Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50         if (PageLRU(page)) {
51                 struct zone *zone = page_zone(page);
52                 struct lruvec *lruvec;
53                 unsigned long flags;
54
55                 spin_lock_irqsave(&zone->lru_lock, flags);
56                 lruvec = mem_cgroup_page_lruvec(page, zone);
57                 VM_BUG_ON(!PageLRU(page));
58                 __ClearPageLRU(page);
59                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
60                 spin_unlock_irqrestore(&zone->lru_lock, flags);
61         }
62 }
63
64 static void __put_single_page(struct page *page)
65 {
66         __page_cache_release(page);
67         free_hot_cold_page(page, 0);
68 }
69
70 static void __put_compound_page(struct page *page)
71 {
72         compound_page_dtor *dtor;
73
74         __page_cache_release(page);
75         dtor = get_compound_page_dtor(page);
76         (*dtor)(page);
77 }
78
79 static void put_compound_page(struct page *page)
80 {
81         if (unlikely(PageTail(page))) {
82                 /* __split_huge_page_refcount can run under us */
83                 struct page *page_head = compound_trans_head(page);
84
85                 if (likely(page != page_head &&
86                            get_page_unless_zero(page_head))) {
87                         unsigned long flags;
88
89                         /*
90                          * THP can not break up slab pages so avoid taking
91                          * compound_lock().  Slab performs non-atomic bit ops
92                          * on page->flags for better performance.  In particular
93                          * slab_unlock() in slub used to be a hot path.  It is
94                          * still hot on arches that do not support
95                          * this_cpu_cmpxchg_double().
96                          */
97                         if (PageSlab(page_head)) {
98                                 if (PageTail(page)) {
99                                         if (put_page_testzero(page_head))
100                                                 VM_BUG_ON(1);
101
102                                         atomic_dec(&page->_mapcount);
103                                         goto skip_lock_tail;
104                                 } else
105                                         goto skip_lock;
106                         }
107                         /*
108                          * page_head wasn't a dangling pointer but it
109                          * may not be a head page anymore by the time
110                          * we obtain the lock. That is ok as long as it
111                          * can't be freed from under us.
112                          */
113                         flags = compound_lock_irqsave(page_head);
114                         if (unlikely(!PageTail(page))) {
115                                 /* __split_huge_page_refcount run before us */
116                                 compound_unlock_irqrestore(page_head, flags);
117 skip_lock:
118                                 if (put_page_testzero(page_head))
119                                         __put_single_page(page_head);
120 out_put_single:
121                                 if (put_page_testzero(page))
122                                         __put_single_page(page);
123                                 return;
124                         }
125                         VM_BUG_ON(page_head != page->first_page);
126                         /*
127                          * We can release the refcount taken by
128                          * get_page_unless_zero() now that
129                          * __split_huge_page_refcount() is blocked on
130                          * the compound_lock.
131                          */
132                         if (put_page_testzero(page_head))
133                                 VM_BUG_ON(1);
134                         /* __split_huge_page_refcount will wait now */
135                         VM_BUG_ON(page_mapcount(page) <= 0);
136                         atomic_dec(&page->_mapcount);
137                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
138                         VM_BUG_ON(atomic_read(&page->_count) != 0);
139                         compound_unlock_irqrestore(page_head, flags);
140
141 skip_lock_tail:
142                         if (put_page_testzero(page_head)) {
143                                 if (PageHead(page_head))
144                                         __put_compound_page(page_head);
145                                 else
146                                         __put_single_page(page_head);
147                         }
148                 } else {
149                         /* page_head is a dangling pointer */
150                         VM_BUG_ON(PageTail(page));
151                         goto out_put_single;
152                 }
153         } else if (put_page_testzero(page)) {
154                 if (PageHead(page))
155                         __put_compound_page(page);
156                 else
157                         __put_single_page(page);
158         }
159 }
160
161 void put_page(struct page *page)
162 {
163         if (unlikely(PageCompound(page)))
164                 put_compound_page(page);
165         else if (put_page_testzero(page))
166                 __put_single_page(page);
167 }
168 EXPORT_SYMBOL(put_page);
169
170 /*
171  * This function is exported but must not be called by anything other
172  * than get_page(). It implements the slow path of get_page().
173  */
174 bool __get_page_tail(struct page *page)
175 {
176         /*
177          * This takes care of get_page() if run on a tail page
178          * returned by one of the get_user_pages/follow_page variants.
