cifs: create SMB2_open_init()/SMB2_open_free() helpers.
[platform/kernel/linux-rpi.git] / mm / swap_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/swap_state.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  *
8  *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
9  */
10 #include <linux/mm.h>
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24
25 #include <asm/pgtable.h>
26
27 /*
28  * swapper_space is a fiction, retained to simplify the path through
29  * vmscan's shrink_page_list.
30  */
31 static const struct address_space_operations swap_aops = {
32         .writepage      = swap_writepage,
33         .set_page_dirty = swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35         .migratepage    = migrate_page,
36 #endif
37 };
38
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
42
43 #define SWAP_RA_WIN_SHIFT       (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK       ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX        SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK        (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
47
48 #define SWAP_RA_HITS(v)         ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v)          (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v)         ((v) & PAGE_MASK)
51
52 #define SWAP_RA_VAL(addr, win, hits)                            \
53         (((addr) & PAGE_MASK) |                                 \
54          (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) |    \
55          ((hits) & SWAP_RA_HITS_MASK))
56
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma)                                    \
59         (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
60
61 #define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)
62 #define ADD_CACHE_INFO(x, nr)   do { swap_cache_info.x += (nr); } while (0)
63
64 static struct {
65         unsigned long add_total;
66         unsigned long del_total;
67         unsigned long find_success;
68         unsigned long find_total;
69 } swap_cache_info;
70
71 unsigned long total_swapcache_pages(void)
72 {
73         unsigned int i, j, nr;
74         unsigned long ret = 0;
75         struct address_space *spaces;
76
77         rcu_read_lock();
78         for (i = 0; i < MAX_SWAPFILES; i++) {
79                 /*
80                  * The corresponding entries in nr_swapper_spaces and
81                  * swapper_spaces will be reused only after at least
82                  * one grace period.  So it is impossible for them
83                  * belongs to different usage.
84                  */
85                 nr = nr_swapper_spaces[i];
86                 spaces = rcu_dereference(swapper_spaces[i]);
87                 if (!nr || !spaces)
88                         continue;
89                 for (j = 0; j < nr; j++)
90                         ret += spaces[j].nrpages;
91         }
92         rcu_read_unlock();
93         return ret;
94 }
95
96 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
97
98 void show_swap_cache_info(void)
99 {
100         printk("%lu pages in swap cache\n", total_swapcache_pages());
101         printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
102                 swap_cache_info.add_total, swap_cache_info.del_total,
103                 swap_cache_info.find_success, swap_cache_info.find_total);
104         printk("Free swap  = %ldkB\n",
105                 get_nr_swap_pages() << (PAGE_SHIFT - 10));
106         printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
107 }
108
109 /*
110  * __add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
111  * but sets SwapCache flag and private instead of mapping and index.
112  */
113 int __add_to_swap_cache(struct page *page, swp_entry_t entry)
114 {
115         int error, i, nr = hpage_nr_pages(page);
116         struct address_space *address_space;
117         pgoff_t idx = swp_offset(entry);
118
119         VM_BUG_ON_PAGE(!PageLocked(page), page);
120         VM_BUG_ON_PAGE(PageSwapCache(page), page);
121         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
122
123         page_ref_add(page, nr);
124         SetPageSwapCache(page);
125
126         address_space = swap_address_space(entry);
127         xa_lock_irq(&address_space->i_pages);
128         for (i = 0; i < nr; i++) {
129                 set_page_private(page + i, entry.val + i);
130                 error = radix_tree_insert(&address_space->i_pages,
131                                           idx + i, page + i);
132                 if (unlikely(error))
133                         break;
134         }
135         if (likely(!error)) {
136                 address_space->nrpages += nr;
137                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
138                 ADD_CACHE_INFO(add_total, nr);
139         } else {
140                 /*
141                  * Only the context which have set SWAP_HAS_CACHE flag
142                  * would call add_to_swap_cache().
143                  * So add_to_swap_cache() doesn't returns -EEXIST.
144                  */
145                 VM_BUG_ON(error == -EEXIST);
146                 set_page_private(page + i, 0UL);
147                 while (i--) {
148                         radix_tree_delete(&address_space->i_pages, idx + i);
149                         set_page_private(page + i, 0UL);
150                 }
151                 ClearPageSwapCache(page);
152                 page_ref_sub(page, nr);
153         }
154         xa_unlock_irq(&address_space->i_pages);
155
156         return error;
157 }
158
159
160 int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
161 {
162         int error;
163
164         error = radix_tree_maybe_preload_order(gfp_mask, compound_order(page));
165         if (!error) {
166                 error = __add_to_swap_cache(page, entry);
167                 radix_tree_preload_end();
168         }
169         return error;
170 }
171
172 /*
173  * This must be called only on pages that have
174  * been verified to be in the swap cache.
