1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 static void free_swap_count_continuations(struct swap_info_struct *);
51 DEFINE_SPINLOCK(swap_lock);
52 static unsigned int nr_swapfiles;
53 atomic_long_t nr_swap_pages;
55 * Some modules use swappable objects and may try to swap them out under
56 * memory pressure (via the shrinker). Before doing so, they may wish to
57 * check to see if any swap space is available.
59 EXPORT_SYMBOL_GPL(nr_swap_pages);
60 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
61 long total_swap_pages;
62 static int least_priority = -1;
64 static const char Bad_file[] = "Bad swap file entry ";
65 static const char Unused_file[] = "Unused swap file entry ";
66 static const char Bad_offset[] = "Bad swap offset entry ";
67 static const char Unused_offset[] = "Unused swap offset entry ";
70 * all active swap_info_structs
71 * protected with swap_lock, and ordered by priority.
73 PLIST_HEAD(swap_active_head);
76 * all available (active, not full) swap_info_structs
77 * protected with swap_avail_lock, ordered by priority.
78 * This is used by get_swap_page() instead of swap_active_head
79 * because swap_active_head includes all swap_info_structs,
80 * but get_swap_page() doesn't need to look at full ones.
81 * This uses its own lock instead of swap_lock because when a
82 * swap_info_struct changes between not-full/full, it needs to
83 * add/remove itself to/from this list, but the swap_info_struct->lock
84 * is held and the locking order requires swap_lock to be taken
85 * before any swap_info_struct->lock.
87 static struct plist_head *swap_avail_heads;
88 static DEFINE_SPINLOCK(swap_avail_lock);
90 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92 static DEFINE_MUTEX(swapon_mutex);
94 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
95 /* Activity counter to indicate that a swapon or swapoff has occurred */
96 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 if (type >= READ_ONCE(nr_swapfiles))
105 smp_rmb(); /* Pairs with smp_wmb in alloc_swap_info. */
106 return READ_ONCE(swap_info[type]);
109 static inline unsigned char swap_count(unsigned char ent)
111 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
114 /* Reclaim the swap entry anyway if possible */
115 #define TTRS_ANYWAY 0x1
117 * Reclaim the swap entry if there are no more mappings of the
120 #define TTRS_UNMAPPED 0x2
121 /* Reclaim the swap entry if swap is getting full*/
122 #define TTRS_FULL 0x4
124 /* returns 1 if swap entry is freed */
125 static int __try_to_reclaim_swap(struct swap_info_struct *si,
126 unsigned long offset, unsigned long flags)
128 swp_entry_t entry = swp_entry(si->type, offset);
132 page = find_get_page(swap_address_space(entry), offset);
136 * When this function is called from scan_swap_map_slots() and it's
137 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
138 * here. We have to use trylock for avoiding deadlock. This is a special
139 * case and you should use try_to_free_swap() with explicit lock_page()
140 * in usual operations.
142 if (trylock_page(page)) {
143 if ((flags & TTRS_ANYWAY) ||
144 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
145 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
146 ret = try_to_free_swap(page);
153 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
155 struct rb_node *rb = rb_first(&sis->swap_extent_root);
156 return rb_entry(rb, struct swap_extent, rb_node);
159 static inline struct swap_extent *next_se(struct swap_extent *se)
161 struct rb_node *rb = rb_next(&se->rb_node);
162 return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
166 * swapon tell device that all the old swap contents can be discarded,
167 * to allow the swap device to optimize its wear-levelling.
169 static int discard_swap(struct swap_info_struct *si)
171 struct swap_extent *se;
172 sector_t start_block;
176 /* Do not discard the swap header page! */
178 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
179 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
181 err = blkdev_issue_discard(si->bdev, start_block,
182 nr_blocks, GFP_KERNEL, 0);
188 for (se = next_se(se); se; se = next_se(se)) {
189 start_block = se->start_block << (PAGE_SHIFT - 9);
190 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
192 err = blkdev_issue_discard(si->bdev, start_block,
193 nr_blocks, GFP_KERNEL, 0);
199 return err; /* That will often be -EOPNOTSUPP */
202 static struct swap_extent *
203 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
205 struct swap_extent *se;
208 rb = sis->swap_extent_root.rb_node;
210 se = rb_entry(rb, struct swap_extent, rb_node);
211 if (offset < se->start_page)
213 else if (offset >= se->start_page + se->nr_pages)
218 /* It *must* be present */
222 sector_t swap_page_sector(struct page *page)
224 struct swap_info_struct *sis = page_swap_info(page);
225 struct swap_extent *se;
229 offset = __page_file_index(page);
230 se = offset_to_swap_extent(sis, offset);
231 sector = se->start_block + (offset - se->start_page);
232 return sector << (PAGE_SHIFT - 9);
236 * swap allocation tell device that a cluster of swap can now be discarded,
237 * to allow the swap device to optimize its wear-levelling.
239 static void discard_swap_cluster(struct swap_info_struct *si,
240 pgoff_t start_page, pgoff_t nr_pages)
242 struct swap_extent *se = offset_to_swap_extent(si, start_page);
245 pgoff_t offset = start_page - se->start_page;
246 sector_t start_block = se->start_block + offset;
247 sector_t nr_blocks = se->nr_pages - offset;
249 if (nr_blocks > nr_pages)
250 nr_blocks = nr_pages;
251 start_page += nr_blocks;
252 nr_pages -= nr_blocks;
254 start_block <<= PAGE_SHIFT - 9;
255 nr_blocks <<= PAGE_SHIFT - 9;
256 if (blkdev_issue_discard(si->bdev, start_block,
257 nr_blocks, GFP_NOIO, 0))
264 #ifdef CONFIG_THP_SWAP
265 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
267 #define swap_entry_size(size) (size)
269 #define SWAPFILE_CLUSTER 256
272 * Define swap_entry_size() as constant to let compiler to optimize
273 * out some code if !CONFIG_THP_SWAP
275 #define swap_entry_size(size) 1
277 #define LATENCY_LIMIT 256
279 static inline void cluster_set_flag(struct swap_cluster_info *info,
285 static inline unsigned int cluster_count(struct swap_cluster_info *info)
290 static inline void cluster_set_count(struct swap_cluster_info *info,
296 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
297 unsigned int c, unsigned int f)
303 static inline unsigned int cluster_next(struct swap_cluster_info *info)
308 static inline void cluster_set_next(struct swap_cluster_info *info,
314 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
315 unsigned int n, unsigned int f)
321 static inline bool cluster_is_free(struct swap_cluster_info *info)
323 return info->flags & CLUSTER_FLAG_FREE;
326 static inline bool cluster_is_null(struct swap_cluster_info *info)
328 return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 static inline void cluster_set_null(struct swap_cluster_info *info)
333 info->flags = CLUSTER_FLAG_NEXT_NULL;
337 static inline bool cluster_is_huge(struct swap_cluster_info *info)
339 if (IS_ENABLED(CONFIG_THP_SWAP))
340 return info->flags & CLUSTER_FLAG_HUGE;
344 static inline void cluster_clear_huge(struct swap_cluster_info *info)
346 info->flags &= ~CLUSTER_FLAG_HUGE;
349 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
350 unsigned long offset)
352 struct swap_cluster_info *ci;
354 ci = si->cluster_info;
356 ci += offset / SWAPFILE_CLUSTER;
357 spin_lock(&ci->lock);
362 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 spin_unlock(&ci->lock);
369 * Determine the locking method in use for this device. Return
370 * swap_cluster_info if SSD-style cluster-based locking is in place.
372 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
373 struct swap_info_struct *si, unsigned long offset)
375 struct swap_cluster_info *ci;
377 /* Try to use fine-grained SSD-style locking if available: */
378 ci = lock_cluster(si, offset);
379 /* Otherwise, fall back to traditional, coarse locking: */
381 spin_lock(&si->lock);
386 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
387 struct swap_cluster_info *ci)
392 spin_unlock(&si->lock);
395 static inline bool cluster_list_empty(struct swap_cluster_list *list)
397 return cluster_is_null(&list->head);
400 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
402 return cluster_next(&list->head);
405 static void cluster_list_init(struct swap_cluster_list *list)
407 cluster_set_null(&list->head);
408 cluster_set_null(&list->tail);
411 static void cluster_list_add_tail(struct swap_cluster_list *list,
412 struct swap_cluster_info *ci,
415 if (cluster_list_empty(list)) {
416 cluster_set_next_flag(&list->head, idx, 0);
417 cluster_set_next_flag(&list->tail, idx, 0);
419 struct swap_cluster_info *ci_tail;
420 unsigned int tail = cluster_next(&list->tail);
423 * Nested cluster lock, but both cluster locks are
424 * only acquired when we held swap_info_struct->lock
427 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
428 cluster_set_next(ci_tail, idx);
429 spin_unlock(&ci_tail->lock);
430 cluster_set_next_flag(&list->tail, idx, 0);
434 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
435 struct swap_cluster_info *ci)
439 idx = cluster_next(&list->head);
440 if (cluster_next(&list->tail) == idx) {
441 cluster_set_null(&list->head);
442 cluster_set_null(&list->tail);
444 cluster_set_next_flag(&list->head,
445 cluster_next(&ci[idx]), 0);
450 /* Add a cluster to discard list and schedule it to do discard */
451 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
455 * If scan_swap_map() can't find a free cluster, it will check
456 * si->swap_map directly. To make sure the discarding cluster isn't
457 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
458 * will be cleared after discard
460 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
463 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
465 schedule_work(&si->discard_work);
468 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
470 struct swap_cluster_info *ci = si->cluster_info;
472 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
473 cluster_list_add_tail(&si->free_clusters, ci, idx);
477 * Doing discard actually. After a cluster discard is finished, the cluster
478 * will be added to free cluster list. caller should hold si->lock.
480 static void swap_do_scheduled_discard(struct swap_info_struct *si)
482 struct swap_cluster_info *info, *ci;
485 info = si->cluster_info;
487 while (!cluster_list_empty(&si->discard_clusters)) {
488 idx = cluster_list_del_first(&si->discard_clusters, info);
489 spin_unlock(&si->lock);
491 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 spin_lock(&si->lock);
495 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
496 __free_cluster(si, idx);
497 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
498 0, SWAPFILE_CLUSTER);
503 static void swap_discard_work(struct work_struct *work)
505 struct swap_info_struct *si;
507 si = container_of(work, struct swap_info_struct, discard_work);
509 spin_lock(&si->lock);
510 swap_do_scheduled_discard(si);
511 spin_unlock(&si->lock);
514 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
516 struct swap_cluster_info *ci = si->cluster_info;
518 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
519 cluster_list_del_first(&si->free_clusters, ci);
520 cluster_set_count_flag(ci + idx, 0, 0);
523 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
525 struct swap_cluster_info *ci = si->cluster_info + idx;
527 VM_BUG_ON(cluster_count(ci) != 0);
529 * If the swap is discardable, prepare discard the cluster
530 * instead of free it immediately. The cluster will be freed
533 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
534 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
535 swap_cluster_schedule_discard(si, idx);
539 __free_cluster(si, idx);
543 * The cluster corresponding to page_nr will be used. The cluster will be
544 * removed from free cluster list and its usage counter will be increased.
