mm: remove use-once cache bias from LRU balancing
[platform/kernel/linux-starfive.git] / mm / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swap.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7
8 /*
9  * This file contains the default values for the operation of the
10  * Linux VM subsystem. Fine-tuning documentation can be found in
11  * Documentation/admin-guide/sysctl/vm.rst.
12  * Started 18.12.91
13  * Swap aging added 23.2.95, Stephen Tweedie.
14  * Buffermem limits added 12.3.98, Rik van Riel.
15  */
16
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39
40 #include "internal.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
44
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
47
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50         local_lock_t lock;
51         struct pagevec pvec;
52 };
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54         .lock = INIT_LOCAL_LOCK(lock),
55 };
56
57 /*
58  * The following struct pagevec are grouped together because they are protected
59  * by disabling preemption (and interrupts remain enabled).
60  */
61 struct lru_pvecs {
62         local_lock_t lock;
63         struct pagevec lru_add;
64         struct pagevec lru_deactivate_file;
65         struct pagevec lru_deactivate;
66         struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68         struct pagevec activate_page;
69 #endif
70 };
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72         .lock = INIT_LOCAL_LOCK(lock),
73 };
74
75 /*
76  * This path almost never happens for VM activity - pages are normally
77  * freed via pagevecs.  But it gets used by networking.
78  */
79 static void __page_cache_release(struct page *page)
80 {
81         if (PageLRU(page)) {
82                 pg_data_t *pgdat = page_pgdat(page);
83                 struct lruvec *lruvec;
84                 unsigned long flags;
85
86                 spin_lock_irqsave(&pgdat->lru_lock, flags);
87                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
88                 VM_BUG_ON_PAGE(!PageLRU(page), page);
89                 __ClearPageLRU(page);
90                 del_page_from_lru_list(page, lruvec, page_off_lru(page));
91                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
92         }
93         __ClearPageWaiters(page);
94 }
95
96 static void __put_single_page(struct page *page)
97 {
98         __page_cache_release(page);
99         mem_cgroup_uncharge(page);
100         free_unref_page(page);
101 }
102
103 static void __put_compound_page(struct page *page)
104 {
105         /*
106          * __page_cache_release() is supposed to be called for thp, not for
107          * hugetlb. This is because hugetlb page does never have PageLRU set
108          * (it's never listed to any LRU lists) and no memcg routines should
109          * be called for hugetlb (it has a separate hugetlb_cgroup.)
110          */
111         if (!PageHuge(page))
112                 __page_cache_release(page);
113         destroy_compound_page(page);
114 }
115
116 void __put_page(struct page *page)
117 {
118         if (is_zone_device_page(page)) {
119                 put_dev_pagemap(page->pgmap);
120
121                 /*
122                  * The page belongs to the device that created pgmap. Do
123                  * not return it to page allocator.
124                  */
125                 return;
126         }
127
128         if (unlikely(PageCompound(page)))
129                 __put_compound_page(page);
130         else
131                 __put_single_page(page);
132 }
133 EXPORT_SYMBOL(__put_page);
134
135 /**
136  * put_pages_list() - release a list of pages
137  * @pages: list of pages threaded on page->lru
138  *
139  * Release a list of pages which are strung together on page.lru.  Currently
140  * used by read_cache_pages() and related error recovery code.
141  */
142 void put_pages_list(struct list_head *pages)
143 {
144         while (!list_empty(pages)) {
145                 struct page *victim;
146
147                 victim = lru_to_page(pages);
148                 list_del(&victim->lru);
149                 put_page(victim);
150         }
151 }
152 EXPORT_SYMBOL(put_pages_list);
153
154 /*
155  * get_kernel_pages() - pin kernel pages in memory
156  * @kiov:       An array of struct kvec structures
157  * @nr_segs:    number of segments to pin
158  * @write:      pinning for read/write, currently ignored
159  * @pages:      array that receives pointers to the pages pinned.
160  *              Should be at least nr_segs long.
