586 cluster_count(&cluster_info[idx]) - 1);
588 if (cluster_count(&cluster_info[idx]) == 0)
589 free_cluster(p, idx);
593 * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
594 * cluster list. Avoiding such abuse to avoid list corruption.
597 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
598 unsigned long offset)
600 struct percpu_cluster *percpu_cluster;
603 offset /= SWAPFILE_CLUSTER;
604 conflict = !cluster_list_empty(&si->free_clusters) &&
605 offset != cluster_list_first(&si->free_clusters) &&
606 cluster_is_free(&si->cluster_info[offset]);
611 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
612 cluster_set_null(&percpu_cluster->index);
617 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
618 * might involve allocating a new cluster for current CPU too.
620 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
621 unsigned long *offset, unsigned long *scan_base)
623 struct percpu_cluster *cluster;
624 struct swap_cluster_info *ci;
625 unsigned long tmp, max;
628 cluster = this_cpu_ptr(si->percpu_cluster);
629 if (cluster_is_null(&cluster->index)) {
630 if (!cluster_list_empty(&si->free_clusters)) {
631 cluster->index = si->free_clusters.head;
632 cluster->next = cluster_next(&cluster->index) *
634 } else if (!cluster_list_empty(&si->discard_clusters)) {
636 * we don't have free cluster but have some clusters in
637 * discarding, do discard now and reclaim them, then
638 * reread cluster_next_cpu since we dropped si->lock
640 swap_do_scheduled_discard(si);
641 *scan_base = this_cpu_read(*si->cluster_next_cpu);
642 *offset = *scan_base;
649 * Other CPUs can use our cluster if they can't find a free cluster,
650 * check if there is still free entry in the cluster
653 max = min_t(unsigned long, si->max,
654 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
656 ci = lock_cluster(si, tmp);
658 if (!si->swap_map[tmp])
665 cluster_set_null(&cluster->index);
668 cluster->next = tmp + 1;
674 static void __del_from_avail_list(struct swap_info_struct *p)
679 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
682 static void del_from_avail_list(struct swap_info_struct *p)
684 spin_lock(&swap_avail_lock);
685 __del_from_avail_list(p);
686 spin_unlock(&swap_avail_lock);
689 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
690 unsigned int nr_entries)
692 unsigned int end = offset + nr_entries - 1;
694 if (offset == si->lowest_bit)
695 si->lowest_bit += nr_entries;
696 if (end == si->highest_bit)
697 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
698 WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
699 if (si->inuse_pages == si->pages) {
700 si->lowest_bit = si->max;
702 del_from_avail_list(si);
706 static void add_to_avail_list(struct swap_info_struct *p)
710 spin_lock(&swap_avail_lock);
712 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
713 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
715 spin_unlock(&swap_avail_lock);
718 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
719 unsigned int nr_entries)
721 unsigned long begin = offset;
722 unsigned long end = offset + nr_entries - 1;
723 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
725 if (offset < si->lowest_bit)
726 si->lowest_bit = offset;
727 if (end > si->highest_bit) {
728 bool was_full = !si->highest_bit;
730 WRITE_ONCE(si->highest_bit, end);
731 if (was_full && (si->flags & SWP_WRITEOK))
732 add_to_avail_list(si);
734 atomic_long_add(nr_entries, &nr_swap_pages);
735 WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
736 if (si->flags & SWP_BLKDEV)
737 swap_slot_free_notify =
738 si->bdev->bd_disk->fops->swap_slot_free_notify;
740 swap_slot_free_notify = NULL;
741 while (offset <= end) {
742 arch_swap_invalidate_page(si->type, offset);
743 frontswap_invalidate_page(si->type, offset);
744 if (swap_slot_free_notify)
745 swap_slot_free_notify(si->bdev, offset);
748 clear_shadow_from_swap_cache(si->type, begin, end);
751 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
755 if (!(si->flags & SWP_SOLIDSTATE)) {
756 si->cluster_next = next;
760 prev = this_cpu_read(*si->cluster_next_cpu);
762 * Cross the swap address space size aligned trunk, choose
763 * another trunk randomly to avoid lock contention on swap
764 * address space if possible.
766 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
767 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
768 /* No free swap slots available */
769 if (si->highest_bit <= si->lowest_bit)
771 next = si->lowest_bit +
772 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
773 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
774 next = max_t(unsigned int, next, si->lowest_bit);
776 this_cpu_write(*si->cluster_next_cpu, next);
779 static bool swap_offset_available_and_locked(struct swap_info_struct *si,
780 unsigned long offset)
782 if (data_race(!si->swap_map[offset])) {
783 spin_lock(&si->lock);
787 if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
788 spin_lock(&si->lock);
795 static int scan_swap_map_slots(struct swap_info_struct *si,
796 unsigned char usage, int nr,
799 struct swap_cluster_info *ci;
800 unsigned long offset;
801 unsigned long scan_base;
802 unsigned long last_in_cluster = 0;
803 int latency_ration = LATENCY_LIMIT;
805 bool scanned_many = false;
808 * We try to cluster swap pages by allocating them sequentially
809 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
810 * way, however, we resort to first-free allocation, starting
811 * a new cluster. This prevents us from scattering swap pages
812 * all over the entire swap partition, so that we reduce
813 * overall disk seek times between swap pages. -- sct
814 * But we do now try to find an empty cluster. -Andrea
815 * And we let swap pages go all over an SSD partition. Hugh
818 si->flags += SWP_SCANNING;
820 * Use percpu scan base for SSD to reduce lock contention on
821 * cluster and swap cache. For HDD, sequential access is more
824 if (si->flags & SWP_SOLIDSTATE)
825 scan_base = this_cpu_read(*si->cluster_next_cpu);
827 scan_base = si->cluster_next;
831 if (si->cluster_info) {
832 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
834 } else if (unlikely(!si->cluster_nr--)) {
835 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
836 si->cluster_nr = SWAPFILE_CLUSTER - 1;
840 spin_unlock(&si->lock);
843 * If seek is expensive, start searching for new cluster from
844 * start of partition, to minimize the span of allocated swap.
845 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
846 * case, just handled by scan_swap_map_try_ssd_cluster() above.
848 scan_base = offset = si->lowest_bit;
849 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
851 /* Locate the first empty (unaligned) cluster */
852 for (; last_in_cluster <= si->highest_bit; offset++) {
853 if (si->swap_map[offset])
854 last_in_cluster = offset + SWAPFILE_CLUSTER;
855 else if (offset == last_in_cluster) {
856 spin_lock(&si->lock);
857 offset -= SWAPFILE_CLUSTER - 1;
858 si->cluster_next = offset;
859 si->cluster_nr = SWAPFILE_CLUSTER - 1;
862 if (unlikely(--latency_ration < 0)) {
864 latency_ration = LATENCY_LIMIT;
869 spin_lock(&si->lock);
870 si->cluster_nr = SWAPFILE_CLUSTER - 1;
874 if (si->cluster_info) {
875 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
876 /* take a break if we already got some slots */
879 if (!scan_swap_map_try_ssd_cluster(si, &offset,
884 if (!(si->flags & SWP_WRITEOK))
886 if (!si->highest_bit)
888 if (offset > si->highest_bit)
889 scan_base = offset = si->lowest_bit;
891 ci = lock_cluster(si, offset);
892 /* reuse swap entry of cache-only swap if not busy. */
893 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
896 spin_unlock(&si->lock);
897 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
898 spin_lock(&si->lock);
899 /* entry was freed successfully, try to use this again */
902 goto scan; /* check next one */
905 if (si->swap_map[offset]) {
912 WRITE_ONCE(si->swap_map[offset], usage);
913 inc_cluster_info_page(si, si->cluster_info, offset);
916 swap_range_alloc(si, offset, 1);
917 slots[n_ret++] = swp_entry(si->type, offset);
919 /* got enough slots or reach max slots? */
920 if ((n_ret == nr) || (offset >= si->highest_bit))
923 /* search for next available slot */
925 /* time to take a break? */
926 if (unlikely(--latency_ration < 0)) {
929 spin_unlock(&si->lock);
931 spin_lock(&si->lock);
932 latency_ration = LATENCY_LIMIT;
935 /* try to get more slots in cluster */
936 if (si->cluster_info) {
937 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
939 } else if (si->cluster_nr && !si->swap_map[++offset]) {
940 /* non-ssd case, still more slots in cluster? */
946 * Even if there's no free clusters available (fragmented),
947 * try to scan a little more quickly with lock held unless we
948 * have scanned too many slots already.
