1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
32 static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .dirty_folio = noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 .migrate_folio = migrate_folio,
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
53 #define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
64 void show_swap_cache_info(void)
66 printk("%lu pages in swap cache\n", total_swapcache_pages());
67 printk("Free swap = %ldkB\n",
68 get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
74 struct address_space *address_space = swap_address_space(entry);
75 pgoff_t idx = swp_offset(entry);
78 page = xa_load(&address_space->i_pages, idx);
79 if (xa_is_value(page))
85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86 * but sets SwapCache flag and private instead of mapping and index.
88 int add_to_swap_cache(struct page *page, swp_entry_t entry,
89 gfp_t gfp, void **shadowp)
91 struct address_space *address_space = swap_address_space(entry);
92 pgoff_t idx = swp_offset(entry);
93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
94 unsigned long i, nr = thp_nr_pages(page);
97 VM_BUG_ON_PAGE(!PageLocked(page), page);
98 VM_BUG_ON_PAGE(PageSwapCache(page), page);
99 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
101 page_ref_add(page, nr);
102 SetPageSwapCache(page);
106 xas_create_range(&xas);
109 for (i = 0; i < nr; i++) {
110 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
111 old = xas_load(&xas);
112 if (xa_is_value(old)) {
116 set_page_private(page + i, entry.val + i);
117 xas_store(&xas, page);
120 address_space->nrpages += nr;
121 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
122 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
124 xas_unlock_irq(&xas);
125 } while (xas_nomem(&xas, gfp));
127 if (!xas_error(&xas))
130 ClearPageSwapCache(page);
131 page_ref_sub(page, nr);
132 return xas_error(&xas);
136 * This must be called only on folios that have
137 * been verified to be in the swap cache.
139 void __delete_from_swap_cache(struct folio *folio,
140 swp_entry_t entry, void *shadow)
142 struct address_space *address_space = swap_address_space(entry);
144 long nr = folio_nr_pages(folio);
145 pgoff_t idx = swp_offset(entry);
146 XA_STATE(xas, &address_space->i_pages, idx);
148 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
150 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
152 for (i = 0; i < nr; i++) {
153 void *entry = xas_store(&xas, shadow);
154 VM_BUG_ON_FOLIO(entry != folio, folio);
155 set_page_private(folio_page(folio, i), 0);
158 folio_clear_swapcache(folio);
159 address_space->nrpages -= nr;
160 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
161 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
165 * add_to_swap - allocate swap space for a folio
166 * @folio: folio we want to move to swap
168 * Allocate swap space for the folio and add the folio to the
171 * Context: Caller needs to hold the folio lock.
172 * Return: Whether the folio was added to the swap cache.
174 bool add_to_swap(struct folio *folio)
179 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
180 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
182 entry = folio_alloc_swap(folio);
187 * XArray node allocations from PF_MEMALLOC contexts could
188 * completely exhaust the page allocator. __GFP_NOMEMALLOC
189 * stops emergency reserves from being allocated.
191 * TODO: this could cause a theoretical memory reclaim
192 * deadlock in the swap out path.
195 * Add it to the swap cache.
197 err = add_to_swap_cache(&folio->page, entry,
198 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
201 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
202 * clear SWAP_HAS_CACHE flag.
206 * Normally the folio will be dirtied in unmap because its
207 * pte should be dirty. A special case is MADV_FREE page. The
208 * page's pte could have dirty bit cleared but the folio's
209 * SwapBacked flag is still set because clearing the dirty bit
210 * and SwapBacked flag has no lock protected. For such folio,
211 * unmap will not set dirty bit for it, so folio reclaim will
212 * not write the folio out. This can cause data corruption when
213 * the folio is swapped in later. Always setting the dirty flag
214 * for the folio solves the problem.
216 folio_mark_dirty(folio);
221 put_swap_page(&folio->page, entry);
226 * This must be called only on folios that have
227 * been verified to be in the swap cache and locked.
228 * It will never put the folio into the free list,
229 * the caller has a reference on the folio.
231 void delete_from_swap_cache(struct folio *folio)
233 swp_entry_t entry = folio_swap_entry(folio);
234 struct address_space *address_space = swap_address_space(entry);
236 xa_lock_irq(&address_space->i_pages);
237 __delete_from_swap_cache(folio, entry, NULL);
238 xa_unlock_irq(&address_space->i_pages);
240 put_swap_page(&folio->page, entry);
241 folio_ref_sub(folio, folio_nr_pages(folio));
244 void clear_shadow_from_swap_cache(int type, unsigned long begin,
247 unsigned long curr = begin;
251 swp_entry_t entry = swp_entry(type, curr);
252 struct address_space *address_space = swap_address_space(entry);
253 XA_STATE(xas, &address_space->i_pages, curr);
255 xa_lock_irq(&address_space->i_pages);
256 xas_for_each(&xas, old, end) {
257 if (!xa_is_value(old))
259 xas_store(&xas, NULL);
261 xa_unlock_irq(&address_space->i_pages);
263 /* search the next swapcache until we meet end */
264 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
266 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
273 * If we are the only user, then try to free up the swap cache.