179          * get_user_pages/follow_page itself doesn't need the compound
180          * lock because it runs __get_page_tail_foll() under the
181          * proper PT lock that already serializes against
182          * split_huge_page().
183          */
184         unsigned long flags;
185         bool got = false;
186         struct page *page_head = compound_trans_head(page);
187
188         if (likely(page != page_head && get_page_unless_zero(page_head))) {
189
190                 /* Ref to put_compound_page() comment. */
191                 if (PageSlab(page_head)) {
192                         if (likely(PageTail(page))) {
193                                 __get_page_tail_foll(page, false);
194                                 return true;
195                         } else {
196                                 put_page(page_head);
197                                 return false;
198                         }
199                 }
200
201                 /*
202                  * page_head wasn't a dangling pointer but it
203                  * may not be a head page anymore by the time
204                  * we obtain the lock. That is ok as long as it
205                  * can't be freed from under us.
206                  */
207                 flags = compound_lock_irqsave(page_head);
208                 /* here __split_huge_page_refcount won't run anymore */
209                 if (likely(PageTail(page))) {
210                         __get_page_tail_foll(page, false);
211                         got = true;
212                 }
213                 compound_unlock_irqrestore(page_head, flags);
214                 if (unlikely(!got))
215                         put_page(page_head);
216         }
217         return got;
218 }
219 EXPORT_SYMBOL(__get_page_tail);
220
221 /**
222  * put_pages_list() - release a list of pages
223  * @pages: list of pages threaded on page->lru
224  *
225  * Release a list of pages which are strung together on page.lru.  Currently
226  * used by read_cache_pages() and related error recovery code.
227  */
228 void put_pages_list(struct list_head *pages)
229 {
230         while (!list_empty(pages)) {
231                 struct page *victim;
232
233                 victim = list_entry(pages->prev, struct page, lru);
234                 list_del(&victim->lru);
235                 page_cache_release(victim);
236         }
237 }
238 EXPORT_SYMBOL(put_pages_list);
239
240 /*
241  * get_kernel_pages() - pin kernel pages in memory
242  * @kiov:       An array of struct kvec structures
243  * @nr_segs:    number of segments to pin
244  * @write:      pinning for read/write, currently ignored
245  * @pages:      array that receives pointers to the pages pinned.
246  *              Should be at least nr_segs long.
247  *
248  * Returns number of pages pinned. This may be fewer than the number
249  * requested. If nr_pages is 0 or negative, returns 0. If no pages
250  * were pinned, returns -errno. Each page returned must be released
251  * with a put_page() call when it is finished with.
252  */
253 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
254                 struct page **pages)
255 {
256         int seg;
257
258         for (seg = 0; seg < nr_segs; seg++) {
259                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
260                         return seg;
261
262                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
263                 page_cache_get(pages[seg]);
264         }
265
266         return seg;
267 }
268 EXPORT_SYMBOL_GPL(get_kernel_pages);
269
270 /*
271  * get_kernel_page() - pin a kernel page in memory
272  * @start:      starting kernel address
273  * @write:      pinning for read/write, currently ignored
274  * @pages:      array that receives pointer to the page pinned.
275  *              Must be at least nr_segs long.
276  *
277  * Returns 1 if page is pinned. If the page was not pinned, returns
278  * -errno. The page returned must be released with a put_page() call
279  * when it is finished with.
280  */
281 int get_kernel_page(unsigned long start, int write, struct page **pages)
282 {
283         const struct kvec kiov = {
284                 .iov_base = (void *)start,
285                 .iov_len = PAGE_SIZE
286         };
287
288         return get_kernel_pages(&kiov, 1, write, pages);
289 }
290 EXPORT_SYMBOL_GPL(get_kernel_page);
291
292 static void pagevec_lru_move_fn(struct pagevec *pvec,
293         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
294         void *arg)
295 {
296         int i;
297         struct zone *zone = NULL;
298         struct lruvec *lruvec;
299         unsigned long flags = 0;
300
301         for (i = 0; i < pagevec_count(pvec); i++) {
302                 struct page *page = pvec->pages[i];
303                 struct zone *pagezone = page_zone(page);
304
305                 if (pagezone != zone) {
306                         if (zone)
307                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
308                         zone = pagezone;
309                         spin_lock_irqsave(&zone->lru_lock, flags);
310                 }
311
312                 lruvec = mem_cgroup_page_lruvec(page, zone);
313                 (*move_fn)(page, lruvec, arg);
314         }
315         if (zone)
316                 spin_unlock_irqrestore(&zone->lru_lock, flags);
317         release_pages(pvec->pages, pvec->nr, pvec->cold);
318         pagevec_reinit(pvec);
319 }
320
321 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
322                                  void *arg)
323 {
324         int *pgmoved = arg;
325
326         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
327                 enum lru_list lru = page_lru_base_type(page);
328                 list_move_tail(&page->lru, &lruvec->lists[lru]);
329                 (*pgmoved)++;
330         }
331 }
332
333 /*
334  * pagevec_move_tail() must be called with IRQ disabled.