951 unsigned long scan_limit;
953 if (offset < scan_base)
954 scan_limit = scan_base;
956 scan_limit = si->highest_bit;
957 for (; offset <= scan_limit && --latency_ration > 0;
959 if (!si->swap_map[offset])
965 set_cluster_next(si, offset + 1);
966 si->flags -= SWP_SCANNING;
970 spin_unlock(&si->lock);
971 while (++offset <= READ_ONCE(si->highest_bit)) {
972 if (swap_offset_available_and_locked(si, offset))
974 if (unlikely(--latency_ration < 0)) {
976 latency_ration = LATENCY_LIMIT;
980 offset = si->lowest_bit;
981 while (offset < scan_base) {
982 if (swap_offset_available_and_locked(si, offset))
984 if (unlikely(--latency_ration < 0)) {
986 latency_ration = LATENCY_LIMIT;
991 spin_lock(&si->lock);
994 si->flags -= SWP_SCANNING;
998 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
1001 struct swap_cluster_info *ci;
1002 unsigned long offset;
1005 * Should not even be attempting cluster allocations when huge
1006 * page swap is disabled. Warn and fail the allocation.
1008 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1013 if (cluster_list_empty(&si->free_clusters))
1016 idx = cluster_list_first(&si->free_clusters);
1017 offset = idx * SWAPFILE_CLUSTER;
1018 ci = lock_cluster(si, offset);
1019 alloc_cluster(si, idx);
1020 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1022 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1024 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1025 *slot = swp_entry(si->type, offset);
1030 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1032 unsigned long offset = idx * SWAPFILE_CLUSTER;
1033 struct swap_cluster_info *ci;
1035 ci = lock_cluster(si, offset);
1036 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1037 cluster_set_count_flag(ci, 0, 0);
1038 free_cluster(si, idx);
1040 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1043 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1045 unsigned long size = swap_entry_size(entry_size);
1046 struct swap_info_struct *si, *next;
1051 /* Only single cluster request supported */
1052 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1054 spin_lock(&swap_avail_lock);
1056 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1057 if (avail_pgs <= 0) {
1058 spin_unlock(&swap_avail_lock);
1062 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1064 atomic_long_sub(n_goal * size, &nr_swap_pages);
1067 node = numa_node_id();
1068 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1069 /* requeue si to after same-priority siblings */
1070 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1071 spin_unlock(&swap_avail_lock);
1072 spin_lock(&si->lock);
1073 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1074 spin_lock(&swap_avail_lock);
1075 if (plist_node_empty(&si->avail_lists[node])) {
1076 spin_unlock(&si->lock);
1079 WARN(!si->highest_bit,
1080 "swap_info %d in list but !highest_bit\n",
1082 WARN(!(si->flags & SWP_WRITEOK),
1083 "swap_info %d in list but !SWP_WRITEOK\n",
1085 __del_from_avail_list(si);
1086 spin_unlock(&si->lock);
1089 if (size == SWAPFILE_CLUSTER) {
1090 if (si->flags & SWP_BLKDEV)
1091 n_ret = swap_alloc_cluster(si, swp_entries);
1093 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1094 n_goal, swp_entries);
1095 spin_unlock(&si->lock);
1096 if (n_ret || size == SWAPFILE_CLUSTER)
1098 pr_debug("scan_swap_map of si %d failed to find offset\n",
1101 spin_lock(&swap_avail_lock);
1104 * if we got here, it's likely that si was almost full before,
1105 * and since scan_swap_map_slots() can drop the si->lock,
1106 * multiple callers probably all tried to get a page from the
1107 * same si and it filled up before we could get one; or, the si
1108 * filled up between us dropping swap_avail_lock and taking
1109 * si->lock. Since we dropped the swap_avail_lock, the
1110 * swap_avail_head list may have been modified; so if next is
1111 * still in the swap_avail_head list then try it, otherwise
1112 * start over if we have not gotten any slots.
1114 if (plist_node_empty(&next->avail_lists[node]))
1118 spin_unlock(&swap_avail_lock);
1122 atomic_long_add((long)(n_goal - n_ret) * size,
1128 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1130 struct swap_info_struct *p;
1131 unsigned long offset;
1135 p = swp_swap_info(entry);
1138 if (data_race(!(p->flags & SWP_USED)))
1140 offset = swp_offset(entry);
1141 if (offset >= p->max)
1143 if (data_race(!p->swap_map[swp_offset(entry)]))
1148 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1151 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1154 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1157 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1162 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1163 struct swap_info_struct *q)
1165 struct swap_info_struct *p;
1167 p = _swap_info_get(entry);
1171 spin_unlock(&q->lock);
1173 spin_lock(&p->lock);
1178 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1179 unsigned long offset,
1180 unsigned char usage)
1182 unsigned char count;
1183 unsigned char has_cache;
1185 count = p->swap_map[offset];
1187 has_cache = count & SWAP_HAS_CACHE;
1188 count &= ~SWAP_HAS_CACHE;
1190 if (usage == SWAP_HAS_CACHE) {
1191 VM_BUG_ON(!has_cache);
1193 } else if (count == SWAP_MAP_SHMEM) {
1195 * Or we could insist on shmem.c using a special
1196 * swap_shmem_free() and free_shmem_swap_and_cache()...
1199 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1200 if (count == COUNT_CONTINUED) {
1201 if (swap_count_continued(p, offset, count))
1202 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1204 count = SWAP_MAP_MAX;
1209 usage = count | has_cache;
1211 WRITE_ONCE(p->swap_map[offset], usage);
1213 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1219 * Check whether swap entry is valid in the swap device. If so,
1220 * return pointer to swap_info_struct, and keep the swap entry valid
1221 * via preventing the swap device from being swapoff, until
1222 * put_swap_device() is called. Otherwise return NULL.
1224 * Notice that swapoff or swapoff+swapon can still happen before the
1225 * percpu_ref_tryget_live() in get_swap_device() or after the
1226 * percpu_ref_put() in put_swap_device() if there isn't any other way
1227 * to prevent swapoff, such as page lock, page table lock, etc. The
1228 * caller must be prepared for that. For example, the following
1229 * situation is possible.
1233 * ... swapoff+swapon
1234 * __read_swap_cache_async()
1235 * swapcache_prepare()
1236 * __swap_duplicate()
1238 * // verify PTE not changed
1240 * In __swap_duplicate(), the swap_map need to be checked before
1241 * changing partly because the specified swap entry may be for another
1242 * swap device which has been swapoff. And in do_swap_page(), after
1243 * the page is read from the swap device, the PTE is verified not
1244 * changed with the page table locked to check whether the swap device
1245 * has been swapoff or swapoff+swapon.
1247 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1249 struct swap_info_struct *si;
1250 unsigned long offset;
1254 si = swp_swap_info(entry);
1257 if (!percpu_ref_tryget_live(&si->users))
1260 * Guarantee the si->users are checked before accessing other
1261 * fields of swap_info_struct.
1263 * Paired with the spin_unlock() after setup_swap_info() in
1264 * enable_swap_info().
1267 offset = swp_offset(entry);
1268 if (offset >= si->max)
1273 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1277 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1278 percpu_ref_put(&si->users);
1282 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1285 struct swap_cluster_info *ci;
1286 unsigned long offset = swp_offset(entry);
1287 unsigned char usage;
1289 ci = lock_cluster_or_swap_info(p, offset);
1290 usage = __swap_entry_free_locked(p, offset, 1);
1291 unlock_cluster_or_swap_info(p, ci);
1293 free_swap_slot(entry);
1298 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1300 struct swap_cluster_info *ci;
1301 unsigned long offset = swp_offset(entry);
1302 unsigned char count;
1304 ci = lock_cluster(p, offset);
1305 count = p->swap_map[offset];
1306 VM_BUG_ON(count != SWAP_HAS_CACHE);
1307 p->swap_map[offset] = 0;
1308 dec_cluster_info_page(p, p->cluster_info, offset);
1311 mem_cgroup_uncharge_swap(entry, 1);
1312 swap_range_free(p, offset, 1);
1316 * Caller has made sure that the swap device corresponding to entry
1317 * is still around or has not been recycled.
1319 void swap_free(swp_entry_t entry)
1321 struct swap_info_struct *p;
1323 p = _swap_info_get(entry);
1325 __swap_entry_free(p, entry);
1329 * Called after dropping swapcache to decrease refcnt to swap entries.