275 * Its ok to check for PageSwapCache without the page lock
276 * here because we are going to recheck again inside
277 * try_to_free_swap() _with_ the lock.
280 void free_swap_cache(struct page *page)
282 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
283 try_to_free_swap(page);
289 * Perform a free_page(), also freeing any swap cache associated with
290 * this page if it is the last user of the page.
292 void free_page_and_swap_cache(struct page *page)
294 free_swap_cache(page);
295 if (!is_huge_zero_page(page))
300 * Passed an array of pages, drop them all from swapcache and then release
301 * them. They are removed from the LRU and freed if this is their last use.
303 void free_pages_and_swap_cache(struct page **pages, int nr)
305 struct page **pagep = pages;
309 for (i = 0; i < nr; i++)
310 free_swap_cache(pagep[i]);
311 release_pages(pagep, nr);
314 static inline bool swap_use_vma_readahead(void)
316 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
320 * Lookup a swap entry in the swap cache. A found page will be returned
321 * unlocked and with its refcount incremented - we rely on the kernel
322 * lock getting page table operations atomic even if we drop the page
323 * lock before returning.
325 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
329 struct swap_info_struct *si;
331 si = get_swap_device(entry);
334 page = find_get_page(swap_address_space(entry), swp_offset(entry));
338 bool vma_ra = swap_use_vma_readahead();
342 * At the moment, we don't support PG_readahead for anon THP
343 * so let's bail out rather than confusing the readahead stat.
345 if (unlikely(PageTransCompound(page)))
348 readahead = TestClearPageReadahead(page);
350 unsigned long ra_val;
353 ra_val = GET_SWAP_RA_VAL(vma);
354 win = SWAP_RA_WIN(ra_val);
355 hits = SWAP_RA_HITS(ra_val);
357 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
358 atomic_long_set(&vma->swap_readahead_info,
359 SWAP_RA_VAL(addr, win, hits));
363 count_vm_event(SWAP_RA_HIT);
365 atomic_inc(&swapin_readahead_hits);
373 * find_get_incore_page - Find and get a page from the page or swap caches.
374 * @mapping: The address_space to search.
375 * @index: The page cache index.
377 * This differs from find_get_page() in that it will also look for the
378 * page in the swap cache.
380 * Return: The found page or %NULL.
382 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
385 struct swap_info_struct *si;
386 struct page *page = pagecache_get_page(mapping, index,
387 FGP_ENTRY | FGP_HEAD, 0);
391 if (!xa_is_value(page))
392 return find_subpage(page, index);
393 if (!shmem_mapping(mapping))
396 swp = radix_to_swp_entry(page);
397 /* There might be swapin error entries in shmem mapping. */
398 if (non_swap_entry(swp))
400 /* Prevent swapoff from happening to us */
401 si = get_swap_device(swp);
404 page = find_get_page(swap_address_space(swp), swp_offset(swp));
409 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
410 struct vm_area_struct *vma, unsigned long addr,
411 bool *new_page_allocated)
413 struct swap_info_struct *si;
417 *new_page_allocated = false;
422 * First check the swap cache. Since this is normally
423 * called after lookup_swap_cache() failed, re-calling
424 * that would confuse statistics.
426 si = get_swap_device(entry);
429 page = find_get_page(swap_address_space(entry),
436 * Just skip read ahead for unused swap slot.
437 * During swap_off when swap_slot_cache is disabled,
438 * we have to handle the race between putting
439 * swap entry in swap cache and marking swap slot
440 * as SWAP_HAS_CACHE. That's done in later part of code or
441 * else swap_off will be aborted if we return NULL.
443 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
447 * Get a new page to read into from swap. Allocate it now,
448 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
449 * cause any racers to loop around until we add it to cache.
451 page = alloc_page_vma(gfp_mask, vma, addr);
456 * Swap entry may have been freed since our caller observed it.
458 err = swapcache_prepare(entry);
467 * We might race against __delete_from_swap_cache(), and
468 * stumble across a swap_map entry whose SWAP_HAS_CACHE
469 * has not yet been cleared. Or race against another
470 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
471 * in swap_map, but not yet added its page to swap cache.
473 schedule_timeout_uninterruptible(1);
477 * The swap entry is ours to swap in. Prepare the new page.