335  * Otherwise this may cause nasty races.
336  */
337 static void pagevec_move_tail(struct pagevec *pvec)
338 {
339         int pgmoved = 0;
340
341         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
342         __count_vm_events(PGROTATED, pgmoved);
343 }
344
345 /*
346  * Writeback is about to end against a page which has been marked for immediate
347  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
348  * inactive list.
349  */
350 void rotate_reclaimable_page(struct page *page)
351 {
352         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
353             !PageUnevictable(page) && PageLRU(page)) {
354                 struct pagevec *pvec;
355                 unsigned long flags;
356
357                 page_cache_get(page);
358                 local_irq_save(flags);
359                 pvec = &__get_cpu_var(lru_rotate_pvecs);
360                 if (!pagevec_add(pvec, page))
361                         pagevec_move_tail(pvec);
362                 local_irq_restore(flags);
363         }
364 }
365
366 static void update_page_reclaim_stat(struct lruvec *lruvec,
367                                      int file, int rotated)
368 {
369         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
370
371         reclaim_stat->recent_scanned[file]++;
372         if (rotated)
373                 reclaim_stat->recent_rotated[file]++;
374 }
375
376 static void __activate_page(struct page *page, struct lruvec *lruvec,
377                             void *arg)
378 {
379         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
380                 int file = page_is_file_cache(page);
381                 int lru = page_lru_base_type(page);
382
383                 del_page_from_lru_list(page, lruvec, lru);
384                 SetPageActive(page);
385                 lru += LRU_ACTIVE;
386                 add_page_to_lru_list(page, lruvec, lru);
387
388                 __count_vm_event(PGACTIVATE);
389                 update_page_reclaim_stat(lruvec, file, 1);
390         }
391 }
392
393 #ifdef CONFIG_SMP
394 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
395
396 static void activate_page_drain(int cpu)
397 {
398         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
399
400         if (pagevec_count(pvec))
401                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
402 }
403
404 void activate_page(struct page *page)
405 {
406         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
407                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
408
409                 page_cache_get(page);
410                 if (!pagevec_add(pvec, page))
411                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
412                 put_cpu_var(activate_page_pvecs);
413         }
414 }
415
416 #else
417 static inline void activate_page_drain(int cpu)
418 {
419 }
420
421 void activate_page(struct page *page)
422 {
423         struct zone *zone = page_zone(page);
424
425         spin_lock_irq(&zone->lru_lock);
426         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
427         spin_unlock_irq(&zone->lru_lock);
428 }
429 #endif
430
431 /*
432  * Mark a page as having seen activity.
433  *
434  * inactive,unreferenced        ->      inactive,referenced
435  * inactive,referenced          ->      active,unreferenced
436  * active,unreferenced          ->      active,referenced
437  */
438 void mark_page_accessed(struct page *page)
439 {
440         if (!PageActive(page) && !PageUnevictable(page) &&
441                         PageReferenced(page) && PageLRU(page)) {
442                 activate_page(page);
443                 ClearPageReferenced(page);
444         } else if (!PageReferenced(page)) {
445                 SetPageReferenced(page);
446         }
447 }
448 EXPORT_SYMBOL(mark_page_accessed);
449
450 /*
451  * Order of operations is important: flush the pagevec when it's already
452  * full, not when adding the last page, to make sure that last page is
453  * not added to the LRU directly when passed to this function. Because
454  * mark_page_accessed() (called after this when writing) only activates
455  * pages that are on the LRU, linear writes in subpage chunks would see
456  * every PAGEVEC_SIZE page activated, which is unexpected.
