Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/lliubbo...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50         if (PageLRU(page)) {
51                 unsigned long flags;
52                 struct zone *zone = page_zone(page);
53
54                 spin_lock_irqsave(&zone->lru_lock, flags);
55                 VM_BUG_ON(!PageLRU(page));
56                 __ClearPageLRU(page);
57                 del_page_from_lru(zone, page);
58                 spin_unlock_irqrestore(&zone->lru_lock, flags);
59         }
60 }
61
62 static void __put_single_page(struct page *page)
63 {
64         __page_cache_release(page);
65         free_hot_cold_page(page, 0);
66 }
67
68 static void __put_compound_page(struct page *page)
69 {
70         compound_page_dtor *dtor;
71
72         __page_cache_release(page);
73         dtor = get_compound_page_dtor(page);
74         (*dtor)(page);
75 }
76
77 static void put_compound_page(struct page *page)
78 {
79         if (unlikely(PageTail(page))) {
80                 /* __split_huge_page_refcount can run under us */
81                 struct page *page_head = compound_trans_head(page);
82
83                 if (likely(page != page_head &&
84                            get_page_unless_zero(page_head))) {
85                         unsigned long flags;
86                         /*
87                          * page_head wasn't a dangling pointer but it
88                          * may not be a head page anymore by the time
89                          * we obtain the lock. That is ok as long as it
90                          * can't be freed from under us.
91                          */
92                         flags = compound_lock_irqsave(page_head);
93                         if (unlikely(!PageTail(page))) {
94                                 /* __split_huge_page_refcount run before us */
95                                 compound_unlock_irqrestore(page_head, flags);
96                                 VM_BUG_ON(PageHead(page_head));
97                                 if (put_page_testzero(page_head))
98                                         __put_single_page(page_head);
99                         out_put_single:
100                                 if (put_page_testzero(page))
101                                         __put_single_page(page);
102                                 return;
103                         }
104                         VM_BUG_ON(page_head != page->first_page);
105                         /*
106                          * We can release the refcount taken by
107                          * get_page_unless_zero() now that
108                          * __split_huge_page_refcount() is blocked on
109                          * the compound_lock.
110                          */
111                         if (put_page_testzero(page_head))
112                                 VM_BUG_ON(1);
113                         /* __split_huge_page_refcount will wait now */
114                         VM_BUG_ON(page_mapcount(page) <= 0);
115                         atomic_dec(&page->_mapcount);
116                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
117                         VM_BUG_ON(atomic_read(&page->_count) != 0);
118                         compound_unlock_irqrestore(page_head, flags);
119                         if (put_page_testzero(page_head)) {
120                                 if (PageHead(page_head))
121                                         __put_compound_page(page_head);
122                                 else
123                                         __put_single_page(page_head);
124                         }
125                 } else {
126                         /* page_head is a dangling pointer */
127                         VM_BUG_ON(PageTail(page));
128                         goto out_put_single;
129                 }
130         } else if (put_page_testzero(page)) {
131                 if (PageHead(page))
132                         __put_compound_page(page);
133                 else
134                         __put_single_page(page);
135         }
136 }
137
138 void put_page(struct page *page)
139 {
140         if (unlikely(PageCompound(page)))
141                 put_compound_page(page);
142         else if (put_page_testzero(page))
143                 __put_single_page(page);
144 }
145 EXPORT_SYMBOL(put_page);
146
147 /*
148  * This function is exported but must not be called by anything other
149  * than get_page(). It implements the slow path of get_page().
150  */
151 bool __get_page_tail(struct page *page)
152 {
153         /*
154          * This takes care of get_page() if run on a tail page
155          * returned by one of the get_user_pages/follow_page variants.
156          * get_user_pages/follow_page itself doesn't need the compound
157          * lock because it runs __get_page_tail_foll() under the
158          * proper PT lock that already serializes against
159          * split_huge_page().
160          */
161         unsigned long flags;
162         bool got = false;
163         struct page *page_head = compound_trans_head(page);
164
165         if (likely(page != page_head && get_page_unless_zero(page_head))) {
166                 /*
167                  * page_head wasn't a dangling pointer but it
168                  * may not be a head page anymore by the time
169                  * we obtain the lock. That is ok as long as it
170                  * can't be freed from under us.
171                  */
172                 flags = compound_lock_irqsave(page_head);
173                 /* here __split_huge_page_refcount won't run anymore */
174                 if (likely(PageTail(page))) {
175                         __get_page_tail_foll(page, false);
176                         got = true;
177                 }
178                 compound_unlock_irqrestore(page_head, flags);
179                 if (unlikely(!got))
180                         put_page(page_head);
181         }
182         return got;
183 }
184 EXPORT_SYMBOL(__get_page_tail);
185
186 /**
187  * put_pages_list() - release a list of pages
188  * @pages: list of pages threaded on page->lru
189  *
190  * Release a list of pages which are strung together on page.lru.  Currently
191  * used by read_cache_pages() and related error recovery code.