480 __SetPageLocked(page);
481 __SetPageSwapBacked(page);
483 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
486 /* May fail (-ENOMEM) if XArray node allocation failed. */
487 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
490 mem_cgroup_swapin_uncharge_swap(entry);
493 workingset_refault(page_folio(page), shadow);
495 /* Caller will initiate read into locked page */
497 *new_page_allocated = true;
501 put_swap_page(page, entry);
508 * Locate a page of swap in physical memory, reserving swap cache space
509 * and reading the disk if it is not already cached.
510 * A failure return means that either the page allocation failed or that
511 * the swap entry is no longer in use.
513 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
514 struct vm_area_struct *vma,
515 unsigned long addr, bool do_poll,
516 struct swap_iocb **plug)
518 bool page_was_allocated;
519 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
520 vma, addr, &page_was_allocated);
522 if (page_was_allocated)
523 swap_readpage(retpage, do_poll, plug);
528 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
529 unsigned long offset,
534 unsigned int pages, last_ra;
537 * This heuristic has been found to work well on both sequential and
538 * random loads, swapping to hard disk or to SSD: please don't ask
539 * what the "+ 2" means, it just happens to work well, that's all.
544 * We can have no readahead hits to judge by: but must not get
545 * stuck here forever, so check for an adjacent offset instead
546 * (and don't even bother to check whether swap type is same).
548 if (offset != prev_offset + 1 && offset != prev_offset - 1)
551 unsigned int roundup = 4;
552 while (roundup < pages)
557 if (pages > max_pages)
560 /* Don't shrink readahead too fast */
561 last_ra = prev_win / 2;
568 static unsigned long swapin_nr_pages(unsigned long offset)
570 static unsigned long prev_offset;
571 unsigned int hits, pages, max_pages;
572 static atomic_t last_readahead_pages;
574 max_pages = 1 << READ_ONCE(page_cluster);
578 hits = atomic_xchg(&swapin_readahead_hits, 0);
579 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
581 atomic_read(&last_readahead_pages));
583 WRITE_ONCE(prev_offset, offset);
584 atomic_set(&last_readahead_pages, pages);
590 * swap_cluster_readahead - swap in pages in hope we need them soon
591 * @entry: swap entry of this memory
592 * @gfp_mask: memory allocation flags
593 * @vmf: fault information
595 * Returns the struct page for entry and addr, after queueing swapin.
597 * Primitive swap readahead code. We simply read an aligned block of
598 * (1 << page_cluster) entries in the swap area. This method is chosen
599 * because it doesn't cost us any seek time. We also make sure to queue
600 * the 'original' request together with the readahead ones...
602 * This has been extended to use the NUMA policies from the mm triggering
605 * Caller must hold read mmap_lock if vmf->vma is not NULL.
607 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
608 struct vm_fault *vmf)
611 unsigned long entry_offset = swp_offset(entry);
612 unsigned long offset = entry_offset;
613 unsigned long start_offset, end_offset;
615 struct swap_info_struct *si = swp_swap_info(entry);
616 struct blk_plug plug;
617 struct swap_iocb *splug = NULL;
618 bool do_poll = true, page_allocated;
619 struct vm_area_struct *vma = vmf->vma;
620 unsigned long addr = vmf->address;
622 mask = swapin_nr_pages(offset) - 1;
627 /* Read a page_cluster sized and aligned cluster around offset. */
628 start_offset = offset & ~mask;
629 end_offset = offset | mask;
630 if (!start_offset) /* First page is swap header. */
632 if (end_offset >= si->max)
633 end_offset = si->max - 1;
635 blk_start_plug(&plug);
636 for (offset = start_offset; offset <= end_offset ; offset++) {
637 /* Ok, do the async read-ahead now */
638 page = __read_swap_cache_async(
639 swp_entry(swp_type(entry), offset),
640 gfp_mask, vma, addr, &page_allocated);
643 if (page_allocated) {
644 swap_readpage(page, false, &splug);
645 if (offset != entry_offset) {
646 SetPageReadahead(page);
647 count_vm_event(SWAP_RA);
652 blk_finish_plug(&plug);
653 swap_read_unplug(splug);
655 lru_add_drain(); /* Push any new pages onto the LRU now */
657 /* The page was likely read above, so no need for plugging here */
658 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
661 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
663 struct address_space *spaces, *space;
666 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
667 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
670 for (i = 0; i < nr; i++) {
672 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
673 atomic_set(&space->i_mmap_writable, 0);
674 space->a_ops = &swap_aops;
675 /* swap cache doesn't use writeback related tags */
676 mapping_set_no_writeback_tags(space);
678 nr_swapper_spaces[type] = nr;