161  *
162  * Returns number of pages pinned. This may be fewer than the number
163  * requested. If nr_pages is 0 or negative, returns 0. If no pages
164  * were pinned, returns -errno. Each page returned must be released
165  * with a put_page() call when it is finished with.
166  */
167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168                 struct page **pages)
169 {
170         int seg;
171
172         for (seg = 0; seg < nr_segs; seg++) {
173                 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174                         return seg;
175
176                 pages[seg] = kmap_to_page(kiov[seg].iov_base);
177                 get_page(pages[seg]);
178         }
179
180         return seg;
181 }
182 EXPORT_SYMBOL_GPL(get_kernel_pages);
183
184 /*
185  * get_kernel_page() - pin a kernel page in memory
186  * @start:      starting kernel address
187  * @write:      pinning for read/write, currently ignored
188  * @pages:      array that receives pointer to the page pinned.
189  *              Must be at least nr_segs long.
190  *
191  * Returns 1 if page is pinned. If the page was not pinned, returns
192  * -errno. The page returned must be released with a put_page() call
193  * when it is finished with.
194  */
195 int get_kernel_page(unsigned long start, int write, struct page **pages)
196 {
197         const struct kvec kiov = {
198                 .iov_base = (void *)start,
199                 .iov_len = PAGE_SIZE
200         };
201
202         return get_kernel_pages(&kiov, 1, write, pages);
203 }
204 EXPORT_SYMBOL_GPL(get_kernel_page);
205
206 static void pagevec_lru_move_fn(struct pagevec *pvec,
207         void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208         void *arg)
209 {
210         int i;
211         struct pglist_data *pgdat = NULL;
212         struct lruvec *lruvec;
213         unsigned long flags = 0;
214
215         for (i = 0; i < pagevec_count(pvec); i++) {
216                 struct page *page = pvec->pages[i];
217                 struct pglist_data *pagepgdat = page_pgdat(page);
218
219                 if (pagepgdat != pgdat) {
220                         if (pgdat)
221                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222                         pgdat = pagepgdat;
223                         spin_lock_irqsave(&pgdat->lru_lock, flags);
224                 }
225
226                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
227                 (*move_fn)(page, lruvec, arg);
228         }
229         if (pgdat)
230                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231         release_pages(pvec->pages, pvec->nr);
232         pagevec_reinit(pvec);
233 }
234
235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236                                  void *arg)
237 {
238         int *pgmoved = arg;
239
240         if (PageLRU(page) && !PageUnevictable(page)) {
241                 del_page_from_lru_list(page, lruvec, page_lru(page));
242                 ClearPageActive(page);
243                 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244                 (*pgmoved)++;
245         }
246 }
247
248 /*
249  * pagevec_move_tail() must be called with IRQ disabled.
250  * Otherwise this may cause nasty races.
251  */
252 static void pagevec_move_tail(struct pagevec *pvec)
253 {
254         int pgmoved = 0;
255
256         pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257         __count_vm_events(PGROTATED, pgmoved);
258 }
259
260 /*
261  * Writeback is about to end against a page which has been marked for immediate
262  * reclaim.  If it still appears to be reclaimable, move it to the tail of the
263  * inactive list.