192  */
193 void put_pages_list(struct list_head *pages)
194 {
195         while (!list_empty(pages)) {
196                 struct page *victim;
197
198                 victim = list_entry(pages->prev, struct page, lru);
199                 list_del(&victim->lru);
200                 page_cache_release(victim);
201         }
202 }
203 EXPORT_SYMBOL(put_pages_list);
204
205 static void pagevec_lru_move_fn(struct pagevec *pvec,
206                                 void (*move_fn)(struct page *page, void *arg),
207                                 void *arg)
208 {
209         int i;
210         struct zone *zone = NULL;
211         unsigned long flags = 0;
212
213         for (i = 0; i < pagevec_count(pvec); i++) {
214                 struct page *page = pvec->pages[i];
215                 struct zone *pagezone = page_zone(page);
216
217                 if (pagezone != zone) {
218                         if (zone)
219                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
220                         zone = pagezone;
221                         spin_lock_irqsave(&zone->lru_lock, flags);
222                 }
223
224                 (*move_fn)(page, arg);
225         }
226         if (zone)
227                 spin_unlock_irqrestore(&zone->lru_lock, flags);
228         release_pages(pvec->pages, pvec->nr, pvec->cold);
229         pagevec_reinit(pvec);
230 }
231
232 static void pagevec_move_tail_fn(struct page *page, void *arg)
233 {
234         int *pgmoved = arg;
235         struct zone *zone = page_zone(page);
236
237         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
238                 enum lru_list lru = page_lru_base_type(page);
239                 list_move_tail(&page->lru, &zone->lru[lru].list);
240                 mem_cgroup_rotate_reclaimable_page(page);
241                 (*pgmoved)++;
242         }
243 }
244
245 /*
246  * pagevec_move_tail() must be called with IRQ disabled.
247  * Otherwise this may cause nasty races.
248  */
249 static void pagevec_move_tail(struct pagevec *pvec)
250 {
251         int pgmoved = 0;
252
253         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
254         __count_vm_events(PGROTATED, pgmoved);
255 }
256
257 /*
258  * Writeback is about to end against a page which has been marked for immediate
259  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
260  * inactive list.
261  */
262 void rotate_reclaimable_page(struct page *page)
263 {
264         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
265             !PageUnevictable(page) && PageLRU(page)) {
266                 struct pagevec *pvec;
267                 unsigned long flags;
268
269                 page_cache_get(page);
270                 local_irq_save(flags);
271                 pvec = &__get_cpu_var(lru_rotate_pvecs);
272                 if (!pagevec_add(pvec, page))
273                         pagevec_move_tail(pvec);
274                 local_irq_restore(flags);
275         }
276 }
277
278 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
279                                      int file, int rotated)
280 {
281         struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
282         struct zone_reclaim_stat *memcg_reclaim_stat;
283
284         memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
285
286         reclaim_stat->recent_scanned[file]++;
287         if (rotated)
288                 reclaim_stat->recent_rotated[file]++;
289
290         if (!memcg_reclaim_stat)
291                 return;
292
293         memcg_reclaim_stat->recent_scanned[file]++;
294         if (rotated)
295                 memcg_reclaim_stat->recent_rotated[file]++;
296 }
297
298 static void __activate_page(struct page *page, void *arg)
299 {
300         struct zone *zone = page_zone(page);
301
302         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
303                 int file = page_is_file_cache(page);
304                 int lru = page_lru_base_type(page);
305                 del_page_from_lru_list(zone, page, lru);
306
307                 SetPageActive(page);
308                 lru += LRU_ACTIVE;
309                 add_page_to_lru_list(zone, page, lru);
310                 __count_vm_event(PGACTIVATE);
311
312                 update_page_reclaim_stat(zone, page, file, 1);
313         }
314 }
315
316 #ifdef CONFIG_SMP
317 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
318
319 static void activate_page_drain(int cpu)
320 {
321         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
322
323         if (pagevec_count(pvec))
324                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
325 }
326
327 void activate_page(struct page *page)
328 {
329         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
331
332                 page_cache_get(page);
333                 if (!pagevec_add(pvec, page))
334                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
335                 put_cpu_var(activate_page_pvecs);
336         }
337 }
338
339 #else
340 static inline void activate_page_drain(int cpu)
341 {
342 }
343
344 void activate_page(struct page *page)
345 {
346         struct zone *zone = page_zone(page);
347
348         spin_lock_irq(&zone->lru_lock);
349         __activate_page(page, NULL);
350         spin_unlock_irq(&zone->lru_lock);
351 }
352 #endif
353
354 /*
355  * Mark a page as having seen activity.
