1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
32 static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .dirty_folio = noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 .migrate_folio = migrate_folio,
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
53 #define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
64 void show_swap_cache_info(void)
66 printk("%lu pages in swap cache\n", total_swapcache_pages());
67 printk("Free swap = %ldkB\n",
68 get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
74 struct address_space *address_space = swap_address_space(entry);
75 pgoff_t idx = swp_offset(entry);
78 page = xa_load(&address_space->i_pages, idx);
79 if (xa_is_value(page))
85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86 * but sets SwapCache flag and private instead of mapping and index.
88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 gfp_t gfp, void **shadowp)
91 struct address_space *address_space = swap_address_space(entry);
92 pgoff_t idx = swp_offset(entry);
93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 unsigned long i, nr = folio_nr_pages(folio);
97 xas_set_update(&xas, workingset_update_node);
99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
103 folio_ref_add(folio, nr);
104 folio_set_swapcache(folio);
108 xas_create_range(&xas);
111 for (i = 0; i < nr; i++) {
112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 old = xas_load(&xas);
114 if (xa_is_value(old)) {
118 set_page_private(folio_page(folio, i), entry.val + i);
119 xas_store(&xas, folio);
122 address_space->nrpages += nr;
123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
126 xas_unlock_irq(&xas);
127 } while (xas_nomem(&xas, gfp));
129 if (!xas_error(&xas))
132 folio_clear_swapcache(folio);
133 folio_ref_sub(folio, nr);
134 return xas_error(&xas);
138 * This must be called only on folios that have
139 * been verified to be in the swap cache.
141 void __delete_from_swap_cache(struct folio *folio,
142 swp_entry_t entry, void *shadow)
144 struct address_space *address_space = swap_address_space(entry);
146 long nr = folio_nr_pages(folio);
147 pgoff_t idx = swp_offset(entry);
148 XA_STATE(xas, &address_space->i_pages, idx);
150 xas_set_update(&xas, workingset_update_node);
152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
156 for (i = 0; i < nr; i++) {
157 void *entry = xas_store(&xas, shadow);
158 VM_BUG_ON_PAGE(entry != folio, entry);
159 set_page_private(folio_page(folio, i), 0);
162 folio_clear_swapcache(folio);
163 address_space->nrpages -= nr;
164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
169 * add_to_swap - allocate swap space for a folio
170 * @folio: folio we want to move to swap
172 * Allocate swap space for the folio and add the folio to the
175 * Context: Caller needs to hold the folio lock.
176 * Return: Whether the folio was added to the swap cache.
178 bool add_to_swap(struct folio *folio)
183 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
186 entry = folio_alloc_swap(folio);
191 * XArray node allocations from PF_MEMALLOC contexts could
192 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193 * stops emergency reserves from being allocated.
195 * TODO: this could cause a theoretical memory reclaim
196 * deadlock in the swap out path.
199 * Add it to the swap cache.
201 err = add_to_swap_cache(folio, entry,
202 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
205 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 * clear SWAP_HAS_CACHE flag.
210 * Normally the folio will be dirtied in unmap because its
211 * pte should be dirty. A special case is MADV_FREE page. The
212 * page's pte could have dirty bit cleared but the folio's
213 * SwapBacked flag is still set because clearing the dirty bit
214 * and SwapBacked flag has no lock protected. For such folio,
215 * unmap will not set dirty bit for it, so folio reclaim will
216 * not write the folio out. This can cause data corruption when
217 * the folio is swapped in later. Always setting the dirty flag
218 * for the folio solves the problem.
220 folio_mark_dirty(folio);
225 put_swap_folio(folio, entry);
230 * This must be called only on folios that have
231 * been verified to be in the swap cache and locked.
232 * It will never put the folio into the free list,
233 * the caller has a reference on the folio.
235 void delete_from_swap_cache(struct folio *folio)
237 swp_entry_t entry = folio_swap_entry(folio);
238 struct address_space *address_space = swap_address_space(entry);
240 xa_lock_irq(&address_space->i_pages);
241 __delete_from_swap_cache(folio, entry, NULL);
242 xa_unlock_irq(&address_space->i_pages);
244 put_swap_folio(folio, entry);
245 folio_ref_sub(folio, folio_nr_pages(folio));
248 void clear_shadow_from_swap_cache(int type, unsigned long begin,
251 unsigned long curr = begin;
255 swp_entry_t entry = swp_entry(type, curr);
256 struct address_space *address_space = swap_address_space(entry);
257 XA_STATE(xas, &address_space->i_pages, curr);
259 xas_set_update(&xas, workingset_update_node);
261 xa_lock_irq(&address_space->i_pages);
262 xas_for_each(&xas, old, end) {
263 if (!xa_is_value(old))
265 xas_store(&xas, NULL);
267 xa_unlock_irq(&address_space->i_pages);
269 /* search the next swapcache until we meet end */
270 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
272 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
279 * If we are the only user, then try to free up the swap cache.