264  */
265 void rotate_reclaimable_page(struct page *page)
266 {
267         if (!PageLocked(page) && !PageDirty(page) &&
268             !PageUnevictable(page) && PageLRU(page)) {
269                 struct pagevec *pvec;
270                 unsigned long flags;
271
272                 get_page(page);
273                 local_lock_irqsave(&lru_rotate.lock, flags);
274                 pvec = this_cpu_ptr(&lru_rotate.pvec);
275                 if (!pagevec_add(pvec, page) || PageCompound(page))
276                         pagevec_move_tail(pvec);
277                 local_unlock_irqrestore(&lru_rotate.lock, flags);
278         }
279 }
280
281 static void update_page_reclaim_stat(struct lruvec *lruvec,
282                                      int file, int rotated,
283                                      unsigned int nr_pages)
284 {
285         struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
286
287         reclaim_stat->recent_scanned[file] += nr_pages;
288         if (rotated)
289                 reclaim_stat->recent_rotated[file] += nr_pages;
290 }
291
292 static void __activate_page(struct page *page, struct lruvec *lruvec,
293                             void *arg)
294 {
295         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
296                 int lru = page_lru_base_type(page);
297
298                 del_page_from_lru_list(page, lruvec, lru);
299                 SetPageActive(page);
300                 lru += LRU_ACTIVE;
301                 add_page_to_lru_list(page, lruvec, lru);
302                 trace_mm_lru_activate(page);
303
304                 __count_vm_event(PGACTIVATE);
305         }
306 }
307
308 #ifdef CONFIG_SMP
309 static void activate_page_drain(int cpu)
310 {
311         struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
312
313         if (pagevec_count(pvec))
314                 pagevec_lru_move_fn(pvec, __activate_page, NULL);
315 }
316
317 static bool need_activate_page_drain(int cpu)
318 {
319         return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
320 }
321
322 void activate_page(struct page *page)
323 {
324         page = compound_head(page);
325         if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
326                 struct pagevec *pvec;
327
328                 local_lock(&lru_pvecs.lock);
329                 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
330                 get_page(page);
331                 if (!pagevec_add(pvec, page) || PageCompound(page))
332                         pagevec_lru_move_fn(pvec, __activate_page, NULL);
333                 local_unlock(&lru_pvecs.lock);
334         }
335 }
336
337 #else
338 static inline void activate_page_drain(int cpu)
339 {
340 }
341
342 void activate_page(struct page *page)
343 {
344         pg_data_t *pgdat = page_pgdat(page);
345
346         page = compound_head(page);
347         spin_lock_irq(&pgdat->lru_lock);
348         __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
349         spin_unlock_irq(&pgdat->lru_lock);
350 }
351 #endif
352
353 static void __lru_cache_activate_page(struct page *page)
354 {
355         struct pagevec *pvec;
356         int i;
357
358         local_lock(&lru_pvecs.lock);
359         pvec = this_cpu_ptr(&lru_pvecs.lru_add);
360
361         /*
362          * Search backwards on the optimistic assumption that the page being
363          * activated has just been added to this pagevec. Note that only
364          * the local pagevec is examined as a !PageLRU page could be in the
365          * process of being released, reclaimed, migrated or on a remote
366          * pagevec that is currently being drained. Furthermore, marking
367          * a remote pagevec's page PageActive potentially hits a race where
368          * a page is marked PageActive just after it is added to the inactive
369          * list causing accounting errors and BUG_ON checks to trigger.
370          */
371         for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
372                 struct page *pagevec_page = pvec->pages[i];
373
374                 if (pagevec_page == page) {
375                         SetPageActive(page);
376                         break;
377                 }
378         }
379
380         local_unlock(&lru_pvecs.lock);
381 }
382
383 /*
384  * Mark a page as having seen activity.
385  *
386  * inactive,unreferenced        ->      inactive,referenced
387  * inactive,referenced          ->      active,unreferenced
388  * active,unreferenced          ->      active,referenced
389  *
390  * When a newly allocated page is not yet visible, so safe for non-atomic ops,
391  * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
392  */
393 void mark_page_accessed(struct page *page)
394 {
395         page = compound_head(page);
396
397         if (!PageReferenced(page)) {
398                 SetPageReferenced(page);
399         } else if (PageUnevictable(page)) {
400                 /*
401                  * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
402                  * this list is never rotated or maintained, so marking an
403                  * evictable page accessed has no effect.
404                  */
405         } else if (!PageActive(page)) {
406                 /*
407                  * If the page is on the LRU, queue it for activation via
408                  * lru_pvecs.activate_page. Otherwise, assume the page is on a
409                  * pagevec, mark it active and it'll be moved to the active
410                  * LRU on the next drain.
