usb: gadget: storage_common: use kstrto*()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/mm_inline.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page() */
27 #include <linux/percpu_counter.h>
28 #include <linux/percpu.h>
29 #include <linux/cpu.h>
30 #include <linux/notifier.h>
31 #include <linux/backing-dev.h>
32 #include <linux/memcontrol.h>
33 #include <linux/gfp.h>
34
35 #include "internal.h"
36
37 /* How many pages do we try to swap or page in/out together? */
38 int page_cluster;
39
40 static DEFINE_PER_CPU(struct pagevec[NR_LRU_LISTS], lru_add_pvecs);
41 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
42 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
43
44 /*
45  * This path almost never happens for VM activity - pages are normally
46  * freed via pagevecs.  But it gets used by networking.
47  */
48 static void __page_cache_release(struct page *page)
49 {
50         if (PageLRU(page)) {
51                 unsigned long flags;
52                 struct zone *zone = page_zone(page);
53
54                 spin_lock_irqsave(&zone->lru_lock, flags);
55                 VM_BUG_ON(!PageLRU(page));
56                 __ClearPageLRU(page);
57                 del_page_from_lru(zone, page);
58                 spin_unlock_irqrestore(&zone->lru_lock, flags);
59         }
60 }
61
62 static void __put_single_page(struct page *page)
63 {
64         __page_cache_release(page);
65         free_hot_cold_page(page, 0);
66 }
67
68 static void __put_compound_page(struct page *page)
69 {
70         compound_page_dtor *dtor;
71
72         __page_cache_release(page);
73         dtor = get_compound_page_dtor(page);
74         (*dtor)(page);
75 }
76
77 static void put_compound_page(struct page *page)
78 {
79         if (unlikely(PageTail(page))) {
80                 /* __split_huge_page_refcount can run under us */
81                 struct page *page_head = page->first_page;
82                 smp_rmb();
83                 /*
84                  * If PageTail is still set after smp_rmb() we can be sure
85                  * that the page->first_page we read wasn't a dangling pointer.
86                  * See __split_huge_page_refcount() smp_wmb().
87                  */
88                 if (likely(PageTail(page) && get_page_unless_zero(page_head))) {
89                         unsigned long flags;
90                         /*
91                          * Verify that our page_head wasn't converted
92                          * to a a regular page before we got a
93                          * reference on it.
94                          */
95                         if (unlikely(!PageHead(page_head))) {
96                                 /* PageHead is cleared after PageTail */
97                                 smp_rmb();
98                                 VM_BUG_ON(PageTail(page));
99                                 goto out_put_head;
100                         }
101                         /*
102                          * Only run compound_lock on a valid PageHead,
103                          * after having it pinned with
104                          * get_page_unless_zero() above.
105                          */
106                         smp_mb();
107                         /* page_head wasn't a dangling pointer */
108                         flags = compound_lock_irqsave(page_head);
109                         if (unlikely(!PageTail(page))) {
110                                 /* __split_huge_page_refcount run before us */
111                                 compound_unlock_irqrestore(page_head, flags);
112                                 VM_BUG_ON(PageHead(page_head));
113                         out_put_head:
114                                 if (put_page_testzero(page_head))
115                                         __put_single_page(page_head);
116                         out_put_single:
117                                 if (put_page_testzero(page))
118                                         __put_single_page(page);
119                                 return;
120                         }
121                         VM_BUG_ON(page_head != page->first_page);
122                         /*
123                          * We can release the refcount taken by
124                          * get_page_unless_zero now that
125                          * split_huge_page_refcount is blocked on the
126                          * compound_lock.
