mm, hugetlb: fix and clean-up node iteration code to alloc or free
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / swap.c
1 /*
2  *  linux/mm/swap.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * This file contains the default values for the operation of the
9  * Linux VM subsystem. Fine-tuning documentation can be found in
10  * Documentation/sysctl/vm.txt.
11  * Started 18.12.91
12  * Swap aging added 23.2.95, Stephen Tweedie.
13  * Buffermem limits added 12.3.98, Rik van Riel.
14  */
15
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/swap.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/pagevec.h>
23 #include <linux/init.h>
24 #include <linux/export.h>
25 #include <linux/mm_inline.h>
26 #include <linux/percpu_counter.h>
27 #include <linux/percpu.h>
28 #include <linux/cpu.h>
29 #include <linux/notifier.h>
30 #include <linux/backing-dev.h>
31 #include <linux/memcontrol.h>
32 #include <linux/gfp.h>
33 #include <linux/uio.h>
34
35 #include "internal.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/pagemap.h>
39
40 /* How many pages do we try to swap or page in/out together? */
41 int page_cluster;
42
43 static DEFINE_PER_CPU(struct pagevec, lru_add_pvec);
44 static DEFINE_PER_CPU(struct pagevec, lru_rotate_pvecs);
45 static DEFINE_PER_CPU(struct pagevec, lru_deactivate_pvecs);
46
47 /*
48  * This path almost never happens for VM activity - pages are normally
49  * freed via pagevecs.  But it gets used by networking.
50  */
51 static void __page_cache_release(struct page *page)
52 {
53         if (PageLRU(page)) {
54                 struct zone *zone = page_zone(page);
55                 struct lruvec *lruvec;
56                 unsigned long flags;
57
58                 spin_lock_irqsave(&zone->lru_lock, flags);
59                 lruvec = mem_cgroup_page_lruvec(page, zone);
60                 VM_BUG_ON(!PageLRU(page));
61                 __ClearPageLRU(page);
62                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
63                 spin_unlock_irqrestore(&zone->lru_lock, flags);
64         }
65 }
66
67 static void __put_single_page(struct page *page)
68 {
69         __page_cache_release(page);
70         free_hot_cold_page(page, 0);
71 }
72
73 static void __put_compound_page(struct page *page)
74 {
75         compound_page_dtor *dtor;
76
77         __page_cache_release(page);
78         dtor = get_compound_page_dtor(page);
79         (*dtor)(page);
80 }
81
82 static void put_compound_page(struct page *page)
83 {
84         if (unlikely(PageTail(page))) {
85                 /* __split_huge_page_refcount can run under us */
86                 struct page *page_head = compound_trans_head(page);
87
88                 if (likely(page != page_head &&
89                            get_page_unless_zero(page_head))) {
90                         unsigned long flags;
91
92                         /*
93                          * THP can not break up slab pages so avoid taking
94                          * compound_lock().  Slab performs non-atomic bit ops
95                          * on page->flags for better performance.  In particular
96                          * slab_unlock() in slub used to be a hot path.  It is
97                          * still hot on arches that do not support
98                          * this_cpu_cmpxchg_double().
99                          */
100                         if (PageSlab(page_head)) {
101                                 if (PageTail(page)) {
102                                         if (put_page_testzero(page_head))
103                                                 VM_BUG_ON(1);
104
105                                         atomic_dec(&page->_mapcount);
106                                         goto skip_lock_tail;
107                                 } else
108                                         goto skip_lock;
109                         }
110                         /*
111                          * page_head wasn't a dangling pointer but it
112                          * may not be a head page anymore by the time
113                          * we obtain the lock. That is ok as long as it
114                          * can't be freed from under us.
115                          */
116                         flags = compound_lock_irqsave(page_head);
117                         if (unlikely(!PageTail(page))) {
118                                 /* __split_huge_page_refcount run before us */
119                                 compound_unlock_irqrestore(page_head, flags);
120 skip_lock:
121                                 if (put_page_testzero(page_head))
122                                         __put_single_page(page_head);
123 out_put_single:
124                                 if (put_page_testzero(page))
125                                         __put_single_page(page);
126                                 return;
127                         }
128                         VM_BUG_ON(page_head != page->first_page);
129                         /*
130                          * We can release the refcount taken by
131                          * get_page_unless_zero() now that
132                          * __split_huge_page_refcount() is blocked on
133                          * the compound_lock.