411                  */
412                 if (PageLRU(page))
413                         activate_page(page);
414                 else
415                         __lru_cache_activate_page(page);
416                 ClearPageReferenced(page);
417                 if (page_is_file_lru(page))
418                         workingset_activation(page);
419         }
420         if (page_is_idle(page))
421                 clear_page_idle(page);
422 }
423 EXPORT_SYMBOL(mark_page_accessed);
424
425 /**
426  * lru_cache_add - add a page to a page list
427  * @page: the page to be added to the LRU.
428  *
429  * Queue the page for addition to the LRU via pagevec. The decision on whether
430  * to add the page to the [in]active [file|anon] list is deferred until the
431  * pagevec is drained. This gives a chance for the caller of lru_cache_add()
432  * have the page added to the active list using mark_page_accessed().
433  */
434 void lru_cache_add(struct page *page)
435 {
436         struct pagevec *pvec;
437
438         VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
439         VM_BUG_ON_PAGE(PageLRU(page), page);
440
441         get_page(page);
442         local_lock(&lru_pvecs.lock);
443         pvec = this_cpu_ptr(&lru_pvecs.lru_add);
444         if (!pagevec_add(pvec, page) || PageCompound(page))
445                 __pagevec_lru_add(pvec);
446         local_unlock(&lru_pvecs.lock);
447 }
448 EXPORT_SYMBOL(lru_cache_add);
449
450 /**
451  * lru_cache_add_active_or_unevictable
452  * @page:  the page to be added to LRU
453  * @vma:   vma in which page is mapped for determining reclaimability
454  *
455  * Place @page on the active or unevictable LRU list, depending on its
456  * evictability.  Note that if the page is not evictable, it goes
457  * directly back onto it's zone's unevictable list, it does NOT use a
458  * per cpu pagevec.
459  */
460 void lru_cache_add_active_or_unevictable(struct page *page,
461                                          struct vm_area_struct *vma)
462 {
463         VM_BUG_ON_PAGE(PageLRU(page), page);
464
465         if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED))
466                 SetPageActive(page);
467         else if (!TestSetPageMlocked(page)) {
468                 /*
469                  * We use the irq-unsafe __mod_zone_page_stat because this
470                  * counter is not modified from interrupt context, and the pte
471                  * lock is held(spinlock), which implies preemption disabled.
472                  */
473                 __mod_zone_page_state(page_zone(page), NR_MLOCK,
474                                     hpage_nr_pages(page));
475                 count_vm_event(UNEVICTABLE_PGMLOCKED);
476         }
477         lru_cache_add(page);
478 }
479
480 /*
481  * If the page can not be invalidated, it is moved to the
482  * inactive list to speed up its reclaim.  It is moved to the
483  * head of the list, rather than the tail, to give the flusher
484  * threads some time to write it out, as this is much more
485  * effective than the single-page writeout from reclaim.
486  *
487  * If the page isn't page_mapped and dirty/writeback, the page
488  * could reclaim asap using PG_reclaim.
489  *
490  * 1. active, mapped page -> none
491  * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
492  * 3. inactive, mapped page -> none
493  * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
494  * 5. inactive, clean -> inactive, tail
495  * 6. Others -> none
496  *
497  * In 4, why it moves inactive's head, the VM expects the page would
498  * be write it out by flusher threads as this is much more effective
499  * than the single-page writeout from reclaim.
500  */
501 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
502                               void *arg)
503 {
504         int lru, file;
505         bool active;
506
507         if (!PageLRU(page))
508                 return;
509
510         if (PageUnevictable(page))
511                 return;
512
513         /* Some processes are using the page */
514         if (page_mapped(page))
515                 return;
516
517         active = PageActive(page);
518         file = page_is_file_lru(page);
519         lru = page_lru_base_type(page);
520
521         del_page_from_lru_list(page, lruvec, lru + active);
522         ClearPageActive(page);
523         ClearPageReferenced(page);
524
525         if (PageWriteback(page) || PageDirty(page)) {
526                 /*
527                  * PG_reclaim could be raced with end_page_writeback
528                  * It can make readahead confusing.  But race window
529                  * is _really_ small and  it's non-critical problem.