175  */
176 void __delete_from_swap_cache(struct page *page)
177 {
178         struct address_space *address_space;
179         int i, nr = hpage_nr_pages(page);
180         swp_entry_t entry;
181         pgoff_t idx;
182
183         VM_BUG_ON_PAGE(!PageLocked(page), page);
184         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
185         VM_BUG_ON_PAGE(PageWriteback(page), page);
186
187         entry.val = page_private(page);
188         address_space = swap_address_space(entry);
189         idx = swp_offset(entry);
190         for (i = 0; i < nr; i++) {
191                 radix_tree_delete(&address_space->i_pages, idx + i);
192                 set_page_private(page + i, 0);
193         }
194         ClearPageSwapCache(page);
195         address_space->nrpages -= nr;
196         __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
197         ADD_CACHE_INFO(del_total, nr);
198 }
199
200 /**
201  * add_to_swap - allocate swap space for a page
202  * @page: page we want to move to swap
203  *
204  * Allocate swap space for the page and add the page to the
205  * swap cache.  Caller needs to hold the page lock. 
206  */
207 int add_to_swap(struct page *page)
208 {
209         swp_entry_t entry;
210         int err;
211
212         VM_BUG_ON_PAGE(!PageLocked(page), page);
213         VM_BUG_ON_PAGE(!PageUptodate(page), page);
214
215         entry = get_swap_page(page);
216         if (!entry.val)
217                 return 0;
218
219         /*
220          * Radix-tree node allocations from PF_MEMALLOC contexts could
221          * completely exhaust the page allocator. __GFP_NOMEMALLOC
222          * stops emergency reserves from being allocated.
223          *
224          * TODO: this could cause a theoretical memory reclaim
225          * deadlock in the swap out path.
226          */
227         /*
228          * Add it to the swap cache.
229          */
230         err = add_to_swap_cache(page, entry,
231                         __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN);
232         /* -ENOMEM radix-tree allocation failure */
233         if (err)
234                 /*
235                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
236                  * clear SWAP_HAS_CACHE flag.
237                  */
238                 goto fail;
239         /*
240          * Normally the page will be dirtied in unmap because its pte should be
241          * dirty. A special case is MADV_FREE page. The page'e pte could have
242          * dirty bit cleared but the page's SwapBacked bit is still set because
243          * clearing the dirty bit and SwapBacked bit has no lock protected. For
244          * such page, unmap will not set dirty bit for it, so page reclaim will
245          * not write the page out. This can cause data corruption when the page
246          * is swap in later. Always setting the dirty bit for the page solves
247          * the problem.
248          */
249         set_page_dirty(page);
250
251         return 1;
252
253 fail:
254         put_swap_page(page, entry);
255         return 0;
256 }
257
258 /*
259  * This must be called only on pages that have
260  * been verified to be in the swap cache and locked.
261  * It will never put the page into the free list,
262  * the caller has a reference on the page.
263  */
264 void delete_from_swap_cache(struct page *page)
265 {
266         swp_entry_t entry;
267         struct address_space *address_space;
268
269         entry.val = page_private(page);
270
271         address_space = swap_address_space(entry);
272         xa_lock_irq(&address_space->i_pages);
273         __delete_from_swap_cache(page);
274         xa_unlock_irq(&address_space->i_pages);
275
276         put_swap_page(page, entry);
277         page_ref_sub(page, hpage_nr_pages(page));
278 }
279
280 /* 
281  * If we are the only user, then try to free up the swap cache. 
282  * 
283  * Its ok to check for PageSwapCache without the page lock
284  * here because we are going to recheck again inside
285  * try_to_free_swap() _with_ the lock.
286  *                                      - Marcelo
287  */
288 static inline void free_swap_cache(struct page *page)
289 {
290         if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
291                 try_to_free_swap(page);
292                 unlock_page(page);
293         }
294 }
295
296 /* 
297  * Perform a free_page(), also freeing any swap cache associated with
298  * this page if it is the last user of the page.