546 static void inc_cluster_info_page(struct swap_info_struct *p,
547 struct swap_cluster_info *cluster_info, unsigned long page_nr)
549 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
553 if (cluster_is_free(&cluster_info[idx]))
554 alloc_cluster(p, idx);
556 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
557 cluster_set_count(&cluster_info[idx],
558 cluster_count(&cluster_info[idx]) + 1);
562 * The cluster corresponding to page_nr decreases one usage. If the usage
563 * counter becomes 0, which means no page in the cluster is in using, we can
564 * optionally discard the cluster and add it to free cluster list.
566 static void dec_cluster_info_page(struct swap_info_struct *p,
567 struct swap_cluster_info *cluster_info, unsigned long page_nr)
569 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
574 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
575 cluster_set_count(&cluster_info[idx],
576 cluster_count(&cluster_info[idx]) - 1);
578 if (cluster_count(&cluster_info[idx]) == 0)
579 free_cluster(p, idx);
583 * It's possible scan_swap_map() uses a free cluster in the middle of free
584 * cluster list. Avoiding such abuse to avoid list corruption.
587 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
588 unsigned long offset)
590 struct percpu_cluster *percpu_cluster;
593 offset /= SWAPFILE_CLUSTER;
594 conflict = !cluster_list_empty(&si->free_clusters) &&
595 offset != cluster_list_first(&si->free_clusters) &&
596 cluster_is_free(&si->cluster_info[offset]);
601 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
602 cluster_set_null(&percpu_cluster->index);
607 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
608 * might involve allocating a new cluster for current CPU too.
610 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
611 unsigned long *offset, unsigned long *scan_base)
613 struct percpu_cluster *cluster;
614 struct swap_cluster_info *ci;
615 unsigned long tmp, max;
618 cluster = this_cpu_ptr(si->percpu_cluster);
619 if (cluster_is_null(&cluster->index)) {
620 if (!cluster_list_empty(&si->free_clusters)) {
621 cluster->index = si->free_clusters.head;
622 cluster->next = cluster_next(&cluster->index) *
624 } else if (!cluster_list_empty(&si->discard_clusters)) {
626 * we don't have free cluster but have some clusters in
627 * discarding, do discard now and reclaim them, then
628 * reread cluster_next_cpu since we dropped si->lock
630 swap_do_scheduled_discard(si);
631 *scan_base = this_cpu_read(*si->cluster_next_cpu);
632 *offset = *scan_base;
639 * Other CPUs can use our cluster if they can't find a free cluster,
640 * check if there is still free entry in the cluster
643 max = min_t(unsigned long, si->max,
644 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
646 ci = lock_cluster(si, tmp);
648 if (!si->swap_map[tmp])
655 cluster_set_null(&cluster->index);
658 cluster->next = tmp + 1;
664 static void __del_from_avail_list(struct swap_info_struct *p)
669 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
672 static void del_from_avail_list(struct swap_info_struct *p)
674 spin_lock(&swap_avail_lock);
675 __del_from_avail_list(p);
676 spin_unlock(&swap_avail_lock);
679 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
680 unsigned int nr_entries)
682 unsigned int end = offset + nr_entries - 1;
684 if (offset == si->lowest_bit)
685 si->lowest_bit += nr_entries;
686 if (end == si->highest_bit)
687 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
688 si->inuse_pages += nr_entries;
689 if (si->inuse_pages == si->pages) {
690 si->lowest_bit = si->max;
692 del_from_avail_list(si);
696 static void add_to_avail_list(struct swap_info_struct *p)
700 spin_lock(&swap_avail_lock);
702 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
703 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
705 spin_unlock(&swap_avail_lock);
708 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
709 unsigned int nr_entries)
711 unsigned long begin = offset;
712 unsigned long end = offset + nr_entries - 1;
713 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
715 if (offset < si->lowest_bit)
716 si->lowest_bit = offset;
717 if (end > si->highest_bit) {
718 bool was_full = !si->highest_bit;
720 WRITE_ONCE(si->highest_bit, end);
721 if (was_full && (si->flags & SWP_WRITEOK))
722 add_to_avail_list(si);
724 atomic_long_add(nr_entries, &nr_swap_pages);
725 si->inuse_pages -= nr_entries;
726 if (si->flags & SWP_BLKDEV)
727 swap_slot_free_notify =
728 si->bdev->bd_disk->fops->swap_slot_free_notify;
730 swap_slot_free_notify = NULL;
731 while (offset <= end) {
732 arch_swap_invalidate_page(si->type, offset);
733 frontswap_invalidate_page(si->type, offset);
734 if (swap_slot_free_notify)
735 swap_slot_free_notify(si->bdev, offset);
738 clear_shadow_from_swap_cache(si->type, begin, end);
741 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
745 if (!(si->flags & SWP_SOLIDSTATE)) {
746 si->cluster_next = next;
750 prev = this_cpu_read(*si->cluster_next_cpu);
752 * Cross the swap address space size aligned trunk, choose
753 * another trunk randomly to avoid lock contention on swap
754 * address space if possible.
756 if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
757 (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
758 /* No free swap slots available */
759 if (si->highest_bit <= si->lowest_bit)
761 next = si->lowest_bit +
762 prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
763 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
764 next = max_t(unsigned int, next, si->lowest_bit);
766 this_cpu_write(*si->cluster_next_cpu, next);
769 static int scan_swap_map_slots(struct swap_info_struct *si,
770 unsigned char usage, int nr,
773 struct swap_cluster_info *ci;
774 unsigned long offset;
775 unsigned long scan_base;
776 unsigned long last_in_cluster = 0;
777 int latency_ration = LATENCY_LIMIT;
779 bool scanned_many = false;
782 * We try to cluster swap pages by allocating them sequentially
783 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
784 * way, however, we resort to first-free allocation, starting
785 * a new cluster. This prevents us from scattering swap pages
786 * all over the entire swap partition, so that we reduce
787 * overall disk seek times between swap pages. -- sct
788 * But we do now try to find an empty cluster. -Andrea
789 * And we let swap pages go all over an SSD partition. Hugh
792 si->flags += SWP_SCANNING;
794 * Use percpu scan base for SSD to reduce lock contention on
795 * cluster and swap cache. For HDD, sequential access is more
798 if (si->flags & SWP_SOLIDSTATE)
799 scan_base = this_cpu_read(*si->cluster_next_cpu);
801 scan_base = si->cluster_next;
805 if (si->cluster_info) {
806 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
808 } else if (unlikely(!si->cluster_nr--)) {
809 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
810 si->cluster_nr = SWAPFILE_CLUSTER - 1;
814 spin_unlock(&si->lock);
817 * If seek is expensive, start searching for new cluster from
818 * start of partition, to minimize the span of allocated swap.
819 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
820 * case, just handled by scan_swap_map_try_ssd_cluster() above.
822 scan_base = offset = si->lowest_bit;
823 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
825 /* Locate the first empty (unaligned) cluster */
826 for (; last_in_cluster <= si->highest_bit; offset++) {
827 if (si->swap_map[offset])
828 last_in_cluster = offset + SWAPFILE_CLUSTER;
829 else if (offset == last_in_cluster) {
830 spin_lock(&si->lock);
831 offset -= SWAPFILE_CLUSTER - 1;
832 si->cluster_next = offset;
833 si->cluster_nr = SWAPFILE_CLUSTER - 1;
836 if (unlikely(--latency_ration < 0)) {
838 latency_ration = LATENCY_LIMIT;
843 spin_lock(&si->lock);
844 si->cluster_nr = SWAPFILE_CLUSTER - 1;
848 if (si->cluster_info) {
849 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
850 /* take a break if we already got some slots */
853 if (!scan_swap_map_try_ssd_cluster(si, &offset,
858 if (!(si->flags & SWP_WRITEOK))
860 if (!si->highest_bit)
862 if (offset > si->highest_bit)
863 scan_base = offset = si->lowest_bit;
865 ci = lock_cluster(si, offset);
866 /* reuse swap entry of cache-only swap if not busy. */
867 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
870 spin_unlock(&si->lock);
871 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
872 spin_lock(&si->lock);
873 /* entry was freed successfully, try to use this again */
876 goto scan; /* check next one */
879 if (si->swap_map[offset]) {
886 WRITE_ONCE(si->swap_map[offset], usage);
887 inc_cluster_info_page(si, si->cluster_info, offset);
890 swap_range_alloc(si, offset, 1);
891 slots[n_ret++] = swp_entry(si->type, offset);
893 /* got enough slots or reach max slots? */
894 if ((n_ret == nr) || (offset >= si->highest_bit))
897 /* search for next available slot */
899 /* time to take a break? */
900 if (unlikely(--latency_ration < 0)) {
903 spin_unlock(&si->lock);
905 spin_lock(&si->lock);
906 latency_ration = LATENCY_LIMIT;
909 /* try to get more slots in cluster */
910 if (si->cluster_info) {
911 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
913 } else if (si->cluster_nr && !si->swap_map[++offset]) {
914 /* non-ssd case, still more slots in cluster? */
920 * Even if there's no free clusters available (fragmented),
921 * try to scan a little more quickly with lock held unless we
922 * have scanned too many slots already.
925 unsigned long scan_limit;
927 if (offset < scan_base)
928 scan_limit = scan_base;
930 scan_limit = si->highest_bit;
931 for (; offset <= scan_limit && --latency_ration > 0;
933 if (!si->swap_map[offset])
939 set_cluster_next(si, offset + 1);
940 si->flags -= SWP_SCANNING;
944 spin_unlock(&si->lock);
945 while (++offset <= READ_ONCE(si->highest_bit)) {
946 if (data_race(!si->swap_map[offset])) {
947 spin_lock(&si->lock);
950 if (vm_swap_full() &&
951 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
952 spin_lock(&si->lock);
955 if (unlikely(--latency_ration < 0)) {
957 latency_ration = LATENCY_LIMIT;
961 offset = si->lowest_bit;
962 while (offset < scan_base) {
963 if (data_race(!si->swap_map[offset])) {
964 spin_lock(&si->lock);
967 if (vm_swap_full() &&
968 READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
969 spin_lock(&si->lock);
972 if (unlikely(--latency_ration < 0)) {
974 latency_ration = LATENCY_LIMIT;
979 spin_lock(&si->lock);
982 si->flags -= SWP_SCANNING;
986 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
989 struct swap_cluster_info *ci;
990 unsigned long offset;
993 * Should not even be attempting cluster allocations when huge
994 * page swap is disabled. Warn and fail the allocation.