530                  */
531                 add_page_to_lru_list(page, lruvec, lru);
532                 SetPageReclaim(page);
533         } else {
534                 /*
535                  * The page's writeback ends up during pagevec
536                  * We moves tha page into tail of inactive.
537                  */
538                 add_page_to_lru_list_tail(page, lruvec, lru);
539                 __count_vm_event(PGROTATED);
540         }
541
542         if (active)
543                 __count_vm_event(PGDEACTIVATE);
544         update_page_reclaim_stat(lruvec, file, 0, hpage_nr_pages(page));
545 }
546
547 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
548                             void *arg)
549 {
550         if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
551                 int file = page_is_file_lru(page);
552                 int lru = page_lru_base_type(page);
553
554                 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
555                 ClearPageActive(page);
556                 ClearPageReferenced(page);
557                 add_page_to_lru_list(page, lruvec, lru);
558
559                 __count_vm_events(PGDEACTIVATE, hpage_nr_pages(page));
560                 update_page_reclaim_stat(lruvec, file, 0, hpage_nr_pages(page));
561         }
562 }
563
564 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
565                             void *arg)
566 {
567         if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
568             !PageSwapCache(page) && !PageUnevictable(page)) {
569                 bool active = PageActive(page);
570
571                 del_page_from_lru_list(page, lruvec,
572                                        LRU_INACTIVE_ANON + active);
573                 ClearPageActive(page);
574                 ClearPageReferenced(page);
575                 /*
576                  * Lazyfree pages are clean anonymous pages.  They have
577                  * PG_swapbacked flag cleared, to distinguish them from normal
578                  * anonymous pages
579                  */
580                 ClearPageSwapBacked(page);
581                 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
582
583                 __count_vm_events(PGLAZYFREE, hpage_nr_pages(page));
584                 count_memcg_page_event(page, PGLAZYFREE);
585                 update_page_reclaim_stat(lruvec, 1, 0, hpage_nr_pages(page));
586         }
587 }
588
589 /*
590  * Drain pages out of the cpu's pagevecs.
591  * Either "cpu" is the current CPU, and preemption has already been
592  * disabled; or "cpu" is being hot-unplugged, and is already dead.
593  */
594 void lru_add_drain_cpu(int cpu)
595 {
596         struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
597
598         if (pagevec_count(pvec))
599                 __pagevec_lru_add(pvec);
600
601         pvec = &per_cpu(lru_rotate.pvec, cpu);
602         if (pagevec_count(pvec)) {
603                 unsigned long flags;
604
605                 /* No harm done if a racing interrupt already did this */
606                 local_lock_irqsave(&lru_rotate.lock, flags);
607                 pagevec_move_tail(pvec);
608                 local_unlock_irqrestore(&lru_rotate.lock, flags);
609         }
610
611         pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
612         if (pagevec_count(pvec))
613                 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
614
615         pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
616         if (pagevec_count(pvec))
617                 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
618
619         pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
620         if (pagevec_count(pvec))
621                 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
622
623         activate_page_drain(cpu);
624 }
625
626 /**
627  * deactivate_file_page - forcefully deactivate a file page
628  * @page: page to deactivate
629  *
630  * This function hints the VM that @page is a good reclaim candidate,
631  * for example if its invalidation fails due to the page being dirty
632  * or under writeback.
633  */
634 void deactivate_file_page(struct page *page)
635 {
636         /*
637          * In a workload with many unevictable page such as mprotect,
638          * unevictable page deactivation for accelerating reclaim is pointless.
639          */
640         if (PageUnevictable(page))
641                 return;
642
643         if (likely(get_page_unless_zero(page))) {
644                 struct pagevec *pvec;
645
646                 local_lock(&lru_pvecs.lock);
647                 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
648
649                 if (!pagevec_add(pvec, page) || PageCompound(page))
650                         pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
651                 local_unlock(&lru_pvecs.lock);
652         }
653 }
654
655 /*
656  * deactivate_page - deactivate a page
657  * @page: page to deactivate
658  *
659  * deactivate_page() moves @page to the inactive list if @page was on the active
660  * list and was not an unevictable page.  This is done to accelerate the reclaim
661  * of @page.