356  *
357  * inactive,unreferenced        ->      inactive,referenced
358  * inactive,referenced          ->      active,unreferenced
359  * active,unreferenced          ->      active,referenced
360  */
361 void mark_page_accessed(struct page *page)
362 {
363         if (!PageActive(page) && !PageUnevictable(page) &&
364                         PageReferenced(page) && PageLRU(page)) {
365                 activate_page(page);
366                 ClearPageReferenced(page);
367         } else if (!PageReferenced(page)) {
368                 SetPageReferenced(page);
369         }
370 }
371
372 EXPORT_SYMBOL(mark_page_accessed);
373
374 void __lru_cache_add(struct page *page, enum lru_list lru)
375 {
376         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
377
378         page_cache_get(page);
379         if (!pagevec_add(pvec, page))
380                 ____pagevec_lru_add(pvec, lru);
381         put_cpu_var(lru_add_pvecs);
382 }
383 EXPORT_SYMBOL(__lru_cache_add);
384
385 /**
386  * lru_cache_add_lru - add a page to a page list
387  * @page: the page to be added to the LRU.
388  * @lru: the LRU list to which the page is added.
389  */
390 void lru_cache_add_lru(struct page *page, enum lru_list lru)
391 {
392         if (PageActive(page)) {
393                 VM_BUG_ON(PageUnevictable(page));
394                 ClearPageActive(page);
395         } else if (PageUnevictable(page)) {
396                 VM_BUG_ON(PageActive(page));
397                 ClearPageUnevictable(page);
398         }
399
400         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
401         __lru_cache_add(page, lru);
402 }
403
404 /**
405  * add_page_to_unevictable_list - add a page to the unevictable list
406  * @page:  the page to be added to the unevictable list
407  *
408  * Add page directly to its zone's unevictable list.  To avoid races with
409  * tasks that might be making the page evictable, through eg. munlock,
410  * munmap or exit, while it's not on the lru, we want to add the page
411  * while it's locked or otherwise "invisible" to other tasks.  This is
412  * difficult to do when using the pagevec cache, so bypass that.
413  */
414 void add_page_to_unevictable_list(struct page *page)
415 {
416         struct zone *zone = page_zone(page);
417
418         spin_lock_irq(&zone->lru_lock);
419         SetPageUnevictable(page);
420         SetPageLRU(page);
421         add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
422         spin_unlock_irq(&zone->lru_lock);
423 }
424
425 /*
426  * If the page can not be invalidated, it is moved to the
427  * inactive list to speed up its reclaim.  It is moved to the
428  * head of the list, rather than the tail, to give the flusher
429  * threads some time to write it out, as this is much more
430  * effective than the single-page writeout from reclaim.
431  *
432  * If the page isn't page_mapped and dirty/writeback, the page
433  * could reclaim asap using PG_reclaim.
434  *
435  * 1. active, mapped page -> none
436  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
437  * 3. inactive, mapped page -> none
438  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
439  * 5. inactive, clean -> inactive, tail
440  * 6. Others -> none
441  *
442  * In 4, why it moves inactive's head, the VM expects the page would
443  * be write it out by flusher threads as this is much more effective
444  * than the single-page writeout from reclaim.
445  */
446 static void lru_deactivate_fn(struct page *page, void *arg)
447 {
448         int lru, file;
449         bool active;
450         struct zone *zone = page_zone(page);
451
452         if (!PageLRU(page))
453                 return;
454
455         if (PageUnevictable(page))
456                 return;
457
458         /* Some processes are using the page */
459         if (page_mapped(page))
460                 return;
461
462         active = PageActive(page);
463
464         file = page_is_file_cache(page);
465         lru = page_lru_base_type(page);
466         del_page_from_lru_list(zone, page, lru + active);
467         ClearPageActive(page);
468         ClearPageReferenced(page);
469         add_page_to_lru_list(zone, page, lru);
470
471         if (PageWriteback(page) || PageDirty(page)) {
472                 /*
473                  * PG_reclaim could be raced with end_page_writeback
474                  * It can make readahead confusing.  But race window
475                  * is _really_ small and  it's non-critical problem.
476                  */
477                 SetPageReclaim(page);
478         } else {
479                 /*
480                  * The page's writeback ends up during pagevec
481                  * We moves tha page into tail of inactive.
