4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * This file contains the default values for the operation of the
9 * Linux VM subsystem. Fine-tuning documentation can be found in
10 * Documentation/sysctl/vm.txt.
12 * Swap aging added 23.2.95, Stephen Tweedie.
13 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34 #include <linux/hugetlb.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/pagemap.h>
41 /* How many pages do we try to swap or page in/out together? */
44 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
45 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
46 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
49 * This path almost never happens for VM activity - pages are normally
50 * freed via pagevecs. But it gets used by networking.
52 static void __page_cache_release(struct page *page)
55 struct zone *zone = page_zone(page);
56 struct lruvec *lruvec;
59 spin_lock_irqsave(&zone->lru_lock, flags);
60 lruvec = mem_cgroup_page_lruvec(page, zone);
61 VM_BUG_ON(!PageLRU(page));
63 del_page_from_lru_list(page, lruvec, page_off_lru(page));
64 spin_unlock_irqrestore(&zone->lru_lock, flags);
68 static void __put_single_page(struct page *page)
70 __page_cache_release(page);
71 free_hot_cold_page(page, 0);
74 static void __put_compound_page(struct page *page)
76 compound_page_dtor *dtor;
78 __page_cache_release(page);
79 dtor = get_compound_page_dtor(page);
83 static void put_compound_page(struct page *page)
86 * hugetlbfs pages cannot be split from under us. If this is a
87 * hugetlbfs page, check refcount on head page and release the page if
88 * the refcount becomes zero.
91 page = compound_head(page);
92 if (put_page_testzero(page))
93 __put_compound_page(page);
98 if (unlikely(PageTail(page))) {
99 /* __split_huge_page_refcount can run under us */
100 struct page *page_head = compound_trans_head(page);
102 if (likely(page != page_head &&
103 get_page_unless_zero(page_head))) {
107 * THP can not break up slab pages so avoid taking
108 * compound_lock(). Slab performs non-atomic bit ops
109 * on page->flags for better performance. In particular
110 * slab_unlock() in slub used to be a hot path. It is
111 * still hot on arches that do not support
112 * this_cpu_cmpxchg_double().
114 if (PageSlab(page_head)) {
115 if (PageTail(page)) {
116 if (put_page_testzero(page_head))
119 atomic_dec(&page->_mapcount);
125 * page_head wasn't a dangling pointer but it
126 * may not be a head page anymore by the time
127 * we obtain the lock. That is ok as long as it
128 * can't be freed from under us.
130 flags = compound_lock_irqsave(page_head);
131 if (unlikely(!PageTail(page))) {
132 /* __split_huge_page_refcount run before us */
133 compound_unlock_irqrestore(page_head, flags);
135 if (put_page_testzero(page_head))
136 __put_single_page(page_head);
138 if (put_page_testzero(page))
139 __put_single_page(page);
142 VM_BUG_ON(page_head != page->first_page);
144 * We can release the refcount taken by
145 * get_page_unless_zero() now that
146 * __split_huge_page_refcount() is blocked on
149 if (put_page_testzero(page_head))
151 /* __split_huge_page_refcount will wait now */
152 VM_BUG_ON(page_mapcount(page) <= 0);
153 atomic_dec(&page->_mapcount);
154 VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
155 VM_BUG_ON(atomic_read(&page->_count) != 0);
156 compound_unlock_irqrestore(page_head, flags);
159 if (put_page_testzero(page_head)) {
160 if (PageHead(page_head))
161 __put_compound_page(page_head);
163 __put_single_page(page_head);
166 /* page_head is a dangling pointer */
167 VM_BUG_ON(PageTail(page));
170 } else if (put_page_testzero(page)) {
172 __put_compound_page(page);
174 __put_single_page(page);
178 void put_page(struct page *page)
180 if (unlikely(PageCompound(page)))
181 put_compound_page(page);
182 else if (put_page_testzero(page))
183 __put_single_page(page);
185 EXPORT_SYMBOL(put_page);
188 * This function is exported but must not be called by anything other
189 * than get_page(). It implements the slow path of get_page().