662  */
663 void deactivate_page(struct page *page)
664 {
665         if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
666                 struct pagevec *pvec;
667
668                 local_lock(&lru_pvecs.lock);
669                 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
670                 get_page(page);
671                 if (!pagevec_add(pvec, page) || PageCompound(page))
672                         pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
673                 local_unlock(&lru_pvecs.lock);
674         }
675 }
676
677 /**
678  * mark_page_lazyfree - make an anon page lazyfree
679  * @page: page to deactivate
680  *
681  * mark_page_lazyfree() moves @page to the inactive file list.
682  * This is done to accelerate the reclaim of @page.
683  */
684 void mark_page_lazyfree(struct page *page)
685 {
686         if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
687             !PageSwapCache(page) && !PageUnevictable(page)) {
688                 struct pagevec *pvec;
689
690                 local_lock(&lru_pvecs.lock);
691                 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
692                 get_page(page);
693                 if (!pagevec_add(pvec, page) || PageCompound(page))
694                         pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
695                 local_unlock(&lru_pvecs.lock);
696         }
697 }
698
699 void lru_add_drain(void)
700 {
701         local_lock(&lru_pvecs.lock);
702         lru_add_drain_cpu(smp_processor_id());
703         local_unlock(&lru_pvecs.lock);
704 }
705
706 void lru_add_drain_cpu_zone(struct zone *zone)
707 {
708         local_lock(&lru_pvecs.lock);
709         lru_add_drain_cpu(smp_processor_id());
710         drain_local_pages(zone);
711         local_unlock(&lru_pvecs.lock);
712 }
713
714 #ifdef CONFIG_SMP
715
716 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
717
718 static void lru_add_drain_per_cpu(struct work_struct *dummy)
719 {
720         lru_add_drain();
721 }
722
723 /*
724  * Doesn't need any cpu hotplug locking because we do rely on per-cpu
725  * kworkers being shut down before our page_alloc_cpu_dead callback is
726  * executed on the offlined cpu.
727  * Calling this function with cpu hotplug locks held can actually lead
728  * to obscure indirect dependencies via WQ context.
729  */
730 void lru_add_drain_all(void)
731 {
732         static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
733         static DEFINE_MUTEX(lock);
734         static struct cpumask has_work;
735         int cpu, seq;
736
737         /*
738          * Make sure nobody triggers this path before mm_percpu_wq is fully
739          * initialized.
740          */
741         if (WARN_ON(!mm_percpu_wq))
742                 return;
743
744         seq = raw_read_seqcount_latch(&seqcount);
745
746         mutex_lock(&lock);
747
748         /*
749          * Piggyback on drain started and finished while we waited for lock:
750          * all pages pended at the time of our enter were drained from vectors.
751          */
752         if (__read_seqcount_retry(&seqcount, seq))
753                 goto done;
754
755         raw_write_seqcount_latch(&seqcount);
756
757         cpumask_clear(&has_work);
758
759         for_each_online_cpu(cpu) {
760                 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
761
762                 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
763                     pagevec_count(&per_cpu(lru_rotate.pvec, cpu)) ||
764                     pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
765                     pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
766                     pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
767                     need_activate_page_drain(cpu)) {
768                         INIT_WORK(work, lru_add_drain_per_cpu);
769                         queue_work_on(cpu, mm_percpu_wq, work);
770                         cpumask_set_cpu(cpu, &has_work);
771                 }
772         }
773
774         for_each_cpu(cpu, &has_work)
775                 flush_work(&per_cpu(lru_add_drain_work, cpu));
776
777 done:
778         mutex_unlock(&lock);
779 }
780 #else
781 void lru_add_drain_all(void)
782 {
783         lru_add_drain();
784 }
785 #endif
786
787 /**
788  * release_pages - batched put_page()
789  * @pages: array of pages to release
790  * @nr: number of pages
791  *
792  * Decrement the reference count on all the pages in @pages.  If it
793  * fell to zero, remove the page from the LRU and free it.
