1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/swap_state.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
8 * Rewritten to use page cache, (C) 1998 Stephen Tweedie
11 #include <linux/gfp.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/init.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/pagevec.h>
20 #include <linux/migrate.h>
21 #include <linux/vmalloc.h>
22 #include <linux/swap_slots.h>
23 #include <linux/huge_mm.h>
24 #include <linux/shmem_fs.h>
29 * swapper_space is a fiction, retained to simplify the path through
30 * vmscan's shrink_page_list.
32 static const struct address_space_operations swap_aops = {
33 .writepage = swap_writepage,
34 .dirty_folio = noop_dirty_folio,
35 #ifdef CONFIG_MIGRATION
36 .migrate_folio = migrate_folio,
40 struct address_space *swapper_spaces[MAX_SWAPFILES] __read_mostly;
41 static unsigned int nr_swapper_spaces[MAX_SWAPFILES] __read_mostly;
42 static bool enable_vma_readahead __read_mostly = true;
44 #define SWAP_RA_WIN_SHIFT (PAGE_SHIFT / 2)
45 #define SWAP_RA_HITS_MASK ((1UL << SWAP_RA_WIN_SHIFT) - 1)
46 #define SWAP_RA_HITS_MAX SWAP_RA_HITS_MASK
47 #define SWAP_RA_WIN_MASK (~PAGE_MASK & ~SWAP_RA_HITS_MASK)
49 #define SWAP_RA_HITS(v) ((v) & SWAP_RA_HITS_MASK)
50 #define SWAP_RA_WIN(v) (((v) & SWAP_RA_WIN_MASK) >> SWAP_RA_WIN_SHIFT)
51 #define SWAP_RA_ADDR(v) ((v) & PAGE_MASK)
53 #define SWAP_RA_VAL(addr, win, hits) \
54 (((addr) & PAGE_MASK) | \
55 (((win) << SWAP_RA_WIN_SHIFT) & SWAP_RA_WIN_MASK) | \
56 ((hits) & SWAP_RA_HITS_MASK))
58 /* Initial readahead hits is 4 to start up with a small window */
59 #define GET_SWAP_RA_VAL(vma) \
60 (atomic_long_read(&(vma)->swap_readahead_info) ? : 4)
62 static atomic_t swapin_readahead_hits = ATOMIC_INIT(4);
64 void show_swap_cache_info(void)
66 printk("%lu pages in swap cache\n", total_swapcache_pages());
67 printk("Free swap = %ldkB\n",
68 get_nr_swap_pages() << (PAGE_SHIFT - 10));
69 printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
72 void *get_shadow_from_swap_cache(swp_entry_t entry)
74 struct address_space *address_space = swap_address_space(entry);
75 pgoff_t idx = swp_offset(entry);
78 page = xa_load(&address_space->i_pages, idx);
79 if (xa_is_value(page))
85 * add_to_swap_cache resembles filemap_add_folio on swapper_space,
86 * but sets SwapCache flag and private instead of mapping and index.
88 int add_to_swap_cache(struct folio *folio, swp_entry_t entry,
89 gfp_t gfp, void **shadowp)
91 struct address_space *address_space = swap_address_space(entry);
92 pgoff_t idx = swp_offset(entry);
93 XA_STATE_ORDER(xas, &address_space->i_pages, idx, folio_order(folio));
94 unsigned long i, nr = folio_nr_pages(folio);
97 xas_set_update(&xas, workingset_update_node);
99 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
100 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
101 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
103 folio_ref_add(folio, nr);
104 folio_set_swapcache(folio);
108 xas_create_range(&xas);
111 for (i = 0; i < nr; i++) {
112 VM_BUG_ON_FOLIO(xas.xa_index != idx + i, folio);
113 old = xas_load(&xas);
114 if (xa_is_value(old)) {
118 set_page_private(folio_page(folio, i), entry.val + i);
119 xas_store(&xas, folio);
122 address_space->nrpages += nr;
123 __node_stat_mod_folio(folio, NR_FILE_PAGES, nr);
124 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, nr);
126 xas_unlock_irq(&xas);
127 } while (xas_nomem(&xas, gfp));
129 if (!xas_error(&xas))
132 folio_clear_swapcache(folio);
133 folio_ref_sub(folio, nr);
134 return xas_error(&xas);
138 * This must be called only on folios that have
139 * been verified to be in the swap cache.