191 bool __get_page_tail(struct page *page)
194 * This takes care of get_page() if run on a tail page
195 * returned by one of the get_user_pages/follow_page variants.
196 * get_user_pages/follow_page itself doesn't need the compound
197 * lock because it runs __get_page_tail_foll() under the
198 * proper PT lock that already serializes against
202 struct page *page_head;
205 * If this is a hugetlbfs page it cannot be split under us. Simply
206 * increment refcount for the head page.
208 if (PageHuge(page)) {
209 page_head = compound_head(page);
210 atomic_inc(&page_head->_count);
215 page_head = compound_trans_head(page);
216 if (likely(page != page_head &&
217 get_page_unless_zero(page_head))) {
219 /* Ref to put_compound_page() comment. */
220 if (PageSlab(page_head)) {
221 if (likely(PageTail(page))) {
222 __get_page_tail_foll(page, false);
231 * page_head wasn't a dangling pointer but it
232 * may not be a head page anymore by the time
233 * we obtain the lock. That is ok as long as it
234 * can't be freed from under us.
236 flags = compound_lock_irqsave(page_head);
237 /* here __split_huge_page_refcount won't run anymore */
238 if (likely(PageTail(page))) {
239 __get_page_tail_foll(page, false);
242 compound_unlock_irqrestore(page_head, flags);
249 EXPORT_SYMBOL(__get_page_tail);
252 * put_pages_list() - release a list of pages
253 * @pages: list of pages threaded on page->lru
255 * Release a list of pages which are strung together on page.lru. Currently
256 * used by read_cache_pages() and related error recovery code.
258 void put_pages_list(struct list_head *pages)
260 while (!list_empty(pages)) {
263 victim = list_entry(pages->prev, struct page, lru);
264 list_del(&victim->lru);
265 page_cache_release(victim);
268 EXPORT_SYMBOL(put_pages_list);
271 * get_kernel_pages() - pin kernel pages in memory
272 * @kiov: An array of struct kvec structures
273 * @nr_segs: number of segments to pin
274 * @write: pinning for read/write, currently ignored
275 * @pages: array that receives pointers to the pages pinned.
276 * Should be at least nr_segs long.
278 * Returns number of pages pinned. This may be fewer than the number
279 * requested. If nr_pages is 0 or negative, returns 0. If no pages
280 * were pinned, returns -errno. Each page returned must be released
281 * with a put_page() call when it is finished with.
283 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
288 for (seg = 0; seg < nr_segs; seg++) {
289 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
292 pages[seg] = kmap_to_page(kiov[seg].iov_base);
293 page_cache_get(pages[seg]);
298 EXPORT_SYMBOL_GPL(get_kernel_pages);
301 * get_kernel_page() - pin a kernel page in memory
302 * @start: starting kernel address
303 * @write: pinning for read/write, currently ignored
304 * @pages: array that receives pointer to the page pinned.
305 * Must be at least nr_segs long.
307 * Returns 1 if page is pinned. If the page was not pinned, returns
308 * -errno. The page returned must be released with a put_page() call
309 * when it is finished with.
311 int get_kernel_page(unsigned long start, int write, struct page **pages)
313 const struct kvec kiov = {
314 .iov_base = (void *)start,
318 return get_kernel_pages(&kiov, 1, write, pages);
320 EXPORT_SYMBOL_GPL(get_kernel_page);
322 static void pagevec_lru_move_fn(struct pagevec *pvec,
323 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
327 struct zone *zone = NULL;
328 struct lruvec *lruvec;
329 unsigned long flags = 0;
331 for (i = 0; i < pagevec_count(pvec); i++) {
332 struct page *page = pvec->pages[i];
333 struct zone *pagezone = page_zone(page);
335 if (pagezone != zone) {
337 spin_unlock_irqrestore(&zone->lru_lock, flags);
339 spin_lock_irqsave(&zone->lru_lock, flags);
342 lruvec = mem_cgroup_page_lruvec(page, zone);
343 (*move_fn)(page, lruvec, arg);
346 spin_unlock_irqrestore(&zone->lru_lock, flags);
347 release_pages(pvec->pages, pvec->nr, pvec->cold);
348 pagevec_reinit(pvec);
351 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
356 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
357 enum lru_list lru = page_lru_base_type(page);
358 list_move_tail(&page->lru, &lruvec->lists[lru]);
364 * pagevec_move_tail() must be called with IRQ disabled.