281 * Its ok to check the swapcache flag without the folio lock
282 * here because we are going to recheck again inside
283 * folio_free_swap() _with_ the lock.
286 void free_swap_cache(struct page *page)
288 struct folio *folio = page_folio(page);
290 if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
291 folio_trylock(folio)) {
292 folio_free_swap(folio);
298 * Perform a free_page(), also freeing any swap cache associated with
299 * this page if it is the last user of the page.
301 void free_page_and_swap_cache(struct page *page)
303 free_swap_cache(page);
304 if (!is_huge_zero_page(page))
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them. They are removed from the LRU and freed if this is their last use.
312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
315 for (int i = 0; i < nr; i++)
316 free_swap_cache(encoded_page_ptr(pages[i]));
317 release_pages(pages, nr);
320 static inline bool swap_use_vma_readahead(void)
322 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
326 * Lookup a swap entry in the swap cache. A found folio will be returned
327 * unlocked and with its refcount incremented - we rely on the kernel
328 * lock getting page table operations atomic even if we drop the folio
329 * lock before returning.
331 * Caller must lock the swap device or hold a reference to keep it valid.
333 struct folio *swap_cache_get_folio(swp_entry_t entry,
334 struct vm_area_struct *vma, unsigned long addr)
338 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
339 if (!IS_ERR(folio)) {
340 bool vma_ra = swap_use_vma_readahead();
344 * At the moment, we don't support PG_readahead for anon THP
345 * so let's bail out rather than confusing the readahead stat.
347 if (unlikely(folio_test_large(folio)))
350 readahead = folio_test_clear_readahead(folio);
352 unsigned long ra_val;
355 ra_val = GET_SWAP_RA_VAL(vma);
356 win = SWAP_RA_WIN(ra_val);
357 hits = SWAP_RA_HITS(ra_val);
359 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
360 atomic_long_set(&vma->swap_readahead_info,
361 SWAP_RA_VAL(addr, win, hits));
365 count_vm_event(SWAP_RA_HIT);
367 atomic_inc(&swapin_readahead_hits);
377 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
378 * @mapping: The address_space to search.
379 * @index: The page cache index.
381 * This differs from filemap_get_folio() in that it will also look for the
382 * folio in the swap cache.
384 * Return: The found folio or %NULL.
386 struct folio *filemap_get_incore_folio(struct address_space *mapping,
390 struct swap_info_struct *si;
391 struct folio *folio = filemap_get_entry(mapping, index);
394 return ERR_PTR(-ENOENT);
395 if (!xa_is_value(folio))
397 if (!shmem_mapping(mapping))
398 return ERR_PTR(-ENOENT);
400 swp = radix_to_swp_entry(folio);
401 /* There might be swapin error entries in shmem mapping. */
402 if (non_swap_entry(swp))
403 return ERR_PTR(-ENOENT);
404 /* Prevent swapoff from happening to us */
405 si = get_swap_device(swp);
407 return ERR_PTR(-ENOENT);
408 index = swp_offset(swp);
409 folio = filemap_get_folio(swap_address_space(swp), index);
414 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
415 struct vm_area_struct *vma, unsigned long addr,
416 bool *new_page_allocated)
418 struct swap_info_struct *si;
422 *new_page_allocated = false;
427 * First check the swap cache. Since this is normally
428 * called after swap_cache_get_folio() failed, re-calling
429 * that would confuse statistics.
431 si = get_swap_device(entry);
434 folio = filemap_get_folio(swap_address_space(entry),
438 return folio_file_page(folio, swp_offset(entry));
441 * Just skip read ahead for unused swap slot.
442 * During swap_off when swap_slot_cache is disabled,
443 * we have to handle the race between putting
444 * swap entry in swap cache and marking swap slot
445 * as SWAP_HAS_CACHE. That's done in later part of code or
446 * else swap_off will be aborted if we return NULL.
448 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
452 * Get a new page to read into from swap. Allocate it now,
453 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
454 * cause any racers to loop around until we add it to cache.
456 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
461 * Swap entry may have been freed since our caller observed it.
463 err = swapcache_prepare(entry);
472 * We might race against __delete_from_swap_cache(), and
473 * stumble across a swap_map entry whose SWAP_HAS_CACHE
474 * has not yet been cleared. Or race against another
475 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
476 * in swap_map, but not yet added its page to swap cache.
478 schedule_timeout_uninterruptible(1);
482 * The swap entry is ours to swap in. Prepare the new page.