996 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1001 if (cluster_list_empty(&si->free_clusters))
1004 idx = cluster_list_first(&si->free_clusters);
1005 offset = idx * SWAPFILE_CLUSTER;
1006 ci = lock_cluster(si, offset);
1007 alloc_cluster(si, idx);
1008 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1010 memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
1012 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1013 *slot = swp_entry(si->type, offset);
1018 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1020 unsigned long offset = idx * SWAPFILE_CLUSTER;
1021 struct swap_cluster_info *ci;
1023 ci = lock_cluster(si, offset);
1024 memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1025 cluster_set_count_flag(ci, 0, 0);
1026 free_cluster(si, idx);
1028 swap_range_free(si, offset, SWAPFILE_CLUSTER);
1031 static unsigned long scan_swap_map(struct swap_info_struct *si,
1032 unsigned char usage)
1037 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1040 return swp_offset(entry);
1046 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1048 unsigned long size = swap_entry_size(entry_size);
1049 struct swap_info_struct *si, *next;
1054 /* Only single cluster request supported */
1055 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1057 spin_lock(&swap_avail_lock);
1059 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1060 if (avail_pgs <= 0) {
1061 spin_unlock(&swap_avail_lock);
1065 n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1067 atomic_long_sub(n_goal * size, &nr_swap_pages);
1070 node = numa_node_id();
1071 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1072 /* requeue si to after same-priority siblings */
1073 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1074 spin_unlock(&swap_avail_lock);
1075 spin_lock(&si->lock);
1076 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1077 spin_lock(&swap_avail_lock);
1078 if (plist_node_empty(&si->avail_lists[node])) {
1079 spin_unlock(&si->lock);
1082 WARN(!si->highest_bit,
1083 "swap_info %d in list but !highest_bit\n",
1085 WARN(!(si->flags & SWP_WRITEOK),
1086 "swap_info %d in list but !SWP_WRITEOK\n",
1088 __del_from_avail_list(si);
1089 spin_unlock(&si->lock);
1092 if (size == SWAPFILE_CLUSTER) {
1093 if (si->flags & SWP_BLKDEV)
1094 n_ret = swap_alloc_cluster(si, swp_entries);
1096 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1097 n_goal, swp_entries);
1098 spin_unlock(&si->lock);
1099 if (n_ret || size == SWAPFILE_CLUSTER)
1101 pr_debug("scan_swap_map of si %d failed to find offset\n",
1104 spin_lock(&swap_avail_lock);
1107 * if we got here, it's likely that si was almost full before,
1108 * and since scan_swap_map() can drop the si->lock, multiple
1109 * callers probably all tried to get a page from the same si
1110 * and it filled up before we could get one; or, the si filled
1111 * up between us dropping swap_avail_lock and taking si->lock.
1112 * Since we dropped the swap_avail_lock, the swap_avail_head
1113 * list may have been modified; so if next is still in the
1114 * swap_avail_head list then try it, otherwise start over
1115 * if we have not gotten any slots.
1117 if (plist_node_empty(&next->avail_lists[node]))
1121 spin_unlock(&swap_avail_lock);
1125 atomic_long_add((long)(n_goal - n_ret) * size,
1131 /* The only caller of this function is now suspend routine */
1132 swp_entry_t get_swap_page_of_type(int type)
1134 struct swap_info_struct *si = swap_type_to_swap_info(type);
1140 spin_lock(&si->lock);
1141 if (si->flags & SWP_WRITEOK) {
1142 /* This is called for allocating swap entry, not cache */
1143 offset = scan_swap_map(si, 1);
1145 atomic_long_dec(&nr_swap_pages);
1146 spin_unlock(&si->lock);
1147 return swp_entry(type, offset);
1150 spin_unlock(&si->lock);
1152 return (swp_entry_t) {0};
1155 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1157 struct swap_info_struct *p;
1158 unsigned long offset;
1162 p = swp_swap_info(entry);
1165 if (data_race(!(p->flags & SWP_USED)))
1167 offset = swp_offset(entry);
1168 if (offset >= p->max)
1173 pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
1176 pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
1179 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1184 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1186 struct swap_info_struct *p;
1188 p = __swap_info_get(entry);
1191 if (data_race(!p->swap_map[swp_offset(entry)]))
1196 pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
1201 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1203 struct swap_info_struct *p;
1205 p = _swap_info_get(entry);
1207 spin_lock(&p->lock);
1211 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1212 struct swap_info_struct *q)
1214 struct swap_info_struct *p;
1216 p = _swap_info_get(entry);
1220 spin_unlock(&q->lock);
1222 spin_lock(&p->lock);
1227 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1228 unsigned long offset,
1229 unsigned char usage)
1231 unsigned char count;
1232 unsigned char has_cache;
1234 count = p->swap_map[offset];
1236 has_cache = count & SWAP_HAS_CACHE;
1237 count &= ~SWAP_HAS_CACHE;
1239 if (usage == SWAP_HAS_CACHE) {
1240 VM_BUG_ON(!has_cache);
1242 } else if (count == SWAP_MAP_SHMEM) {
1244 * Or we could insist on shmem.c using a special
1245 * swap_shmem_free() and free_shmem_swap_and_cache()...
1248 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1249 if (count == COUNT_CONTINUED) {
1250 if (swap_count_continued(p, offset, count))
1251 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1253 count = SWAP_MAP_MAX;
1258 usage = count | has_cache;
1260 WRITE_ONCE(p->swap_map[offset], usage);
1262 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1268 * Check whether swap entry is valid in the swap device. If so,
1269 * return pointer to swap_info_struct, and keep the swap entry valid
1270 * via preventing the swap device from being swapoff, until
1271 * put_swap_device() is called. Otherwise return NULL.
1273 * The entirety of the RCU read critical section must come before the
1274 * return from or after the call to synchronize_rcu() in
1275 * enable_swap_info() or swapoff(). So if "si->flags & SWP_VALID" is
1276 * true, the si->map, si->cluster_info, etc. must be valid in the
1279 * Notice that swapoff or swapoff+swapon can still happen before the
1280 * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1281 * in put_swap_device() if there isn't any other way to prevent
1282 * swapoff, such as page lock, page table lock, etc. The caller must
1283 * be prepared for that. For example, the following situation is
1288 * ... swapoff+swapon
1289 * __read_swap_cache_async()
1290 * swapcache_prepare()
1291 * __swap_duplicate()
1293 * // verify PTE not changed
1295 * In __swap_duplicate(), the swap_map need to be checked before
1296 * changing partly because the specified swap entry may be for another
1297 * swap device which has been swapoff. And in do_swap_page(), after
1298 * the page is read from the swap device, the PTE is verified not
1299 * changed with the page table locked to check whether the swap device
1300 * has been swapoff or swapoff+swapon.
1302 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1304 struct swap_info_struct *si;
1305 unsigned long offset;
1309 si = swp_swap_info(entry);
1314 if (data_race(!(si->flags & SWP_VALID)))
1316 offset = swp_offset(entry);
1317 if (offset >= si->max)
1322 pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1330 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1333 struct swap_cluster_info *ci;
1334 unsigned long offset = swp_offset(entry);
1335 unsigned char usage;
1337 ci = lock_cluster_or_swap_info(p, offset);
1338 usage = __swap_entry_free_locked(p, offset, 1);
1339 unlock_cluster_or_swap_info(p, ci);
1341 free_swap_slot(entry);
1346 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1348 struct swap_cluster_info *ci;
1349 unsigned long offset = swp_offset(entry);
1350 unsigned char count;
1352 ci = lock_cluster(p, offset);
1353 count = p->swap_map[offset];
1354 VM_BUG_ON(count != SWAP_HAS_CACHE);
1355 p->swap_map[offset] = 0;
1356 dec_cluster_info_page(p, p->cluster_info, offset);
1359 mem_cgroup_uncharge_swap(entry, 1);
1360 swap_range_free(p, offset, 1);
1364 * Caller has made sure that the swap device corresponding to entry
1365 * is still around or has not been recycled.
1367 void swap_free(swp_entry_t entry)
1369 struct swap_info_struct *p;
1371 p = _swap_info_get(entry);
1373 __swap_entry_free(p, entry);
1377 * Called after dropping swapcache to decrease refcnt to swap entries.
1379 void put_swap_page(struct page *page, swp_entry_t entry)
1381 unsigned long offset = swp_offset(entry);
1382 unsigned long idx = offset / SWAPFILE_CLUSTER;
1383 struct swap_cluster_info *ci;
1384 struct swap_info_struct *si;
1386 unsigned int i, free_entries = 0;
1388 int size = swap_entry_size(thp_nr_pages(page));
1390 si = _swap_info_get(entry);
1394 ci = lock_cluster_or_swap_info(si, offset);
1395 if (size == SWAPFILE_CLUSTER) {
1396 VM_BUG_ON(!cluster_is_huge(ci));
1397 map = si->swap_map + offset;
1398 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1400 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1401 if (val == SWAP_HAS_CACHE)
1404 cluster_clear_huge(ci);
1405 if (free_entries == SWAPFILE_CLUSTER) {
1406 unlock_cluster_or_swap_info(si, ci);
1407 spin_lock(&si->lock);
1408 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1409 swap_free_cluster(si, idx);
1410 spin_unlock(&si->lock);
1414 for (i = 0; i < size; i++, entry.val++) {
1415 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1416 unlock_cluster_or_swap_info(si, ci);
1417 free_swap_slot(entry);
1420 lock_cluster_or_swap_info(si, offset);
1423 unlock_cluster_or_swap_info(si, ci);
1426 #ifdef CONFIG_THP_SWAP
1427 int split_swap_cluster(swp_entry_t entry)
1429 struct swap_info_struct *si;
1430 struct swap_cluster_info *ci;
1431 unsigned long offset = swp_offset(entry);
1433 si = _swap_info_get(entry);
1436 ci = lock_cluster(si, offset);
1437 cluster_clear_huge(ci);
1443 static int swp_entry_cmp(const void *ent1, const void *ent2)
1445 const swp_entry_t *e1 = ent1, *e2 = ent2;
1447 return (int)swp_type(*e1) - (int)swp_type(*e2);
1450 void swapcache_free_entries(swp_entry_t *entries, int n)
1452 struct swap_info_struct *p, *prev;
1462 * Sort swap entries by swap device, so each lock is only taken once.
1463 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1464 * so low that it isn't necessary to optimize further.
1466 if (nr_swapfiles > 1)
1467 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1468 for (i = 0; i < n; ++i) {
1469 p = swap_info_get_cont(entries[i], prev);
1471 swap_entry_free(p, entries[i]);
1475 spin_unlock(&p->lock);
1479 * How many references to page are currently swapped out?