141 void __delete_from_swap_cache(struct folio *folio,
142 swp_entry_t entry, void *shadow)
144 struct address_space *address_space = swap_address_space(entry);
146 long nr = folio_nr_pages(folio);
147 pgoff_t idx = swp_offset(entry);
148 XA_STATE(xas, &address_space->i_pages, idx);
150 xas_set_update(&xas, workingset_update_node);
152 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
153 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
154 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
156 for (i = 0; i < nr; i++) {
157 void *entry = xas_store(&xas, shadow);
158 VM_BUG_ON_PAGE(entry != folio, entry);
159 set_page_private(folio_page(folio, i), 0);
162 folio_clear_swapcache(folio);
163 address_space->nrpages -= nr;
164 __node_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
165 __lruvec_stat_mod_folio(folio, NR_SWAPCACHE, -nr);
169 * add_to_swap - allocate swap space for a folio
170 * @folio: folio we want to move to swap
172 * Allocate swap space for the folio and add the folio to the
175 * Context: Caller needs to hold the folio lock.
176 * Return: Whether the folio was added to the swap cache.
178 bool add_to_swap(struct folio *folio)
183 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
184 VM_BUG_ON_FOLIO(!folio_test_uptodate(folio), folio);
186 entry = folio_alloc_swap(folio);
191 * XArray node allocations from PF_MEMALLOC contexts could
192 * completely exhaust the page allocator. __GFP_NOMEMALLOC
193 * stops emergency reserves from being allocated.
195 * TODO: this could cause a theoretical memory reclaim
196 * deadlock in the swap out path.
199 * Add it to the swap cache.
201 err = add_to_swap_cache(folio, entry,
202 __GFP_HIGH|__GFP_NOMEMALLOC|__GFP_NOWARN, NULL);
205 * add_to_swap_cache() doesn't return -EEXIST, so we can safely
206 * clear SWAP_HAS_CACHE flag.
210 * Normally the folio will be dirtied in unmap because its
211 * pte should be dirty. A special case is MADV_FREE page. The
212 * page's pte could have dirty bit cleared but the folio's
213 * SwapBacked flag is still set because clearing the dirty bit
214 * and SwapBacked flag has no lock protected. For such folio,
215 * unmap will not set dirty bit for it, so folio reclaim will
216 * not write the folio out. This can cause data corruption when
217 * the folio is swapped in later. Always setting the dirty flag
218 * for the folio solves the problem.
220 folio_mark_dirty(folio);
225 put_swap_folio(folio, entry);
230 * This must be called only on folios that have
231 * been verified to be in the swap cache and locked.
232 * It will never put the folio into the free list,
233 * the caller has a reference on the folio.
235 void delete_from_swap_cache(struct folio *folio)
237 swp_entry_t entry = folio_swap_entry(folio);
238 struct address_space *address_space = swap_address_space(entry);
240 xa_lock_irq(&address_space->i_pages);
241 __delete_from_swap_cache(folio, entry, NULL);
242 xa_unlock_irq(&address_space->i_pages);
244 put_swap_folio(folio, entry);
245 folio_ref_sub(folio, folio_nr_pages(folio));
248 void clear_shadow_from_swap_cache(int type, unsigned long begin,
251 unsigned long curr = begin;
255 swp_entry_t entry = swp_entry(type, curr);
256 struct address_space *address_space = swap_address_space(entry);
257 XA_STATE(xas, &address_space->i_pages, curr);
259 xas_set_update(&xas, workingset_update_node);
261 xa_lock_irq(&address_space->i_pages);
262 xas_for_each(&xas, old, end) {
263 if (!xa_is_value(old))
265 xas_store(&xas, NULL);
267 xa_unlock_irq(&address_space->i_pages);
269 /* search the next swapcache until we meet end */
270 curr >>= SWAP_ADDRESS_SPACE_SHIFT;
272 curr <<= SWAP_ADDRESS_SPACE_SHIFT;
279 * If we are the only user, then try to free up the swap cache.