127                          */
128                         if (put_page_testzero(page_head))
129                                 VM_BUG_ON(1);
130                         /* __split_huge_page_refcount will wait now */
131                         VM_BUG_ON(atomic_read(&page->_count) <= 0);
132                         atomic_dec(&page->_count);
133                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
134                         compound_unlock_irqrestore(page_head, flags);
135                         if (put_page_testzero(page_head)) {
136                                 if (PageHead(page_head))
137                                         __put_compound_page(page_head);
138                                 else
139                                         __put_single_page(page_head);
140                         }
141                 } else {
142                         /* page_head is a dangling pointer */
143                         VM_BUG_ON(PageTail(page));
144                         goto out_put_single;
145                 }
146         } else if (put_page_testzero(page)) {
147                 if (PageHead(page))
148                         __put_compound_page(page);
149                 else
150                         __put_single_page(page);
151         }
152 }
153
154 void put_page(struct page *page)
155 {
156         if (unlikely(PageCompound(page)))
157                 put_compound_page(page);
158         else if (put_page_testzero(page))
159                 __put_single_page(page);
160 }
161 EXPORT_SYMBOL(put_page);
162
163 /**
164  * put_pages_list() - release a list of pages
165  * @pages: list of pages threaded on page->lru
166  *
167  * Release a list of pages which are strung together on page.lru.  Currently
168  * used by read_cache_pages() and related error recovery code.
169  */
170 void put_pages_list(struct list_head *pages)
171 {
172         while (!list_empty(pages)) {
173                 struct page *victim;
174
175                 victim = list_entry(pages->prev, struct page, lru);
176                 list_del(&victim->lru);
177                 page_cache_release(victim);
178         }
179 }
180 EXPORT_SYMBOL(put_pages_list);
181
182 static void pagevec_lru_move_fn(struct pagevec *pvec,
183                                 void (*move_fn)(struct page *page, void *arg),
184                                 void *arg)
185 {
186         int i;
187         struct zone *zone = NULL;
188         unsigned long flags = 0;
189
190         for (i = 0; i < pagevec_count(pvec); i++) {
191                 struct page *page = pvec->pages[i];
192                 struct zone *pagezone = page_zone(page);
193
194                 if (pagezone != zone) {
195                         if (zone)
196                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
197                         zone = pagezone;
198                         spin_lock_irqsave(&zone->lru_lock, flags);
199                 }
200
201                 (*move_fn)(page, arg);
202         }
203         if (zone)
204                 spin_unlock_irqrestore(&zone->lru_lock, flags);
205         release_pages(pvec->pages, pvec->nr, pvec->cold);
206         pagevec_reinit(pvec);
207 }
208
209 static void pagevec_move_tail_fn(struct page *page, void *arg)
210 {
211         int *pgmoved = arg;
212         struct zone *zone = page_zone(page);
213
214         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
215                 enum lru_list lru = page_lru_base_type(page);
216                 list_move_tail(&page->lru, &zone->lru[lru].list);
217                 mem_cgroup_rotate_reclaimable_page(page);
218                 (*pgmoved)++;
219         }
220 }
221
222 /*
223  * pagevec_move_tail() must be called with IRQ disabled.
224  * Otherwise this may cause nasty races.
225  */
226 static void pagevec_move_tail(struct pagevec *pvec)
227 {
228         int pgmoved = 0;
229
230         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
231         __count_vm_events(PGROTATED, pgmoved);
232 }
233
234 /*
235  * Writeback is about to end against a page which has been marked for immediate
236  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
237  * inactive list.
238  */
239 void rotate_reclaimable_page(struct page *page)
240 {
241         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
242             !PageUnevictable(page) && PageLRU(page)) {
243                 struct pagevec *pvec;
244                 unsigned long flags;
245
246                 page_cache_get(page);
247                 local_irq_save(flags);
248                 pvec = &__get_cpu_var(lru_rotate_pvecs);
249                 if (!pagevec_add(pvec, page))
250                         pagevec_move_tail(pvec);
251                 local_irq_restore(flags);
252         }
253 }
254
255 static void update_page_reclaim_stat(struct zone *zone, struct page *page,
256                                      int file, int rotated)
257 {
258         struct zone_reclaim_stat *reclaim_stat = &zone->reclaim_stat;
259         struct zone_reclaim_stat *memcg_reclaim_stat;
260
261         memcg_reclaim_stat = mem_cgroup_get_reclaim_stat_from_page(page);
262
263         reclaim_stat->recent_scanned[file]++;
264         if (rotated)
265                 reclaim_stat->recent_rotated[file]++;
266
267         if (!memcg_reclaim_stat)
268                 return;
269
270         memcg_reclaim_stat->recent_scanned[file]++;
271         if (rotated)
272                 memcg_reclaim_stat->recent_rotated[file]++;
273 }
274
275 /*
276  * FIXME: speed this up?