1480 * This does not give an exact answer when swap count is continued,
1481 * but does include the high COUNT_CONTINUED flag to allow for that.
1483 int page_swapcount(struct page *page)
1486 struct swap_info_struct *p;
1487 struct swap_cluster_info *ci;
1489 unsigned long offset;
1491 entry.val = page_private(page);
1492 p = _swap_info_get(entry);
1494 offset = swp_offset(entry);
1495 ci = lock_cluster_or_swap_info(p, offset);
1496 count = swap_count(p->swap_map[offset]);
1497 unlock_cluster_or_swap_info(p, ci);
1502 int __swap_count(swp_entry_t entry)
1504 struct swap_info_struct *si;
1505 pgoff_t offset = swp_offset(entry);
1508 si = get_swap_device(entry);
1510 count = swap_count(si->swap_map[offset]);
1511 put_swap_device(si);
1516 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1519 pgoff_t offset = swp_offset(entry);
1520 struct swap_cluster_info *ci;
1522 ci = lock_cluster_or_swap_info(si, offset);
1523 count = swap_count(si->swap_map[offset]);
1524 unlock_cluster_or_swap_info(si, ci);
1529 * How many references to @entry are currently swapped out?
1530 * This does not give an exact answer when swap count is continued,
1531 * but does include the high COUNT_CONTINUED flag to allow for that.
1533 int __swp_swapcount(swp_entry_t entry)
1536 struct swap_info_struct *si;
1538 si = get_swap_device(entry);
1540 count = swap_swapcount(si, entry);
1541 put_swap_device(si);
1547 * How many references to @entry are currently swapped out?
1548 * This considers COUNT_CONTINUED so it returns exact answer.
1550 int swp_swapcount(swp_entry_t entry)
1552 int count, tmp_count, n;
1553 struct swap_info_struct *p;
1554 struct swap_cluster_info *ci;
1559 p = _swap_info_get(entry);
1563 offset = swp_offset(entry);
1565 ci = lock_cluster_or_swap_info(p, offset);
1567 count = swap_count(p->swap_map[offset]);
1568 if (!(count & COUNT_CONTINUED))
1571 count &= ~COUNT_CONTINUED;
1572 n = SWAP_MAP_MAX + 1;
1574 page = vmalloc_to_page(p->swap_map + offset);
1575 offset &= ~PAGE_MASK;
1576 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1579 page = list_next_entry(page, lru);
1580 map = kmap_atomic(page);
1581 tmp_count = map[offset];
1584 count += (tmp_count & ~COUNT_CONTINUED) * n;
1585 n *= (SWAP_CONT_MAX + 1);
1586 } while (tmp_count & COUNT_CONTINUED);
1588 unlock_cluster_or_swap_info(p, ci);
1592 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1595 struct swap_cluster_info *ci;
1596 unsigned char *map = si->swap_map;
1597 unsigned long roffset = swp_offset(entry);
1598 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1602 ci = lock_cluster_or_swap_info(si, offset);
1603 if (!ci || !cluster_is_huge(ci)) {
1604 if (swap_count(map[roffset]))
1608 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1609 if (swap_count(map[offset + i])) {
1615 unlock_cluster_or_swap_info(si, ci);
1619 static bool page_swapped(struct page *page)
1622 struct swap_info_struct *si;
1624 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1625 return page_swapcount(page) != 0;
1627 page = compound_head(page);
1628 entry.val = page_private(page);
1629 si = _swap_info_get(entry);
1631 return swap_page_trans_huge_swapped(si, entry);
1635 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1636 int *total_swapcount)
1638 int i, map_swapcount, _total_mapcount, _total_swapcount;
1639 unsigned long offset = 0;
1640 struct swap_info_struct *si;
1641 struct swap_cluster_info *ci = NULL;
1642 unsigned char *map = NULL;
1643 int mapcount, swapcount = 0;
1645 /* hugetlbfs shouldn't call it */
1646 VM_BUG_ON_PAGE(PageHuge(page), page);
1648 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1649 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1650 if (PageSwapCache(page))
1651 swapcount = page_swapcount(page);
1652 if (total_swapcount)
1653 *total_swapcount = swapcount;
1654 return mapcount + swapcount;
1657 page = compound_head(page);
1659 _total_mapcount = _total_swapcount = map_swapcount = 0;
1660 if (PageSwapCache(page)) {
1663 entry.val = page_private(page);
1664 si = _swap_info_get(entry);
1667 offset = swp_offset(entry);
1671 ci = lock_cluster(si, offset);
1672 for (i = 0; i < HPAGE_PMD_NR; i++) {
1673 mapcount = atomic_read(&page[i]._mapcount) + 1;
1674 _total_mapcount += mapcount;
1676 swapcount = swap_count(map[offset + i]);
1677 _total_swapcount += swapcount;
1679 map_swapcount = max(map_swapcount, mapcount + swapcount);
1682 if (PageDoubleMap(page)) {
1684 _total_mapcount -= HPAGE_PMD_NR;
1686 mapcount = compound_mapcount(page);
1687 map_swapcount += mapcount;
1688 _total_mapcount += mapcount;
1690 *total_mapcount = _total_mapcount;
1691 if (total_swapcount)
1692 *total_swapcount = _total_swapcount;
1694 return map_swapcount;
1698 * We can write to an anon page without COW if there are no other references
1699 * to it. And as a side-effect, free up its swap: because the old content
1700 * on disk will never be read, and seeking back there to write new content
1701 * later would only waste time away from clustering.
1703 * NOTE: total_map_swapcount should not be relied upon by the caller if
1704 * reuse_swap_page() returns false, but it may be always overwritten
1705 * (see the other implementation for CONFIG_SWAP=n).
1707 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1709 int count, total_mapcount, total_swapcount;
1711 VM_BUG_ON_PAGE(!PageLocked(page), page);
1712 if (unlikely(PageKsm(page)))
1714 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1716 if (total_map_swapcount)
1717 *total_map_swapcount = total_mapcount + total_swapcount;
1718 if (count == 1 && PageSwapCache(page) &&
1719 (likely(!PageTransCompound(page)) ||
1720 /* The remaining swap count will be freed soon */
1721 total_swapcount == page_swapcount(page))) {
1722 if (!PageWriteback(page)) {
1723 page = compound_head(page);
1724 delete_from_swap_cache(page);
1728 struct swap_info_struct *p;
1730 entry.val = page_private(page);
1731 p = swap_info_get(entry);
1732 if (p->flags & SWP_STABLE_WRITES) {
1733 spin_unlock(&p->lock);
1736 spin_unlock(&p->lock);
1744 * If swap is getting full, or if there are no more mappings of this page,
1745 * then try_to_free_swap is called to free its swap space.
1747 int try_to_free_swap(struct page *page)
1749 VM_BUG_ON_PAGE(!PageLocked(page), page);
1751 if (!PageSwapCache(page))
1753 if (PageWriteback(page))
1755 if (page_swapped(page))
1759 * Once hibernation has begun to create its image of memory,
1760 * there's a danger that one of the calls to try_to_free_swap()
1761 * - most probably a call from __try_to_reclaim_swap() while
1762 * hibernation is allocating its own swap pages for the image,
1763 * but conceivably even a call from memory reclaim - will free
1764 * the swap from a page which has already been recorded in the
1765 * image as a clean swapcache page, and then reuse its swap for
1766 * another page of the image. On waking from hibernation, the
1767 * original page might be freed under memory pressure, then
1768 * later read back in from swap, now with the wrong data.
1770 * Hibernation suspends storage while it is writing the image
1771 * to disk so check that here.
1773 if (pm_suspended_storage())
1776 page = compound_head(page);
1777 delete_from_swap_cache(page);
1783 * Free the swap entry like above, but also try to
1784 * free the page cache entry if it is the last user.
1786 int free_swap_and_cache(swp_entry_t entry)
1788 struct swap_info_struct *p;
1789 unsigned char count;
1791 if (non_swap_entry(entry))
1794 p = _swap_info_get(entry);
1796 count = __swap_entry_free(p, entry);
1797 if (count == SWAP_HAS_CACHE &&
1798 !swap_page_trans_huge_swapped(p, entry))
1799 __try_to_reclaim_swap(p, swp_offset(entry),
1800 TTRS_UNMAPPED | TTRS_FULL);
1805 #ifdef CONFIG_HIBERNATION
1807 * Find the swap type that corresponds to given device (if any).
1809 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1810 * from 0, in which the swap header is expected to be located.
1812 * This is needed for the suspend to disk (aka swsusp).
1814 int swap_type_of(dev_t device, sector_t offset)
1821 spin_lock(&swap_lock);
1822 for (type = 0; type < nr_swapfiles; type++) {
1823 struct swap_info_struct *sis = swap_info[type];
1825 if (!(sis->flags & SWP_WRITEOK))
1828 if (device == sis->bdev->bd_dev) {
1829 struct swap_extent *se = first_se(sis);
1831 if (se->start_block == offset) {
1832 spin_unlock(&swap_lock);
1837 spin_unlock(&swap_lock);
1841 int find_first_swap(dev_t *device)
1845 spin_lock(&swap_lock);
1846 for (type = 0; type < nr_swapfiles; type++) {
1847 struct swap_info_struct *sis = swap_info[type];
1849 if (!(sis->flags & SWP_WRITEOK))
1851 *device = sis->bdev->bd_dev;
1852 spin_unlock(&swap_lock);
1855 spin_unlock(&swap_lock);
1860 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1861 * corresponding to given index in swap_info (swap type).
1863 sector_t swapdev_block(int type, pgoff_t offset)
1865 struct swap_info_struct *si = swap_type_to_swap_info(type);
1866 struct swap_extent *se;
1868 if (!si || !(si->flags & SWP_WRITEOK))
1870 se = offset_to_swap_extent(si, offset);
1871 return se->start_block + (offset - se->start_page);
1875 * Return either the total number of swap pages of given type, or the number
1876 * of free pages of that type (depending on @free)
1878 * This is needed for software suspend
1880 unsigned int count_swap_pages(int type, int free)
1884 spin_lock(&swap_lock);
1885 if ((unsigned int)type < nr_swapfiles) {
1886 struct swap_info_struct *sis = swap_info[type];
1888 spin_lock(&sis->lock);
1889 if (sis->flags & SWP_WRITEOK) {
1892 n -= sis->inuse_pages;
1894 spin_unlock(&sis->lock);
1896 spin_unlock(&swap_lock);
1899 #endif /* CONFIG_HIBERNATION */
1901 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1903 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1907 * No need to decide whether this PTE shares the swap entry with others,
1908 * just let do_wp_page work it out if a write is requested later - to
1909 * force COW, vm_page_prot omits write permission from any private vma.