134                          */
135                         if (put_page_testzero(page_head))
136                                 VM_BUG_ON(1);
137                         /* __split_huge_page_refcount will wait now */
138                         VM_BUG_ON(page_mapcount(page) <= 0);
139                         atomic_dec(&page->_mapcount);
140                         VM_BUG_ON(atomic_read(&page_head->_count) <= 0);
141                         VM_BUG_ON(atomic_read(&page->_count) != 0);
142                         compound_unlock_irqrestore(page_head, flags);
143
144 skip_lock_tail:
145                         if (put_page_testzero(page_head)) {
146                                 if (PageHead(page_head))
147                                         __put_compound_page(page_head);
148                                 else
149                                         __put_single_page(page_head);
150                         }
151                 } else {
152                         /* page_head is a dangling pointer */
153                         VM_BUG_ON(PageTail(page));
154                         goto out_put_single;
155                 }
156         } else if (put_page_testzero(page)) {
157                 if (PageHead(page))
158                         __put_compound_page(page);
159                 else
160                         __put_single_page(page);
161         }
162 }
163
164 void put_page(struct page *page)
165 {
166         if (unlikely(PageCompound(page)))
167                 put_compound_page(page);
168         else if (put_page_testzero(page))
169                 __put_single_page(page);
170 }
171 EXPORT_SYMBOL(put_page);
172
173 /*
174  * This function is exported but must not be called by anything other
175  * than get_page(). It implements the slow path of get_page().
176  */
177 bool __get_page_tail(struct page *page)
178 {
179         /*
180          * This takes care of get_page() if run on a tail page
181          * returned by one of the get_user_pages/follow_page variants.
182          * get_user_pages/follow_page itself doesn't need the compound
183          * lock because it runs __get_page_tail_foll() under the
184          * proper PT lock that already serializes against
185          * split_huge_page().
186          */
187         unsigned long flags;
188         bool got = false;
189         struct page *page_head = compound_trans_head(page);
190
191         if (likely(page != page_head && get_page_unless_zero(page_head))) {
192
193                 /* Ref to put_compound_page() comment. */
194                 if (PageSlab(page_head)) {
195                         if (likely(PageTail(page))) {
196                                 __get_page_tail_foll(page, false);
197                                 return true;
198                         } else {
199                                 put_page(page_head);
200                                 return false;
201                         }
202                 }
203
204                 /*
205                  * page_head wasn't a dangling pointer but it
206                  * may not be a head page anymore by the time
207                  * we obtain the lock. That is ok as long as it
208                  * can't be freed from under us.
209                  */
210                 flags = compound_lock_irqsave(page_head);
211                 /* here __split_huge_page_refcount won't run anymore */
212                 if (likely(PageTail(page))) {
213                         __get_page_tail_foll(page, false);
214                         got = true;
215                 }
216                 compound_unlock_irqrestore(page_head, flags);
217                 if (unlikely(!got))
218                         put_page(page_head);
219         }
220         return got;
221 }
222 EXPORT_SYMBOL(__get_page_tail);
223
224 /**
225  * put_pages_list() - release a list of pages
226  * @pages: list of pages threaded on page->lru
227  *
228  * Release a list of pages which are strung together on page.lru.  Currently
229  * used by read_cache_pages() and related error recovery code.
230  */
231 void put_pages_list(struct list_head *pages)
232 {
233         while (!list_empty(pages)) {
234                 struct page *victim;
235
236                 victim = list_entry(pages->prev, struct page, lru);
237                 list_del(&victim->lru);
238                 page_cache_release(victim);
239         }
240 }
241 EXPORT_SYMBOL(put_pages_list);
242
243 /*
244  * get_kernel_pages() - pin kernel pages in memory
245  * @kiov:       An array of struct kvec structures
246  * @nr_segs:    number of segments to pin
247  * @write:      pinning for read/write, currently ignored
248  * @pages:      array that receives pointers to the pages pinned.
249  *              Should be at least nr_segs long.
250  *
251  * Returns number of pages pinned. This may be fewer than the number
252  * requested. If nr_pages is 0 or negative, returns 0. If no pages
253  * were pinned, returns -errno. Each page returned must be released
254  * with a put_page() call when it is finished with.