281 * Its ok to check the swapcache flag without the folio lock
282 * here because we are going to recheck again inside
283 * folio_free_swap() _with_ the lock.
286 void free_swap_cache(struct page *page)
288 struct folio *folio = page_folio(page);
290 if (folio_test_swapcache(folio) && !folio_mapped(folio) &&
291 folio_trylock(folio)) {
292 folio_free_swap(folio);
298 * Perform a free_page(), also freeing any swap cache associated with
299 * this page if it is the last user of the page.
301 void free_page_and_swap_cache(struct page *page)
303 free_swap_cache(page);
304 if (!is_huge_zero_page(page))
309 * Passed an array of pages, drop them all from swapcache and then release
310 * them. They are removed from the LRU and freed if this is their last use.
312 void free_pages_and_swap_cache(struct encoded_page **pages, int nr)
315 for (int i = 0; i < nr; i++)
316 free_swap_cache(encoded_page_ptr(pages[i]));
317 release_pages(pages, nr);
320 static inline bool swap_use_vma_readahead(void)
322 return READ_ONCE(enable_vma_readahead) && !atomic_read(&nr_rotate_swap);
326 * Lookup a swap entry in the swap cache. A found folio will be returned
327 * unlocked and with its refcount incremented - we rely on the kernel
328 * lock getting page table operations atomic even if we drop the folio
329 * lock before returning.
331 * Caller must lock the swap device or hold a reference to keep it valid.
333 struct folio *swap_cache_get_folio(swp_entry_t entry,
334 struct vm_area_struct *vma, unsigned long addr)
338 folio = filemap_get_folio(swap_address_space(entry), swp_offset(entry));
340 bool vma_ra = swap_use_vma_readahead();
344 * At the moment, we don't support PG_readahead for anon THP
345 * so let's bail out rather than confusing the readahead stat.
347 if (unlikely(folio_test_large(folio)))
350 readahead = folio_test_clear_readahead(folio);
352 unsigned long ra_val;
355 ra_val = GET_SWAP_RA_VAL(vma);
356 win = SWAP_RA_WIN(ra_val);
357 hits = SWAP_RA_HITS(ra_val);
359 hits = min_t(int, hits + 1, SWAP_RA_HITS_MAX);
360 atomic_long_set(&vma->swap_readahead_info,
361 SWAP_RA_VAL(addr, win, hits));
365 count_vm_event(SWAP_RA_HIT);
367 atomic_inc(&swapin_readahead_hits);
375 * filemap_get_incore_folio - Find and get a folio from the page or swap caches.
376 * @mapping: The address_space to search.
377 * @index: The page cache index.
379 * This differs from filemap_get_folio() in that it will also look for the
380 * folio in the swap cache.
382 * Return: The found folio or %NULL.
384 struct folio *filemap_get_incore_folio(struct address_space *mapping,
388 struct swap_info_struct *si;
389 struct folio *folio = __filemap_get_folio(mapping, index, FGP_ENTRY, 0);
391 if (!xa_is_value(folio))
393 if (!shmem_mapping(mapping))
396 swp = radix_to_swp_entry(folio);
397 /* There might be swapin error entries in shmem mapping. */
398 if (non_swap_entry(swp))
400 /* Prevent swapoff from happening to us */
401 si = get_swap_device(swp);
404 index = swp_offset(swp);
405 folio = filemap_get_folio(swap_address_space(swp), index);
411 struct page *__read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
412 struct vm_area_struct *vma, unsigned long addr,
413 bool *new_page_allocated)
415 struct swap_info_struct *si;
419 *new_page_allocated = false;
424 * First check the swap cache. Since this is normally
425 * called after swap_cache_get_folio() failed, re-calling
426 * that would confuse statistics.
428 si = get_swap_device(entry);
431 folio = filemap_get_folio(swap_address_space(entry),
435 return folio_file_page(folio, swp_offset(entry));
438 * Just skip read ahead for unused swap slot.
439 * During swap_off when swap_slot_cache is disabled,
440 * we have to handle the race between putting
441 * swap entry in swap cache and marking swap slot
442 * as SWAP_HAS_CACHE. That's done in later part of code or
443 * else swap_off will be aborted if we return NULL.
