1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
28 * swapper_space is a fiction, retained to simplify the path through
29 * vmscan's shrink_page_list.
31 static const struct address_space_operations swap_aops = {
32 .writepage = swap_writepage,
33 .set_page_dirty = swap_set_page_dirty,
34 #ifdef CONFIG_MIGRATION
35 .migratepage = migrate_page,
39 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
40 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static bool enable_vma_readahead __read_mostly = true;
43 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
44 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
45 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
46 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
48 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
49 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
50 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
52 #define SWAP_RA_VAL(addr, win, hits) \
53 (((addr) & PAGE_MASK) | \
54 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
55 ((hits) & SWAP_RA_HITS_MASK))
57 /* Initial readahead hits is 4 to start up with a small window */
58 #define GET_SWAP_RA_VAL(vma) \
59 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
61 #define INC_CACHE_INFO(x) data_race(swap_cache_info.x++)
62 #define ADD_CACHE_INFO(x, nr) data_race(swap_cache_info.x += (nr))
65 unsigned long add_total;
66 unsigned long del_total;
67 unsigned long find_success;
68 unsigned long find_total;
71 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
73 void show_swap_cache_info(void)
75 printk("%lu pages in swap cache\n", total_swapcache_pages());
76 printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
77 swap_cache_info.add_total, swap_cache_info.del_total,
78 swap_cache_info.find_success, swap_cache_info.find_total);
79 printk("Free swap = %ldkB\n",
80 get_nr_swap_pages() << (PAGE_SHIFT - 10));
81 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
84 void *get_shadow_from_swap_cache(swp_entry_t entry)
86 struct address_space *address_space = swap_address_space(entry);
87 pgoff_t idx = swp_offset(entry);
90 page = xa_load(&address_space->i_pages, idx);
91 if (xa_is_value(page))
97 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
98 * but sets SwapCache flag and private instead of mapping and index.
100 int add_to_swap_cache(struct page *page, swp_entry_t entry,
101 gfp_t gfp, void **shadowp)
103 struct address_space *address_space = swap_address_space(entry);
104 pgoff_t idx = swp_offset(entry);
105 XA_STATE_ORDER(xas, &address_space->i_pages, idx, compound_order(page));
106 unsigned long i, nr = thp_nr_pages(page);
109 VM_BUG_ON_PAGE(!PageLocked(page), page);
110 VM_BUG_ON_PAGE(PageSwapCache(page), page);
111 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
113 page_ref_add(page, nr);
114 SetPageSwapCache(page);
118 xas_create_range(&xas);
121 for (i = 0; i < nr; i++) {
122 VM_BUG_ON_PAGE(xas.xa_index != idx + i, page);
123 old = xas_load(&xas);
124 if (xa_is_value(old)) {
128 set_page_private(page + i, entry.val + i);
129 xas_store(&xas, page);
132 address_space->nrpages += nr;
133 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
134 __mod_lruvec_page_state(page, NR_SWAPCACHE, nr);
135 ADD_CACHE_INFO(add_total, nr);
137 xas_unlock_irq(&xas);
138 } while (xas_nomem(&xas, gfp));
140 if (!xas_error(&xas))
143 ClearPageSwapCache(page);
144 page_ref_sub(page, nr);
145 return xas_error(&xas);
149 * This must be called only on pages that have
150 * been verified to be in the swap cache.
152 void __delete_from_swap_cache(struct page *page,
153 swp_entry_t entry, void *shadow)
155 struct address_space *address_space = swap_address_space(entry);
156 int i, nr = thp_nr_pages(page);
157 pgoff_t idx = swp_offset(entry);
158 XA_STATE(xas, &address_space->i_pages, idx);
160 VM_BUG_ON_PAGE(!PageLocked(page), page);
161 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
162 VM_BUG_ON_PAGE(PageWriteback(page), page);
164 for (i = 0; i < nr; i++) {
165 void *entry = xas_store(&xas, shadow);
166 VM_BUG_ON_PAGE(entry != page, entry);
167 set_page_private(page + i, 0);
170 ClearPageSwapCache(page);
171 address_space->nrpages -= nr;
172 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
173 __mod_lruvec_page_state(page, NR_SWAPCACHE, -nr);
174 ADD_CACHE_INFO(del_total, nr);
178 * add_to_swap - allocate swap space for a page
179 * @page: page we want to move to swap
181 * Allocate swap space for the page and add the page to the
182 * swap cache. Caller needs to hold the page lock.