255  */
256 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
257                 struct page **pages)
258 {
259         int seg;
260
261         for (seg = 0; seg < nr_segs; seg++) {
262                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
263                         return seg;
264
265                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
266                 page_cache_get(pages[seg]);
267         }
268
269         return seg;
270 }
271 EXPORT_SYMBOL_GPL(get_kernel_pages);
272
273 /*
274  * get_kernel_page() - pin a kernel page in memory
275  * @start:      starting kernel address
276  * @write:      pinning for read/write, currently ignored
277  * @pages:      array that receives pointer to the page pinned.
278  *              Must be at least nr_segs long.
279  *
280  * Returns 1 if page is pinned. If the page was not pinned, returns
281  * -errno. The page returned must be released with a put_page() call
282  * when it is finished with.
283  */
284 int get_kernel_page(unsigned long start, int write, struct page **pages)
285 {
286         const struct kvec kiov = {
287                 .iov_base = (void *)start,
288                 .iov_len = PAGE_SIZE
289         };
290
291         return get_kernel_pages(&kiov, 1, write, pages);
292 }
293 EXPORT_SYMBOL_GPL(get_kernel_page);
294
295 static void pagevec_lru_move_fn(struct pagevec *pvec,
296         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
297         void *arg)
298 {
299         int i;
300         struct zone *zone = NULL;
301         struct lruvec *lruvec;
302         unsigned long flags = 0;
303
304         for (i = 0; i < pagevec_count(pvec); i++) {
305                 struct page *page = pvec->pages[i];
306                 struct zone *pagezone = page_zone(page);
307
308                 if (pagezone != zone) {
309                         if (zone)
310                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
311                         zone = pagezone;
312                         spin_lock_irqsave(&zone->lru_lock, flags);
313                 }
314
315                 lruvec = mem_cgroup_page_lruvec(page, zone);
316                 (*move_fn)(page, lruvec, arg);
317         }
318         if (zone)
319                 spin_unlock_irqrestore(&zone->lru_lock, flags);
320         release_pages(pvec->pages, pvec->nr, pvec->cold);
321         pagevec_reinit(pvec);
322 }
323
324 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
325                                  void *arg)
326 {
327         int *pgmoved = arg;
328
329         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
330                 enum lru_list lru = page_lru_base_type(page);
331                 list_move_tail(&page->lru, &lruvec->lists[lru]);
332                 (*pgmoved)++;
333         }
334 }
335
336 /*
337  * pagevec_move_tail() must be called with IRQ disabled.
338  * Otherwise this may cause nasty races.
339  */
340 static void pagevec_move_tail(struct pagevec *pvec)
341 {
342         int pgmoved = 0;
343
344         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
345         __count_vm_events(PGROTATED, pgmoved);
346 }
347
348 /*
349  * Writeback is about to end against a page which has been marked for immediate
350  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
351  * inactive list.
352  */
353 void rotate_reclaimable_page(struct page *page)
354 {
355         if (!PageLocked(page) && !PageDirty(page) && !PageActive(page) &&
356             !PageUnevictable(page) && PageLRU(page)) {
357                 struct pagevec *pvec;
358                 unsigned long flags;
359
360                 page_cache_get(page);
361                 local_irq_save(flags);
362                 pvec = &__get_cpu_var(lru_rotate_pvecs);
363                 if (!pagevec_add(pvec, page))
364                         pagevec_move_tail(pvec);
365                 local_irq_restore(flags);
366         }
367 }
368
369 static void update_page_reclaim_stat(struct lruvec *lruvec,
370                                      int file, int rotated)
371 {
372         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
373
374         reclaim_stat->recent_scanned[file]++;
375         if (rotated)
376                 reclaim_stat->recent_rotated[file]++;
377 }
378
379 static void __activate_page(struct page *page, struct lruvec *lruvec,
380                             void *arg)
381 {
382         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
383                 int file = page_is_file_cache(page);
384                 int lru = page_lru_base_type(page);
385
386                 del_page_from_lru_list(page, lruvec, lru);
387                 SetPageActive(page);
388                 lru += LRU_ACTIVE;
389                 add_page_to_lru_list(page, lruvec, lru);
390                 trace_mm_lru_activate(page, page_to_pfn(page));
391
392                 __count_vm_event(PGACTIVATE);
393                 update_page_reclaim_stat(lruvec, file, 1);