457  */
458 void __lru_cache_add(struct page *page, enum lru_list lru)
459 {
460         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
461
462         page_cache_get(page);
463         if (!pagevec_space(pvec))
464                 __pagevec_lru_add(pvec, lru);
465         pagevec_add(pvec, page);
466         put_cpu_var(lru_add_pvecs);
467 }
468 EXPORT_SYMBOL(__lru_cache_add);
469
470 /**
471  * lru_cache_add_lru - add a page to a page list
472  * @page: the page to be added to the LRU.
473  * @lru: the LRU list to which the page is added.
474  */
475 void lru_cache_add_lru(struct page *page, enum lru_list lru)
476 {
477         if (PageActive(page)) {
478                 VM_BUG_ON(PageUnevictable(page));
479                 ClearPageActive(page);
480         } else if (PageUnevictable(page)) {
481                 VM_BUG_ON(PageActive(page));
482                 ClearPageUnevictable(page);
483         }
484
485         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
486         __lru_cache_add(page, lru);
487 }
488
489 /**
490  * add_page_to_unevictable_list - add a page to the unevictable list
491  * @page:  the page to be added to the unevictable list
492  *
493  * Add page directly to its zone's unevictable list.  To avoid races with
494  * tasks that might be making the page evictable, through eg. munlock,
495  * munmap or exit, while it's not on the lru, we want to add the page
496  * while it's locked or otherwise "invisible" to other tasks.  This is
497  * difficult to do when using the pagevec cache, so bypass that.
498  */
499 void add_page_to_unevictable_list(struct page *page)
500 {
501         struct zone *zone = page_zone(page);
502         struct lruvec *lruvec;
503
504         spin_lock_irq(&zone->lru_lock);
505         lruvec = mem_cgroup_page_lruvec(page, zone);
506         SetPageUnevictable(page);
507         SetPageLRU(page);
508         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
509         spin_unlock_irq(&zone->lru_lock);
510 }
511
512 /*
513  * If the page can not be invalidated, it is moved to the
514  * inactive list to speed up its reclaim.  It is moved to the
515  * head of the list, rather than the tail, to give the flusher
516  * threads some time to write it out, as this is much more
517  * effective than the single-page writeout from reclaim.
518  *
519  * If the page isn't page_mapped and dirty/writeback, the page
520  * could reclaim asap using PG_reclaim.
521  *
522  * 1. active, mapped page -> none
523  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
524  * 3. inactive, mapped page -> none
525  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
526  * 5. inactive, clean -> inactive, tail
527  * 6. Others -> none
528  *
529  * In 4, why it moves inactive's head, the VM expects the page would
530  * be write it out by flusher threads as this is much more effective
531  * than the single-page writeout from reclaim.
532  */
533 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
534                               void *arg)
535 {
536         int lru, file;
537         bool active;
538
539         if (!PageLRU(page))
540                 return;
541
542         if (PageUnevictable(page))
543                 return;
544
545         /* Some processes are using the page */
546         if (page_mapped(page))
547                 return;
548
549         active = PageActive(page);
550         file = page_is_file_cache(page);
551         lru = page_lru_base_type(page);
552
553         del_page_from_lru_list(page, lruvec, lru + active);
554         ClearPageActive(page);
555         ClearPageReferenced(page);
556         add_page_to_lru_list(page, lruvec, lru);
557
558         if (PageWriteback(page) || PageDirty(page)) {
559                 /*
560                  * PG_reclaim could be raced with end_page_writeback
561                  * It can make readahead confusing.  But race window
562                  * is _really_ small and  it's non-critical problem.
563                  */
564                 SetPageReclaim(page);
565         } else {
566                 /*
567                  * The page's writeback ends up during pagevec
568                  * We moves tha page into tail of inactive.
569                  */
570                 list_move_tail(&page->lru, &lruvec->lists[lru]);
571                 __count_vm_event(PGROTATED);
572         }
573
574         if (active)
575                 __count_vm_event(PGDEACTIVATE);
576         update_page_reclaim_stat(lruvec, file, 0);
577 }
578
579 /*
580  * Drain pages out of the cpu's pagevecs.
581  * Either "cpu" is the current CPU, and preemption has already been
582  * disabled; or "cpu" is being hot-unplugged, and is already dead.