299  */
300 void free_page_and_swap_cache(struct page *page)
301 {
302         free_swap_cache(page);
303         if (!is_huge_zero_page(page))
304                 put_page(page);
305 }
306
307 /*
308  * Passed an array of pages, drop them all from swapcache and then release
309  * them.  They are removed from the LRU and freed if this is their last use.
310  */
311 void free_pages_and_swap_cache(struct page **pages, int nr)
312 {
313         struct page **pagep = pages;
314         int i;
315
316         lru_add_drain();
317         for (i = 0; i < nr; i++)
318                 free_swap_cache(pagep[i]);
319         release_pages(pagep, nr);
320 }
321
322 static inline bool swap_use_vma_readahead(void)
323 {
324         return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
325 }
326
327 /*
328  * Lookup a swap entry in the swap cache. A found page will be returned
329  * unlocked and with its refcount incremented - we rely on the kernel
330  * lock getting page table operations atomic even if we drop the page
331  * lock before returning.
332  */
333 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
334                                unsigned long addr)
335 {
336         struct page *page;
337
338         page = find_get_page(swap_address_space(entry), swp_offset(entry));
339
340         INC_CACHE_INFO(find_total);
341         if (page) {
342                 bool vma_ra = swap_use_vma_readahead();
343                 bool readahead;
344
345                 INC_CACHE_INFO(find_success);
346                 /*
347                  * At the moment, we don't support PG_readahead for anon THP
348                  * so let's bail out rather than confusing the readahead stat.
349                  */
350                 if (unlikely(PageTransCompound(page)))
351                         return page;
352
353                 readahead = TestClearPageReadahead(page);
354                 if (vma && vma_ra) {
355                         unsigned long ra_val;
356                         int win, hits;
357
358                         ra_val = GET_SWAP_RA_VAL(vma);
359                         win = SWAP_RA_WIN(ra_val);
360                         hits = SWAP_RA_HITS(ra_val);
361                         if (readahead)
362                                 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
363                         atomic_long_set(&vma->swap_readahead_info,
364                                         SWAP_RA_VAL(addr, win, hits));
365                 }
366
367                 if (readahead) {
368                         count_vm_event(SWAP_RA_HIT);
369                         if (!vma || !vma_ra)
370                                 atomic_inc(&swapin_readahead_hits);
371                 }
372         }
373
374         return page;
375 }
376
377 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
378                         struct vm_area_struct *vma, unsigned long addr,
379                         bool *new_page_allocated)
380 {
381         struct page *found_page, *new_page = NULL;
382         struct address_space *swapper_space = swap_address_space(entry);
383         int err;
384         *new_page_allocated = false;
385
386         do {
387                 /*
388                  * First check the swap cache.  Since this is normally
389                  * called after lookup_swap_cache() failed, re-calling
390                  * that would confuse statistics.
391                  */
392                 found_page = find_get_page(swapper_space, swp_offset(entry));
393                 if (found_page)
394                         break;
395
396                 /*
397                  * Just skip read ahead for unused swap slot.
398                  * During swap_off when swap_slot_cache is disabled,
399                  * we have to handle the race between putting
400                  * swap entry in swap cache and marking swap slot
401                  * as SWAP_HAS_CACHE.  That's done in later part of code or
402                  * else swap_off will be aborted if we return NULL.
403                  */
404                 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
405                         break;
406
407                 /*
408                  * Get a new page to read into from swap.
409                  */
410                 if (!new_page) {
411                         new_page = alloc_page_vma(gfp_mask, vma, addr);
412                         if (!new_page)
413                                 break;          /* Out of memory */
414                 }
415
416                 /*
417                  * call radix_tree_preload() while we can wait.
418                  */
419                 err = radix_tree_maybe_preload(gfp_mask & GFP_KERNEL);
420                 if (err)
421                         break;
422
423                 /*
424                  * Swap entry may have been freed since our caller observed it.
425                  */
426                 err = swapcache_prepare(entry);
427                 if (err == -EEXIST) {
428                         radix_tree_preload_end();
429                         /*
430                          * We might race against get_swap_page() and stumble
431                          * across a SWAP_HAS_CACHE swap_map entry whose page
432                          * has not been brought into the swapcache yet.