482                  */
483                 list_move_tail(&page->lru, &zone->lru[lru].list);
484                 mem_cgroup_rotate_reclaimable_page(page);
485                 __count_vm_event(PGROTATED);
486         }
487
488         if (active)
489                 __count_vm_event(PGDEACTIVATE);
490         update_page_reclaim_stat(zone, page, file, 0);
491 }
492
493 /*
494  * Drain pages out of the cpu's pagevecs.
495  * Either "cpu" is the current CPU, and preemption has already been
496  * disabled; or "cpu" is being hot-unplugged, and is already dead.
497  */
498 static void drain_cpu_pagevecs(int cpu)
499 {
500         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
501         struct pagevec *pvec;
502         int lru;
503
504         for_each_lru(lru) {
505                 pvec = &pvecs[lru - LRU_BASE];
506                 if (pagevec_count(pvec))
507                         ____pagevec_lru_add(pvec, lru);
508         }
509
510         pvec = &per_cpu(lru_rotate_pvecs, cpu);
511         if (pagevec_count(pvec)) {
512                 unsigned long flags;
513
514                 /* No harm done if a racing interrupt already did this */
515                 local_irq_save(flags);
516                 pagevec_move_tail(pvec);
517                 local_irq_restore(flags);
518         }
519
520         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
521         if (pagevec_count(pvec))
522                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
523
524         activate_page_drain(cpu);
525 }
526
527 /**
528  * deactivate_page - forcefully deactivate a page
529  * @page: page to deactivate
530  *
531  * This function hints the VM that @page is a good reclaim candidate,
532  * for example if its invalidation fails due to the page being dirty
533  * or under writeback.
534  */
535 void deactivate_page(struct page *page)
536 {
537         /*
538          * In a workload with many unevictable page such as mprotect, unevictable
539          * page deactivation for accelerating reclaim is pointless.
540          */
541         if (PageUnevictable(page))
542                 return;
543
544         if (likely(get_page_unless_zero(page))) {
545                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
546
547                 if (!pagevec_add(pvec, page))
548                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
549                 put_cpu_var(lru_deactivate_pvecs);
550         }
551 }
552
553 void lru_add_drain(void)
554 {
555         drain_cpu_pagevecs(get_cpu());
556         put_cpu();
557 }
558
559 static void lru_add_drain_per_cpu(struct work_struct *dummy)
560 {
561         lru_add_drain();
562 }
563
564 /*
565  * Returns 0 for success
566  */
567 int lru_add_drain_all(void)
568 {
569         return schedule_on_each_cpu(lru_add_drain_per_cpu);
570 }
571
572 /*
573  * Batched page_cache_release().  Decrement the reference count on all the
574  * passed pages.  If it fell to zero then remove the page from the LRU and
575  * free it.
576  *
577  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
578  * for the remainder of the operation.
579  *
580  * The locking in this function is against shrink_inactive_list(): we recheck
581  * the page count inside the lock to see whether shrink_inactive_list()
582  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
583  * will free it.
584  */
585 void release_pages(struct page **pages, int nr, int cold)
586 {
587         int i;
588         LIST_HEAD(pages_to_free);
589         struct zone *zone = NULL;
590         unsigned long uninitialized_var(flags);
591
592         for (i = 0; i < nr; i++) {
593                 struct page *page = pages[i];
594
595                 if (unlikely(PageCompound(page))) {
596                         if (zone) {
597                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
598                                 zone = NULL;
599                         }
600                         put_compound_page(page);
601                         continue;
602                 }
603
604                 if (!put_page_testzero(page))
605                         continue;
606
607                 if (PageLRU(page)) {
608                         struct zone *pagezone = page_zone(page);
609
610                         if (pagezone != zone) {
611                                 if (zone)
612                                         spin_unlock_irqrestore(&zone->lru_lock,
613                                                                         flags);
614                                 zone = pagezone;
615                                 spin_lock_irqsave(&zone->lru_lock, flags);
616                         }
617                         VM_BUG_ON(!PageLRU(page));
618                         __ClearPageLRU(page);
619                         del_page_from_lru(zone, page);
620                 }
621
622                 list_add(&page->lru, &pages_to_free);
623         }
624         if (zone)
625                 spin_unlock_irqrestore(&zone->lru_lock, flags);
626
627         free_hot_cold_page_list(&pages_to_free, cold);
628 }
629 EXPORT_SYMBOL(release_pages);
630
631 /*
632  * The pages which we're about to release may be in the deferred lru-addition
633  * queues.  That would prevent them from really being freed right now.  That's
634  * OK from a correctness point of view but is inefficient - those pages may be
635  * cache-warm and we want to give them back to the page allocator ASAP.