1331 void put_swap_page(struct page *page, swp_entry_t entry)
1333 unsigned long offset = swp_offset(entry);
1334 unsigned long idx = offset / SWAPFILE_CLUSTER;
1335 struct swap_cluster_info *ci;
1336 struct swap_info_struct *si;
1338 unsigned int i, free_entries = 0;
1340 int size = swap_entry_size(thp_nr_pages(page));
1342 si = _swap_info_get(entry);
1346 ci = lock_cluster_or_swap_info(si, offset);
1347 if (size == SWAPFILE_CLUSTER) {
1348 VM_BUG_ON(!cluster_is_huge(ci));
1349 map = si->swap_map + offset;
1350 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1352 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1353 if (val == SWAP_HAS_CACHE)
1356 cluster_clear_huge(ci);
1357 if (free_entries == SWAPFILE_CLUSTER) {
1358 unlock_cluster_or_swap_info(si, ci);
1359 spin_lock(&si->lock);
1360 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1361 swap_free_cluster(si, idx);
1362 spin_unlock(&si->lock);
1366 for (i = 0; i < size; i++, entry.val++) {
1367 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1368 unlock_cluster_or_swap_info(si, ci);
1369 free_swap_slot(entry);
1372 lock_cluster_or_swap_info(si, offset);
1375 unlock_cluster_or_swap_info(si, ci);
1378 #ifdef CONFIG_THP_SWAP
1379 int split_swap_cluster(swp_entry_t entry)
1381 struct swap_info_struct *si;
1382 struct swap_cluster_info *ci;
1383 unsigned long offset = swp_offset(entry);
1385 si = _swap_info_get(entry);
1388 ci = lock_cluster(si, offset);
1389 cluster_clear_huge(ci);
1395 static int swp_entry_cmp(const void *ent1, const void *ent2)
1397 const swp_entry_t *e1 = ent1, *e2 = ent2;
1399 return (int)swp_type(*e1) - (int)swp_type(*e2);
1402 void swapcache_free_entries(swp_entry_t *entries, int n)
1404 struct swap_info_struct *p, *prev;
1414 * Sort swap entries by swap device, so each lock is only taken once.
1415 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1416 * so low that it isn't necessary to optimize further.
1418 if (nr_swapfiles > 1)
1419 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1420 for (i = 0; i < n; ++i) {
1421 p = swap_info_get_cont(entries[i], prev);
1423 swap_entry_free(p, entries[i]);
1427 spin_unlock(&p->lock);
1431 * How many references to page are currently swapped out?
1432 * This does not give an exact answer when swap count is continued,
1433 * but does include the high COUNT_CONTINUED flag to allow for that.
1435 static int page_swapcount(struct page *page)
1438 struct swap_info_struct *p;
1439 struct swap_cluster_info *ci;
1441 unsigned long offset;
1443 entry.val = page_private(page);
1444 p = _swap_info_get(entry);
1446 offset = swp_offset(entry);
1447 ci = lock_cluster_or_swap_info(p, offset);
1448 count = swap_count(p->swap_map[offset]);
1449 unlock_cluster_or_swap_info(p, ci);
1454 int __swap_count(swp_entry_t entry)
1456 struct swap_info_struct *si;
1457 pgoff_t offset = swp_offset(entry);
1460 si = get_swap_device(entry);
1462 count = swap_count(si->swap_map[offset]);
1463 put_swap_device(si);
1468 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1471 pgoff_t offset = swp_offset(entry);
1472 struct swap_cluster_info *ci;
1474 ci = lock_cluster_or_swap_info(si, offset);
1475 count = swap_count(si->swap_map[offset]);
1476 unlock_cluster_or_swap_info(si, ci);
1481 * How many references to @entry are currently swapped out?
1482 * This does not give an exact answer when swap count is continued,
1483 * but does include the high COUNT_CONTINUED flag to allow for that.
1485 int __swp_swapcount(swp_entry_t entry)
1488 struct swap_info_struct *si;
1490 si = get_swap_device(entry);
1492 count = swap_swapcount(si, entry);
1493 put_swap_device(si);
1499 * How many references to @entry are currently swapped out?
1500 * This considers COUNT_CONTINUED so it returns exact answer.
1502 int swp_swapcount(swp_entry_t entry)
1504 int count, tmp_count, n;
1505 struct swap_info_struct *p;
1506 struct swap_cluster_info *ci;
1511 p = _swap_info_get(entry);
1515 offset = swp_offset(entry);
1517 ci = lock_cluster_or_swap_info(p, offset);
1519 count = swap_count(p->swap_map[offset]);
1520 if (!(count & COUNT_CONTINUED))
1523 count &= ~COUNT_CONTINUED;
1524 n = SWAP_MAP_MAX + 1;
1526 page = vmalloc_to_page(p->swap_map + offset);
1527 offset &= ~PAGE_MASK;
1528 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1531 page = list_next_entry(page, lru);
1532 map = kmap_atomic(page);
1533 tmp_count = map[offset];
1536 count += (tmp_count & ~COUNT_CONTINUED) * n;
1537 n *= (SWAP_CONT_MAX + 1);
1538 } while (tmp_count & COUNT_CONTINUED);
1540 unlock_cluster_or_swap_info(p, ci);
1544 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1547 struct swap_cluster_info *ci;
1548 unsigned char *map = si->swap_map;
1549 unsigned long roffset = swp_offset(entry);
1550 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1554 ci = lock_cluster_or_swap_info(si, offset);
1555 if (!ci || !cluster_is_huge(ci)) {
1556 if (swap_count(map[roffset]))
1560 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1561 if (swap_count(map[offset + i])) {
1567 unlock_cluster_or_swap_info(si, ci);
1571 static bool folio_swapped(struct folio *folio)
1574 struct swap_info_struct *si;
1576 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
1577 return page_swapcount(&folio->page) != 0;
1579 entry = folio_swap_entry(folio);
1580 si = _swap_info_get(entry);
1582 return swap_page_trans_huge_swapped(si, entry);
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1590 int try_to_free_swap(struct page *page)
1592 struct folio *folio = page_folio(page);
1593 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1595 if (!folio_test_swapcache(folio))
1597 if (folio_test_writeback(folio))
1599 if (folio_swapped(folio))
1603 * Once hibernation has begun to create its image of memory,
1604 * there's a danger that one of the calls to try_to_free_swap()
1605 * - most probably a call from __try_to_reclaim_swap() while
1606 * hibernation is allocating its own swap pages for the image,
1607 * but conceivably even a call from memory reclaim - will free
1608 * the swap from a page which has already been recorded in the
1609 * image as a clean swapcache page, and then reuse its swap for
1610 * another page of the image. On waking from hibernation, the
1611 * original page might be freed under memory pressure, then
1612 * later read back in from swap, now with the wrong data.
1614 * Hibernation suspends storage while it is writing the image
1615 * to disk so check that here.
1617 if (pm_suspended_storage())
1620 delete_from_swap_cache(folio);
1621 folio_set_dirty(folio);
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
1629 int free_swap_and_cache(swp_entry_t entry)
1631 struct swap_info_struct *p;
1632 unsigned char count;
1634 if (non_swap_entry(entry))
1637 p = _swap_info_get(entry);
1639 count = __swap_entry_free(p, entry);
1640 if (count == SWAP_HAS_CACHE &&
1641 !swap_page_trans_huge_swapped(p, entry))
1642 __try_to_reclaim_swap(p, swp_offset(entry),
1643 TTRS_UNMAPPED | TTRS_FULL);
1648 #ifdef CONFIG_HIBERNATION
1650 swp_entry_t get_swap_page_of_type(int type)
1652 struct swap_info_struct *si = swap_type_to_swap_info(type);
1653 swp_entry_t entry = {0};
1658 /* This is called for allocating swap entry, not cache */
1659 spin_lock(&si->lock);
1660 if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
1661 atomic_long_dec(&nr_swap_pages);
1662 spin_unlock(&si->lock);
1668 * Find the swap type that corresponds to given device (if any).
1670 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1671 * from 0, in which the swap header is expected to be located.
1673 * This is needed for the suspend to disk (aka swsusp).
1675 int swap_type_of(dev_t device, sector_t offset)
1682 spin_lock(&swap_lock);
1683 for (type = 0; type < nr_swapfiles; type++) {
1684 struct swap_info_struct *sis = swap_info[type];
1686 if (!(sis->flags & SWP_WRITEOK))
1689 if (device == sis->bdev->bd_dev) {
1690 struct swap_extent *se = first_se(sis);
1692 if (se->start_block == offset) {
1693 spin_unlock(&swap_lock);
1698 spin_unlock(&swap_lock);
1702 int find_first_swap(dev_t *device)
1706 spin_lock(&swap_lock);
1707 for (type = 0; type < nr_swapfiles; type++) {
1708 struct swap_info_struct *sis = swap_info[type];
1710 if (!(sis->flags & SWP_WRITEOK))
1712 *device = sis->bdev->bd_dev;
1713 spin_unlock(&swap_lock);
1716 spin_unlock(&swap_lock);
1721 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1722 * corresponding to given index in swap_info (swap type).