394         }
395 }
396
397 #ifdef CONFIG_SMP
398 static DEFINE_PER_CPU(struct pagevec, activate_page_pvecs);
399
400 static void activate_page_drain(int cpu)
401 {
402         struct pagevec *pvec = &per_cpu(activate_page_pvecs, cpu);
403
404         if (pagevec_count(pvec))
405                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
406 }
407
408 void activate_page(struct page *page)
409 {
410         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
411                 struct pagevec *pvec = &get_cpu_var(activate_page_pvecs);
412
413                 page_cache_get(page);
414                 if (!pagevec_add(pvec, page))
415                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
416                 put_cpu_var(activate_page_pvecs);
417         }
418 }
419
420 #else
421 static inline void activate_page_drain(int cpu)
422 {
423 }
424
425 void activate_page(struct page *page)
426 {
427         struct zone *zone = page_zone(page);
428
429         spin_lock_irq(&zone->lru_lock);
430         __activate_page(page, mem_cgroup_page_lruvec(page, zone), NULL);
431         spin_unlock_irq(&zone->lru_lock);
432 }
433 #endif
434
435 static void __lru_cache_activate_page(struct page *page)
436 {
437         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
438         int i;
439
440         /*
441          * Search backwards on the optimistic assumption that the page being
442          * activated has just been added to this pagevec. Note that only
443          * the local pagevec is examined as a !PageLRU page could be in the
444          * process of being released, reclaimed, migrated or on a remote
445          * pagevec that is currently being drained. Furthermore, marking
446          * a remote pagevec's page PageActive potentially hits a race where
447          * a page is marked PageActive just after it is added to the inactive
448          * list causing accounting errors and BUG_ON checks to trigger.
449          */
450         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
451                 struct page *pagevec_page = pvec->pages[i];
452
453                 if (pagevec_page == page) {
454                         SetPageActive(page);
455                         break;
456                 }
457         }
458
459         put_cpu_var(lru_add_pvec);
460 }
461
462 /*
463  * Mark a page as having seen activity.
464  *
465  * inactive,unreferenced        ->      inactive,referenced
466  * inactive,referenced          ->      active,unreferenced
467  * active,unreferenced          ->      active,referenced
468  */
469 void mark_page_accessed(struct page *page)
470 {
471         if (!PageActive(page) && !PageUnevictable(page) &&
472                         PageReferenced(page)) {
473
474                 /*
475                  * If the page is on the LRU, queue it for activation via
476                  * activate_page_pvecs. Otherwise, assume the page is on a
477                  * pagevec, mark it active and it'll be moved to the active
478                  * LRU on the next drain.
479                  */
480                 if (PageLRU(page))
481                         activate_page(page);
482                 else
483                         __lru_cache_activate_page(page);
484                 ClearPageReferenced(page);
485         } else if (!PageReferenced(page)) {
486                 SetPageReferenced(page);
487         }
488 }
489 EXPORT_SYMBOL(mark_page_accessed);
490
491 /*
492  * Queue the page for addition to the LRU via pagevec. The decision on whether
493  * to add the page to the [in]active [file|anon] list is deferred until the
494  * pagevec is drained. This gives a chance for the caller of __lru_cache_add()
495  * have the page added to the active list using mark_page_accessed().
496  */
497 void __lru_cache_add(struct page *page)
498 {
499         struct pagevec *pvec = &get_cpu_var(lru_add_pvec);
500
501         page_cache_get(page);
502         if (!pagevec_space(pvec))
503                 __pagevec_lru_add(pvec);
504         pagevec_add(pvec, page);
505         put_cpu_var(lru_add_pvec);
506 }
507 EXPORT_SYMBOL(__lru_cache_add);
508
509 /**
510  * lru_cache_add - add a page to a page list
511  * @page: the page to be added to the LRU.
512  */
513 void lru_cache_add(struct page *page)
514 {
515         VM_BUG_ON(PageActive(page) && PageUnevictable(page));
516         VM_BUG_ON(PageLRU(page));
517         __lru_cache_add(page);
518 }
519
520 /**
521  * add_page_to_unevictable_list - add a page to the unevictable list
522  * @page:  the page to be added to the unevictable list
523  *
524  * Add page directly to its zone's unevictable list.  To avoid races with
525  * tasks that might be making the page evictable, through eg. munlock,
526  * munmap or exit, while it's not on the lru, we want to add the page
527  * while it's locked or otherwise "invisible" to other tasks.  This is
528  * difficult to do when using the pagevec cache, so bypass that.