433                          */
434                         cond_resched();
435                         continue;
436                 }
437                 if (err) {              /* swp entry is obsolete ? */
438                         radix_tree_preload_end();
439                         break;
440                 }
441
442                 /* May fail (-ENOMEM) if radix-tree node allocation failed. */
443                 __SetPageLocked(new_page);
444                 __SetPageSwapBacked(new_page);
445                 err = __add_to_swap_cache(new_page, entry);
446                 if (likely(!err)) {
447                         radix_tree_preload_end();
448                         /*
449                          * Initiate read into locked page and return.
450                          */
451                         lru_cache_add_anon(new_page);
452                         *new_page_allocated = true;
453                         return new_page;
454                 }
455                 radix_tree_preload_end();
456                 __ClearPageLocked(new_page);
457                 /*
458                  * add_to_swap_cache() doesn't return -EEXIST, so we can safely
459                  * clear SWAP_HAS_CACHE flag.
460                  */
461                 put_swap_page(new_page, entry);
462         } while (err != -ENOMEM);
463
464         if (new_page)
465                 put_page(new_page);
466         return found_page;
467 }
468
469 /*
470  * Locate a page of swap in physical memory, reserving swap cache space
471  * and reading the disk if it is not already cached.
472  * A failure return means that either the page allocation failed or that
473  * the swap entry is no longer in use.
474  */
475 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
476                 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
477 {
478         bool page_was_allocated;
479         struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
480                         vma, addr, &page_was_allocated);
481
482         if (page_was_allocated)
483                 swap_readpage(retpage, do_poll);
484
485         return retpage;
486 }
487
488 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
489                                       unsigned long offset,
490                                       int hits,
491                                       int max_pages,
492                                       int prev_win)
493 {
494         unsigned int pages, last_ra;
495
496         /*
497          * This heuristic has been found to work well on both sequential and
498          * random loads, swapping to hard disk or to SSD: please don't ask
499          * what the "+ 2" means, it just happens to work well, that's all.
500          */
501         pages = hits + 2;
502         if (pages == 2) {
503                 /*
504                  * We can have no readahead hits to judge by: but must not get
505                  * stuck here forever, so check for an adjacent offset instead
506                  * (and don't even bother to check whether swap type is same).
507                  */
508                 if (offset != prev_offset + 1 && offset != prev_offset - 1)
509                         pages = 1;
510         } else {
511                 unsigned int roundup = 4;
512                 while (roundup < pages)
513                         roundup <<= 1;
514                 pages = roundup;
515         }
516
517         if (pages > max_pages)
518                 pages = max_pages;
519
520         /* Don't shrink readahead too fast */
521         last_ra = prev_win / 2;
522         if (pages < last_ra)
523                 pages = last_ra;
524
525         return pages;
526 }
527
528 static unsigned long swapin_nr_pages(unsigned long offset)
529 {
530         static unsigned long prev_offset;
531         unsigned int hits, pages, max_pages;
532         static atomic_t last_readahead_pages;
533
534         max_pages = 1 << READ_ONCE(page_cluster);
535         if (max_pages <= 1)
536                 return 1;
537
538         hits = atomic_xchg(&swapin_readahead_hits, 0);
539         pages = __swapin_nr_pages(prev_offset, offset, hits, max_pages,
540                                   atomic_read(&last_readahead_pages));
541         if (!hits)
542                 prev_offset = offset;
543         atomic_set(&last_readahead_pages, pages);
544
545         return pages;
546 }
547
548 /**
549  * swap_cluster_readahead - swap in pages in hope we need them soon
550  * @entry: swap entry of this memory
551  * @gfp_mask: memory allocation flags
552  * @vmf: fault information
553  *
554  * Returns the struct page for entry and addr, after queueing swapin.
555  *
556  * Primitive swap readahead code. We simply read an aligned block of
557  * (1 << page_cluster) entries in the swap area. This method is chosen
558  * because it doesn't cost us any seek time.  We also make sure to queue
559  * the 'original' request together with the readahead ones...
560  *
561  * This has been extended to use the NUMA policies from the mm triggering
562  * the readahead.
563  *
564  * Caller must hold down_read on the vma->vm_mm if vmf->vma is not NULL.