1724 sector_t swapdev_block(int type, pgoff_t offset)
1726 struct swap_info_struct *si = swap_type_to_swap_info(type);
1727 struct swap_extent *se;
1729 if (!si || !(si->flags & SWP_WRITEOK))
1731 se = offset_to_swap_extent(si, offset);
1732 return se->start_block + (offset - se->start_page);
1736 * Return either the total number of swap pages of given type, or the number
1737 * of free pages of that type (depending on @free)
1739 * This is needed for software suspend
1741 unsigned int count_swap_pages(int type, int free)
1745 spin_lock(&swap_lock);
1746 if ((unsigned int)type < nr_swapfiles) {
1747 struct swap_info_struct *sis = swap_info[type];
1749 spin_lock(&sis->lock);
1750 if (sis->flags & SWP_WRITEOK) {
1753 n -= sis->inuse_pages;
1755 spin_unlock(&sis->lock);
1757 spin_unlock(&swap_lock);
1760 #endif /* CONFIG_HIBERNATION */
1762 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1764 return pte_same(pte_swp_clear_flags(pte), swp_pte);
1768 * No need to decide whether this PTE shares the swap entry with others,
1769 * just let do_wp_page work it out if a write is requested later - to
1770 * force COW, vm_page_prot omits write permission from any private vma.
1772 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1773 unsigned long addr, swp_entry_t entry, struct page *page)
1775 struct page *swapcache;
1777 pte_t *pte, new_pte;
1781 page = ksm_might_need_to_copy(page, vma, addr);
1782 if (unlikely(!page))
1785 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1786 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1791 if (unlikely(!PageUptodate(page))) {
1794 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1795 pteval = swp_entry_to_pte(make_swapin_error_entry(page));
1796 set_pte_at(vma->vm_mm, addr, pte, pteval);
1802 /* See do_swap_page() */
1803 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
1804 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
1806 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1807 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1809 if (page == swapcache) {
1810 rmap_t rmap_flags = RMAP_NONE;
1813 * See do_swap_page(): PageWriteback() would be problematic.
1814 * However, we do a wait_on_page_writeback() just before this
1815 * call and have the page locked.
1817 VM_BUG_ON_PAGE(PageWriteback(page), page);
1818 if (pte_swp_exclusive(*pte))
1819 rmap_flags |= RMAP_EXCLUSIVE;
1821 page_add_anon_rmap(page, vma, addr, rmap_flags);
1822 } else { /* ksm created a completely new copy */
1823 page_add_new_anon_rmap(page, vma, addr);
1824 lru_cache_add_inactive_or_unevictable(page, vma);
1826 new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
1827 if (pte_swp_soft_dirty(*pte))
1828 new_pte = pte_mksoft_dirty(new_pte);
1829 if (pte_swp_uffd_wp(*pte))
1830 new_pte = pte_mkuffd_wp(new_pte);
1831 set_pte_at(vma->vm_mm, addr, pte, new_pte);
1834 pte_unmap_unlock(pte, ptl);
1835 if (page != swapcache) {
1842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1843 unsigned long addr, unsigned long end,
1849 struct swap_info_struct *si;
1850 unsigned long offset;
1852 volatile unsigned char *swap_map;
1854 si = swap_info[type];
1855 pte = pte_offset_map(pmd, addr);
1857 if (!is_swap_pte(*pte))
1860 entry = pte_to_swp_entry(*pte);
1861 if (swp_type(entry) != type)
1864 offset = swp_offset(entry);
1866 swap_map = &si->swap_map[offset];
1867 page = lookup_swap_cache(entry, vma, addr);
1869 struct vm_fault vmf = {
1872 .real_address = addr,
1876 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1880 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1886 wait_on_page_writeback(page);
1887 ret = unuse_pte(vma, pmd, addr, entry, page);
1894 try_to_free_swap(page);
1898 pte = pte_offset_map(pmd, addr);
1899 } while (pte++, addr += PAGE_SIZE, addr != end);
1907 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1908 unsigned long addr, unsigned long end,
1915 pmd = pmd_offset(pud, addr);
1918 next = pmd_addr_end(addr, end);
1919 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1921 ret = unuse_pte_range(vma, pmd, addr, next, type);
1924 } while (pmd++, addr = next, addr != end);
1928 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1929 unsigned long addr, unsigned long end,
1936 pud = pud_offset(p4d, addr);
1938 next = pud_addr_end(addr, end);
1939 if (pud_none_or_clear_bad(pud))
1941 ret = unuse_pmd_range(vma, pud, addr, next, type);
1944 } while (pud++, addr = next, addr != end);
1948 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1949 unsigned long addr, unsigned long end,
1956 p4d = p4d_offset(pgd, addr);
1958 next = p4d_addr_end(addr, end);
1959 if (p4d_none_or_clear_bad(p4d))
1961 ret = unuse_pud_range(vma, p4d, addr, next, type);
1964 } while (p4d++, addr = next, addr != end);
1968 static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
1971 unsigned long addr, end, next;
1974 addr = vma->vm_start;
1977 pgd = pgd_offset(vma->vm_mm, addr);
1979 next = pgd_addr_end(addr, end);
1980 if (pgd_none_or_clear_bad(pgd))
1982 ret = unuse_p4d_range(vma, pgd, addr, next, type);
1985 } while (pgd++, addr = next, addr != end);
1989 static int unuse_mm(struct mm_struct *mm, unsigned int type)
1991 struct vm_area_struct *vma;
1995 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996 if (vma->anon_vma) {
1997 ret = unuse_vma(vma, type);
2003 mmap_read_unlock(mm);
2008 * Scan swap_map from current position to next entry still in use.
2009 * Return 0 if there are no inuse entries after prev till end of
2012 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2016 unsigned char count;
2019 * No need for swap_lock here: we're just looking
2020 * for whether an entry is in use, not modifying it; false
2021 * hits are okay, and sys_swapoff() has already prevented new
2022 * allocations from this area (while holding swap_lock).
2024 for (i = prev + 1; i < si->max; i++) {
2025 count = READ_ONCE(si->swap_map[i]);
2026 if (count && swap_count(count) != SWAP_MAP_BAD)
2028 if ((i % LATENCY_LIMIT) == 0)
2038 static int try_to_unuse(unsigned int type)
2040 struct mm_struct *prev_mm;
2041 struct mm_struct *mm;
2042 struct list_head *p;
2044 struct swap_info_struct *si = swap_info[type];
2049 if (!READ_ONCE(si->inuse_pages))
2053 retval = shmem_unuse(type);
2060 spin_lock(&mmlist_lock);
2061 p = &init_mm.mmlist;
2062 while (READ_ONCE(si->inuse_pages) &&
2063 !signal_pending(current) &&
2064 (p = p->next) != &init_mm.mmlist) {
2066 mm = list_entry(p, struct mm_struct, mmlist);
2067 if (!mmget_not_zero(mm))
2069 spin_unlock(&mmlist_lock);
2072 retval = unuse_mm(mm, type);
2079 * Make sure that we aren't completely killing
2080 * interactive performance.
2083 spin_lock(&mmlist_lock);
2085 spin_unlock(&mmlist_lock);
2090 while (READ_ONCE(si->inuse_pages) &&
2091 !signal_pending(current) &&
2092 (i = find_next_to_unuse(si, i)) != 0) {
2094 entry = swp_entry(type, i);
2095 page = find_get_page(swap_address_space(entry), i);
2100 * It is conceivable that a racing task removed this page from
2101 * swap cache just before we acquired the page lock. The page
2102 * might even be back in swap cache on another swap area. But
2103 * that is okay, try_to_free_swap() only removes stale pages.
2106 wait_on_page_writeback(page);
2107 try_to_free_swap(page);
2113 * Lets check again to see if there are still swap entries in the map.
2114 * If yes, we would need to do retry the unuse logic again.
2115 * Under global memory pressure, swap entries can be reinserted back
2116 * into process space after the mmlist loop above passes over them.
2118 * Limit the number of retries? No: when mmget_not_zero()
2119 * above fails, that mm is likely to be freeing swap from
2120 * exit_mmap(), which proceeds at its own independent pace;
2121 * and even shmem_writepage() could have been preempted after
2122 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2123 * and robust (though cpu-intensive) just to keep retrying.
2125 if (READ_ONCE(si->inuse_pages)) {
2126 if (!signal_pending(current))
2135 * After a successful try_to_unuse, if no swap is now in use, we know
2136 * we can empty the mmlist. swap_lock must be held on entry and exit.
2137 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2138 * added to the mmlist just after page_duplicate - before would be racy.
2140 static void drain_mmlist(void)
2142 struct list_head *p, *next;
2145 for (type = 0; type < nr_swapfiles; type++)
2146 if (swap_info[type]->inuse_pages)
2148 spin_lock(&mmlist_lock);
2149 list_for_each_safe(p, next, &init_mm.mmlist)
2151 spin_unlock(&mmlist_lock);
2155 * Free all of a swapdev's extent information
2157 static void destroy_swap_extents(struct swap_info_struct *sis)
2159 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2160 struct rb_node *rb = sis->swap_extent_root.rb_node;
2161 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2163 rb_erase(rb, &sis->swap_extent_root);
2167 if (sis->flags & SWP_ACTIVATED) {
2168 struct file *swap_file = sis->swap_file;
2169 struct address_space *mapping = swap_file->f_mapping;
2171 sis->flags &= ~SWP_ACTIVATED;
2172 if (mapping->a_ops->swap_deactivate)
2173 mapping->a_ops->swap_deactivate(swap_file);
2178 * Add a block range (and the corresponding page range) into this swapdev's
2181 * This function rather assumes that it is called in ascending page order.