365 * Otherwise this may cause nasty races.
367 static void pagevec_move_tail(struct pagevec *pvec)
371 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
372 __count_vm_events(PGROTATED, pgmoved);
376 * Writeback is about to end against a page which has been marked for immediate
377 * reclaim. If it still appears to be reclaimable, move it to the tail of the
380 void rotate_reclaimable_page(struct page *page)
382 if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
383 !PageUnevictable(page) && PageLRU(page)) {
384 struct pagevec *pvec;
387 page_cache_get(page);
388 local_irq_save(flags);
389 pvec = &__get_cpu_var(lru_rotate_pvecs);
390 if (!pagevec_add(pvec, page))
391 pagevec_move_tail(pvec);
392 local_irq_restore(flags);
396 static void update_page_reclaim_stat(struct lruvec *lruvec,
397 int file, int rotated)
399 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
401 reclaim_stat->recent_scanned[file]++;
403 reclaim_stat->recent_rotated[file]++;
406 static void __activate_page(struct page *page, struct lruvec *lruvec,
409 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
410 int file = page_is_file_cache(page);
411 int lru = page_lru_base_type(page);
413 del_page_from_lru_list(page, lruvec, lru);
416 add_page_to_lru_list(page, lruvec, lru);
417 trace_mm_lru_activate(page, page_to_pfn(page));
419 __count_vm_event(PGACTIVATE);
420 update_page_reclaim_stat(lruvec, file, 1);
425 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
427 static void activate_page_drain(int cpu)
429 struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
431 if (pagevec_count(pvec))
432 pagevec_lru_move_fn(pvec, __activate_page, NULL);
435 static bool need_activate_page_drain(int cpu)
437 return pagevec_count(&per_cpu(activate_page_pvecs, cpu)) != 0;
440 void activate_page(struct page *page)
442 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
443 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
445 page_cache_get(page);
446 if (!pagevec_add(pvec, page))
447 pagevec_lru_move_fn(pvec, __activate_page, NULL);
448 put_cpu_var(activate_page_pvecs);
453 static inline void activate_page_drain(int cpu)
457 static bool need_activate_page_drain(int cpu)
462 void activate_page(struct page *page)
464 struct zone *zone = page_zone(page);
466 spin_lock_irq(&zone->lru_lock);
467 __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
468 spin_unlock_irq(&zone->lru_lock);
472 static void __lru_cache_activate_page(struct page *page)
474 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
478 * Search backwards on the optimistic assumption that the page being
479 * activated has just been added to this pagevec. Note that only
480 * the local pagevec is examined as a !PageLRU page could be in the
481 * process of being released, reclaimed, migrated or on a remote
482 * pagevec that is currently being drained. Furthermore, marking
483 * a remote pagevec's page PageActive potentially hits a race where
484 * a page is marked PageActive just after it is added to the inactive
485 * list causing accounting errors and BUG_ON checks to trigger.
487 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
488 struct page *pagevec_page = pvec->pages[i];
490 if (pagevec_page == page) {
496 put_cpu_var(lru_add_pvec);
500 * Mark a page as having seen activity.