679 swapper_spaces[type] = spaces;
684 void exit_swap_address_space(unsigned int type)
687 struct address_space *spaces = swapper_spaces[type];
689 for (i = 0; i < nr_swapper_spaces[type]; i++)
690 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
692 nr_swapper_spaces[type] = 0;
693 swapper_spaces[type] = NULL;
696 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
700 unsigned long *start,
703 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
704 PFN_DOWN(faddr & PMD_MASK));
705 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
706 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
709 static void swap_ra_info(struct vm_fault *vmf,
710 struct vma_swap_readahead *ra_info)
712 struct vm_area_struct *vma = vmf->vma;
713 unsigned long ra_val;
714 unsigned long faddr, pfn, fpfn;
715 unsigned long start, end;
716 pte_t *pte, *orig_pte;
717 unsigned int max_win, hits, prev_win, win, left;
722 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
723 SWAP_RA_ORDER_CEILING);
729 faddr = vmf->address;
730 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
732 fpfn = PFN_DOWN(faddr);
733 ra_val = GET_SWAP_RA_VAL(vma);
734 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
735 prev_win = SWAP_RA_WIN(ra_val);
736 hits = SWAP_RA_HITS(ra_val);
737 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
739 atomic_long_set(&vma->swap_readahead_info,
740 SWAP_RA_VAL(faddr, win, 0));
747 /* Copy the PTEs because the page table may be unmapped */
749 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
750 else if (pfn == fpfn + 1)
751 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
754 left = (win - 1) / 2;
755 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
758 ra_info->nr_pte = end - start;
759 ra_info->offset = fpfn - start;
760 pte -= ra_info->offset;
764 tpte = ra_info->ptes;
765 for (pfn = start; pfn != end; pfn++)
772 * swap_vma_readahead - swap in pages in hope we need them soon
773 * @fentry: swap entry of this memory
774 * @gfp_mask: memory allocation flags
775 * @vmf: fault information
777 * Returns the struct page for entry and addr, after queueing swapin.
779 * Primitive swap readahead code. We simply read in a few pages whose
780 * virtual addresses are around the fault address in the same vma.
782 * Caller must hold read mmap_lock if vmf->vma is not NULL.
785 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
786 struct vm_fault *vmf)
788 struct blk_plug plug;
789 struct swap_iocb *splug = NULL;
790 struct vm_area_struct *vma = vmf->vma;
796 struct vma_swap_readahead ra_info = {
800 swap_ra_info(vmf, &ra_info);
801 if (ra_info.win == 1)
804 blk_start_plug(&plug);
805 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
808 if (!is_swap_pte(pentry))
810 entry = pte_to_swp_entry(pentry);
811 if (unlikely(non_swap_entry(entry)))
813 page = __read_swap_cache_async(entry, gfp_mask, vma,
814 vmf->address, &page_allocated);
817 if (page_allocated) {
818 swap_readpage(page, false, &splug);
819 if (i != ra_info.offset) {
820 SetPageReadahead(page);
821 count_vm_event(SWAP_RA);
826 blk_finish_plug(&plug);
827 swap_read_unplug(splug);
830 /* The page was likely read above, so no need for plugging here */
831 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
832 ra_info.win == 1, NULL);
836 * swapin_readahead - swap in pages in hope we need them soon
837 * @entry: swap entry of this memory
838 * @gfp_mask: memory allocation flags
839 * @vmf: fault information
841 * Returns the struct page for entry and addr, after queueing swapin.
843 * It's a main entry function for swap readahead. By the configuration,
844 * it will read ahead blocks by cluster-based(ie, physical disk based)
845 * or vma-based(ie, virtual address based on faulty address) readahead.
847 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
848 struct vm_fault *vmf)
850 return swap_use_vma_readahead() ?
851 swap_vma_readahead(entry, gfp_mask, vmf) :
852 swap_cluster_readahead(entry, gfp_mask, vmf);
856 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
857 struct kobj_attribute *attr, char *buf)
859 return sysfs_emit(buf, "%s\n",
860 enable_vma_readahead ? "true" : "false");
862 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
863 struct kobj_attribute *attr,
864 const char *buf, size_t count)
868 ret = kstrtobool(buf, &enable_vma_readahead);
874 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
876 static struct attribute *swap_attrs[] = {
877 &vma_ra_enabled_attr.attr,
881 static const struct attribute_group swap_attr_group = {
885 static int __init swap_init_sysfs(void)
888 struct kobject *swap_kobj;
890 swap_kobj = kobject_create_and_add("swap", mm_kobj);
892 pr_err("failed to create swap kobject\n");
895 err = sysfs_create_group(swap_kobj, &swap_attr_group);
897 pr_err("failed to register swap group\n");
903 kobject_put(swap_kobj);
906 subsys_initcall(swap_init_sysfs);