794  */
795 void release_pages(struct page **pages, int nr)
796 {
797         int i;
798         LIST_HEAD(pages_to_free);
799         struct pglist_data *locked_pgdat = NULL;
800         struct lruvec *lruvec;
801         unsigned long uninitialized_var(flags);
802         unsigned int uninitialized_var(lock_batch);
803
804         for (i = 0; i < nr; i++) {
805                 struct page *page = pages[i];
806
807                 /*
808                  * Make sure the IRQ-safe lock-holding time does not get
809                  * excessive with a continuous string of pages from the
810                  * same pgdat. The lock is held only if pgdat != NULL.
811                  */
812                 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
813                         spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
814                         locked_pgdat = NULL;
815                 }
816
817                 if (is_huge_zero_page(page))
818                         continue;
819
820                 if (is_zone_device_page(page)) {
821                         if (locked_pgdat) {
822                                 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
823                                                        flags);
824                                 locked_pgdat = NULL;
825                         }
826                         /*
827                          * ZONE_DEVICE pages that return 'false' from
828                          * put_devmap_managed_page() do not require special
829                          * processing, and instead, expect a call to
830                          * put_page_testzero().
831                          */
832                         if (page_is_devmap_managed(page)) {
833                                 put_devmap_managed_page(page);
834                                 continue;
835                         }
836                 }
837
838                 page = compound_head(page);
839                 if (!put_page_testzero(page))
840                         continue;
841
842                 if (PageCompound(page)) {
843                         if (locked_pgdat) {
844                                 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
845                                 locked_pgdat = NULL;
846                         }
847                         __put_compound_page(page);
848                         continue;
849                 }
850
851                 if (PageLRU(page)) {
852                         struct pglist_data *pgdat = page_pgdat(page);
853
854                         if (pgdat != locked_pgdat) {
855                                 if (locked_pgdat)
856                                         spin_unlock_irqrestore(&locked_pgdat->lru_lock,
857                                                                         flags);
858                                 lock_batch = 0;
859                                 locked_pgdat = pgdat;
860                                 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
861                         }
862
863                         lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
864                         VM_BUG_ON_PAGE(!PageLRU(page), page);
865                         __ClearPageLRU(page);
866                         del_page_from_lru_list(page, lruvec, page_off_lru(page));
867                 }
868
869                 /* Clear Active bit in case of parallel mark_page_accessed */
870                 __ClearPageActive(page);
871                 __ClearPageWaiters(page);
872
873                 list_add(&page->lru, &pages_to_free);
874         }
875         if (locked_pgdat)
876                 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
877
878         mem_cgroup_uncharge_list(&pages_to_free);
879         free_unref_page_list(&pages_to_free);
880 }
881 EXPORT_SYMBOL(release_pages);
882
883 /*
884  * The pages which we're about to release may be in the deferred lru-addition
885  * queues.  That would prevent them from really being freed right now.  That's
886  * OK from a correctness point of view but is inefficient - those pages may be
887  * cache-warm and we want to give them back to the page allocator ASAP.
888  *
889  * So __pagevec_release() will drain those queues here.  __pagevec_lru_add()
890  * and __pagevec_lru_add_active() call release_pages() directly to avoid
891  * mutual recursion.
892  */
893 void __pagevec_release(struct pagevec *pvec)
894 {
895         if (!pvec->percpu_pvec_drained) {
896                 lru_add_drain();
897                 pvec->percpu_pvec_drained = true;
898         }
899         release_pages(pvec->pages, pagevec_count(pvec));
900         pagevec_reinit(pvec);
901 }
902 EXPORT_SYMBOL(__pagevec_release);
903
904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
905 /* used by __split_huge_page_refcount() */
906 void lru_add_page_tail(struct page *page, struct page *page_tail,
907                        struct lruvec *lruvec, struct list_head *list)
908 {
909         VM_BUG_ON_PAGE(!PageHead(page), page);
910         VM_BUG_ON_PAGE(PageCompound(page_tail), page);
911         VM_BUG_ON_PAGE(PageLRU(page_tail), page);
912         lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
913
914         if (!list)
915                 SetPageLRU(page_tail);
916
917         if (likely(PageLRU(page)))
918                 list_add_tail(&page_tail->lru, &page->lru);
919         else if (list) {
920                 /* page reclaim is reclaiming a huge page */
921                 get_page(page_tail);
922                 list_add_tail(&page_tail->lru, list);
923         } else {
924                 /*
925                  * Head page has not yet been counted, as an hpage,
926                  * so we must account for each subpage individually.