184 int add_to_swap(struct page *page)
189 VM_BUG_ON_PAGE(!PageLocked(page), page);
190 VM_BUG_ON_PAGE(!PageUptodate(page), page);
192 entry = get_swap_page(page);
197 * XArray node allocations from PF_MEMALLOC contexts could
198 * completely exhaust the page allocator. __GFP_NOMEMALLOC
199 * stops emergency reserves from being allocated.
201 * TODO: this could cause a theoretical memory reclaim
202 * deadlock in the swap out path.
205 * Add it to the swap cache.
207 err = add_to_swap_cache(page, entry,
208 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
211 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
212 * clear SWAP_HAS_CACHE flag.
216 * Normally the page will be dirtied in unmap because its pte should be
217 * dirty. A special case is MADV_FREE page. The page's pte could have
218 * dirty bit cleared but the page's SwapBacked bit is still set because
219 * clearing the dirty bit and SwapBacked bit has no lock protected. For
220 * such page, unmap will not set dirty bit for it, so page reclaim will
221 * not write the page out. This can cause data corruption when the page
222 * is swap in later. Always setting the dirty bit for the page solves
225 set_page_dirty(page);
230 put_swap_page(page, entry);
235 * This must be called only on pages that have
236 * been verified to be in the swap cache and locked.
237 * It will never put the page into the free list,
238 * the caller has a reference on the page.
240 void delete_from_swap_cache(struct page *page)
242 swp_entry_t entry = { .val = page_private(page) };
243 struct address_space *address_space = swap_address_space(entry);
245 xa_lock_irq(&address_space->i_pages);
246 __delete_from_swap_cache(page, entry, NULL);
247 xa_unlock_irq(&address_space->i_pages);
249 put_swap_page(page, entry);
250 page_ref_sub(page, thp_nr_pages(page));
253 void clear_shadow_from_swap_cache(int type, unsigned long begin,
256 unsigned long curr = begin;
260 swp_entry_t entry = swp_entry(type, curr);
261 struct address_space *address_space = swap_address_space(entry);
262 XA_STATE(xas, &address_space->i_pages, curr);
264 xa_lock_irq(&address_space->i_pages);
265 xas_for_each(&xas, old, end) {
266 if (!xa_is_value(old))
268 xas_store(&xas, NULL);
270 xa_unlock_irq(&address_space->i_pages);
272 /* search the next swapcache until we meet end */
273 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
275 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
282 * If we are the only user, then try to free up the swap cache.
284 * Its ok to check for PageSwapCache without the page lock
285 * here because we are going to recheck again inside
286 * try_to_free_swap() _with_ the lock.
289 void free_swap_cache(struct page *page)
291 if (PageSwapCache(page) && !page_mapped(page) && trylock_page(page)) {
292 try_to_free_swap(page);
298 * Perform a free_page(), also freeing any swap cache associated with
299 * this page if it is the last user of the page.
301 void free_page_and_swap_cache(struct page *page)
303 free_swap_cache(page);
304 if (!is_huge_zero_page(page))
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them. They are removed from the LRU and freed if this is their last use.
312 void free_pages_and_swap_cache(struct page **pages, int nr)
314 struct page **pagep = pages;
318 for (i = 0; i < nr; i++)
319 free_swap_cache(pagep[i]);
320 release_pages(pagep, nr);
323 static inline bool swap_use_vma_readahead(void)
325 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
329 * Lookup a swap entry in the swap cache. A found page will be returned
330 * unlocked and with its refcount incremented - we rely on the kernel
331 * lock getting page table operations atomic even if we drop the page
332 * lock before returning.
334 struct page *lookup_swap_cache(swp_entry_t entry, struct vm_area_struct *vma,
338 struct swap_info_struct *si;
340 si = get_swap_device(entry);
343 page = find_get_page(swap_address_space(entry), swp_offset(entry));
346 INC_CACHE_INFO(find_total);
348 bool vma_ra = swap_use_vma_readahead();
351 INC_CACHE_INFO(find_success);
353 * At the moment, we don't support PG_readahead for anon THP
354 * so let's bail out rather than confusing the readahead stat.