1911 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1912 unsigned long addr, swp_entry_t entry, struct page *page)
1914 struct page *swapcache;
1920 page = ksm_might_need_to_copy(page, vma, addr);
1921 if (unlikely(!page))
1924 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1925 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1930 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1931 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1933 set_pte_at(vma->vm_mm, addr, pte,
1934 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1935 if (page == swapcache) {
1936 page_add_anon_rmap(page, vma, addr, false);
1937 } else { /* ksm created a completely new copy */
1938 page_add_new_anon_rmap(page, vma, addr, false);
1939 lru_cache_add_inactive_or_unevictable(page, vma);
1943 pte_unmap_unlock(pte, ptl);
1944 if (page != swapcache) {
1951 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1952 unsigned long addr, unsigned long end,
1953 unsigned int type, bool frontswap,
1954 unsigned long *fs_pages_to_unuse)
1959 struct swap_info_struct *si;
1960 unsigned long offset;
1962 volatile unsigned char *swap_map;
1964 si = swap_info[type];
1965 pte = pte_offset_map(pmd, addr);
1967 if (!is_swap_pte(*pte))
1970 entry = pte_to_swp_entry(*pte);
1971 if (swp_type(entry) != type)
1974 offset = swp_offset(entry);
1975 if (frontswap && !frontswap_test(si, offset))
1979 swap_map = &si->swap_map[offset];
1980 page = lookup_swap_cache(entry, vma, addr);
1982 struct vm_fault vmf = {
1988 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1992 if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1998 wait_on_page_writeback(page);
1999 ret = unuse_pte(vma, pmd, addr, entry, page);
2006 try_to_free_swap(page);
2010 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2011 ret = FRONTSWAP_PAGES_UNUSED;
2015 pte = pte_offset_map(pmd, addr);
2016 } while (pte++, addr += PAGE_SIZE, addr != end);
2024 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2025 unsigned long addr, unsigned long end,
2026 unsigned int type, bool frontswap,
2027 unsigned long *fs_pages_to_unuse)
2033 pmd = pmd_offset(pud, addr);
2036 next = pmd_addr_end(addr, end);
2037 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2039 ret = unuse_pte_range(vma, pmd, addr, next, type,
2040 frontswap, fs_pages_to_unuse);
2043 } while (pmd++, addr = next, addr != end);
2047 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2048 unsigned long addr, unsigned long end,
2049 unsigned int type, bool frontswap,
2050 unsigned long *fs_pages_to_unuse)
2056 pud = pud_offset(p4d, addr);
2058 next = pud_addr_end(addr, end);
2059 if (pud_none_or_clear_bad(pud))
2061 ret = unuse_pmd_range(vma, pud, addr, next, type,
2062 frontswap, fs_pages_to_unuse);
2065 } while (pud++, addr = next, addr != end);
2069 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2070 unsigned long addr, unsigned long end,
2071 unsigned int type, bool frontswap,
2072 unsigned long *fs_pages_to_unuse)
2078 p4d = p4d_offset(pgd, addr);
2080 next = p4d_addr_end(addr, end);
2081 if (p4d_none_or_clear_bad(p4d))
2083 ret = unuse_pud_range(vma, p4d, addr, next, type,
2084 frontswap, fs_pages_to_unuse);
2087 } while (p4d++, addr = next, addr != end);
2091 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2092 bool frontswap, unsigned long *fs_pages_to_unuse)
2095 unsigned long addr, end, next;
2098 addr = vma->vm_start;
2101 pgd = pgd_offset(vma->vm_mm, addr);
2103 next = pgd_addr_end(addr, end);
2104 if (pgd_none_or_clear_bad(pgd))
2106 ret = unuse_p4d_range(vma, pgd, addr, next, type,
2107 frontswap, fs_pages_to_unuse);
2110 } while (pgd++, addr = next, addr != end);
2114 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2115 bool frontswap, unsigned long *fs_pages_to_unuse)
2117 struct vm_area_struct *vma;
2121 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2122 if (vma->anon_vma) {
2123 ret = unuse_vma(vma, type, frontswap,
2130 mmap_read_unlock(mm);
2135 * Scan swap_map (or frontswap_map if frontswap parameter is true)
2136 * from current position to next entry still in use. Return 0
2137 * if there are no inuse entries after prev till end of the map.
2139 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2140 unsigned int prev, bool frontswap)
2143 unsigned char count;
2146 * No need for swap_lock here: we're just looking
2147 * for whether an entry is in use, not modifying it; false
2148 * hits are okay, and sys_swapoff() has already prevented new
2149 * allocations from this area (while holding swap_lock).
2151 for (i = prev + 1; i < si->max; i++) {
2152 count = READ_ONCE(si->swap_map[i]);
2153 if (count && swap_count(count) != SWAP_MAP_BAD)
2154 if (!frontswap || frontswap_test(si, i))
2156 if ((i % LATENCY_LIMIT) == 0)
2167 * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2168 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2170 int try_to_unuse(unsigned int type, bool frontswap,
2171 unsigned long pages_to_unuse)
2173 struct mm_struct *prev_mm;
2174 struct mm_struct *mm;
2175 struct list_head *p;
2177 struct swap_info_struct *si = swap_info[type];
2182 if (!READ_ONCE(si->inuse_pages))
2189 retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2196 spin_lock(&mmlist_lock);
2197 p = &init_mm.mmlist;
2198 while (READ_ONCE(si->inuse_pages) &&
2199 !signal_pending(current) &&
2200 (p = p->next) != &init_mm.mmlist) {
2202 mm = list_entry(p, struct mm_struct, mmlist);
2203 if (!mmget_not_zero(mm))
2205 spin_unlock(&mmlist_lock);
2208 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2216 * Make sure that we aren't completely killing
2217 * interactive performance.
2220 spin_lock(&mmlist_lock);
2222 spin_unlock(&mmlist_lock);
2227 while (READ_ONCE(si->inuse_pages) &&
2228 !signal_pending(current) &&
2229 (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2231 entry = swp_entry(type, i);
2232 page = find_get_page(swap_address_space(entry), i);
2237 * It is conceivable that a racing task removed this page from
2238 * swap cache just before we acquired the page lock. The page
2239 * might even be back in swap cache on another swap area. But
2240 * that is okay, try_to_free_swap() only removes stale pages.
2243 wait_on_page_writeback(page);
2244 try_to_free_swap(page);
2249 * For frontswap, we just need to unuse pages_to_unuse, if
2250 * it was specified. Need not check frontswap again here as
2251 * we already zeroed out pages_to_unuse if not frontswap.
2253 if (pages_to_unuse && --pages_to_unuse == 0)
2258 * Lets check again to see if there are still swap entries in the map.
2259 * If yes, we would need to do retry the unuse logic again.
2260 * Under global memory pressure, swap entries can be reinserted back
2261 * into process space after the mmlist loop above passes over them.
2263 * Limit the number of retries? No: when mmget_not_zero() above fails,
2264 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2265 * at its own independent pace; and even shmem_writepage() could have
2266 * been preempted after get_swap_page(), temporarily hiding that swap.
2267 * It's easy and robust (though cpu-intensive) just to keep retrying.
2269 if (READ_ONCE(si->inuse_pages)) {
2270 if (!signal_pending(current))
2275 return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2279 * After a successful try_to_unuse, if no swap is now in use, we know
2280 * we can empty the mmlist. swap_lock must be held on entry and exit.
2281 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2282 * added to the mmlist just after page_duplicate - before would be racy.
2284 static void drain_mmlist(void)
2286 struct list_head *p, *next;
2289 for (type = 0; type < nr_swapfiles; type++)
2290 if (swap_info[type]->inuse_pages)
2292 spin_lock(&mmlist_lock);
2293 list_for_each_safe(p, next, &init_mm.mmlist)
2295 spin_unlock(&mmlist_lock);
2299 * Free all of a swapdev's extent information
2301 static void destroy_swap_extents(struct swap_info_struct *sis)
2303 while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2304 struct rb_node *rb = sis->swap_extent_root.rb_node;
2305 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2307 rb_erase(rb, &sis->swap_extent_root);
2311 if (sis->flags & SWP_ACTIVATED) {
2312 struct file *swap_file = sis->swap_file;
2313 struct address_space *mapping = swap_file->f_mapping;
2315 sis->flags &= ~SWP_ACTIVATED;
2316 if (mapping->a_ops->swap_deactivate)
2317 mapping->a_ops->swap_deactivate(swap_file);
2322 * Add a block range (and the corresponding page range) into this swapdev's
2325 * This function rather assumes that it is called in ascending page order.
2328 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2329 unsigned long nr_pages, sector_t start_block)
2331 struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2332 struct swap_extent *se;
2333 struct swap_extent *new_se;
2336 * place the new node at the right most since the
2337 * function is called in ascending page order.
2341 link = &parent->rb_right;
2345 se = rb_entry(parent, struct swap_extent, rb_node);
2346 BUG_ON(se->start_page + se->nr_pages != start_page);
2347 if (se->start_block + se->nr_pages == start_block) {
2349 se->nr_pages += nr_pages;
2354 /* No merge, insert a new extent. */
2355 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2358 new_se->start_page = start_page;
2359 new_se->nr_pages = nr_pages;
2360 new_se->start_block = start_block;
2362 rb_link_node(&new_se->rb_node, parent, link);
2363 rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2366 EXPORT_SYMBOL_GPL(add_swap_extent);
2369 * A `swap extent' is a simple thing which maps a contiguous range of pages
2370 * onto a contiguous range of disk blocks. An ordered list of swap extents
2371 * is built at swapon time and is then used at swap_writepage/swap_readpage
2372 * time for locating where on disk a page belongs.
2374 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2375 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2376 * swap files identically.
2378 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2379 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2380 * swapfiles are handled *identically* after swapon time.
2382 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2383 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2384 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2385 * requirements, they are simply tossed out - we will never use those blocks
2388 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2389 * prevents users from writing to the swap device, which will corrupt memory.
2391 * The amount of disk space which a single swap extent represents varies.
2392 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2393 * extents in the list. To avoid much list walking, we cache the previous
2394 * search location in `curr_swap_extent', and start new searches from there.