502 * inactive,unreferenced -> inactive,referenced
503 * inactive,referenced -> active,unreferenced
504 * active,unreferenced -> active,referenced
506 void mark_page_accessed(struct page *page)
508 if (!PageActive(page) && !PageUnevictable(page) &&
509 PageReferenced(page)) {
512 * If the page is on the LRU, queue it for activation via
513 * activate_page_pvecs. Otherwise, assume the page is on a
514 * pagevec, mark it active and it'll be moved to the active
515 * LRU on the next drain.
520 __lru_cache_activate_page(page);
521 ClearPageReferenced(page);
522 } else if (!PageReferenced(page)) {
523 SetPageReferenced(page);
526 EXPORT_SYMBOL(mark_page_accessed);
529 * Queue the page for addition to the LRU via pagevec. The decision on whether
530 * to add the page to the [in]active [file|anon] list is deferred until the
531 * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
532 * have the page added to the active list using mark_page_accessed().
534 void __lru_cache_add(struct page *page)
536 struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
538 page_cache_get(page);
539 if (!pagevec_space(pvec))
540 __pagevec_lru_add(pvec);
541 pagevec_add(pvec, page);
542 put_cpu_var(lru_add_pvec);
544 EXPORT_SYMBOL(__lru_cache_add);
547 * lru_cache_add - add a page to a page list
548 * @page: the page to be added to the LRU.
550 void lru_cache_add(struct page *page)
552 VM_BUG_ON(PageActive(page) && PageUnevictable(page));
553 VM_BUG_ON(PageLRU(page));
554 __lru_cache_add(page);
558 * add_page_to_unevictable_list - add a page to the unevictable list
559 * @page: the page to be added to the unevictable list
561 * Add page directly to its zone's unevictable list. To avoid races with
562 * tasks that might be making the page evictable, through eg. munlock,
563 * munmap or exit, while it's not on the lru, we want to add the page
564 * while it's locked or otherwise "invisible" to other tasks. This is
565 * difficult to do when using the pagevec cache, so bypass that.
567 void add_page_to_unevictable_list(struct page *page)
569 struct zone *zone = page_zone(page);
570 struct lruvec *lruvec;
572 spin_lock_irq(&zone->lru_lock);
573 lruvec = mem_cgroup_page_lruvec(page, zone);
574 ClearPageActive(page);
575 SetPageUnevictable(page);
577 add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
578 spin_unlock_irq(&zone->lru_lock);
582 * If the page can not be invalidated, it is moved to the
583 * inactive list to speed up its reclaim. It is moved to the
584 * head of the list, rather than the tail, to give the flusher
585 * threads some time to write it out, as this is much more
586 * effective than the single-page writeout from reclaim.
588 * If the page isn't page_mapped and dirty/writeback, the page
589 * could reclaim asap using PG_reclaim.
591 * 1. active, mapped page -> none
592 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
593 * 3. inactive, mapped page -> none
594 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
595 * 5. inactive, clean -> inactive, tail
598 * In 4, why it moves inactive's head, the VM expects the page would
599 * be write it out by flusher threads as this is much more effective
600 * than the single-page writeout from reclaim.
602 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
611 if (PageUnevictable(page))
614 /* Some processes are using the page */
615 if (page_mapped(page))
618 active = PageActive(page);
619 file = page_is_file_cache(page);
620 lru = page_lru_base_type(page);
622 del_page_from_lru_list(page, lruvec, lru + active);
623 ClearPageActive(page);
624 ClearPageReferenced(page);
625 add_page_to_lru_list(page, lruvec, lru);
627 if (PageWriteback(page) || PageDirty(page)) {
629 * PG_reclaim could be raced with end_page_writeback
630 * It can make readahead confusing. But race window
631 * is _really_ small and it's non-critical problem.
633 SetPageReclaim(page);
636 * The page's writeback ends up during pagevec
637 * We moves tha page into tail of inactive.
639 list_move_tail(&page->lru, &lruvec->lists[lru]);
640 __count_vm_event(PGROTATED);
644 __count_vm_event(PGDEACTIVATE);
645 update_page_reclaim_stat(lruvec, file, 0);
649 * Drain pages out of the cpu's pagevecs.