356 if (unlikely(PageTransCompound(page)))
359 readahead = TestClearPageReadahead(page);
361 unsigned long ra_val;
364 ra_val = GET_SWAP_RA_VAL(vma);
365 win = SWAP_RA_WIN(ra_val);
366 hits = SWAP_RA_HITS(ra_val);
368 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
369 atomic_long_set(&vma->swap_readahead_info,
370 SWAP_RA_VAL(addr, win, hits));
374 count_vm_event(SWAP_RA_HIT);
376 atomic_inc(&swapin_readahead_hits);
384 * find_get_incore_page - Find and get a page from the page or swap caches.
385 * @mapping: The address_space to search.
386 * @index: The page cache index.
388 * This differs from find_get_page() in that it will also look for the
389 * page in the swap cache.
391 * Return: The found page or %NULL.
393 struct page *find_get_incore_page(struct address_space *mapping, pgoff_t index)
396 struct swap_info_struct *si;
397 struct page *page = pagecache_get_page(mapping, index,
398 FGP_ENTRY | FGP_HEAD, 0);
402 if (!xa_is_value(page))
403 return find_subpage(page, index);
404 if (!shmem_mapping(mapping))
407 swp = radix_to_swp_entry(page);
408 /* Prevent swapoff from happening to us */
409 si = get_swap_device(swp);
412 page = find_get_page(swap_address_space(swp), swp_offset(swp));
417 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
418 struct vm_area_struct *vma, unsigned long addr,
419 bool *new_page_allocated)
421 struct swap_info_struct *si;
425 *new_page_allocated = false;
430 * First check the swap cache. Since this is normally
431 * called after lookup_swap_cache() failed, re-calling
432 * that would confuse statistics.
434 si = get_swap_device(entry);
437 page = find_get_page(swap_address_space(entry),
444 * Just skip read ahead for unused swap slot.
445 * During swap_off when swap_slot_cache is disabled,
446 * we have to handle the race between putting
447 * swap entry in swap cache and marking swap slot
448 * as SWAP_HAS_CACHE. That's done in later part of code or
449 * else swap_off will be aborted if we return NULL.
451 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
455 * Get a new page to read into from swap. Allocate it now,
456 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
457 * cause any racers to loop around until we add it to cache.
459 page = alloc_page_vma(gfp_mask, vma, addr);
464 * Swap entry may have been freed since our caller observed it.
466 err = swapcache_prepare(entry);
475 * We might race against __delete_from_swap_cache(), and
476 * stumble across a swap_map entry whose SWAP_HAS_CACHE
477 * has not yet been cleared. Or race against another
478 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
479 * in swap_map, but not yet added its page to swap cache.
485 * The swap entry is ours to swap in. Prepare the new page.
488 __SetPageLocked(page);
489 __SetPageSwapBacked(page);
491 if (mem_cgroup_swapin_charge_page(page, NULL, gfp_mask, entry))
494 /* May fail (-ENOMEM) if XArray node allocation failed. */
495 if (add_to_swap_cache(page, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
498 mem_cgroup_swapin_uncharge_swap(entry);
501 workingset_refault(page, shadow);
503 /* Caller will initiate read into locked page */
505 *new_page_allocated = true;
509 put_swap_page(page, entry);
516 * Locate a page of swap in physical memory, reserving swap cache space
517 * and reading the disk if it is not already cached.
518 * A failure return means that either the page allocation failed or that
519 * the swap entry is no longer in use.
521 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
522 struct vm_area_struct *vma, unsigned long addr, bool do_poll)
524 bool page_was_allocated;
525 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
526 vma, addr, &page_was_allocated);
528 if (page_was_allocated)
529 swap_readpage(retpage, do_poll);
534 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
535 unsigned long offset,
540 unsigned int pages, last_ra;
543 * This heuristic has been found to work well on both sequential and
544 * random loads, swapping to hard disk or to SSD: please don't ask
545 * what the "+ 2" means, it just happens to work well, that's all.
550 * We can have no readahead hits to judge by: but must not get
551 * stuck here forever, so check for an adjacent offset instead
552 * (and don't even bother to check whether swap type is same).