2395 * This is extremely effective. The average number of iterations in
2396 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2398 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2400 struct file *swap_file = sis->swap_file;
2401 struct address_space *mapping = swap_file->f_mapping;
2402 struct inode *inode = mapping->host;
2405 if (S_ISBLK(inode->i_mode)) {
2406 ret = add_swap_extent(sis, 0, sis->max, 0);
2411 if (mapping->a_ops->swap_activate) {
2412 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2414 sis->flags |= SWP_ACTIVATED;
2416 sis->flags |= SWP_FS_OPS;
2417 ret = add_swap_extent(sis, 0, sis->max, 0);
2423 return generic_swapfile_activate(sis, swap_file, span);
2426 static int swap_node(struct swap_info_struct *p)
2428 struct block_device *bdev;
2433 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2435 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2438 static void setup_swap_info(struct swap_info_struct *p, int prio,
2439 unsigned char *swap_map,
2440 struct swap_cluster_info *cluster_info)
2447 p->prio = --least_priority;
2449 * the plist prio is negated because plist ordering is
2450 * low-to-high, while swap ordering is high-to-low
2452 p->list.prio = -p->prio;
2455 p->avail_lists[i].prio = -p->prio;
2457 if (swap_node(p) == i)
2458 p->avail_lists[i].prio = 1;
2460 p->avail_lists[i].prio = -p->prio;
2463 p->swap_map = swap_map;
2464 p->cluster_info = cluster_info;
2467 static void _enable_swap_info(struct swap_info_struct *p)
2469 p->flags |= SWP_WRITEOK | SWP_VALID;
2470 atomic_long_add(p->pages, &nr_swap_pages);
2471 total_swap_pages += p->pages;
2473 assert_spin_locked(&swap_lock);
2475 * both lists are plists, and thus priority ordered.
2476 * swap_active_head needs to be priority ordered for swapoff(),
2477 * which on removal of any swap_info_struct with an auto-assigned
2478 * (i.e. negative) priority increments the auto-assigned priority
2479 * of any lower-priority swap_info_structs.
2480 * swap_avail_head needs to be priority ordered for get_swap_page(),
2481 * which allocates swap pages from the highest available priority
2484 plist_add(&p->list, &swap_active_head);
2485 add_to_avail_list(p);
2488 static void enable_swap_info(struct swap_info_struct *p, int prio,
2489 unsigned char *swap_map,
2490 struct swap_cluster_info *cluster_info,
2491 unsigned long *frontswap_map)
2493 frontswap_init(p->type, frontswap_map);
2494 spin_lock(&swap_lock);
2495 spin_lock(&p->lock);
2496 setup_swap_info(p, prio, swap_map, cluster_info);
2497 spin_unlock(&p->lock);
2498 spin_unlock(&swap_lock);
2500 * Guarantee swap_map, cluster_info, etc. fields are valid
2501 * between get/put_swap_device() if SWP_VALID bit is set
2504 spin_lock(&swap_lock);
2505 spin_lock(&p->lock);
2506 _enable_swap_info(p);
2507 spin_unlock(&p->lock);
2508 spin_unlock(&swap_lock);
2511 static void reinsert_swap_info(struct swap_info_struct *p)
2513 spin_lock(&swap_lock);
2514 spin_lock(&p->lock);
2515 setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2516 _enable_swap_info(p);
2517 spin_unlock(&p->lock);
2518 spin_unlock(&swap_lock);
2521 bool has_usable_swap(void)
2525 spin_lock(&swap_lock);
2526 if (plist_head_empty(&swap_active_head))
2528 spin_unlock(&swap_lock);
2532 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2534 struct swap_info_struct *p = NULL;
2535 unsigned char *swap_map;
2536 struct swap_cluster_info *cluster_info;
2537 unsigned long *frontswap_map;
2538 struct file *swap_file, *victim;
2539 struct address_space *mapping;
2540 struct inode *inode;
2541 struct filename *pathname;
2543 unsigned int old_block_size;
2545 if (!capable(CAP_SYS_ADMIN))
2548 BUG_ON(!current->mm);
2550 pathname = getname(specialfile);
2551 if (IS_ERR(pathname))
2552 return PTR_ERR(pathname);
2554 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2555 err = PTR_ERR(victim);
2559 mapping = victim->f_mapping;
2560 spin_lock(&swap_lock);
2561 plist_for_each_entry(p, &swap_active_head, list) {
2562 if (p->flags & SWP_WRITEOK) {
2563 if (p->swap_file->f_mapping == mapping) {
2571 spin_unlock(&swap_lock);
2574 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2575 vm_unacct_memory(p->pages);
2578 spin_unlock(&swap_lock);
2581 del_from_avail_list(p);
2582 spin_lock(&p->lock);
2584 struct swap_info_struct *si = p;
2587 plist_for_each_entry_continue(si, &swap_active_head, list) {
2590 for_each_node(nid) {
2591 if (si->avail_lists[nid].prio != 1)
2592 si->avail_lists[nid].prio--;
2597 plist_del(&p->list, &swap_active_head);
2598 atomic_long_sub(p->pages, &nr_swap_pages);
2599 total_swap_pages -= p->pages;
2600 p->flags &= ~SWP_WRITEOK;
2601 spin_unlock(&p->lock);
2602 spin_unlock(&swap_lock);
2604 disable_swap_slots_cache_lock();
2606 set_current_oom_origin();
2607 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2608 clear_current_oom_origin();
2611 /* re-insert swap space back into swap_list */
2612 reinsert_swap_info(p);
2613 reenable_swap_slots_cache_unlock();
2617 reenable_swap_slots_cache_unlock();
2619 spin_lock(&swap_lock);
2620 spin_lock(&p->lock);
2621 p->flags &= ~SWP_VALID; /* mark swap device as invalid */
2622 spin_unlock(&p->lock);
2623 spin_unlock(&swap_lock);
2625 * wait for swap operations protected by get/put_swap_device()
2630 flush_work(&p->discard_work);
2632 destroy_swap_extents(p);
2633 if (p->flags & SWP_CONTINUED)
2634 free_swap_count_continuations(p);
2636 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2637 atomic_dec(&nr_rotate_swap);
2639 mutex_lock(&swapon_mutex);
2640 spin_lock(&swap_lock);
2641 spin_lock(&p->lock);
2644 /* wait for anyone still in scan_swap_map */
2645 p->highest_bit = 0; /* cuts scans short */
2646 while (p->flags >= SWP_SCANNING) {
2647 spin_unlock(&p->lock);
2648 spin_unlock(&swap_lock);
2649 schedule_timeout_uninterruptible(1);
2650 spin_lock(&swap_lock);
2651 spin_lock(&p->lock);
2654 swap_file = p->swap_file;
2655 old_block_size = p->old_block_size;
2656 p->swap_file = NULL;
2658 swap_map = p->swap_map;
2660 cluster_info = p->cluster_info;
2661 p->cluster_info = NULL;
2662 frontswap_map = frontswap_map_get(p);
2663 spin_unlock(&p->lock);
2664 spin_unlock(&swap_lock);
2665 arch_swap_invalidate_area(p->type);
2666 frontswap_invalidate_area(p->type);
2667 frontswap_map_set(p, NULL);
2668 mutex_unlock(&swapon_mutex);
2669 free_percpu(p->percpu_cluster);
2670 p->percpu_cluster = NULL;
2671 free_percpu(p->cluster_next_cpu);
2672 p->cluster_next_cpu = NULL;
2674 kvfree(cluster_info);
2675 kvfree(frontswap_map);
2676 /* Destroy swap account information */
2677 swap_cgroup_swapoff(p->type);
2678 exit_swap_address_space(p->type);
2680 inode = mapping->host;
2681 if (S_ISBLK(inode->i_mode)) {
2682 struct block_device *bdev = I_BDEV(inode);
2684 set_blocksize(bdev, old_block_size);
2685 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2689 inode->i_flags &= ~S_SWAPFILE;
2690 inode_unlock(inode);
2691 filp_close(swap_file, NULL);
2694 * Clear the SWP_USED flag after all resources are freed so that swapon
2695 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2696 * not hold p->lock after we cleared its SWP_WRITEOK.
2698 spin_lock(&swap_lock);
2700 spin_unlock(&swap_lock);
2703 atomic_inc(&proc_poll_event);
2704 wake_up_interruptible(&proc_poll_wait);
2707 filp_close(victim, NULL);
2713 #ifdef CONFIG_PROC_FS
2714 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2716 struct seq_file *seq = file->private_data;
2718 poll_wait(file, &proc_poll_wait, wait);
2720 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2721 seq->poll_event = atomic_read(&proc_poll_event);
2722 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2725 return EPOLLIN | EPOLLRDNORM;
2729 static void *swap_start(struct seq_file *swap, loff_t *pos)
2731 struct swap_info_struct *si;
2735 mutex_lock(&swapon_mutex);
2738 return SEQ_START_TOKEN;
2740 for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2741 if (!(si->flags & SWP_USED) || !si->swap_map)
2750 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2752 struct swap_info_struct *si = v;
2755 if (v == SEQ_START_TOKEN)
2758 type = si->type + 1;
2761 for (; (si = swap_type_to_swap_info(type)); type++) {
2762 if (!(si->flags & SWP_USED) || !si->swap_map)
2770 static void swap_stop(struct seq_file *swap, void *v)
2772 mutex_unlock(&swapon_mutex);
2775 static int swap_show(struct seq_file *swap, void *v)
2777 struct swap_info_struct *si = v;
2780 unsigned int bytes, inuse;
2782 if (si == SEQ_START_TOKEN) {
2783 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2787 bytes = si->pages << (PAGE_SHIFT - 10);
2788 inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2790 file = si->swap_file;
2791 len = seq_file_path(swap, file, " \t\n\\");
2792 seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2793 len < 40 ? 40 - len : 1, " ",
2794 S_ISBLK(file_inode(file)->i_mode) ?
2795 "partition" : "file\t",
2796 bytes, bytes < 10000000 ? "\t" : "",
2797 inuse, inuse < 10000000 ? "\t" : "",
2802 static const struct seq_operations swaps_op = {
2803 .start = swap_start,
2809 static int swaps_open(struct inode *inode, struct file *file)
2811 struct seq_file *seq;
2814 ret = seq_open(file, &swaps_op);
2818 seq = file->private_data;
2819 seq->poll_event = atomic_read(&proc_poll_event);
2823 static const struct proc_ops swaps_proc_ops = {
2824 .proc_flags = PROC_ENTRY_PERMANENT,
2825 .proc_open = swaps_open,
2826 .proc_read = seq_read,
2827 .proc_lseek = seq_lseek,
2828 .proc_release = seq_release,
2829 .proc_poll = swaps_poll,
2832 static int __init procswaps_init(void)
2834 proc_create("swaps", 0, NULL, &swaps_proc_ops);
2837 __initcall(procswaps_init);
2838 #endif /* CONFIG_PROC_FS */
2840 #ifdef MAX_SWAPFILES_CHECK
2841 static int __init max_swapfiles_check(void)
2843 MAX_SWAPFILES_CHECK();
2846 late_initcall(max_swapfiles_check);
2849 static struct swap_info_struct *alloc_swap_info(void)
2851 struct swap_info_struct *p;
2852 struct swap_info_struct *defer = NULL;
2856 p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2858 return ERR_PTR(-ENOMEM);
2860 spin_lock(&swap_lock);
2861 for (type = 0; type < nr_swapfiles; type++) {
2862 if (!(swap_info[type]->flags & SWP_USED))
2865 if (type >= MAX_SWAPFILES) {
2866 spin_unlock(&swap_lock);
2868 return ERR_PTR(-EPERM);
2870 if (type >= nr_swapfiles) {
2872 WRITE_ONCE(swap_info[type], p);
2874 * Write swap_info[type] before nr_swapfiles, in case a
2875 * racing procfs swap_start() or swap_next() is reading them.