277  */
278 void activate_page(struct page *page)
279 {
280         struct zone *zone = page_zone(page);
281
282         spin_lock_irq(&zone->lru_lock);
283         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
284                 int file = page_is_file_cache(page);
285                 int lru = page_lru_base_type(page);
286                 del_page_from_lru_list(zone, page, lru);
287
288                 SetPageActive(page);
289                 lru += LRU_ACTIVE;
290                 add_page_to_lru_list(zone, page, lru);
291                 __count_vm_event(PGACTIVATE);
292
293                 update_page_reclaim_stat(zone, page, file, 1);
294         }
295         spin_unlock_irq(&zone->lru_lock);
296 }
297
298 /*
299  * Mark a page as having seen activity.
300  *
301  * inactive,unreferenced        ->      inactive,referenced
302  * inactive,referenced          ->      active,unreferenced
303  * active,unreferenced          ->      active,referenced
304  */
305 void mark_page_accessed(struct page *page)
306 {
307         if (!PageActive(page) && !PageUnevictable(page) &&
308                         PageReferenced(page) && PageLRU(page)) {
309                 activate_page(page);
310                 ClearPageReferenced(page);
311         } else if (!PageReferenced(page)) {
312                 SetPageReferenced(page);
313         }
314 }
315
316 EXPORT_SYMBOL(mark_page_accessed);
317
318 void __lru_cache_add(struct page *page, enum lru_list lru)
319 {
320         struct pagevec *pvec = &get_cpu_var(lru_add_pvecs)[lru];
321
322         page_cache_get(page);
323         if (!pagevec_add(pvec, page))
324                 ____pagevec_lru_add(pvec, lru);
325         put_cpu_var(lru_add_pvecs);
326 }
327 EXPORT_SYMBOL(__lru_cache_add);
328
329 /**
330  * lru_cache_add_lru - add a page to a page list
331  * @page: the page to be added to the LRU.
332  * @lru: the LRU list to which the page is added.
333  */
334 void lru_cache_add_lru(struct page *page, enum lru_list lru)
335 {
336         if (PageActive(page)) {
337                 VM_BUG_ON(PageUnevictable(page));
338                 ClearPageActive(page);
339         } else if (PageUnevictable(page)) {
340                 VM_BUG_ON(PageActive(page));
341                 ClearPageUnevictable(page);
342         }
343
344         VM_BUG_ON(PageLRU(page) || PageActive(page) || PageUnevictable(page));
345         __lru_cache_add(page, lru);
346 }
347
348 /**
349  * add_page_to_unevictable_list - add a page to the unevictable list
350  * @page:  the page to be added to the unevictable list
351  *
352  * Add page directly to its zone's unevictable list.  To avoid races with
353  * tasks that might be making the page evictable, through eg. munlock,
354  * munmap or exit, while it's not on the lru, we want to add the page
355  * while it's locked or otherwise "invisible" to other tasks.  This is
356  * difficult to do when using the pagevec cache, so bypass that.