445 if (!__swp_swapcount(entry) && swap_slot_cache_enabled)
449 * Get a new page to read into from swap. Allocate it now,
450 * before marking swap_map SWAP_HAS_CACHE, when -EEXIST will
451 * cause any racers to loop around until we add it to cache.
453 folio = vma_alloc_folio(gfp_mask, 0, vma, addr, false);
458 * Swap entry may have been freed since our caller observed it.
460 err = swapcache_prepare(entry);
469 * We might race against __delete_from_swap_cache(), and
470 * stumble across a swap_map entry whose SWAP_HAS_CACHE
471 * has not yet been cleared. Or race against another
472 * __read_swap_cache_async(), which has set SWAP_HAS_CACHE
473 * in swap_map, but not yet added its page to swap cache.
475 schedule_timeout_uninterruptible(1);
479 * The swap entry is ours to swap in. Prepare the new page.
482 __folio_set_locked(folio);
483 __folio_set_swapbacked(folio);
485 if (mem_cgroup_swapin_charge_folio(folio, NULL, gfp_mask, entry))
488 /* May fail (-ENOMEM) if XArray node allocation failed. */
489 if (add_to_swap_cache(folio, entry, gfp_mask & GFP_RECLAIM_MASK, &shadow))
492 mem_cgroup_swapin_uncharge_swap(entry);
495 workingset_refault(folio, shadow);
497 /* Caller will initiate read into locked folio */
498 folio_add_lru(folio);
499 *new_page_allocated = true;
503 put_swap_folio(folio, entry);
510 * Locate a page of swap in physical memory, reserving swap cache space
511 * and reading the disk if it is not already cached.
512 * A failure return means that either the page allocation failed or that
513 * the swap entry is no longer in use.
515 struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
516 struct vm_area_struct *vma,
517 unsigned long addr, bool do_poll,
518 struct swap_iocb **plug)
520 bool page_was_allocated;
521 struct page *retpage = __read_swap_cache_async(entry, gfp_mask,
522 vma, addr, &page_was_allocated);
524 if (page_was_allocated)
525 swap_readpage(retpage, do_poll, plug);
530 static unsigned int __swapin_nr_pages(unsigned long prev_offset,
531 unsigned long offset,
536 unsigned int pages, last_ra;
539 * This heuristic has been found to work well on both sequential and
540 * random loads, swapping to hard disk or to SSD: please don't ask
541 * what the "+ 2" means, it just happens to work well, that's all.
546 * We can have no readahead hits to judge by: but must not get
547 * stuck here forever, so check for an adjacent offset instead
548 * (and don't even bother to check whether swap type is same).
550 if (offset != prev_offset + 1 && offset != prev_offset - 1)
553 unsigned int roundup = 4;
554 while (roundup < pages)
559 if (pages > max_pages)
562 /* Don't shrink readahead too fast */
563 last_ra = prev_win / 2;
570 static unsigned long swapin_nr_pages(unsigned long offset)
572 static unsigned long prev_offset;
573 unsigned int hits, pages, max_pages;
574 static atomic_t last_readahead_pages;
576 max_pages = 1 << READ_ONCE(page_cluster);
580 hits = atomic_xchg(&swapin_readahead_hits, 0);
581 pages = __swapin_nr_pages(READ_ONCE(prev_offset), offset, hits,
583 atomic_read(&last_readahead_pages));
585 WRITE_ONCE(prev_offset, offset);
586 atomic_set(&last_readahead_pages, pages);
592 * swap_cluster_readahead - swap in pages in hope we need them soon
593 * @entry: swap entry of this memory
594 * @gfp_mask: memory allocation flags
595 * @vmf: fault information
597 * Returns the struct page for entry and addr, after queueing swapin.
599 * Primitive swap readahead code. We simply read an aligned block of
600 * (1 << page_cluster) entries in the swap area. This method is chosen
601 * because it doesn't cost us any seek time. We also make sure to queue
602 * the 'original' request together with the readahead ones...
604 * This has been extended to use the NUMA policies from the mm triggering
607 * Caller must hold read mmap_lock if vmf->vma is not NULL.