2184 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2185 unsigned long nr_pages, sector_t start_block)
2187 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2188 struct swap_extent *se;
2189 struct swap_extent *new_se;
2192 * place the new node at the right most since the
2193 * function is called in ascending page order.
2197 link = &parent->rb_right;
2201 se = rb_entry(parent, struct swap_extent, rb_node);
2202 BUG_ON(se->start_page + se->nr_pages != start_page);
2203 if (se->start_block + se->nr_pages == start_block) {
2205 se->nr_pages += nr_pages;
2210 /* No merge, insert a new extent. */
2211 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2214 new_se->start_page = start_page;
2215 new_se->nr_pages = nr_pages;
2216 new_se->start_block = start_block;
2218 rb_link_node(&new_se->rb_node, parent, link);
2219 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2222 EXPORT_SYMBOL_GPL(add_swap_extent);
2225 * A `swap extent' is a simple thing which maps a contiguous range of pages
2226 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2227 * built at swapon time and is then used at swap_writepage/swap_readpage
2228 * time for locating where on disk a page belongs.
2230 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2231 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2232 * swap files identically.
2234 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2235 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2236 * swapfiles are handled *identically* after swapon time.
2238 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2239 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2240 * blocks are found which do not fall within the PAGE_SIZE alignment
2241 * requirements, they are simply tossed out - we will never use those blocks
2244 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2245 * prevents users from writing to the swap device, which will corrupt memory.
2247 * The amount of disk space which a single swap extent represents varies.
2248 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2249 * extents in the rbtree. - akpm.
2251 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2253 struct file *swap_file = sis->swap_file;
2254 struct address_space *mapping = swap_file->f_mapping;
2255 struct inode *inode = mapping->host;
2258 if (S_ISBLK(inode->i_mode)) {
2259 ret = add_swap_extent(sis, 0, sis->max, 0);
2264 if (mapping->a_ops->swap_activate) {
2265 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2268 sis->flags |= SWP_ACTIVATED;
2269 if ((sis->flags & SWP_FS_OPS) &&
2270 sio_pool_init() != 0) {
2271 destroy_swap_extents(sis);
2277 return generic_swapfile_activate(sis, swap_file, span);
2280 static int swap_node(struct swap_info_struct *p)
2282 struct block_device *bdev;
2287 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2289 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2292 static void setup_swap_info(struct swap_info_struct *p, int prio,
2293 unsigned char *swap_map,
2294 struct swap_cluster_info *cluster_info)
2301 p->prio = --least_priority;
2303 * the plist prio is negated because plist ordering is
2304 * low-to-high, while swap ordering is high-to-low
2306 p->list.prio = -p->prio;
2309 p->avail_lists[i].prio = -p->prio;
2311 if (swap_node(p) == i)
2312 p->avail_lists[i].prio = 1;
2314 p->avail_lists[i].prio = -p->prio;
2317 p->swap_map = swap_map;
2318 p->cluster_info = cluster_info;
2321 static void _enable_swap_info(struct swap_info_struct *p)
2323 p->flags |= SWP_WRITEOK;
2324 atomic_long_add(p->pages, &nr_swap_pages);
2325 total_swap_pages += p->pages;
2327 assert_spin_locked(&swap_lock);
2329 * both lists are plists, and thus priority ordered.
2330 * swap_active_head needs to be priority ordered for swapoff(),
2331 * which on removal of any swap_info_struct with an auto-assigned
2332 * (i.e. negative) priority increments the auto-assigned priority
2333 * of any lower-priority swap_info_structs.
2334 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2335 * which allocates swap pages from the highest available priority
2338 plist_add(&p->list, &swap_active_head);
2339 add_to_avail_list(p);
2342 static void enable_swap_info(struct swap_info_struct *p, int prio,
2343 unsigned char *swap_map,
2344 struct swap_cluster_info *cluster_info,
2345 unsigned long *frontswap_map)
2347 if (IS_ENABLED(CONFIG_FRONTSWAP))
2348 frontswap_init(p->type, frontswap_map);
2349 spin_lock(&swap_lock);
2350 spin_lock(&p->lock);
2351 setup_swap_info(p, prio, swap_map, cluster_info);
2352 spin_unlock(&p->lock);
2353 spin_unlock(&swap_lock);
2355 * Finished initializing swap device, now it's safe to reference it.
2357 percpu_ref_resurrect(&p->users);
2358 spin_lock(&swap_lock);
2359 spin_lock(&p->lock);
2360 _enable_swap_info(p);
2361 spin_unlock(&p->lock);
2362 spin_unlock(&swap_lock);
2365 static void reinsert_swap_info(struct swap_info_struct *p)
2367 spin_lock(&swap_lock);
2368 spin_lock(&p->lock);
2369 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2370 _enable_swap_info(p);
2371 spin_unlock(&p->lock);
2372 spin_unlock(&swap_lock);
2375 bool has_usable_swap(void)
2379 spin_lock(&swap_lock);
2380 if (plist_head_empty(&swap_active_head))
2382 spin_unlock(&swap_lock);
2386 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2388 struct swap_info_struct *p = NULL;
2389 unsigned char *swap_map;
2390 struct swap_cluster_info *cluster_info;
2391 unsigned long *frontswap_map;
2392 struct file *swap_file, *victim;
2393 struct address_space *mapping;
2394 struct inode *inode;
2395 struct filename *pathname;
2397 unsigned int old_block_size;
2399 if (!capable(CAP_SYS_ADMIN))
2402 BUG_ON(!current->mm);
2404 pathname = getname(specialfile);
2405 if (IS_ERR(pathname))
2406 return PTR_ERR(pathname);
2408 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2409 err = PTR_ERR(victim);
2413 mapping = victim->f_mapping;
2414 spin_lock(&swap_lock);
2415 plist_for_each_entry(p, &swap_active_head, list) {
2416 if (p->flags & SWP_WRITEOK) {
2417 if (p->swap_file->f_mapping == mapping) {
2425 spin_unlock(&swap_lock);
2428 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2429 vm_unacct_memory(p->pages);
2432 spin_unlock(&swap_lock);
2435 del_from_avail_list(p);
2436 spin_lock(&p->lock);
2438 struct swap_info_struct *si = p;
2441 plist_for_each_entry_continue(si, &swap_active_head, list) {
2444 for_each_node(nid) {
2445 if (si->avail_lists[nid].prio != 1)
2446 si->avail_lists[nid].prio--;
2451 plist_del(&p->list, &swap_active_head);
2452 atomic_long_sub(p->pages, &nr_swap_pages);
2453 total_swap_pages -= p->pages;
2454 p->flags &= ~SWP_WRITEOK;
2455 spin_unlock(&p->lock);
2456 spin_unlock(&swap_lock);
2458 disable_swap_slots_cache_lock();
2460 set_current_oom_origin();
2461 err = try_to_unuse(p->type);
2462 clear_current_oom_origin();
2465 /* re-insert swap space back into swap_list */
2466 reinsert_swap_info(p);
2467 reenable_swap_slots_cache_unlock();
2471 reenable_swap_slots_cache_unlock();
2474 * Wait for swap operations protected by get/put_swap_device()
2477 * We need synchronize_rcu() here to protect the accessing to
2478 * the swap cache data structure.