357  */
358 void add_page_to_unevictable_list(struct page *page)
359 {
360         struct zone *zone = page_zone(page);
361
362         spin_lock_irq(&zone->lru_lock);
363         SetPageUnevictable(page);
364         SetPageLRU(page);
365         add_page_to_lru_list(zone, page, LRU_UNEVICTABLE);
366         spin_unlock_irq(&zone->lru_lock);
367 }
368
369 /*
370  * If the page can not be invalidated, it is moved to the
371  * inactive list to speed up its reclaim.  It is moved to the
372  * head of the list, rather than the tail, to give the flusher
373  * threads some time to write it out, as this is much more
374  * effective than the single-page writeout from reclaim.
375  *
376  * If the page isn't page_mapped and dirty/writeback, the page
377  * could reclaim asap using PG_reclaim.
378  *
379  * 1. active, mapped page -> none
380  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
381  * 3. inactive, mapped page -> none
382  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
383  * 5. inactive, clean -> inactive, tail
384  * 6. Others -> none
385  *
386  * In 4, why it moves inactive's head, the VM expects the page would
387  * be write it out by flusher threads as this is much more effective
388  * than the single-page writeout from reclaim.
389  */
390 static void lru_deactivate_fn(struct page *page, void *arg)
391 {
392         int lru, file;
393         bool active;
394         struct zone *zone = page_zone(page);
395
396         if (!PageLRU(page))
397                 return;
398
399         /* Some processes are using the page */
400         if (page_mapped(page))
401                 return;
402
403         active = PageActive(page);
404
405         file = page_is_file_cache(page);
406         lru = page_lru_base_type(page);
407         del_page_from_lru_list(zone, page, lru + active);
408         ClearPageActive(page);
409         ClearPageReferenced(page);
410         add_page_to_lru_list(zone, page, lru);
411
412         if (PageWriteback(page) || PageDirty(page)) {
413                 /*
414                  * PG_reclaim could be raced with end_page_writeback
415                  * It can make readahead confusing.  But race window
416                  * is _really_ small and  it's non-critical problem.
417                  */
418                 SetPageReclaim(page);
419         } else {
420                 /*
421                  * The page's writeback ends up during pagevec
422                  * We moves tha page into tail of inactive.
423                  */
424                 list_move_tail(&page->lru, &zone->lru[lru].list);
425                 mem_cgroup_rotate_reclaimable_page(page);
426                 __count_vm_event(PGROTATED);
427         }
428
429         if (active)
430                 __count_vm_event(PGDEACTIVATE);
431         update_page_reclaim_stat(zone, page, file, 0);
432 }
433
434 /*
435  * Drain pages out of the cpu's pagevecs.
436  * Either "cpu" is the current CPU, and preemption has already been
437  * disabled; or "cpu" is being hot-unplugged, and is already dead.
438  */
439 static void drain_cpu_pagevecs(int cpu)
440 {
441         struct pagevec *pvecs = per_cpu(lru_add_pvecs, cpu);
442         struct pagevec *pvec;
443         int lru;
444
445         for_each_lru(lru) {
446                 pvec = &pvecs[lru - LRU_BASE];
447                 if (pagevec_count(pvec))
448                         ____pagevec_lru_add(pvec, lru);
449         }
450
451         pvec = &per_cpu(lru_rotate_pvecs, cpu);
452         if (pagevec_count(pvec)) {
453                 unsigned long flags;
454
455                 /* No harm done if a racing interrupt already did this */
456                 local_irq_save(flags);
457                 pagevec_move_tail(pvec);
458                 local_irq_restore(flags);
459         }
460
461         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
462         if (pagevec_count(pvec))
463                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
464 }
465
466 /**
467  * deactivate_page - forcefully deactivate a page
468  * @page: page to deactivate
469  *
470  * This function hints the VM that @page is a good reclaim candidate,
471  * for example if its invalidation fails due to the page being dirty
472  * or under writeback.