636  *
637  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
638  * and __pagevec_lru_add_active() call release_pages() directly to avoid
639  * mutual recursion.
640  */
641 void __pagevec_release(struct pagevec *pvec)
642 {
643         lru_add_drain();
644         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
645         pagevec_reinit(pvec);
646 }
647
648 EXPORT_SYMBOL(__pagevec_release);
649
650 /* used by __split_huge_page_refcount() */
651 void lru_add_page_tail(struct zone* zone,
652                        struct page *page, struct page *page_tail)
653 {
654         int active;
655         enum lru_list lru;
656         const int file = 0;
657         struct list_head *head;
658
659         VM_BUG_ON(!PageHead(page));
660         VM_BUG_ON(PageCompound(page_tail));
661         VM_BUG_ON(PageLRU(page_tail));
662         VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
663
664         SetPageLRU(page_tail);
665
666         if (page_evictable(page_tail, NULL)) {
667                 if (PageActive(page)) {
668                         SetPageActive(page_tail);
669                         active = 1;
670                         lru = LRU_ACTIVE_ANON;
671                 } else {
672                         active = 0;
673                         lru = LRU_INACTIVE_ANON;
674                 }
675                 update_page_reclaim_stat(zone, page_tail, file, active);
676                 if (likely(PageLRU(page)))
677                         head = page->lru.prev;
678                 else
679                         head = &zone->lru[lru].list;
680                 __add_page_to_lru_list(zone, page_tail, lru, head);
681         } else {
682                 SetPageUnevictable(page_tail);
683                 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
684         }
685 }
686
687 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
688 {
689         enum lru_list lru = (enum lru_list)arg;
690         struct zone *zone = page_zone(page);
691         int file = is_file_lru(lru);
692         int active = is_active_lru(lru);
693
694         VM_BUG_ON(PageActive(page));
695         VM_BUG_ON(PageUnevictable(page));
696         VM_BUG_ON(PageLRU(page));
697
698         SetPageLRU(page);
699         if (active)
700                 SetPageActive(page);
701         update_page_reclaim_stat(zone, page, file, active);
702         add_page_to_lru_list(zone, page, lru);
703 }
704
705 /*
706  * Add the passed pages to the LRU, then drop the caller's refcount
707  * on them.  Reinitialises the caller's pagevec.
708  */
709 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
710 {
711         VM_BUG_ON(is_unevictable_lru(lru));
712
713         pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
714 }
715
716 EXPORT_SYMBOL(____pagevec_lru_add);
717
718 /*
719  * Try to drop buffers from the pages in a pagevec
720  */
721 void pagevec_strip(struct pagevec *pvec)
722 {
723         int i;
724
725         for (i = 0; i < pagevec_count(pvec); i++) {
726                 struct page *page = pvec->pages[i];
727
728                 if (page_has_private(page) && trylock_page(page)) {
729                         if (page_has_private(page))
730                                 try_to_release_page(page, 0);
731                         unlock_page(page);
732                 }
733         }
734 }
735
736 /**
737  * pagevec_lookup - gang pagecache lookup
738  * @pvec:       Where the resulting pages are placed
739  * @mapping:    The address_space to search
740  * @start:      The starting page index
741  * @nr_pages:   The maximum number of pages
742  *
743  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
744  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
745  * reference against the pages in @pvec.
746  *
747  * The search returns a group of mapping-contiguous pages with ascending
748  * indexes.  There may be holes in the indices due to not-present pages.
749  *
750  * pagevec_lookup() returns the number of pages which were found.
751  */
752 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
753                 pgoff_t start, unsigned nr_pages)
754 {
755         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
756         return pagevec_count(pvec);
757 }
758
759 EXPORT_SYMBOL(pagevec_lookup);
760
761 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
762                 pgoff_t *index, int tag, unsigned nr_pages)
763 {
764         pvec->nr = find_get_pages_tag(mapping, index, tag,
765                                         nr_pages, pvec->pages);
766         return pagevec_count(pvec);
767 }
768
769 EXPORT_SYMBOL(pagevec_lookup_tag);
770
771 /*
772  * Perform any setup for the swap system
773  */
774 void __init swap_setup(void)
775 {
776         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
777
778 #ifdef CONFIG_SWAP
779         bdi_init(swapper_space.backing_dev_info);
780 #endif
781
782         /* Use a smaller cluster for small-memory machines */
783         if (megs < 16)
784                 page_cluster = 2;
785         else
786                 page_cluster = 3;
787         /*
788          * Right now other parts of the system means that we
789          * _really_ don't want to cluster much more
790          */
791 }