650 * Either "cpu" is the current CPU, and preemption has already been
651 * disabled; or "cpu" is being hot-unplugged, and is already dead.
653 void lru_add_drain_cpu(int cpu)
655 struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
657 if (pagevec_count(pvec))
658 __pagevec_lru_add(pvec);
660 pvec = &per_cpu(lru_rotate_pvecs, cpu);
661 if (pagevec_count(pvec)) {
664 /* No harm done if a racing interrupt already did this */
665 local_irq_save(flags);
666 pagevec_move_tail(pvec);
667 local_irq_restore(flags);
670 pvec = &per_cpu(lru_deactivate_pvecs, cpu);
671 if (pagevec_count(pvec))
672 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
674 activate_page_drain(cpu);
678 * deactivate_page - forcefully deactivate a page
679 * @page: page to deactivate
681 * This function hints the VM that @page is a good reclaim candidate,
682 * for example if its invalidation fails due to the page being dirty
683 * or under writeback.
685 void deactivate_page(struct page *page)
688 * In a workload with many unevictable page such as mprotect, unevictable
689 * page deactivation for accelerating reclaim is pointless.
691 if (PageUnevictable(page))
694 if (likely(get_page_unless_zero(page))) {
695 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
697 if (!pagevec_add(pvec, page))
698 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
699 put_cpu_var(lru_deactivate_pvecs);
703 void lru_add_drain(void)
705 lru_add_drain_cpu(get_cpu());
709 static void lru_add_drain_per_cpu(struct work_struct *dummy)
714 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
716 void lru_add_drain_all(void)
718 static DEFINE_MUTEX(lock);
719 static struct cpumask has_work;
724 cpumask_clear(&has_work);
726 for_each_online_cpu(cpu) {
727 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
729 if (pagevec_count(&per_cpu(lru_add_pvec, cpu)) ||
730 pagevec_count(&per_cpu(lru_rotate_pvecs, cpu)) ||
731 pagevec_count(&per_cpu(lru_deactivate_pvecs, cpu)) ||
732 need_activate_page_drain(cpu)) {
733 INIT_WORK(work, lru_add_drain_per_cpu);
734 schedule_work_on(cpu, work);
735 cpumask_set_cpu(cpu, &has_work);
739 for_each_cpu(cpu, &has_work)
740 flush_work(&per_cpu(lru_add_drain_work, cpu));
747 * Batched page_cache_release(). Decrement the reference count on all the
748 * passed pages. If it fell to zero then remove the page from the LRU and
751 * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
752 * for the remainder of the operation.
754 * The locking in this function is against shrink_inactive_list(): we recheck
755 * the page count inside the lock to see whether shrink_inactive_list()
756 * grabbed the page via the LRU. If it did, give up: shrink_inactive_list()
759 void release_pages(struct page **pages, int nr, int cold)
762 LIST_HEAD(pages_to_free);
763 struct zone *zone = NULL;
764 struct lruvec *lruvec;
765 unsigned long uninitialized_var(flags);
767 for (i = 0; i < nr; i++) {
768 struct page *page = pages[i];
770 if (unlikely(PageCompound(page))) {
772 spin_unlock_irqrestore(&zone->lru_lock, flags);
775 put_compound_page(page);
779 if (!put_page_testzero(page))
783 struct zone *pagezone = page_zone(page);
785 if (pagezone != zone) {
787 spin_unlock_irqrestore(&zone->lru_lock,
790 spin_lock_irqsave(&zone->lru_lock, flags);
793 lruvec = mem_cgroup_page_lruvec(page, zone);
794 VM_BUG_ON(!PageLRU(page));
795 __ClearPageLRU(page);
796 del_page_from_lru_list(page, lruvec, page_off_lru(page));
799 /* Clear Active bit in case of parallel mark_page_accessed */
800 ClearPageActive(page);
802 list_add(&page->lru, &pages_to_free);
805 spin_unlock_irqrestore(&zone->lru_lock, flags);
807 free_hot_cold_page_list(&pages_to_free, cold);
809 EXPORT_SYMBOL(release_pages);
812 * The pages which we're about to release may be in the deferred lru-addition
813 * queues. That would prevent them from really being freed right now. That's
814 * OK from a correctness point of view but is inefficient - those pages may be
815 * cache-warm and we want to give them back to the page allocator ASAP.