473  */
474 void deactivate_page(struct page *page)
475 {
476         if (likely(get_page_unless_zero(page))) {
477                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
478
479                 if (!pagevec_add(pvec, page))
480                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
481                 put_cpu_var(lru_deactivate_pvecs);
482         }
483 }
484
485 void lru_add_drain(void)
486 {
487         drain_cpu_pagevecs(get_cpu());
488         put_cpu();
489 }
490
491 static void lru_add_drain_per_cpu(struct work_struct *dummy)
492 {
493         lru_add_drain();
494 }
495
496 /*
497  * Returns 0 for success
498  */
499 int lru_add_drain_all(void)
500 {
501         return schedule_on_each_cpu(lru_add_drain_per_cpu);
502 }
503
504 /*
505  * Batched page_cache_release().  Decrement the reference count on all the
506  * passed pages.  If it fell to zero then remove the page from the LRU and
507  * free it.
508  *
509  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
510  * for the remainder of the operation.
511  *
512  * The locking in this function is against shrink_inactive_list(): we recheck
513  * the page count inside the lock to see whether shrink_inactive_list()
514  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
515  * will free it.
516  */
517 void release_pages(struct page **pages, int nr, int cold)
518 {
519         int i;
520         struct pagevec pages_to_free;
521         struct zone *zone = NULL;
522         unsigned long uninitialized_var(flags);
523
524         pagevec_init(&pages_to_free, cold);
525         for (i = 0; i < nr; i++) {
526                 struct page *page = pages[i];
527
528                 if (unlikely(PageCompound(page))) {
529                         if (zone) {
530                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
531                                 zone = NULL;
532                         }
533                         put_compound_page(page);
534                         continue;
535                 }
536
537                 if (!put_page_testzero(page))
538                         continue;
539
540                 if (PageLRU(page)) {
541                         struct zone *pagezone = page_zone(page);
542
543                         if (pagezone != zone) {
544                                 if (zone)
545                                         spin_unlock_irqrestore(&zone->lru_lock,
546                                                                         flags);
547                                 zone = pagezone;
548                                 spin_lock_irqsave(&zone->lru_lock, flags);
549                         }
550                         VM_BUG_ON(!PageLRU(page));
551                         __ClearPageLRU(page);
552                         del_page_from_lru(zone, page);
553                 }
554
555                 if (!pagevec_add(&pages_to_free, page)) {
556                         if (zone) {
557                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
558                                 zone = NULL;
559                         }
560                         __pagevec_free(&pages_to_free);
561                         pagevec_reinit(&pages_to_free);
562                 }
563         }
564         if (zone)
565                 spin_unlock_irqrestore(&zone->lru_lock, flags);
566
567         pagevec_free(&pages_to_free);
568 }
569 EXPORT_SYMBOL(release_pages);
570
571 /*
572  * The pages which we're about to release may be in the deferred lru-addition
573  * queues.  That would prevent them from really being freed right now.  That's
574  * OK from a correctness point of view but is inefficient - those pages may be
575  * cache-warm and we want to give them back to the page allocator ASAP.
576  *
577  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
578  * and __pagevec_lru_add_active() call release_pages() directly to avoid
579  * mutual recursion.