529  */
530 void add_page_to_unevictable_list(struct page *page)
531 {
532         struct zone *zone = page_zone(page);
533         struct lruvec *lruvec;
534
535         spin_lock_irq(&zone->lru_lock);
536         lruvec = mem_cgroup_page_lruvec(page, zone);
537         ClearPageActive(page);
538         SetPageUnevictable(page);
539         SetPageLRU(page);
540         add_page_to_lru_list(page, lruvec, LRU_UNEVICTABLE);
541         spin_unlock_irq(&zone->lru_lock);
542 }
543
544 /*
545  * If the page can not be invalidated, it is moved to the
546  * inactive list to speed up its reclaim.  It is moved to the
547  * head of the list, rather than the tail, to give the flusher
548  * threads some time to write it out, as this is much more
549  * effective than the single-page writeout from reclaim.
550  *
551  * If the page isn't page_mapped and dirty/writeback, the page
552  * could reclaim asap using PG_reclaim.
553  *
554  * 1. active, mapped page -> none
555  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
556  * 3. inactive, mapped page -> none
557  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
558  * 5. inactive, clean -> inactive, tail
559  * 6. Others -> none
560  *
561  * In 4, why it moves inactive's head, the VM expects the page would
562  * be write it out by flusher threads as this is much more effective
563  * than the single-page writeout from reclaim.
564  */
565 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
566                               void *arg)
567 {
568         int lru, file;
569         bool active;
570
571         if (!PageLRU(page))
572                 return;
573
574         if (PageUnevictable(page))
575                 return;
576
577         /* Some processes are using the page */
578         if (page_mapped(page))
579                 return;
580
581         active = PageActive(page);
582         file = page_is_file_cache(page);
583         lru = page_lru_base_type(page);
584
585         del_page_from_lru_list(page, lruvec, lru + active);
586         ClearPageActive(page);
587         ClearPageReferenced(page);
588         add_page_to_lru_list(page, lruvec, lru);
589
590         if (PageWriteback(page) || PageDirty(page)) {
591                 /*
592                  * PG_reclaim could be raced with end_page_writeback
593                  * It can make readahead confusing.  But race window
594                  * is _really_ small and  it's non-critical problem.
595                  */
596                 SetPageReclaim(page);
597         } else {
598                 /*
599                  * The page's writeback ends up during pagevec
600                  * We moves tha page into tail of inactive.
601                  */
602                 list_move_tail(&page->lru, &lruvec->lists[lru]);
603                 __count_vm_event(PGROTATED);
604         }
605
606         if (active)
607                 __count_vm_event(PGDEACTIVATE);
608         update_page_reclaim_stat(lruvec, file, 0);
609 }
610
611 /*
612  * Drain pages out of the cpu's pagevecs.
613  * Either "cpu" is the current CPU, and preemption has already been
614  * disabled; or "cpu" is being hot-unplugged, and is already dead.
615  */
616 void lru_add_drain_cpu(int cpu)
617 {
618         struct pagevec *pvec = &per_cpu(lru_add_pvec, cpu);
619
620         if (pagevec_count(pvec))
621                 __pagevec_lru_add(pvec);
622
623         pvec = &per_cpu(lru_rotate_pvecs, cpu);
624         if (pagevec_count(pvec)) {
625                 unsigned long flags;
626
627                 /* No harm done if a racing interrupt already did this */
628                 local_irq_save(flags);
629                 pagevec_move_tail(pvec);
630                 local_irq_restore(flags);
631         }
632
633         pvec = &per_cpu(lru_deactivate_pvecs, cpu);
634         if (pagevec_count(pvec))
635                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
636
637         activate_page_drain(cpu);
638 }
639
640 /**
641  * deactivate_page - forcefully deactivate a page
642  * @page: page to deactivate
643  *
644  * This function hints the VM that @page is a good reclaim candidate,
645  * for example if its invalidation fails due to the page being dirty
646  * or under writeback.