2480 percpu_ref_kill(&p->users);
2482 wait_for_completion(&p->comp);
2484 flush_work(&p->discard_work);
2486 destroy_swap_extents(p);
2487 if (p->flags & SWP_CONTINUED)
2488 free_swap_count_continuations(p);
2490 if (!p->bdev || !bdev_nonrot(p->bdev))
2491 atomic_dec(&nr_rotate_swap);
2493 mutex_lock(&swapon_mutex);
2494 spin_lock(&swap_lock);
2495 spin_lock(&p->lock);
2498 /* wait for anyone still in scan_swap_map_slots */
2499 p->highest_bit = 0; /* cuts scans short */
2500 while (p->flags >= SWP_SCANNING) {
2501 spin_unlock(&p->lock);
2502 spin_unlock(&swap_lock);
2503 schedule_timeout_uninterruptible(1);
2504 spin_lock(&swap_lock);
2505 spin_lock(&p->lock);
2508 swap_file = p->swap_file;
2509 old_block_size = p->old_block_size;
2510 p->swap_file = NULL;
2512 swap_map = p->swap_map;
2514 cluster_info = p->cluster_info;
2515 p->cluster_info = NULL;
2516 frontswap_map = frontswap_map_get(p);
2517 spin_unlock(&p->lock);
2518 spin_unlock(&swap_lock);
2519 arch_swap_invalidate_area(p->type);
2520 frontswap_invalidate_area(p->type);
2521 frontswap_map_set(p, NULL);
2522 mutex_unlock(&swapon_mutex);
2523 free_percpu(p->percpu_cluster);
2524 p->percpu_cluster = NULL;
2525 free_percpu(p->cluster_next_cpu);
2526 p->cluster_next_cpu = NULL;
2528 kvfree(cluster_info);
2529 kvfree(frontswap_map);
2530 /* Destroy swap account information */
2531 swap_cgroup_swapoff(p->type);
2532 exit_swap_address_space(p->type);
2534 inode = mapping->host;
2535 if (S_ISBLK(inode->i_mode)) {
2536 struct block_device *bdev = I_BDEV(inode);
2538 set_blocksize(bdev, old_block_size);
2539 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2543 inode->i_flags &= ~S_SWAPFILE;
2544 inode_unlock(inode);
2545 filp_close(swap_file, NULL);
2548 * Clear the SWP_USED flag after all resources are freed so that swapon
2549 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2550 * not hold p->lock after we cleared its SWP_WRITEOK.
2552 spin_lock(&swap_lock);
2554 spin_unlock(&swap_lock);
2557 atomic_inc(&proc_poll_event);
2558 wake_up_interruptible(&proc_poll_wait);
2561 filp_close(victim, NULL);
2567 #ifdef CONFIG_PROC_FS
2568 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2570 struct seq_file *seq = file->private_data;
2572 poll_wait(file, &proc_poll_wait, wait);
2574 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2575 seq->poll_event = atomic_read(&proc_poll_event);
2576 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2579 return EPOLLIN | EPOLLRDNORM;
2583 static void *swap_start(struct seq_file *swap, loff_t *pos)
2585 struct swap_info_struct *si;
2589 mutex_lock(&swapon_mutex);
2592 return SEQ_START_TOKEN;
2594 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2595 if (!(si->flags & SWP_USED) || !si->swap_map)
2604 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2606 struct swap_info_struct *si = v;
2609 if (v == SEQ_START_TOKEN)
2612 type = si->type + 1;
2615 for (; (si = swap_type_to_swap_info(type)); type++) {
2616 if (!(si->flags & SWP_USED) || !si->swap_map)
2624 static void swap_stop(struct seq_file *swap, void *v)
2626 mutex_unlock(&swapon_mutex);
2629 static int swap_show(struct seq_file *swap, void *v)
2631 struct swap_info_struct *si = v;
2634 unsigned long bytes, inuse;
2636 if (si == SEQ_START_TOKEN) {
2637 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2641 bytes = si->pages << (PAGE_SHIFT - 10);
2642 inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
2644 file = si->swap_file;
2645 len = seq_file_path(swap, file, " \t\n\\");
2646 seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
2647 len < 40 ? 40 - len : 1, " ",
2648 S_ISBLK(file_inode(file)->i_mode) ?
2649 "partition" : "file\t",
2650 bytes, bytes < 10000000 ? "\t" : "",
2651 inuse, inuse < 10000000 ? "\t" : "",
2656 static const struct seq_operations swaps_op = {
2657 .start = swap_start,
2663 static int swaps_open(struct inode *inode, struct file *file)
2665 struct seq_file *seq;
2668 ret = seq_open(file, &swaps_op);
2672 seq = file->private_data;
2673 seq->poll_event = atomic_read(&proc_poll_event);
2677 static const struct proc_ops swaps_proc_ops = {
2678 .proc_flags = PROC_ENTRY_PERMANENT,
2679 .proc_open = swaps_open,
2680 .proc_read = seq_read,
2681 .proc_lseek = seq_lseek,
2682 .proc_release = seq_release,
2683 .proc_poll = swaps_poll,
2686 static int __init procswaps_init(void)
2688 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2691 __initcall(procswaps_init);
2692 #endif /* CONFIG_PROC_FS */
2694 #ifdef MAX_SWAPFILES_CHECK
2695 static int __init max_swapfiles_check(void)
2697 MAX_SWAPFILES_CHECK();
2700 late_initcall(max_swapfiles_check);
2703 static struct swap_info_struct *alloc_swap_info(void)
2705 struct swap_info_struct *p;
2706 struct swap_info_struct *defer = NULL;
2710 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2712 return ERR_PTR(-ENOMEM);
2714 if (percpu_ref_init(&p->users, swap_users_ref_free,
2715 PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
2717 return ERR_PTR(-ENOMEM);
2720 spin_lock(&swap_lock);
2721 for (type = 0; type < nr_swapfiles; type++) {
2722 if (!(swap_info[type]->flags & SWP_USED))
2725 if (type >= MAX_SWAPFILES) {
2726 spin_unlock(&swap_lock);
2727 percpu_ref_exit(&p->users);
2729 return ERR_PTR(-EPERM);
2731 if (type >= nr_swapfiles) {
2734 * Publish the swap_info_struct after initializing it.
2735 * Note that kvzalloc() above zeroes all its fields.
2737 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
2741 p = swap_info[type];
2743 * Do not memset this entry: a racing procfs swap_next()
2744 * would be relying on p->type to remain valid.
2747 p->swap_extent_root = RB_ROOT;
2748 plist_node_init(&p->list, 0);
2750 plist_node_init(&p->avail_lists[i], 0);
2751 p->flags = SWP_USED;
2752 spin_unlock(&swap_lock);
2754 percpu_ref_exit(&defer->users);
2757 spin_lock_init(&p->lock);
2758 spin_lock_init(&p->cont_lock);
2759 init_completion(&p->comp);
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2768 if (S_ISBLK(inode->i_mode)) {
2769 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2770 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2771 if (IS_ERR(p->bdev)) {
2772 error = PTR_ERR(p->bdev);
2776 p->old_block_size = block_size(p->bdev);
2777 error = set_blocksize(p->bdev, PAGE_SIZE);
2781 * Zoned block devices contain zones that have a sequential
2782 * write only restriction. Hence zoned block devices are not
2783 * suitable for swapping. Disallow them here.
2785 if (bdev_is_zoned(p->bdev))
2787 p->flags |= SWP_BLKDEV;
2788 } else if (S_ISREG(inode->i_mode)) {
2789 p->bdev = inode->i_sb->s_bdev;
2797 * Find out how many pages are allowed for a single swap device. There
2798 * are two limiting factors:
2799 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2800 * 2) the number of bits in the swap pte, as defined by the different
2803 * In order to find the largest possible bit mask, a swap entry with
2804 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2805 * decoded to a swp_entry_t again, and finally the swap offset is
2808 * This will mask all the bits from the initial ~0UL mask that can't
2809 * be encoded in either the swp_entry_t or the architecture definition
2812 unsigned long generic_max_swapfile_size(void)
2814 return swp_offset(pte_to_swp_entry(
2815 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2818 /* Can be overridden by an architecture for additional checks. */
2819 __weak unsigned long max_swapfile_size(void)
2821 return generic_max_swapfile_size();
2824 static unsigned long read_swap_header(struct swap_info_struct *p,
2825 union swap_header *swap_header,
2826 struct inode *inode)
2829 unsigned long maxpages;
2830 unsigned long swapfilepages;
2831 unsigned long last_page;
2833 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2834 pr_err("Unable to find swap-space signature\n");
2838 /* swap partition endianness hack... */
2839 if (swab32(swap_header->info.version) == 1) {
2840 swab32s(&swap_header->info.version);
2841 swab32s(&swap_header->info.last_page);
2842 swab32s(&swap_header->info.nr_badpages);
2843 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2845 for (i = 0; i < swap_header->info.nr_badpages; i++)
2846 swab32s(&swap_header->info.badpages[i]);
2848 /* Check the swap header's sub-version */
2849 if (swap_header->info.version != 1) {
2850 pr_warn("Unable to handle swap header version %d\n",
2851 swap_header->info.version);
2856 p->cluster_next = 1;
2859 maxpages = max_swapfile_size();
2860 last_page = swap_header->info.last_page;
2862 pr_warn("Empty swap-file\n");
2865 if (last_page > maxpages) {
2866 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2867 maxpages << (PAGE_SHIFT - 10),
2868 last_page << (PAGE_SHIFT - 10));
2870 if (maxpages > last_page) {
2871 maxpages = last_page + 1;
2872 /* p->max is an unsigned int: don't overflow it */
2873 if ((unsigned int)maxpages == 0)
2874 maxpages = UINT_MAX;
2876 p->highest_bit = maxpages - 1;
2880 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2881 if (swapfilepages && maxpages > swapfilepages) {
2882 pr_warn("Swap area shorter than signature indicates\n");
2885 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2887 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2893 #define SWAP_CLUSTER_INFO_COLS \
2894 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2895 #define SWAP_CLUSTER_SPACE_COLS \
2896 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2897 #define SWAP_CLUSTER_COLS \
2898 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2900 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2901 union swap_header *swap_header,
2902 unsigned char *swap_map,
2903 struct swap_cluster_info *cluster_info,
2904 unsigned long maxpages,
2908 unsigned int nr_good_pages;
2910 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2911 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2912 unsigned long i, idx;
2914 nr_good_pages = maxpages - 1; /* omit header page */
2916 cluster_list_init(&p->free_clusters);
2917 cluster_list_init(&p->discard_clusters);
2919 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2920 unsigned int page_nr = swap_header->info.badpages[i];
2921 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2923 if (page_nr < maxpages) {
2924 swap_map[page_nr] = SWAP_MAP_BAD;
2927 * Haven't marked the cluster free yet, no list
2928 * operation involved
2930 inc_cluster_info_page(p, cluster_info, page_nr);
2934 /* Haven't marked the cluster free yet, no list operation involved */
2935 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2936 inc_cluster_info_page(p, cluster_info, i);
2938 if (nr_good_pages) {
2939 swap_map[0] = SWAP_MAP_BAD;
2941 * Not mark the cluster free yet, no list
2942 * operation involved
2944 inc_cluster_info_page(p, cluster_info, 0);
2946 p->pages = nr_good_pages;
2947 nr_extents = setup_swap_extents(p, span);
2950 nr_good_pages = p->pages;
2952 if (!nr_good_pages) {
2953 pr_warn("Empty swap-file\n");
2962 * Reduce false cache line sharing between cluster_info and
2963 * sharing same address space.