609 struct page *swap_cluster_readahead(swp_entry_t entry, gfp_t gfp_mask,
610 struct vm_fault *vmf)
613 unsigned long entry_offset = swp_offset(entry);
614 unsigned long offset = entry_offset;
615 unsigned long start_offset, end_offset;
617 struct swap_info_struct *si = swp_swap_info(entry);
618 struct blk_plug plug;
619 struct swap_iocb *splug = NULL;
620 bool do_poll = true, page_allocated;
621 struct vm_area_struct *vma = vmf->vma;
622 unsigned long addr = vmf->address;
624 mask = swapin_nr_pages(offset) - 1;
629 /* Read a page_cluster sized and aligned cluster around offset. */
630 start_offset = offset & ~mask;
631 end_offset = offset | mask;
632 if (!start_offset) /* First page is swap header. */
634 if (end_offset >= si->max)
635 end_offset = si->max - 1;
637 blk_start_plug(&plug);
638 for (offset = start_offset; offset <= end_offset ; offset++) {
639 /* Ok, do the async read-ahead now */
640 page = __read_swap_cache_async(
641 swp_entry(swp_type(entry), offset),
642 gfp_mask, vma, addr, &page_allocated);
645 if (page_allocated) {
646 swap_readpage(page, false, &splug);
647 if (offset != entry_offset) {
648 SetPageReadahead(page);
649 count_vm_event(SWAP_RA);
654 blk_finish_plug(&plug);
655 swap_read_unplug(splug);
657 lru_add_drain(); /* Push any new pages onto the LRU now */
659 /* The page was likely read above, so no need for plugging here */
660 return read_swap_cache_async(entry, gfp_mask, vma, addr, do_poll, NULL);
663 int init_swap_address_space(unsigned int type, unsigned long nr_pages)
665 struct address_space *spaces, *space;
668 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
669 spaces = kvcalloc(nr, sizeof(struct address_space), GFP_KERNEL);
672 for (i = 0; i < nr; i++) {
674 xa_init_flags(&space->i_pages, XA_FLAGS_LOCK_IRQ);
675 atomic_set(&space->i_mmap_writable, 0);
676 space->a_ops = &swap_aops;
677 /* swap cache doesn't use writeback related tags */
678 mapping_set_no_writeback_tags(space);
680 nr_swapper_spaces[type] = nr;
681 swapper_spaces[type] = spaces;
686 void exit_swap_address_space(unsigned int type)
689 struct address_space *spaces = swapper_spaces[type];
691 for (i = 0; i < nr_swapper_spaces[type]; i++)
692 VM_WARN_ON_ONCE(!mapping_empty(&spaces[i]));
694 nr_swapper_spaces[type] = 0;
695 swapper_spaces[type] = NULL;
698 static void swap_ra_info(struct vm_fault *vmf,
699 struct vma_swap_readahead *ra_info)
701 struct vm_area_struct *vma = vmf->vma;
702 unsigned long ra_val;
703 unsigned long faddr, pfn, fpfn, lpfn, rpfn;
704 unsigned long start, end;
705 pte_t *pte, *orig_pte;
706 unsigned int max_win, hits, prev_win, win;
711 max_win = 1 << min_t(unsigned int, READ_ONCE(page_cluster),
712 SWAP_RA_ORDER_CEILING);
718 faddr = vmf->address;
719 fpfn = PFN_DOWN(faddr);
720 ra_val = GET_SWAP_RA_VAL(vma);
721 pfn = PFN_DOWN(SWAP_RA_ADDR(ra_val));
722 prev_win = SWAP_RA_WIN(ra_val);
723 hits = SWAP_RA_HITS(ra_val);
724 ra_info->win = win = __swapin_nr_pages(pfn, fpfn, hits,
726 atomic_long_set(&vma->swap_readahead_info,
727 SWAP_RA_VAL(faddr, win, 0));
732 /* Copy the PTEs because the page table may be unmapped */
733 orig_pte = pte = pte_offset_map(vmf->pmd, faddr);
734 if (fpfn == pfn + 1) {
737 } else if (pfn == fpfn + 1) {
738 lpfn = fpfn - win + 1;
741 unsigned int left = (win - 1) / 2;
744 rpfn = fpfn + win - left;
746 start = max3(lpfn, PFN_DOWN(vma->vm_start),
747 PFN_DOWN(faddr & PMD_MASK));
748 end = min3(rpfn, PFN_DOWN(vma->vm_end),
749 PFN_DOWN((faddr & PMD_MASK) + PMD_SIZE));
751 ra_info->nr_pte = end - start;
752 ra_info->offset = fpfn - start;
753 pte -= ra_info->offset;
757 tpte = ra_info->ptes;
758 for (pfn = start; pfn != end; pfn++)
765 * swap_vma_readahead - swap in pages in hope we need them soon
766 * @fentry: swap entry of this memory
767 * @gfp_mask: memory allocation flags
768 * @vmf: fault information
770 * Returns the struct page for entry and addr, after queueing swapin.