647  */
648 void deactivate_page(struct page *page)
649 {
650         /*
651          * In a workload with many unevictable page such as mprotect, unevictable
652          * page deactivation for accelerating reclaim is pointless.
653          */
654         if (PageUnevictable(page))
655                 return;
656
657         if (likely(get_page_unless_zero(page))) {
658                 struct pagevec *pvec = &get_cpu_var(lru_deactivate_pvecs);
659
660                 if (!pagevec_add(pvec, page))
661                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
662                 put_cpu_var(lru_deactivate_pvecs);
663         }
664 }
665
666 void lru_add_drain(void)
667 {
668         lru_add_drain_cpu(get_cpu());
669         put_cpu();
670 }
671
672 static void lru_add_drain_per_cpu(struct work_struct *dummy)
673 {
674         lru_add_drain();
675 }
676
677 /*
678  * Returns 0 for success
679  */
680 int lru_add_drain_all(void)
681 {
682         return schedule_on_each_cpu(lru_add_drain_per_cpu);
683 }
684
685 /*
686  * Batched page_cache_release().  Decrement the reference count on all the
687  * passed pages.  If it fell to zero then remove the page from the LRU and
688  * free it.
689  *
690  * Avoid taking zone->lru_lock if possible, but if it is taken, retain it
691  * for the remainder of the operation.
692  *
693  * The locking in this function is against shrink_inactive_list(): we recheck
694  * the page count inside the lock to see whether shrink_inactive_list()
695  * grabbed the page via the LRU.  If it did, give up: shrink_inactive_list()
696  * will free it.
697  */
698 void release_pages(struct page **pages, int nr, int cold)
699 {
700         int i;
701         LIST_HEAD(pages_to_free);
702         struct zone *zone = NULL;
703         struct lruvec *lruvec;
704         unsigned long uninitialized_var(flags);
705
706         for (i = 0; i < nr; i++) {
707                 struct page *page = pages[i];
708
709                 if (unlikely(PageCompound(page))) {
710                         if (zone) {
711                                 spin_unlock_irqrestore(&zone->lru_lock, flags);
712                                 zone = NULL;
713                         }
714                         put_compound_page(page);
715                         continue;
716                 }
717
718                 if (!put_page_testzero(page))
719                         continue;
720
721                 if (PageLRU(page)) {
722                         struct zone *pagezone = page_zone(page);
723
724                         if (pagezone != zone) {
725                                 if (zone)
726                                         spin_unlock_irqrestore(&zone->lru_lock,
727                                                                         flags);
728                                 zone = pagezone;
729                                 spin_lock_irqsave(&zone->lru_lock, flags);
730                         }
731
732                         lruvec = mem_cgroup_page_lruvec(page, zone);
733                         VM_BUG_ON(!PageLRU(page));
734                         __ClearPageLRU(page);
735                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
736                 }
737
738                 /* Clear Active bit in case of parallel mark_page_accessed */
739                 ClearPageActive(page);
740
741                 list_add(&page->lru, &pages_to_free);
742         }
743         if (zone)
744                 spin_unlock_irqrestore(&zone->lru_lock, flags);
745
746         free_hot_cold_page_list(&pages_to_free, cold);
747 }
748 EXPORT_SYMBOL(release_pages);
749
750 /*
751  * The pages which we're about to release may be in the deferred lru-addition
752  * queues.  That would prevent them from really being freed right now.  That's
753  * OK from a correctness point of view but is inefficient - those pages may be
754  * cache-warm and we want to give them back to the page allocator ASAP.
755  *
756  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
757  * and __pagevec_lru_add_active() call release_pages() directly to avoid
758  * mutual recursion.
759  */
760 void __pagevec_release(struct pagevec *pvec)
761 {
762         lru_add_drain();
763         release_pages(pvec->pages, pagevec_count(pvec), pvec->cold);
764         pagevec_reinit(pvec);
765 }
766 EXPORT_SYMBOL(__pagevec_release);
767
768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
769 /* used by __split_huge_page_refcount() */
770 void lru_add_page_tail(struct page *page, struct page *page_tail,
771                        struct lruvec *lruvec, struct list_head *list)
772 {
773         const int file = 0;
774
775         VM_BUG_ON(!PageHead(page));
776         VM_BUG_ON(PageCompound(page_tail));
777         VM_BUG_ON(PageLRU(page_tail));
778         VM_BUG_ON(NR_CPUS != 1 &&
779                   !spin_is_locked(&lruvec_zone(lruvec)->lru_lock));
780
781         if (!list)
782                 SetPageLRU(page_tail);
783
784         if (likely(PageLRU(page)))
785                 list_add_tail(&page_tail->lru, &page->lru);
786         else if (list) {
787                 /* page reclaim is reclaiming a huge page */
788                 get_page(page_tail);
789                 list_add_tail(&page_tail->lru, list);
790         } else {
791                 struct list_head *list_head;
792                 /*
793                  * Head page has not yet been counted, as an hpage,
794                  * so we must account for each subpage individually.