2965 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2966 j = (k + col) % SWAP_CLUSTER_COLS;
2967 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2968 idx = i * SWAP_CLUSTER_COLS + j;
2969 if (idx >= nr_clusters)
2971 if (cluster_count(&cluster_info[idx]))
2973 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2974 cluster_list_add_tail(&p->free_clusters, cluster_info,
2981 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2983 struct swap_info_struct *p;
2984 struct filename *name;
2985 struct file *swap_file = NULL;
2986 struct address_space *mapping;
2987 struct dentry *dentry;
2990 union swap_header *swap_header;
2993 unsigned long maxpages;
2994 unsigned char *swap_map = NULL;
2995 struct swap_cluster_info *cluster_info = NULL;
2996 unsigned long *frontswap_map = NULL;
2997 struct page *page = NULL;
2998 struct inode *inode = NULL;
2999 bool inced_nr_rotate_swap = false;
3001 if (swap_flags & ~SWAP_FLAGS_VALID)
3004 if (!capable(CAP_SYS_ADMIN))
3007 if (!swap_avail_heads)
3010 p = alloc_swap_info();
3014 INIT_WORK(&p->discard_work, swap_discard_work);
3016 name = getname(specialfile);
3018 error = PTR_ERR(name);
3022 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3023 if (IS_ERR(swap_file)) {
3024 error = PTR_ERR(swap_file);
3029 p->swap_file = swap_file;
3030 mapping = swap_file->f_mapping;
3031 dentry = swap_file->f_path.dentry;
3032 inode = mapping->host;
3034 error = claim_swapfile(p, inode);
3035 if (unlikely(error))
3039 if (d_unlinked(dentry) || cant_mount(dentry)) {
3041 goto bad_swap_unlock_inode;
3043 if (IS_SWAPFILE(inode)) {
3045 goto bad_swap_unlock_inode;
3049 * Read the swap header.
3051 if (!mapping->a_ops->read_folio) {
3053 goto bad_swap_unlock_inode;
3055 page = read_mapping_page(mapping, 0, swap_file);
3057 error = PTR_ERR(page);
3058 goto bad_swap_unlock_inode;
3060 swap_header = kmap(page);
3062 maxpages = read_swap_header(p, swap_header, inode);
3063 if (unlikely(!maxpages)) {
3065 goto bad_swap_unlock_inode;
3068 /* OK, set up the swap map and apply the bad block list */
3069 swap_map = vzalloc(maxpages);
3072 goto bad_swap_unlock_inode;
3075 if (p->bdev && bdev_stable_writes(p->bdev))
3076 p->flags |= SWP_STABLE_WRITES;
3078 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3079 p->flags |= SWP_SYNCHRONOUS_IO;
3081 if (p->bdev && bdev_nonrot(p->bdev)) {
3083 unsigned long ci, nr_cluster;
3085 p->flags |= SWP_SOLIDSTATE;
3086 p->cluster_next_cpu = alloc_percpu(unsigned int);
3087 if (!p->cluster_next_cpu) {
3089 goto bad_swap_unlock_inode;
3092 * select a random position to start with to help wear leveling
3095 for_each_possible_cpu(cpu) {
3096 per_cpu(*p->cluster_next_cpu, cpu) =
3097 1 + prandom_u32_max(p->highest_bit);
3099 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3101 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3103 if (!cluster_info) {
3105 goto bad_swap_unlock_inode;
3108 for (ci = 0; ci < nr_cluster; ci++)
3109 spin_lock_init(&((cluster_info + ci)->lock));
3111 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3112 if (!p->percpu_cluster) {
3114 goto bad_swap_unlock_inode;
3116 for_each_possible_cpu(cpu) {
3117 struct percpu_cluster *cluster;
3118 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3119 cluster_set_null(&cluster->index);
3122 atomic_inc(&nr_rotate_swap);
3123 inced_nr_rotate_swap = true;
3126 error = swap_cgroup_swapon(p->type, maxpages);
3128 goto bad_swap_unlock_inode;
3130 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3131 cluster_info, maxpages, &span);
3132 if (unlikely(nr_extents < 0)) {
3134 goto bad_swap_unlock_inode;
3136 /* frontswap enabled? set up bit-per-page map for frontswap */
3137 if (IS_ENABLED(CONFIG_FRONTSWAP))
3138 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3142 if ((swap_flags & SWAP_FLAG_DISCARD) &&
3143 p->bdev && bdev_max_discard_sectors(p->bdev)) {
3145 * When discard is enabled for swap with no particular
3146 * policy flagged, we set all swap discard flags here in
3147 * order to sustain backward compatibility with older
3148 * swapon(8) releases.
3150 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3154 * By flagging sys_swapon, a sysadmin can tell us to
3155 * either do single-time area discards only, or to just
3156 * perform discards for released swap page-clusters.
3157 * Now it's time to adjust the p->flags accordingly.
3159 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3160 p->flags &= ~SWP_PAGE_DISCARD;
3161 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3162 p->flags &= ~SWP_AREA_DISCARD;
3164 /* issue a swapon-time discard if it's still required */
3165 if (p->flags & SWP_AREA_DISCARD) {
3166 int err = discard_swap(p);
3168 pr_err("swapon: discard_swap(%p): %d\n",
3173 error = init_swap_address_space(p->type, maxpages);
3175 goto bad_swap_unlock_inode;
3178 * Flush any pending IO and dirty mappings before we start using this
3181 inode->i_flags |= S_SWAPFILE;
3182 error = inode_drain_writes(inode);
3184 inode->i_flags &= ~S_SWAPFILE;
3185 goto free_swap_address_space;
3188 mutex_lock(&swapon_mutex);
3190 if (swap_flags & SWAP_FLAG_PREFER)
3192 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3193 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3195 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3196 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3197 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3198 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3199 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3200 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3201 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3202 (frontswap_map) ? "FS" : "");
3204 mutex_unlock(&swapon_mutex);
3205 atomic_inc(&proc_poll_event);
3206 wake_up_interruptible(&proc_poll_wait);
3210 free_swap_address_space:
3211 exit_swap_address_space(p->type);
3212 bad_swap_unlock_inode:
3213 inode_unlock(inode);
3215 free_percpu(p->percpu_cluster);
3216 p->percpu_cluster = NULL;
3217 free_percpu(p->cluster_next_cpu);
3218 p->cluster_next_cpu = NULL;
3219 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3220 set_blocksize(p->bdev, p->old_block_size);
3221 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3224 destroy_swap_extents(p);
3225 swap_cgroup_swapoff(p->type);
3226 spin_lock(&swap_lock);
3227 p->swap_file = NULL;
3229 spin_unlock(&swap_lock);
3231 kvfree(cluster_info);
3232 kvfree(frontswap_map);
3233 if (inced_nr_rotate_swap)
3234 atomic_dec(&nr_rotate_swap);
3236 filp_close(swap_file, NULL);
3238 if (page && !IS_ERR(page)) {
3245 inode_unlock(inode);
3247 enable_swap_slots_cache();
3251 void si_swapinfo(struct sysinfo *val)
3254 unsigned long nr_to_be_unused = 0;
3256 spin_lock(&swap_lock);
3257 for (type = 0; type < nr_swapfiles; type++) {
3258 struct swap_info_struct *si = swap_info[type];
3260 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3261 nr_to_be_unused += READ_ONCE(si->inuse_pages);
3263 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3264 val->totalswap = total_swap_pages + nr_to_be_unused;
3265 spin_unlock(&swap_lock);
3269 * Verify that a swap entry is valid and increment its swap map count.