772 * Primitive swap readahead code. We simply read in a few pages whose
773 * virtual addresses are around the fault address in the same vma.
775 * Caller must hold read mmap_lock if vmf->vma is not NULL.
778 static struct page *swap_vma_readahead(swp_entry_t fentry, gfp_t gfp_mask,
779 struct vm_fault *vmf)
781 struct blk_plug plug;
782 struct swap_iocb *splug = NULL;
783 struct vm_area_struct *vma = vmf->vma;
789 struct vma_swap_readahead ra_info = {
793 swap_ra_info(vmf, &ra_info);
794 if (ra_info.win == 1)
797 blk_start_plug(&plug);
798 for (i = 0, pte = ra_info.ptes; i < ra_info.nr_pte;
801 if (!is_swap_pte(pentry))
803 entry = pte_to_swp_entry(pentry);
804 if (unlikely(non_swap_entry(entry)))
806 page = __read_swap_cache_async(entry, gfp_mask, vma,
807 vmf->address, &page_allocated);
810 if (page_allocated) {
811 swap_readpage(page, false, &splug);
812 if (i != ra_info.offset) {
813 SetPageReadahead(page);
814 count_vm_event(SWAP_RA);
819 blk_finish_plug(&plug);
820 swap_read_unplug(splug);
823 /* The page was likely read above, so no need for plugging here */
824 return read_swap_cache_async(fentry, gfp_mask, vma, vmf->address,
825 ra_info.win == 1, NULL);
829 * swapin_readahead - swap in pages in hope we need them soon
830 * @entry: swap entry of this memory
831 * @gfp_mask: memory allocation flags
832 * @vmf: fault information
834 * Returns the struct page for entry and addr, after queueing swapin.
836 * It's a main entry function for swap readahead. By the configuration,
837 * it will read ahead blocks by cluster-based(ie, physical disk based)
838 * or vma-based(ie, virtual address based on faulty address) readahead.
840 struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
841 struct vm_fault *vmf)
843 return swap_use_vma_readahead() ?
844 swap_vma_readahead(entry, gfp_mask, vmf) :
845 swap_cluster_readahead(entry, gfp_mask, vmf);
849 static ssize_t vma_ra_enabled_show(struct kobject *kobj,
850 struct kobj_attribute *attr, char *buf)
852 return sysfs_emit(buf, "%s\n",
853 enable_vma_readahead ? "true" : "false");
855 static ssize_t vma_ra_enabled_store(struct kobject *kobj,
856 struct kobj_attribute *attr,
857 const char *buf, size_t count)
861 ret = kstrtobool(buf, &enable_vma_readahead);
867 static struct kobj_attribute vma_ra_enabled_attr = __ATTR_RW(vma_ra_enabled);
869 static struct attribute *swap_attrs[] = {
870 &vma_ra_enabled_attr.attr,
874 static const struct attribute_group swap_attr_group = {
878 static int __init swap_init_sysfs(void)
881 struct kobject *swap_kobj;
883 swap_kobj = kobject_create_and_add("swap", mm_kobj);
885 pr_err("failed to create swap kobject\n");
888 err = sysfs_create_group(swap_kobj, &swap_attr_group);
890 pr_err("failed to register swap group\n");
896 kobject_put(swap_kobj);
899 subsys_initcall(swap_init_sysfs);