583  */
584 void lru_add_drain_cpu(int cpu)
585 {
586         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
587         struct pagevec *pvec;
588         int lru;
589
590         for_each_lru(lru) {
591                 pvec = &pvecs[lru - LRU_BASE];
592                 if (pagevec_count(pvec))
593                         __pagevec_lru_add(pvec, lru);
594         }
595
596         pvec = &per_cpu(lru_rotate_pvecs, cpu);
597         if (pagevec_count(pvec)) {
598                 unsigned long flags;
599
600                 /* No harm done if a racing interrupt already did this */
601                 local_irq_save(flags);
602                 pagevec_move_tail(pvec);
603                 local_irq_restore(flags);
604         }
605
606         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
607         if (pagevec_count(pvec))
608                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
609
610         activate_page_drain(cpu);
611 }
612
613 /**
614  * deactivate_page - forcefully deactivate a page
615  * @page: page to deactivate
616  *
617  * This function hints the VM that @page is a good reclaim candidate,
618  * for example if its invalidation fails due to the page being dirty
619  * or under writeback.
620  */
621 void deactivate_page(struct page *page)
622 {
623         /*
624          * In a workload with many unevictable page such as mprotect, unevictable
625          * page deactivation for accelerating reclaim is pointless.
626          */
627         if (PageUnevictable(page))
628                 return;
629
630         if (likely(get_page_unless_zero(page))) {
631                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
632
633                 if (!pagevec_add(pvec, page))
634                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
635                 put_cpu_var(lru_deactivate_pvecs);
636         }
637 }
638
639 void lru_add_drain(void)
640 {
641         lru_add_drain_cpu(get_cpu());
642         put_cpu();
643 }
644
645 static void lru_add_drain_per_cpu(struct work_struct *dummy)
646 {
647         lru_add_drain();
648 }
649
650 /*
651  * Returns 0 for success
652  */
653 int lru_add_drain_all(void)
654 {
655         return schedule_on_each_cpu(lru_add_drain_per_cpu);
656 }
657
658 /*
659  * Batched page_cache_release().  Decrement the reference count on all the
660  * passed pages.  If it fell to zero then remove the page from the LRU and
661  * free it.
662  *
663  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
664  * for the remainder of the operation.
665  *
666  * The locking in this function is against shrink_inactive_list(): we recheck
667  * the page count inside the lock to see whether shrink_inactive_list()
668  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
669  * will free it.
670  */
671 void release_pages(struct page **pages, int nr, int cold)
672 {
673         int i;
674         LIST_HEAD(pages_to_free);
675         struct zone *zone = NULL;
676         struct lruvec *lruvec;
677         unsigned long uninitialized_var(flags);
678
679         for (i = 0; i < nr; i++) {
680                 struct page *page = pages[i];
681
682                 if (unlikely(PageCompound(page))) {
683                         if (zone) {
684                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
685                                 zone = NULL;
686                         }
687                         put_compound_page(page);
688                         continue;
689                 }
690
691                 if (!put_page_testzero(page))
692                         continue;
693
694                 if (PageLRU(page)) {
695                         struct zone *pagezone = page_zone(page);
696
697                         if (pagezone != zone) {
698                                 if (zone)
699                                         spin_unlock_irqrestore(&zone->lru_lock,
700                                                                         flags);
701                                 zone = pagezone;
702                                 spin_lock_irqsave(&zone->lru_lock, flags);
703                         }
704
705                         lruvec = mem_cgroup_page_lruvec(page, zone);
706                         VM_BUG_ON(!PageLRU(page));
707                         __ClearPageLRU(page);
708                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
709                 }
710
711                 list_add(&page->lru, &pages_to_free);
712         }
713         if (zone)
714                 spin_unlock_irqrestore(&zone->lru_lock, flags);
715
716         free_hot_cold_page_list(&pages_to_free, cold);
717 }
718 EXPORT_SYMBOL(release_pages);
719
720 /*
721  * The pages which we're about to release may be in the deferred lru-addition
722  * queues.  That would prevent them from really being freed right now.  That's
723  * OK from a correctness point of view but is inefficient - those pages may be
724  * cache-warm and we want to give them back to the page allocator ASAP.
725  *
726  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
727  * and __pagevec_lru_add_active() call release_pages() directly to avoid
728  * mutual recursion.