565  */
566 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
567                                 struct vm_fault *vmf)
568 {
569         struct page *page;
570         unsigned long entry_offset = swp_offset(entry);
571         unsigned long offset = entry_offset;
572         unsigned long start_offset, end_offset;
573         unsigned long mask;
574         struct swap_info_struct *si = swp_swap_info(entry);
575         struct blk_plug plug;
576         bool do_poll = true, page_allocated;
577         struct vm_area_struct *vma = vmf->vma;
578         unsigned long addr = vmf->address;
579
580         mask = swapin_nr_pages(offset) - 1;
581         if (!mask)
582                 goto skip;
583
584         do_poll = false;
585         /* Read a page_cluster sized and aligned cluster around offset. */
586         start_offset = offset & ~mask;
587         end_offset = offset | mask;
588         if (!start_offset)      /* First page is swap header. */
589                 start_offset++;
590         if (end_offset >= si->max)
591                 end_offset = si->max - 1;
592
593         blk_start_plug(&plug);
594         for (offset = start_offset; offset <= end_offset ; offset++) {
595                 /* Ok, do the async read-ahead now */
596                 page = __read_swap_cache_async(
597                         swp_entry(swp_type(entry), offset),
598                         gfp_mask, vma, addr, &page_allocated);
599                 if (!page)
600                         continue;
601                 if (page_allocated) {
602                         swap_readpage(page, false);
603                         if (offset != entry_offset) {
604                                 SetPageReadahead(page);
605                                 count_vm_event(SWAP_RA);
606                         }
607                 }
608                 put_page(page);
609         }
610         blk_finish_plug(&plug);
611
612         lru_add_drain();        /* Push any new pages onto the LRU now */
613 skip:
614         return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
615 }
616
617 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
618 {
619         struct address_space *spaces, *space;
620         unsigned int i, nr;
621
622         nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
623         spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
624         if (!spaces)
625                 return -ENOMEM;
626         for (i = 0; i < nr; i++) {
627                 space = spaces + i;
628                 INIT_RADIX_TREE(&space->i_pages, GFP_ATOMIC|__GFP_NOWARN);
629                 atomic_set(&space->i_mmap_writable, 0);
630                 space->a_ops = &swap_aops;
631                 /* swap cache doesn't use writeback related tags */
632                 mapping_set_no_writeback_tags(space);
633         }
634         nr_swapper_spaces[type] = nr;
635         rcu_assign_pointer(swapper_spaces[type], spaces);
636
637         return 0;
638 }
639
640 void exit_swap_address_space(unsigned int type)
641 {
642         struct address_space *spaces;
643
644         spaces = swapper_spaces[type];
645         nr_swapper_spaces[type] = 0;
646         rcu_assign_pointer(swapper_spaces[type], NULL);
647         synchronize_rcu();
648         kvfree(spaces);
649 }
650
651 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
652                                      unsigned long faddr,
653                                      unsigned long lpfn,
654                                      unsigned long rpfn,
655                                      unsigned long *start,
656                                      unsigned long *end)
657 {
658         *start = max3(lpfn, PFN_DOWN(vma->vm_start),
659                       PFN_DOWN(faddr & PMD_MASK));
660         *end = min3(rpfn, PFN_DOWN(vma->vm_end),
661                     PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
662 }
663
664 static void swap_ra_info(struct vm_fault *vmf,
665                         struct vma_swap_readahead *ra_info)
666 {
667         struct vm_area_struct *vma = vmf->vma;
668         unsigned long ra_val;
669         swp_entry_t entry;
670         unsigned long faddr, pfn, fpfn;
671         unsigned long start, end;
672         pte_t *pte, *orig_pte;
673         unsigned int max_win, hits, prev_win, win, left;
674 #ifndef CONFIG_64BIT
675         pte_t *tpte;
676 #endif
677
678         max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
679                              SWAP_RA_ORDER_CEILING);
680         if (max_win == 1) {
681                 ra_info->win = 1;
682                 return;
683         }
684
685         faddr = vmf->address;
686         orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
687         entry = pte_to_swp_entry(*pte);
688         if ((unlikely(non_swap_entry(entry)))) {
689                 pte_unmap(orig_pte);
690                 return;
691         }
692
693         fpfn = PFN_DOWN(faddr);
694         ra_val = GET_SWAP_RA_VAL(vma);
695         pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
696         prev_win = SWAP_RA_WIN(ra_val);
697         hits = SWAP_RA_HITS(ra_val);
698         ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
699                                                max_win, prev_win);
700         atomic_long_set(&vma->swap_readahead_info,
701                         SWAP_RA_VAL(faddr, win, 0));
702
703         if (win == 1) {
704                 pte_unmap(orig_pte);