795                  *
796                  * Use the standard add function to put page_tail on the list,
797                  * but then correct its position so they all end up in order.
798                  */
799                 add_page_to_lru_list(page_tail, lruvec, page_lru(page_tail));
800                 list_head = page_tail->lru.prev;
801                 list_move_tail(&page_tail->lru, list_head);
802         }
803
804         if (!PageUnevictable(page))
805                 update_page_reclaim_stat(lruvec, file, PageActive(page_tail));
806 }
807 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
808
809 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
810                                  void *arg)
811 {
812         int file = page_is_file_cache(page);
813         int active = PageActive(page);
814         enum lru_list lru = page_lru(page);
815
816         VM_BUG_ON(PageLRU(page));
817
818         SetPageLRU(page);
819         add_page_to_lru_list(page, lruvec, lru);
820         update_page_reclaim_stat(lruvec, file, active);
821         trace_mm_lru_insertion(page, page_to_pfn(page), lru, trace_pagemap_flags(page));
822 }
823
824 /*
825  * Add the passed pages to the LRU, then drop the caller's refcount
826  * on them.  Reinitialises the caller's pagevec.
827  */
828 void __pagevec_lru_add(struct pagevec *pvec)
829 {
830         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
831 }
832 EXPORT_SYMBOL(__pagevec_lru_add);
833
834 /**
835  * pagevec_lookup - gang pagecache lookup
836  * @pvec:       Where the resulting pages are placed
837  * @mapping:    The address_space to search
838  * @start:      The starting page index
839  * @nr_pages:   The maximum number of pages
840  *
841  * pagevec_lookup() will search for and return a group of up to @nr_pages pages
842  * in the mapping.  The pages are placed in @pvec.  pagevec_lookup() takes a
843  * reference against the pages in @pvec.
844  *
845  * The search returns a group of mapping-contiguous pages with ascending
846  * indexes.  There may be holes in the indices due to not-present pages.
847  *
848  * pagevec_lookup() returns the number of pages which were found.
849  */
850 unsigned pagevec_lookup(struct pagevec *pvec, struct address_space *mapping,
851                 pgoff_t start, unsigned nr_pages)
852 {
853         pvec->nr = find_get_pages(mapping, start, nr_pages, pvec->pages);
854         return pagevec_count(pvec);
855 }
856 EXPORT_SYMBOL(pagevec_lookup);
857
858 unsigned pagevec_lookup_tag(struct pagevec *pvec, struct address_space *mapping,
859                 pgoff_t *index, int tag, unsigned nr_pages)
860 {
861         pvec->nr = find_get_pages_tag(mapping, index, tag,
862                                         nr_pages, pvec->pages);
863         return pagevec_count(pvec);
864 }
865 EXPORT_SYMBOL(pagevec_lookup_tag);
866
867 /*
868  * Perform any setup for the swap system
869  */
870 void __init swap_setup(void)
871 {
872         unsigned long megs = totalram_pages >> (20 - PAGE_SHIFT);
873 #ifdef CONFIG_SWAP
874         int i;
875
876         bdi_init(swapper_spaces[0].backing_dev_info);
877         for (i = 0; i < MAX_SWAPFILES; i++) {
878                 spin_lock_init(&swapper_spaces[i].tree_lock);
879                 INIT_LIST_HEAD(&swapper_spaces[i].i_mmap_nonlinear);
880         }
881 #endif
882
883         /* Use a smaller cluster for small-memory machines */
884         if (megs < 16)
885                 page_cluster = 2;
886         else
887                 page_cluster = 3;
888         /*
889          * Right now other parts of the system means that we
890          * _really_ don't want to cluster much more
891          */
892 }