580  */
581 void __pagevec_release(struct pagevec *pvec)
582 {
583         lru_add_drain();
584         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
585         pagevec_reinit(pvec);
586 }
587
588 EXPORT_SYMBOL(__pagevec_release);
589
590 /* used by __split_huge_page_refcount() */
591 void lru_add_page_tail(struct zone* zone,
592                        struct page *page, struct page *page_tail)
593 {
594         int active;
595         enum lru_list lru;
596         const int file = 0;
597         struct list_head *head;
598
599         VM_BUG_ON(!PageHead(page));
600         VM_BUG_ON(PageCompound(page_tail));
601         VM_BUG_ON(PageLRU(page_tail));
602         VM_BUG_ON(!spin_is_locked(&zone->lru_lock));
603
604         SetPageLRU(page_tail);
605
606         if (page_evictable(page_tail, NULL)) {
607                 if (PageActive(page)) {
608                         SetPageActive(page_tail);
609                         active = 1;
610                         lru = LRU_ACTIVE_ANON;
611                 } else {
612                         active = 0;
613                         lru = LRU_INACTIVE_ANON;
614                 }
615                 update_page_reclaim_stat(zone, page_tail, file, active);
616                 if (likely(PageLRU(page)))
617                         head = page->lru.prev;
618                 else
619                         head = &zone->lru[lru].list;
620                 __add_page_to_lru_list(zone, page_tail, lru, head);
621         } else {
622                 SetPageUnevictable(page_tail);
623                 add_page_to_lru_list(zone, page_tail, LRU_UNEVICTABLE);
624         }
625 }
626
627 static void ____pagevec_lru_add_fn(struct page *page, void *arg)
628 {
629         enum lru_list lru = (enum lru_list)arg;
630         struct zone *zone = page_zone(page);
631         int file = is_file_lru(lru);
632         int active = is_active_lru(lru);
633
634         VM_BUG_ON(PageActive(page));
635         VM_BUG_ON(PageUnevictable(page));
636         VM_BUG_ON(PageLRU(page));
637
638         SetPageLRU(page);
639         if (active)
640                 SetPageActive(page);
641         update_page_reclaim_stat(zone, page, file, active);
642         add_page_to_lru_list(zone, page, lru);
643 }
644
645 /*
646  * Add the passed pages to the LRU, then drop the caller's refcount
647  * on them.  Reinitialises the caller's pagevec.
648  */
649 void ____pagevec_lru_add(struct pagevec *pvec, enum lru_list lru)
650 {
651         VM_BUG_ON(is_unevictable_lru(lru));
652
653         pagevec_lru_move_fn(pvec, ____pagevec_lru_add_fn, (void *)lru);
654 }
655
656 EXPORT_SYMBOL(____pagevec_lru_add);
657
658 /*
659  * Try to drop buffers from the pages in a pagevec
660  */
661 void pagevec_strip(struct pagevec *pvec)
662 {
663         int i;
664
665         for (i = 0; i < pagevec_count(pvec); i++) {
666                 struct page *page = pvec->pages[i];
667
668                 if (page_has_private(page) && trylock_page(page)) {
669                         if (page_has_private(page))
670                                 try_to_release_page(page, 0);
671                         unlock_page(page);
672                 }
673         }
674 }
675
676 /**
677  * pagevec_lookup - gang pagecache lookup
678  * @pvec:       Where the resulting pages are placed
679  * @mapping:    The address_space to search
680  * @start:      The starting page index
681  * @nr_pages:   The maximum number of pages
682  *
683  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
684  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
685  * reference against the pages in @pvec.
686  *
687  * The search returns a group of mapping-contiguous pages with ascending
688  * indexes.  There may be holes in the indices due to not-present pages.
689  *
690  * pagevec_lookup() returns the number of pages which were found.
691  */
692 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
693                 pgoff_t start, unsigned nr_pages)
694 {
695         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
696         return pagevec_count(pvec);
697 }
698
699 EXPORT_SYMBOL(pagevec_lookup);
700
701 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
702                 pgoff_t *index, int tag, unsigned nr_pages)
703 {
704         pvec->nr = find_get_pages_tag(mapping, index, tag,
705                                         nr_pages, pvec->pages);
706         return pagevec_count(pvec);
707 }
708
709 EXPORT_SYMBOL(pagevec_lookup_tag);
710
711 /*
712  * Perform any setup for the swap system
713  */
714 void __init swap_setup(void)
715 {
716         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
717
718 #ifdef CONFIG_SWAP
719         bdi_init(swapper_space.backing_dev_info);
720 #endif
721
722         /* Use a smaller cluster for small-memory machines */
723         if (megs < 16)
724                 page_cluster = 2;
725         else
726                 page_cluster = 3;
727         /*
728          * Right now other parts of the system means that we
729          * _really_ don't want to cluster much more
730          */
731 }