485 __folio_set_locked(folio);
486 __folio_set_swapbacked(folio);
488 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
491 /* May fail (-ENOMEM) if XArray node allocation failed. */
492 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
495 mem_cgroup_swapin_uncharge_swap(entry);
498 workingset_refault(folio, shadow);
500 /* Caller will initiate read into locked folio */
501 folio_add_lru(folio);
502 *new_page_allocated = true;
506 put_swap_folio(folio, entry);
513 * Locate a page of swap in physical memory, reserving swap cache space
514 * and reading the disk if it is not already cached.
515 * A failure return means that either the page allocation failed or that
516 * the swap entry is no longer in use.
518 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
519 struct vm_area_struct *vma,
520 unsigned long addr, bool do_poll,
521 struct swap_iocb **plug)
523 bool page_was_allocated;
524 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
525 vma, addr, &page_was_allocated);
527 if (page_was_allocated)
528 swap_readpage(retpage, do_poll, plug);
533 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
534 unsigned long offset,
539 unsigned int pages, last_ra;
542 * This heuristic has been found to work well on both sequential and
543 * random loads, swapping to hard disk or to SSD: please don't ask
544 * what the "+ 2" means, it just happens to work well, that's all.
549 * We can have no readahead hits to judge by: but must not get
550 * stuck here forever, so check for an adjacent offset instead
551 * (and don't even bother to check whether swap type is same).
553 if (offset != prev_offset + 1 && offset != prev_offset - 1)
556 unsigned int roundup = 4;
557 while (roundup < pages)
562 if (pages > max_pages)
565 /* Don't shrink readahead too fast */
566 last_ra = prev_win / 2;
573 static unsigned long swapin_nr_pages(unsigned long offset)
575 static unsigned long prev_offset;
576 unsigned int hits, pages, max_pages;
577 static atomic_t last_readahead_pages;
579 max_pages = 1 << READ_ONCE(page_cluster);
583 hits = atomic_xchg(&swapin_readahead_hits, 0);
584 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
586 atomic_read(&last_readahead_pages));
588 WRITE_ONCE(prev_offset, offset);
589 atomic_set(&last_readahead_pages, pages);
595 * swap_cluster_readahead - swap in pages in hope we need them soon
596 * @entry: swap entry of this memory
597 * @gfp_mask: memory allocation flags
598 * @vmf: fault information
600 * Returns the struct page for entry and addr, after queueing swapin.
602 * Primitive swap readahead code. We simply read an aligned block of
603 * (1 << page_cluster) entries in the swap area. This method is chosen
604 * because it doesn't cost us any seek time. We also make sure to queue
605 * the 'original' request together with the readahead ones...
607 * This has been extended to use the NUMA policies from the mm triggering
610 * Caller must hold read mmap_lock if vmf->vma is not NULL.
612 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
613 struct vm_fault *vmf)
616 unsigned long entry_offset = swp_offset(entry);
617 unsigned long offset = entry_offset;
618 unsigned long start_offset, end_offset;
620 struct swap_info_struct *si = swp_swap_info(entry);
621 struct blk_plug plug;
622 struct swap_iocb *splug = NULL;
623 bool do_poll = true, page_allocated;
624 struct vm_area_struct *vma = vmf->vma;
625 unsigned long addr = vmf->address;
627 mask = swapin_nr_pages(offset) - 1;
632 /* Read a page_cluster sized and aligned cluster around offset. */
633 start_offset = offset & ~mask;
634 end_offset = offset | mask;
635 if (!start_offset) /* First page is swap header. */
637 if (end_offset >= si->max)
638 end_offset = si->max - 1;
640 blk_start_plug(&plug);
641 for (offset = start_offset; offset <= end_offset ; offset++) {
642 /* Ok, do the async read-ahead now */
643 page = __read_swap_cache_async(
644 swp_entry(swp_type(entry), offset),
645 gfp_mask, vma, addr, &page_allocated);
648 if (page_allocated) {
649 swap_readpage(page, false, &splug);
650 if (offset != entry_offset) {
651 SetPageReadahead(page);
652 count_vm_event(SWAP_RA);
657 blk_finish_plug(&plug);
658 swap_read_unplug(splug);
660 lru_add_drain(); /* Push any new pages onto the LRU now */
662 /* The page was likely read above, so no need for plugging here */
663 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
666 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
668 struct address_space *spaces, *space;
671 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
672 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
675 for (i = 0; i < nr; i++) {
677 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
678 atomic_set(&space->i_mmap_writable, 0);
679 space->a_ops = &swap_aops;
680 /* swap cache doesn't use writeback related tags */