817 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
818 * and __pagevec_lru_add_active() call release_pages() directly to avoid
821 void __pagevec_release(struct pagevec *pvec)
824 release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
825 pagevec_reinit(pvec);
827 EXPORT_SYMBOL(__pagevec_release);
829 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
830 /* used by __split_huge_page_refcount() */
831 void lru_add_page_tail(struct page *page, struct page *page_tail,
832 struct lruvec *lruvec, struct list_head *list)
836 VM_BUG_ON(!PageHead(page));
837 VM_BUG_ON(PageCompound(page_tail));
838 VM_BUG_ON(PageLRU(page_tail));
839 VM_BUG_ON(NR_CPUS != 1 &&
840 !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
843 SetPageLRU(page_tail);
845 if (likely(PageLRU(page)))
846 list_add_tail(&page_tail->lru, &page->lru);
848 /* page reclaim is reclaiming a huge page */
850 list_add_tail(&page_tail->lru, list);
852 struct list_head *list_head;
854 * Head page has not yet been counted, as an hpage,
855 * so we must account for each subpage individually.
857 * Use the standard add function to put page_tail on the list,
858 * but then correct its position so they all end up in order.
860 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
861 list_head = page_tail->lru.prev;
862 list_move_tail(&page_tail->lru, list_head);
865 if (!PageUnevictable(page))
866 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
868 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
870 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
873 int file = page_is_file_cache(page);
874 int active = PageActive(page);
875 enum lru_list lru = page_lru(page);
877 VM_BUG_ON(PageLRU(page));
880 add_page_to_lru_list(page, lruvec, lru);
881 update_page_reclaim_stat(lruvec, file, active);
882 trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
886 * Add the passed pages to the LRU, then drop the caller's refcount
887 * on them. Reinitialises the caller's pagevec.
889 void __pagevec_lru_add(struct pagevec *pvec)
891 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
893 EXPORT_SYMBOL(__pagevec_lru_add);
896 * pagevec_lookup - gang pagecache lookup
897 * @pvec: Where the resulting pages are placed
898 * @mapping: The address_space to search
899 * @start: The starting page index
900 * @nr_pages: The maximum number of pages
902 * pagevec_lookup() will search for and return a group of up to @nr_pages pages
903 * in the mapping. The pages are placed in @pvec. pagevec_lookup() takes a
904 * reference against the pages in @pvec.
906 * The search returns a group of mapping-contiguous pages with ascending
907 * indexes. There may be holes in the indices due to not-present pages.
909 * pagevec_lookup() returns the number of pages which were found.
911 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
912 pgoff_t start, unsigned nr_pages)
914 pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
915 return pagevec_count(pvec);
917 EXPORT_SYMBOL(pagevec_lookup);
919 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
920 pgoff_t *index, int tag, unsigned nr_pages)
922 pvec->nr = find_get_pages_tag(mapping, index, tag,
923 nr_pages, pvec->pages);
924 return pagevec_count(pvec);
926 EXPORT_SYMBOL(pagevec_lookup_tag);
929 * Perform any setup for the swap system
931 void __init swap_setup(void)
933 unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
937 bdi_init(swapper_spaces[0].backing_dev_info);
938 for (i = 0; i < MAX_SWAPFILES; i++) {
939 spin_lock_init(&swapper_spaces[i].tree_lock);
940 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
944 /* Use a smaller cluster for small-memory machines */
950 * Right now other parts of the system means that we
951 * _really_ don't want to cluster much more