2876 * (We never shrink nr_swapfiles, we never free this entry.)
2879 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2882 p = swap_info[type];
2884 * Do not memset this entry: a racing procfs swap_next()
2885 * would be relying on p->type to remain valid.
2888 p->swap_extent_root = RB_ROOT;
2889 plist_node_init(&p->list, 0);
2891 plist_node_init(&p->avail_lists[i], 0);
2892 p->flags = SWP_USED;
2893 spin_unlock(&swap_lock);
2895 spin_lock_init(&p->lock);
2896 spin_lock_init(&p->cont_lock);
2901 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2905 if (S_ISBLK(inode->i_mode)) {
2906 p->bdev = blkdev_get_by_dev(inode->i_rdev,
2907 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2908 if (IS_ERR(p->bdev)) {
2909 error = PTR_ERR(p->bdev);
2913 p->old_block_size = block_size(p->bdev);
2914 error = set_blocksize(p->bdev, PAGE_SIZE);
2918 * Zoned block devices contain zones that have a sequential
2919 * write only restriction. Hence zoned block devices are not
2920 * suitable for swapping. Disallow them here.
2922 if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2924 p->flags |= SWP_BLKDEV;
2925 } else if (S_ISREG(inode->i_mode)) {
2926 p->bdev = inode->i_sb->s_bdev;
2934 * Find out how many pages are allowed for a single swap device. There
2935 * are two limiting factors:
2936 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2937 * 2) the number of bits in the swap pte, as defined by the different
2940 * In order to find the largest possible bit mask, a swap entry with
2941 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2942 * decoded to a swp_entry_t again, and finally the swap offset is
2945 * This will mask all the bits from the initial ~0UL mask that can't
2946 * be encoded in either the swp_entry_t or the architecture definition
2949 unsigned long generic_max_swapfile_size(void)
2951 return swp_offset(pte_to_swp_entry(
2952 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2955 /* Can be overridden by an architecture for additional checks. */
2956 __weak unsigned long max_swapfile_size(void)
2958 return generic_max_swapfile_size();
2961 static unsigned long read_swap_header(struct swap_info_struct *p,
2962 union swap_header *swap_header,
2963 struct inode *inode)
2966 unsigned long maxpages;
2967 unsigned long swapfilepages;
2968 unsigned long last_page;
2970 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2971 pr_err("Unable to find swap-space signature\n");
2975 /* swap partition endianess hack... */
2976 if (swab32(swap_header->info.version) == 1) {
2977 swab32s(&swap_header->info.version);
2978 swab32s(&swap_header->info.last_page);
2979 swab32s(&swap_header->info.nr_badpages);
2980 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2982 for (i = 0; i < swap_header->info.nr_badpages; i++)
2983 swab32s(&swap_header->info.badpages[i]);
2985 /* Check the swap header's sub-version */
2986 if (swap_header->info.version != 1) {
2987 pr_warn("Unable to handle swap header version %d\n",
2988 swap_header->info.version);
2993 p->cluster_next = 1;
2996 maxpages = max_swapfile_size();
2997 last_page = swap_header->info.last_page;
2999 pr_warn("Empty swap-file\n");
3002 if (last_page > maxpages) {
3003 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3004 maxpages << (PAGE_SHIFT - 10),
3005 last_page << (PAGE_SHIFT - 10));
3007 if (maxpages > last_page) {
3008 maxpages = last_page + 1;
3009 /* p->max is an unsigned int: don't overflow it */
3010 if ((unsigned int)maxpages == 0)
3011 maxpages = UINT_MAX;
3013 p->highest_bit = maxpages - 1;
3017 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3018 if (swapfilepages && maxpages > swapfilepages) {
3019 pr_warn("Swap area shorter than signature indicates\n");
3022 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3024 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3030 #define SWAP_CLUSTER_INFO_COLS \
3031 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3032 #define SWAP_CLUSTER_SPACE_COLS \
3033 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3034 #define SWAP_CLUSTER_COLS \
3035 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3037 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3038 union swap_header *swap_header,
3039 unsigned char *swap_map,
3040 struct swap_cluster_info *cluster_info,
3041 unsigned long maxpages,
3045 unsigned int nr_good_pages;
3047 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3048 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3049 unsigned long i, idx;
3051 nr_good_pages = maxpages - 1; /* omit header page */
3053 cluster_list_init(&p->free_clusters);
3054 cluster_list_init(&p->discard_clusters);
3056 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3057 unsigned int page_nr = swap_header->info.badpages[i];
3058 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3060 if (page_nr < maxpages) {
3061 swap_map[page_nr] = SWAP_MAP_BAD;
3064 * Haven't marked the cluster free yet, no list
3065 * operation involved
3067 inc_cluster_info_page(p, cluster_info, page_nr);
3071 /* Haven't marked the cluster free yet, no list operation involved */
3072 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3073 inc_cluster_info_page(p, cluster_info, i);
3075 if (nr_good_pages) {
3076 swap_map[0] = SWAP_MAP_BAD;
3078 * Not mark the cluster free yet, no list
3079 * operation involved
3081 inc_cluster_info_page(p, cluster_info, 0);
3083 p->pages = nr_good_pages;
3084 nr_extents = setup_swap_extents(p, span);
3087 nr_good_pages = p->pages;
3089 if (!nr_good_pages) {
3090 pr_warn("Empty swap-file\n");
3099 * Reduce false cache line sharing between cluster_info and
3100 * sharing same address space.
3102 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3103 j = (k + col) % SWAP_CLUSTER_COLS;
3104 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3105 idx = i * SWAP_CLUSTER_COLS + j;
3106 if (idx >= nr_clusters)
3108 if (cluster_count(&cluster_info[idx]))
3110 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3111 cluster_list_add_tail(&p->free_clusters, cluster_info,
3119 * Helper to sys_swapon determining if a given swap
3120 * backing device queue supports DISCARD operations.
3122 static bool swap_discardable(struct swap_info_struct *si)
3124 struct request_queue *q = bdev_get_queue(si->bdev);
3126 if (!q || !blk_queue_discard(q))
3132 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3134 struct swap_info_struct *p;
3135 struct filename *name;
3136 struct file *swap_file = NULL;
3137 struct address_space *mapping;
3140 union swap_header *swap_header;
3143 unsigned long maxpages;
3144 unsigned char *swap_map = NULL;
3145 struct swap_cluster_info *cluster_info = NULL;
3146 unsigned long *frontswap_map = NULL;
3147 struct page *page = NULL;
3148 struct inode *inode = NULL;
3149 bool inced_nr_rotate_swap = false;
3151 if (swap_flags & ~SWAP_FLAGS_VALID)
3154 if (!capable(CAP_SYS_ADMIN))
3157 if (!swap_avail_heads)
3160 p = alloc_swap_info();
3164 INIT_WORK(&p->discard_work, swap_discard_work);
3166 name = getname(specialfile);
3168 error = PTR_ERR(name);
3172 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3173 if (IS_ERR(swap_file)) {
3174 error = PTR_ERR(swap_file);
3179 p->swap_file = swap_file;
3180 mapping = swap_file->f_mapping;
3181 inode = mapping->host;
3183 error = claim_swapfile(p, inode);
3184 if (unlikely(error))
3188 if (IS_SWAPFILE(inode)) {
3190 goto bad_swap_unlock_inode;
3194 * Read the swap header.
3196 if (!mapping->a_ops->readpage) {
3198 goto bad_swap_unlock_inode;
3200 page = read_mapping_page(mapping, 0, swap_file);
3202 error = PTR_ERR(page);
3203 goto bad_swap_unlock_inode;
3205 swap_header = kmap(page);
3207 maxpages = read_swap_header(p, swap_header, inode);
3208 if (unlikely(!maxpages)) {
3210 goto bad_swap_unlock_inode;
3213 /* OK, set up the swap map and apply the bad block list */
3214 swap_map = vzalloc(maxpages);
3217 goto bad_swap_unlock_inode;
3220 if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3221 p->flags |= SWP_STABLE_WRITES;
3223 if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3224 p->flags |= SWP_SYNCHRONOUS_IO;
3226 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3228 unsigned long ci, nr_cluster;
3230 p->flags |= SWP_SOLIDSTATE;
3231 p->cluster_next_cpu = alloc_percpu(unsigned int);
3232 if (!p->cluster_next_cpu) {
3234 goto bad_swap_unlock_inode;
3237 * select a random position to start with to help wear leveling
3240 for_each_possible_cpu(cpu) {
3241 per_cpu(*p->cluster_next_cpu, cpu) =
3242 1 + prandom_u32_max(p->highest_bit);
3244 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3246 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3248 if (!cluster_info) {
3250 goto bad_swap_unlock_inode;
3253 for (ci = 0; ci < nr_cluster; ci++)
3254 spin_lock_init(&((cluster_info + ci)->lock));
3256 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3257 if (!p->percpu_cluster) {
3259 goto bad_swap_unlock_inode;
3261 for_each_possible_cpu(cpu) {
3262 struct percpu_cluster *cluster;
3263 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3264 cluster_set_null(&cluster->index);
3267 atomic_inc(&nr_rotate_swap);
3268 inced_nr_rotate_swap = true;
3271 error = swap_cgroup_swapon(p->type, maxpages);
3273 goto bad_swap_unlock_inode;
3275 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3276 cluster_info, maxpages, &span);
3277 if (unlikely(nr_extents < 0)) {
3279 goto bad_swap_unlock_inode;
3281 /* frontswap enabled? set up bit-per-page map for frontswap */
3282 if (IS_ENABLED(CONFIG_FRONTSWAP))
3283 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3287 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3289 * When discard is enabled for swap with no particular
3290 * policy flagged, we set all swap discard flags here in
3291 * order to sustain backward compatibility with older
3292 * swapon(8) releases.
3294 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3298 * By flagging sys_swapon, a sysadmin can tell us to
3299 * either do single-time area discards only, or to just
3300 * perform discards for released swap page-clusters.
3301 * Now it's time to adjust the p->flags accordingly.