681 mapping_set_no_writeback_tags(space);
683 nr_swapper_spaces[type] = nr;
684 swapper_spaces[type] = spaces;
689 void exit_swap_address_space(unsigned int type)
692 struct address_space *spaces = swapper_spaces[type];
694 for (i = 0; i < nr_swapper_spaces[type]; i++)
695 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
697 nr_swapper_spaces[type] = 0;
698 swapper_spaces[type] = NULL;
701 static void swap_ra_info(struct vm_fault *vmf,
702 struct vma_swap_readahead *ra_info)
704 struct vm_area_struct *vma = vmf->vma;
705 unsigned long ra_val;
706 unsigned long faddr, pfn, fpfn, lpfn, rpfn;
707 unsigned long start, end;
708 pte_t *pte, *orig_pte;
709 unsigned int max_win, hits, prev_win, win;
714 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
715 SWAP_RA_ORDER_CEILING);
721 faddr = vmf->address;
722 fpfn = PFN_DOWN(faddr);
723 ra_val = GET_SWAP_RA_VAL(vma);
724 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
725 prev_win = SWAP_RA_WIN(ra_val);
726 hits = SWAP_RA_HITS(ra_val);
727 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
729 atomic_long_set(&vma->swap_readahead_info,
730 SWAP_RA_VAL(faddr, win, 0));
735 /* Copy the PTEs because the page table may be unmapped */
736 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
737 if (fpfn == pfn + 1) {
740 } else if (pfn == fpfn + 1) {
741 lpfn = fpfn - win + 1;
744 unsigned int left = (win - 1) / 2;
747 rpfn = fpfn + win - left;
749 start = max3(lpfn, PFN_DOWN(vma->vm_start),
750 PFN_DOWN(faddr & PMD_MASK));
751 end = min3(rpfn, PFN_DOWN(vma->vm_end),
752 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
754 ra_info->nr_pte = end - start;
755 ra_info->offset = fpfn - start;
756 pte -= ra_info->offset;
760 tpte = ra_info->ptes;
761 for (pfn = start; pfn != end; pfn++)
768 * swap_vma_readahead - swap in pages in hope we need them soon
769 * @fentry: swap entry of this memory
770 * @gfp_mask: memory allocation flags
771 * @vmf: fault information
773 * Returns the struct page for entry and addr, after queueing swapin.
775 * Primitive swap readahead code. We simply read in a few pages whose
776 * virtual addresses are around the fault address in the same vma.
778 * Caller must hold read mmap_lock if vmf->vma is not NULL.
781 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
782 struct vm_fault *vmf)
784 struct blk_plug plug;
785 struct swap_iocb *splug = NULL;
786 struct vm_area_struct *vma = vmf->vma;
792 struct vma_swap_readahead ra_info = {
796 swap_ra_info(vmf, &ra_info);
797 if (ra_info.win == 1)
800 blk_start_plug(&plug);
801 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
804 if (!is_swap_pte(pentry))
806 entry = pte_to_swp_entry(pentry);
807 if (unlikely(non_swap_entry(entry)))
809 page = __read_swap_cache_async(entry, gfp_mask, vma,
810 vmf->address, &page_allocated);
813 if (page_allocated) {
814 swap_readpage(page, false, &splug);
815 if (i != ra_info.offset) {
816 SetPageReadahead(page);
817 count_vm_event(SWAP_RA);
822 blk_finish_plug(&plug);
823 swap_read_unplug(splug);
826 /* The page was likely read above, so no need for plugging here */
827 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
828 ra_info.win == 1, NULL);
832 * swapin_readahead - swap in pages in hope we need them soon
833 * @entry: swap entry of this memory
834 * @gfp_mask: memory allocation flags
835 * @vmf: fault information
837 * Returns the struct page for entry and addr, after queueing swapin.
839 * It's a main entry function for swap readahead. By the configuration,
840 * it will read ahead blocks by cluster-based(ie, physical disk based)
841 * or vma-based(ie, virtual address based on faulty address) readahead.
843 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
844 struct vm_fault *vmf)
846 return swap_use_vma_readahead() ?
847 swap_vma_readahead(entry, gfp_mask, vmf) :
848 swap_cluster_readahead(entry, gfp_mask, vmf);
852 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
853 struct kobj_attribute *attr, char *buf)
855 return sysfs_emit(buf, "%s\n",
856 enable_vma_readahead ? "true" : "false");
858 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
859 struct kobj_attribute *attr,
860 const char *buf, size_t count)
864 ret = kstrtobool(buf, &enable_vma_readahead);
870 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
872 static struct attribute *swap_attrs[] = {
873 &vma_ra_enabled_attr.attr,
877 static const struct attribute_group swap_attr_group = {
881 static int __init swap_init_sysfs(void)
884 struct kobject *swap_kobj;
886 swap_kobj = kobject_create_and_add("swap", mm_kobj);
888 pr_err("failed to create swap kobject\n");
891 err = sysfs_create_group(swap_kobj, &swap_attr_group);
893 pr_err("failed to register swap group\n");
899 kobject_put(swap_kobj);
902 subsys_initcall(swap_init_sysfs);