554 if (offset != prev_offset + 1 && offset != prev_offset - 1)
557 unsigned int roundup = 4;
558 while (roundup < pages)
563 if (pages > max_pages)
566 /* Don't shrink readahead too fast */
567 last_ra = prev_win / 2;
574 static unsigned long swapin_nr_pages(unsigned long offset)
576 static unsigned long prev_offset;
577 unsigned int hits, pages, max_pages;
578 static atomic_t last_readahead_pages;
580 max_pages = 1 << READ_ONCE(page_cluster);
584 hits = atomic_xchg(&swapin_readahead_hits, 0);
585 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
587 atomic_read(&last_readahead_pages));
589 WRITE_ONCE(prev_offset, offset);
590 atomic_set(&last_readahead_pages, pages);
596 * swap_cluster_readahead - swap in pages in hope we need them soon
597 * @entry: swap entry of this memory
598 * @gfp_mask: memory allocation flags
599 * @vmf: fault information
601 * Returns the struct page for entry and addr, after queueing swapin.
603 * Primitive swap readahead code. We simply read an aligned block of
604 * (1 << page_cluster) entries in the swap area. This method is chosen
605 * because it doesn't cost us any seek time. We also make sure to queue
606 * the 'original' request together with the readahead ones...
608 * This has been extended to use the NUMA policies from the mm triggering
611 * Caller must hold read mmap_lock if vmf->vma is not NULL.
613 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
614 struct vm_fault *vmf)
617 unsigned long entry_offset = swp_offset(entry);
618 unsigned long offset = entry_offset;
619 unsigned long start_offset, end_offset;
621 struct swap_info_struct *si = swp_swap_info(entry);
622 struct blk_plug plug;
623 bool do_poll = true, page_allocated;
624 struct vm_area_struct *vma = vmf->vma;
625 unsigned long addr = vmf->address;
627 mask = swapin_nr_pages(offset) - 1;
632 /* Read a page_cluster sized and aligned cluster around offset. */
633 start_offset = offset & ~mask;
634 end_offset = offset | mask;
635 if (!start_offset) /* First page is swap header. */
637 if (end_offset >= si->max)
638 end_offset = si->max - 1;
640 blk_start_plug(&plug);
641 for (offset = start_offset; offset <= end_offset ; offset++) {
642 /* Ok, do the async read-ahead now */
643 page = __read_swap_cache_async(
644 swp_entry(swp_type(entry), offset),
645 gfp_mask, vma, addr, &page_allocated);
648 if (page_allocated) {
649 swap_readpage(page, false);
650 if (offset != entry_offset) {
651 SetPageReadahead(page);
652 count_vm_event(SWAP_RA);
657 blk_finish_plug(&plug);
659 lru_add_drain(); /* Push any new pages onto the LRU now */
661 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll);
664 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
666 struct address_space *spaces, *space;
669 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
670 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
673 for (i = 0; i < nr; i++) {
675 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
676 atomic_set(&space->i_mmap_writable, 0);
677 space->a_ops = &swap_aops;
678 /* swap cache doesn't use writeback related tags */
679 mapping_set_no_writeback_tags(space);
681 nr_swapper_spaces[type] = nr;
682 swapper_spaces[type] = spaces;
687 void exit_swap_address_space(unsigned int type)
690 struct address_space *spaces = swapper_spaces[type];
692 for (i = 0; i < nr_swapper_spaces[type]; i++)
693 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
695 nr_swapper_spaces[type] = 0;
696 swapper_spaces[type] = NULL;
699 static inline void swap_ra_clamp_pfn(struct vm_area_struct *vma,
703 unsigned long *start,
706 *start = max3(lpfn, PFN_DOWN(vma->vm_start),
707 PFN_DOWN(faddr & PMD_MASK));
708 *end = min3(rpfn, PFN_DOWN(vma->vm_end),
709 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
712 static void swap_ra_info(struct vm_fault *vmf,
713 struct vma_swap_readahead *ra_info)
715 struct vm_area_struct *vma = vmf->vma;
716 unsigned long ra_val;
717 unsigned long faddr, pfn, fpfn;
718 unsigned long start, end;
719 pte_t *pte, *orig_pte;
720 unsigned int max_win, hits, prev_win, win, left;
725 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
726 SWAP_RA_ORDER_CEILING);
732 faddr = vmf->address;
733 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
735 fpfn = PFN_DOWN(faddr);
736 ra_val = GET_SWAP_RA_VAL(vma);
737 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
738 prev_win = SWAP_RA_WIN(ra_val);
739 hits = SWAP_RA_HITS(ra_val);
740 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
742 atomic_long_set(&vma->swap_readahead_info,
743 SWAP_RA_VAL(faddr, win, 0));
750 /* Copy the PTEs because the page table may be unmapped */
752 swap_ra_clamp_pfn(vma, faddr, fpfn, fpfn + win, &start, &end);
753 else if (pfn == fpfn + 1)
754 swap_ra_clamp_pfn(vma, faddr, fpfn - win + 1, fpfn + 1,
757 left = (win - 1) / 2;
758 swap_ra_clamp_pfn(vma, faddr, fpfn - left, fpfn + win - left,
761 ra_info->nr_pte = end - start;
762 ra_info->offset = fpfn - start;
763 pte -= ra_info->offset;
767 tpte = ra_info->ptes;
768 for (pfn = start; pfn != end; pfn++)
775 * swap_vma_readahead - swap in pages in hope we need them soon
776 * @fentry: swap entry of this memory
777 * @gfp_mask: memory allocation flags
778 * @vmf: fault information
780 * Returns the struct page for entry and addr, after queueing swapin.