3271 * Returns error code in following case.
3273 * - swp_entry is invalid -> EINVAL
3274 * - swp_entry is migration entry -> EINVAL
3275 * - swap-cache reference is requested but there is already one. -> EEXIST
3276 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3277 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3279 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3281 struct swap_info_struct *p;
3282 struct swap_cluster_info *ci;
3283 unsigned long offset;
3284 unsigned char count;
3285 unsigned char has_cache;
3288 p = get_swap_device(entry);
3292 offset = swp_offset(entry);
3293 ci = lock_cluster_or_swap_info(p, offset);
3295 count = p->swap_map[offset];
3298 * swapin_readahead() doesn't check if a swap entry is valid, so the
3299 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3301 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3306 has_cache = count & SWAP_HAS_CACHE;
3307 count &= ~SWAP_HAS_CACHE;
3310 if (usage == SWAP_HAS_CACHE) {
3312 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3313 if (!has_cache && count)
3314 has_cache = SWAP_HAS_CACHE;
3315 else if (has_cache) /* someone else added cache */
3317 else /* no users remaining */
3320 } else if (count || has_cache) {
3322 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3324 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3326 else if (swap_count_continued(p, offset, count))
3327 count = COUNT_CONTINUED;
3331 err = -ENOENT; /* unused swap entry */
3333 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3336 unlock_cluster_or_swap_info(p, ci);
3342 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3343 * (in which case its reference count is never incremented).
3345 void swap_shmem_alloc(swp_entry_t entry)
3347 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3351 * Increase reference count of swap entry by 1.
3352 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3353 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3354 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3355 * might occur if a page table entry has got corrupted.
3357 int swap_duplicate(swp_entry_t entry)
3361 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3362 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3367 * @entry: swap entry for which we allocate swap cache.
3369 * Called when allocating swap cache for existing swap entry,
3370 * This can return error codes. Returns 0 at success.
3371 * -EEXIST means there is a swap cache.
3372 * Note: return code is different from swap_duplicate().
3374 int swapcache_prepare(swp_entry_t entry)
3376 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3379 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3381 return swap_type_to_swap_info(swp_type(entry));
3384 struct swap_info_struct *page_swap_info(struct page *page)
3386 swp_entry_t entry = { .val = page_private(page) };
3387 return swp_swap_info(entry);
3391 * out-of-line methods to avoid include hell.
3393 struct address_space *swapcache_mapping(struct folio *folio)
3395 return page_swap_info(&folio->page)->swap_file->f_mapping;
3397 EXPORT_SYMBOL_GPL(swapcache_mapping);
3399 pgoff_t __page_file_index(struct page *page)
3401 swp_entry_t swap = { .val = page_private(page) };
3402 return swp_offset(swap);
3404 EXPORT_SYMBOL_GPL(__page_file_index);
3407 * add_swap_count_continuation - called when a swap count is duplicated
3408 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3409 * page of the original vmalloc'ed swap_map, to hold the continuation count
3410 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3411 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3413 * These continuation pages are seldom referenced: the common paths all work
3414 * on the original swap_map, only referring to a continuation page when the
3415 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3417 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3418 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3419 * can be called after dropping locks.
3421 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3423 struct swap_info_struct *si;
3424 struct swap_cluster_info *ci;
3427 struct page *list_page;
3429 unsigned char count;
3433 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3434 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3436 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3438 si = get_swap_device(entry);
3441 * An acceptable race has occurred since the failing
3442 * __swap_duplicate(): the swap device may be swapoff
3446 spin_lock(&si->lock);
3448 offset = swp_offset(entry);
3450 ci = lock_cluster(si, offset);
3452 count = swap_count(si->swap_map[offset]);
3454 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3456 * The higher the swap count, the more likely it is that tasks
3457 * will race to add swap count continuation: we need to avoid
3458 * over-provisioning.
3469 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3470 * no architecture is using highmem pages for kernel page tables: so it
3471 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3473 head = vmalloc_to_page(si->swap_map + offset);
3474 offset &= ~PAGE_MASK;
3476 spin_lock(&si->cont_lock);
3478 * Page allocation does not initialize the page's lru field,
3479 * but it does always reset its private field.
3481 if (!page_private(head)) {
3482 BUG_ON(count & COUNT_CONTINUED);
3483 INIT_LIST_HEAD(&head->lru);
3484 set_page_private(head, SWP_CONTINUED);
3485 si->flags |= SWP_CONTINUED;
3488 list_for_each_entry(list_page, &head->lru, lru) {
3492 * If the previous map said no continuation, but we've found
3493 * a continuation page, free our allocation and use this one.
3495 if (!(count & COUNT_CONTINUED))
3496 goto out_unlock_cont;
3498 map = kmap_atomic(list_page) + offset;
3503 * If this continuation count now has some space in it,
3504 * free our allocation and use this one.
3506 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3507 goto out_unlock_cont;
3510 list_add_tail(&page->lru, &head->lru);
3511 page = NULL; /* now it's attached, don't free it */
3513 spin_unlock(&si->cont_lock);
3516 spin_unlock(&si->lock);
3517 put_swap_device(si);
3525 * swap_count_continued - when the original swap_map count is incremented
3526 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3527 * into, carry if so, or else fail until a new continuation page is allocated;
3528 * when the original swap_map count is decremented from 0 with continuation,
3529 * borrow from the continuation and report whether it still holds more.
3530 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3533 static bool swap_count_continued(struct swap_info_struct *si,
3534 pgoff_t offset, unsigned char count)
3541 head = vmalloc_to_page(si->swap_map + offset);
3542 if (page_private(head) != SWP_CONTINUED) {
3543 BUG_ON(count & COUNT_CONTINUED);
3544 return false; /* need to add count continuation */
3547 spin_lock(&si->cont_lock);
3548 offset &= ~PAGE_MASK;
3549 page = list_next_entry(head, lru);
3550 map = kmap_atomic(page) + offset;
3552 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3553 goto init_map; /* jump over SWAP_CONT_MAX checks */
3555 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3557 * Think of how you add 1 to 999
3559 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3561 page = list_next_entry(page, lru);
3562 BUG_ON(page == head);
3563 map = kmap_atomic(page) + offset;
3565 if (*map == SWAP_CONT_MAX) {
3567 page = list_next_entry(page, lru);
3569 ret = false; /* add count continuation */
3572 map = kmap_atomic(page) + offset;
3573 init_map: *map = 0; /* we didn't zero the page */
3577 while ((page = list_prev_entry(page, lru)) != head) {
3578 map = kmap_atomic(page) + offset;
3579 *map = COUNT_CONTINUED;
3582 ret = true; /* incremented */
3584 } else { /* decrementing */
3586 * Think of how you subtract 1 from 1000
3588 BUG_ON(count != COUNT_CONTINUED);
3589 while (*map == COUNT_CONTINUED) {
3591 page = list_next_entry(page, lru);
3592 BUG_ON(page == head);
3593 map = kmap_atomic(page) + offset;
3600 while ((page = list_prev_entry(page, lru)) != head) {
3601 map = kmap_atomic(page) + offset;
3602 *map = SWAP_CONT_MAX | count;
3603 count = COUNT_CONTINUED;
3606 ret = count == COUNT_CONTINUED;
3609 spin_unlock(&si->cont_lock);
3614 * free_swap_count_continuations - swapoff free all the continuation pages
3615 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3617 static void free_swap_count_continuations(struct swap_info_struct *si)
3621 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3623 head = vmalloc_to_page(si->swap_map + offset);
3624 if (page_private(head)) {
3625 struct page *page, *next;
3627 list_for_each_entry_safe(page, next, &head->lru, lru) {
3628 list_del(&page->lru);
3635 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3636 void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3638 struct swap_info_struct *si, *next;
3639 int nid = page_to_nid(page);
3641 if (!(gfp_mask & __GFP_IO))
3644 if (!blk_cgroup_congested())
3648 * We've already scheduled a throttle, avoid taking the global swap
3651 if (current->throttle_queue)
3654 spin_lock(&swap_avail_lock);
3655 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3658 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3662 spin_unlock(&swap_avail_lock);
3666 static int __init swapfile_init(void)
3670 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3672 if (!swap_avail_heads) {
3673 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3678 plist_head_init(&swap_avail_heads[nid]);
3682 subsys_initcall(swapfile_init);