3303 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3304 p->flags &= ~SWP_PAGE_DISCARD;
3305 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3306 p->flags &= ~SWP_AREA_DISCARD;
3308 /* issue a swapon-time discard if it's still required */
3309 if (p->flags & SWP_AREA_DISCARD) {
3310 int err = discard_swap(p);
3312 pr_err("swapon: discard_swap(%p): %d\n",
3317 error = init_swap_address_space(p->type, maxpages);
3319 goto bad_swap_unlock_inode;
3322 * Flush any pending IO and dirty mappings before we start using this
3325 inode->i_flags |= S_SWAPFILE;
3326 error = inode_drain_writes(inode);
3328 inode->i_flags &= ~S_SWAPFILE;
3329 goto free_swap_address_space;
3332 mutex_lock(&swapon_mutex);
3334 if (swap_flags & SWAP_FLAG_PREFER)
3336 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3337 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3339 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3340 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3341 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3342 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3343 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3344 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3345 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3346 (frontswap_map) ? "FS" : "");
3348 mutex_unlock(&swapon_mutex);
3349 atomic_inc(&proc_poll_event);
3350 wake_up_interruptible(&proc_poll_wait);
3354 free_swap_address_space:
3355 exit_swap_address_space(p->type);
3356 bad_swap_unlock_inode:
3357 inode_unlock(inode);
3359 free_percpu(p->percpu_cluster);
3360 p->percpu_cluster = NULL;
3361 free_percpu(p->cluster_next_cpu);
3362 p->cluster_next_cpu = NULL;
3363 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3364 set_blocksize(p->bdev, p->old_block_size);
3365 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3368 destroy_swap_extents(p);
3369 swap_cgroup_swapoff(p->type);
3370 spin_lock(&swap_lock);
3371 p->swap_file = NULL;
3373 spin_unlock(&swap_lock);
3375 kvfree(cluster_info);
3376 kvfree(frontswap_map);
3377 if (inced_nr_rotate_swap)
3378 atomic_dec(&nr_rotate_swap);
3380 filp_close(swap_file, NULL);
3382 if (page && !IS_ERR(page)) {
3389 inode_unlock(inode);
3391 enable_swap_slots_cache();
3395 void si_swapinfo(struct sysinfo *val)
3398 unsigned long nr_to_be_unused = 0;
3400 spin_lock(&swap_lock);
3401 for (type = 0; type < nr_swapfiles; type++) {
3402 struct swap_info_struct *si = swap_info[type];
3404 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3405 nr_to_be_unused += si->inuse_pages;
3407 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3408 val->totalswap = total_swap_pages + nr_to_be_unused;
3409 spin_unlock(&swap_lock);
3413 * Verify that a swap entry is valid and increment its swap map count.
3415 * Returns error code in following case.
3417 * - swp_entry is invalid -> EINVAL
3418 * - swp_entry is migration entry -> EINVAL
3419 * - swap-cache reference is requested but there is already one. -> EEXIST
3420 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3421 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3423 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3425 struct swap_info_struct *p;
3426 struct swap_cluster_info *ci;
3427 unsigned long offset;
3428 unsigned char count;
3429 unsigned char has_cache;
3432 p = get_swap_device(entry);
3436 offset = swp_offset(entry);
3437 ci = lock_cluster_or_swap_info(p, offset);
3439 count = p->swap_map[offset];
3442 * swapin_readahead() doesn't check if a swap entry is valid, so the
3443 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3445 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3450 has_cache = count & SWAP_HAS_CACHE;
3451 count &= ~SWAP_HAS_CACHE;
3454 if (usage == SWAP_HAS_CACHE) {
3456 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3457 if (!has_cache && count)
3458 has_cache = SWAP_HAS_CACHE;
3459 else if (has_cache) /* someone else added cache */
3461 else /* no users remaining */
3464 } else if (count || has_cache) {
3466 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3468 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3470 else if (swap_count_continued(p, offset, count))
3471 count = COUNT_CONTINUED;
3475 err = -ENOENT; /* unused swap entry */
3477 WRITE_ONCE(p->swap_map[offset], count | has_cache);
3480 unlock_cluster_or_swap_info(p, ci);
3487 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3488 * (in which case its reference count is never incremented).
3490 void swap_shmem_alloc(swp_entry_t entry)
3492 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3496 * Increase reference count of swap entry by 1.
3497 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3498 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3499 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3500 * might occur if a page table entry has got corrupted.
3502 int swap_duplicate(swp_entry_t entry)
3506 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3507 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3512 * @entry: swap entry for which we allocate swap cache.
3514 * Called when allocating swap cache for existing swap entry,
3515 * This can return error codes. Returns 0 at success.
3516 * -EEXIST means there is a swap cache.
3517 * Note: return code is different from swap_duplicate().
3519 int swapcache_prepare(swp_entry_t entry)
3521 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3524 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3526 return swap_type_to_swap_info(swp_type(entry));
3529 struct swap_info_struct *page_swap_info(struct page *page)
3531 swp_entry_t entry = { .val = page_private(page) };
3532 return swp_swap_info(entry);
3536 * out-of-line __page_file_ methods to avoid include hell.
3538 struct address_space *__page_file_mapping(struct page *page)
3540 return page_swap_info(page)->swap_file->f_mapping;
3542 EXPORT_SYMBOL_GPL(__page_file_mapping);
3544 pgoff_t __page_file_index(struct page *page)
3546 swp_entry_t swap = { .val = page_private(page) };
3547 return swp_offset(swap);
3549 EXPORT_SYMBOL_GPL(__page_file_index);
3552 * add_swap_count_continuation - called when a swap count is duplicated
3553 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3554 * page of the original vmalloc'ed swap_map, to hold the continuation count
3555 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3556 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3558 * These continuation pages are seldom referenced: the common paths all work
3559 * on the original swap_map, only referring to a continuation page when the
3560 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3562 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3563 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3564 * can be called after dropping locks.
3566 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3568 struct swap_info_struct *si;
3569 struct swap_cluster_info *ci;
3572 struct page *list_page;
3574 unsigned char count;
3578 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3579 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3581 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3583 si = get_swap_device(entry);
3586 * An acceptable race has occurred since the failing
3587 * __swap_duplicate(): the swap device may be swapoff
3591 spin_lock(&si->lock);
3593 offset = swp_offset(entry);
3595 ci = lock_cluster(si, offset);
3597 count = swap_count(si->swap_map[offset]);
3599 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3601 * The higher the swap count, the more likely it is that tasks
3602 * will race to add swap count continuation: we need to avoid
3603 * over-provisioning.
3614 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3615 * no architecture is using highmem pages for kernel page tables: so it
3616 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3618 head = vmalloc_to_page(si->swap_map + offset);
3619 offset &= ~PAGE_MASK;
3621 spin_lock(&si->cont_lock);
3623 * Page allocation does not initialize the page's lru field,
3624 * but it does always reset its private field.
3626 if (!page_private(head)) {
3627 BUG_ON(count & COUNT_CONTINUED);
3628 INIT_LIST_HEAD(&head->lru);
3629 set_page_private(head, SWP_CONTINUED);
3630 si->flags |= SWP_CONTINUED;
3633 list_for_each_entry(list_page, &head->lru, lru) {
3637 * If the previous map said no continuation, but we've found
3638 * a continuation page, free our allocation and use this one.
3640 if (!(count & COUNT_CONTINUED))
3641 goto out_unlock_cont;
3643 map = kmap_atomic(list_page) + offset;
3648 * If this continuation count now has some space in it,
3649 * free our allocation and use this one.
3651 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3652 goto out_unlock_cont;
3655 list_add_tail(&page->lru, &head->lru);
3656 page = NULL; /* now it's attached, don't free it */
3658 spin_unlock(&si->cont_lock);
3661 spin_unlock(&si->lock);
3662 put_swap_device(si);
3670 * swap_count_continued - when the original swap_map count is incremented
3671 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3672 * into, carry if so, or else fail until a new continuation page is allocated;
3673 * when the original swap_map count is decremented from 0 with continuation,
3674 * borrow from the continuation and report whether it still holds more.
3675 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3678 static bool swap_count_continued(struct swap_info_struct *si,
3679 pgoff_t offset, unsigned char count)
3686 head = vmalloc_to_page(si->swap_map + offset);
3687 if (page_private(head) != SWP_CONTINUED) {
3688 BUG_ON(count & COUNT_CONTINUED);
3689 return false; /* need to add count continuation */
3692 spin_lock(&si->cont_lock);
3693 offset &= ~PAGE_MASK;
3694 page = list_next_entry(head, lru);
3695 map = kmap_atomic(page) + offset;
3697 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3698 goto init_map; /* jump over SWAP_CONT_MAX checks */
3700 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3702 * Think of how you add 1 to 999
3704 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3706 page = list_next_entry(page, lru);
3707 BUG_ON(page == head);
3708 map = kmap_atomic(page) + offset;
3710 if (*map == SWAP_CONT_MAX) {
3712 page = list_next_entry(page, lru);
3714 ret = false; /* add count continuation */
3717 map = kmap_atomic(page) + offset;
3718 init_map: *map = 0; /* we didn't zero the page */
3722 while ((page = list_prev_entry(page, lru)) != head) {
3723 map = kmap_atomic(page) + offset;
3724 *map = COUNT_CONTINUED;
3727 ret = true; /* incremented */
3729 } else { /* decrementing */
3731 * Think of how you subtract 1 from 1000
3733 BUG_ON(count != COUNT_CONTINUED);
3734 while (*map == COUNT_CONTINUED) {
3736 page = list_next_entry(page, lru);
3737 BUG_ON(page == head);
3738 map = kmap_atomic(page) + offset;
3745 while ((page = list_prev_entry(page, lru)) != head) {
3746 map = kmap_atomic(page) + offset;
3747 *map = SWAP_CONT_MAX | count;
3748 count = COUNT_CONTINUED;
3751 ret = count == COUNT_CONTINUED;
3754 spin_unlock(&si->cont_lock);
3759 * free_swap_count_continuations - swapoff free all the continuation pages
3760 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3762 static void free_swap_count_continuations(struct swap_info_struct *si)
3766 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3768 head = vmalloc_to_page(si->swap_map + offset);
3769 if (page_private(head)) {
3770 struct page *page, *next;
3772 list_for_each_entry_safe(page, next, &head->lru, lru) {
3773 list_del(&page->lru);
3780 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3781 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3783 struct swap_info_struct *si, *next;
3784 int nid = page_to_nid(page);
3786 if (!(gfp_mask & __GFP_IO))
3789 if (!blk_cgroup_congested())
3793 * We've already scheduled a throttle, avoid taking the global swap
3796 if (current->throttle_queue)
3799 spin_lock(&swap_avail_lock);
3800 plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3803 blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3807 spin_unlock(&swap_avail_lock);
3811 static int __init swapfile_init(void)
3815 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3817 if (!swap_avail_heads) {
3818 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3823 plist_head_init(&swap_avail_heads[nid]);
3827 subsys_initcall(swapfile_init);