705                 return;
706         }
707
708         /* Copy the PTEs because the page table may be unmapped */
709         if (fpfn == pfn + 1)
710                 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
711         else if (pfn == fpfn + 1)
712                 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
713                                   &start, &end);
714         else {
715                 left = (win - 1) / 2;
716                 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
717                                   &start, &end);
718         }
719         ra_info->nr_pte = end - start;
720         ra_info->offset = fpfn - start;
721         pte -= ra_info->offset;
722 #ifdef CONFIG_64BIT
723         ra_info->ptes = pte;
724 #else
725         tpte = ra_info->ptes;
726         for (pfn = start; pfn != end; pfn++)
727                 *tpte++ = *pte++;
728 #endif
729         pte_unmap(orig_pte);
730 }
731
732 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
733                                        struct vm_fault *vmf)
734 {
735         struct blk_plug plug;
736         struct vm_area_struct *vma = vmf->vma;
737         struct page *page;
738         pte_t *pte, pentry;
739         swp_entry_t entry;
740         unsigned int i;
741         bool page_allocated;
742         struct vma_swap_readahead ra_info = {0,};
743
744         swap_ra_info(vmf, &ra_info);
745         if (ra_info.win == 1)
746                 goto skip;
747
748         blk_start_plug(&plug);
749         for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
750              i++, pte++) {
751                 pentry = *pte;
752                 if (pte_none(pentry))
753                         continue;
754                 if (pte_present(pentry))
755                         continue;
756                 entry = pte_to_swp_entry(pentry);
757                 if (unlikely(non_swap_entry(entry)))
758                         continue;
759                 page = __read_swap_cache_async(entry, gfp_mask, vma,
760                                                vmf->address, &page_allocated);
761                 if (!page)
762                         continue;
763                 if (page_allocated) {
764                         swap_readpage(page, false);
765                         if (i != ra_info.offset) {
766                                 SetPageReadahead(page);
767                                 count_vm_event(SWAP_RA);
768                         }
769                 }
770                 put_page(page);
771         }
772         blk_finish_plug(&plug);
773         lru_add_drain();
774 skip:
775         return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
776                                      ra_info.win == 1);
777 }
778
779 /**
780  * swapin_readahead - swap in pages in hope we need them soon
781  * @entry: swap entry of this memory
782  * @gfp_mask: memory allocation flags
783  * @vmf: fault information
784  *
785  * Returns the struct page for entry and addr, after queueing swapin.
786  *
787  * It's a main entry function for swap readahead. By the configuration,
788  * it will read ahead blocks by cluster-based(ie, physical disk based)
789  * or vma-based(ie, virtual address based on faulty address) readahead.
790  */
791 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
792                                 struct vm_fault *vmf)
793 {
794         return swap_use_vma_readahead() ?
795                         swap_vma_readahead(entry, gfp_mask, vmf) :
796                         swap_cluster_readahead(entry, gfp_mask, vmf);
797 }
798
799 #ifdef CONFIG_SYSFS
800 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
801                                      struct kobj_attribute *attr, char *buf)
802 {
803         return sprintf(buf, "%s\n", enable_vma_readahead ? "true" : "false");
804 }
805 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
806                                       struct kobj_attribute *attr,
807                                       const char *buf, size_t count)
808 {
809         if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
810                 enable_vma_readahead = true;
811         else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
812                 enable_vma_readahead = false;
813         else
814                 return -EINVAL;
815
816         return count;
817 }
818 static struct kobj_attribute vma_ra_enabled_attr =
819         __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
820                vma_ra_enabled_store);
821
822 static struct attribute *swap_attrs[] = {
823         &vma_ra_enabled_attr.attr,
824         NULL,
825 };
826
827 static struct attribute_group swap_attr_group = {
828         .attrs = swap_attrs,
829 };
830
831 static int __init swap_init_sysfs(void)
832 {
833         int err;
834         struct kobject *swap_kobj;
835
836         swap_kobj = kobject_create_and_add("swap", mm_kobj);
837         if (!swap_kobj) {
838                 pr_err("failed to create swap kobject\n");
839                 return -ENOMEM;
840         }
841         err = sysfs_create_group(swap_kobj, &swap_attr_group);
842         if (err) {
843                 pr_err("failed to register swap group\n");
844                 goto delete_obj;
845         }
846         return 0;
847
848 delete_obj:
849         kobject_put(swap_kobj);
850         return err;
851 }
852 subsys_initcall(swap_init_sysfs);
853 #endif