729  */
730 void __pagevec_release(struct pagevec *pvec)
731 {
732         lru_add_drain();
733         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
734         pagevec_reinit(pvec);
735 }
736 EXPORT_SYMBOL(__pagevec_release);
737
738 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
739 /* used by __split_huge_page_refcount() */
740 void lru_add_page_tail(struct page *page, struct page *page_tail,
741                        struct lruvec *lruvec, struct list_head *list)
742 {
743         int uninitialized_var(active);
744         enum lru_list lru;
745         const int file = 0;
746
747         VM_BUG_ON(!PageHead(page));
748         VM_BUG_ON(PageCompound(page_tail));
749         VM_BUG_ON(PageLRU(page_tail));
750         VM_BUG_ON(NR_CPUS != 1 &&
751                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
752
753         if (!list)
754                 SetPageLRU(page_tail);
755
756         if (page_evictable(page_tail)) {
757                 if (PageActive(page)) {
758                         SetPageActive(page_tail);
759                         active = 1;
760                         lru = LRU_ACTIVE_ANON;
761                 } else {
762                         active = 0;
763                         lru = LRU_INACTIVE_ANON;
764                 }
765         } else {
766                 SetPageUnevictable(page_tail);
767                 lru = LRU_UNEVICTABLE;
768         }
769
770         if (likely(PageLRU(page)))
771                 list_add_tail(&page_tail->lru, &page->lru);
772         else if (list) {
773                 /* page reclaim is reclaiming a huge page */
774                 get_page(page_tail);
775                 list_add_tail(&page_tail->lru, list);
776         } else {
777                 struct list_head *list_head;
778                 /*
779                  * Head page has not yet been counted, as an hpage,
780                  * so we must account for each subpage individually.
781                  *
782                  * Use the standard add function to put page_tail on the list,
783                  * but then correct its position so they all end up in order.
784                  */
785                 add_page_to_lru_list(page_tail, lruvec, lru);
786                 list_head = page_tail->lru.prev;
787                 list_move_tail(&page_tail->lru, list_head);
788         }
789
790         if (!PageUnevictable(page))
791                 update_page_reclaim_stat(lruvec, file, active);
792 }
793 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
794
795 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
796                                  void *arg)
797 {
798         enum lru_list lru = (enum lru_list)arg;
799         int file = is_file_lru(lru);
800         int active = is_active_lru(lru);
801
802         VM_BUG_ON(PageActive(page));
803         VM_BUG_ON(PageUnevictable(page));
804         VM_BUG_ON(PageLRU(page));
805
806         SetPageLRU(page);
807         if (active)
808                 SetPageActive(page);
809         add_page_to_lru_list(page, lruvec, lru);
810         update_page_reclaim_stat(lruvec, file, active);
811 }
812
813 /*
814  * Add the passed pages to the LRU, then drop the caller's refcount
815  * on them.  Reinitialises the caller's pagevec.
816  */
817 void __pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
818 {
819         VM_BUG_ON(is_unevictable_lru(lru));
820
821         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, (void *)lru);
822 }
823 EXPORT_SYMBOL(__pagevec_lru_add);
824
825 /**
826  * pagevec_lookup - gang pagecache lookup
827  * @pvec:       Where the resulting pages are placed
828  * @mapping:    The address_space to search
829  * @start:      The starting page index
830  * @nr_pages:   The maximum number of pages
831  *
832  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
833  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
834  * reference against the pages in @pvec.
835  *
836  * The search returns a group of mapping-contiguous pages with ascending
837  * indexes.  There may be holes in the indices due to not-present pages.
838  *
839  * pagevec_lookup() returns the number of pages which were found.
840  */
841 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
842                 pgoff_t start, unsigned nr_pages)
843 {
844         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
845         return pagevec_count(pvec);
846 }
847 EXPORT_SYMBOL(pagevec_lookup);
848
849 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
850                 pgoff_t *index, int tag, unsigned nr_pages)
851 {
852         pvec->nr = find_get_pages_tag(mapping, index, tag,
853                                         nr_pages, pvec->pages);
854         return pagevec_count(pvec);
855 }
856 EXPORT_SYMBOL(pagevec_lookup_tag);
857
858 /*
859  * Perform any setup for the swap system
860  */
861 void __init swap_setup(void)
862 {
863         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
864 #ifdef CONFIG_SWAP
865         int i;
866
867         bdi_init(swapper_spaces[0].backing_dev_info);
868         for (i = 0; i < MAX_SWAPFILES; i++) {
869                 spin_lock_init(&swapper_spaces[i].tree_lock);
870                 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
871         }
872 #endif
873
874         /* Use a smaller cluster for small-memory machines */
875         if (megs < 16)
876                 page_cluster = 2;
877         else
878                 page_cluster = 3;
879         /*
880          * Right now other parts of the system means that we
881          * _really_ don't want to cluster much more
882          */
883 }