782 * Primitive swap readahead code. We simply read in a few pages whose
783 * virtual addresses are around the fault address in the same vma.
785 * Caller must hold read mmap_lock if vmf->vma is not NULL.
788 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
789 struct vm_fault *vmf)
791 struct blk_plug plug;
792 struct vm_area_struct *vma = vmf->vma;
798 struct vma_swap_readahead ra_info = {
802 swap_ra_info(vmf, &ra_info);
803 if (ra_info.win == 1)
806 blk_start_plug(&plug);
807 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
810 if (pte_none(pentry))
812 if (pte_present(pentry))
814 entry = pte_to_swp_entry(pentry);
815 if (unlikely(non_swap_entry(entry)))
817 page = __read_swap_cache_async(entry, gfp_mask, vma,
818 vmf->address, &page_allocated);
821 if (page_allocated) {
822 swap_readpage(page, false);
823 if (i != ra_info.offset) {
824 SetPageReadahead(page);
825 count_vm_event(SWAP_RA);
830 blk_finish_plug(&plug);
833 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
838 * swapin_readahead - swap in pages in hope we need them soon
839 * @entry: swap entry of this memory
840 * @gfp_mask: memory allocation flags
841 * @vmf: fault information
843 * Returns the struct page for entry and addr, after queueing swapin.
845 * It's a main entry function for swap readahead. By the configuration,
846 * it will read ahead blocks by cluster-based(ie, physical disk based)
847 * or vma-based(ie, virtual address based on faulty address) readahead.
849 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
850 struct vm_fault *vmf)
852 return swap_use_vma_readahead() ?
853 swap_vma_readahead(entry, gfp_mask, vmf) :
854 swap_cluster_readahead(entry, gfp_mask, vmf);
858 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
859 struct kobj_attribute *attr, char *buf)
861 return sysfs_emit(buf, "%s\n",
862 enable_vma_readahead ? "true" : "false");
864 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
865 struct kobj_attribute *attr,
866 const char *buf, size_t count)
868 if (!strncmp(buf, "true", 4) || !strncmp(buf, "1", 1))
869 enable_vma_readahead = true;
870 else if (!strncmp(buf, "false", 5) || !strncmp(buf, "0", 1))
871 enable_vma_readahead = false;
877 static struct kobj_attribute vma_ra_enabled_attr =
878 __ATTR(vma_ra_enabled, 0644, vma_ra_enabled_show,
879 vma_ra_enabled_store);
881 static struct attribute *swap_attrs[] = {
882 &vma_ra_enabled_attr.attr,
886 static const struct attribute_group swap_attr_group = {
890 static int __init swap_init_sysfs(void)
893 struct kobject *swap_kobj;
895 swap_kobj = kobject_create_and_add("swap", mm_kobj);
897 pr_err("failed to create swap kobject\n");
900 err = sysfs_create_group(swap_kobj, &swap_attr_group);
902 pr_err("failed to register swap group\n");
908 kobject_put(swap_kobj);
911 subsys_initcall(swap_init_sysfs);