927                  *
928                  * Put page_tail on the list at the correct position
929                  * so they all end up in order.
930                  */
931                 add_page_to_lru_list_tail(page_tail, lruvec,
932                                           page_lru(page_tail));
933         }
934 }
935 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
936
937 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
938                                  void *arg)
939 {
940         enum lru_list lru;
941         int was_unevictable = TestClearPageUnevictable(page);
942
943         VM_BUG_ON_PAGE(PageLRU(page), page);
944
945         /*
946          * Page becomes evictable in two ways:
947          * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
948          * 2) Before acquiring LRU lock to put the page to correct LRU and then
949          *   a) do PageLRU check with lock [check_move_unevictable_pages]
950          *   b) do PageLRU check before lock [clear_page_mlock]
951          *
952          * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
953          * following strict ordering:
954          *
955          * #0: __pagevec_lru_add_fn             #1: clear_page_mlock
956          *
957          * SetPageLRU()                         TestClearPageMlocked()
958          * smp_mb() // explicit ordering        // above provides strict
959          *                                      // ordering
960          * PageMlocked()                        PageLRU()
961          *
962          *
963          * if '#1' does not observe setting of PG_lru by '#0' and fails
964          * isolation, the explicit barrier will make sure that page_evictable
965          * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
966          * can be reordered after PageMlocked check and can make '#1' to fail
967          * the isolation of the page whose Mlocked bit is cleared (#0 is also
968          * looking at the same page) and the evictable page will be stranded
969          * in an unevictable LRU.
970          */
971         SetPageLRU(page);
972         smp_mb__after_atomic();
973
974         if (page_evictable(page)) {
975                 lru = page_lru(page);
976                 if (was_unevictable)
977                         count_vm_event(UNEVICTABLE_PGRESCUED);
978         } else {
979                 lru = LRU_UNEVICTABLE;
980                 ClearPageActive(page);
981                 SetPageUnevictable(page);
982                 if (!was_unevictable)
983                         count_vm_event(UNEVICTABLE_PGCULLED);
984         }
985
986         add_page_to_lru_list(page, lruvec, lru);
987         trace_mm_lru_insertion(page, lru);
988 }
989
990 /*
991  * Add the passed pages to the LRU, then drop the caller's refcount
992  * on them.  Reinitialises the caller's pagevec.
993  */
994 void __pagevec_lru_add(struct pagevec *pvec)
995 {
996         pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
997 }
998
999 /**
1000  * pagevec_lookup_entries - gang pagecache lookup
1001  * @pvec:       Where the resulting entries are placed
1002  * @mapping:    The address_space to search
1003  * @start:      The starting entry index
1004  * @nr_entries: The maximum number of pages
1005  * @indices:    The cache indices corresponding to the entries in @pvec
1006  *
1007  * pagevec_lookup_entries() will search for and return a group of up
1008  * to @nr_pages pages and shadow entries in the mapping.  All
1009  * entries are placed in @pvec.  pagevec_lookup_entries() takes a
1010  * reference against actual pages in @pvec.
1011  *
1012  * The search returns a group of mapping-contiguous entries with
1013  * ascending indexes.  There may be holes in the indices due to
1014  * not-present entries.
1015  *
1016  * Only one subpage of a Transparent Huge Page is returned in one call:
1017  * allowing truncate_inode_pages_range() to evict the whole THP without
1018  * cycling through a pagevec of extra references.
1019  *
1020  * pagevec_lookup_entries() returns the number of entries which were
1021  * found.
1022  */
1023 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1024                                 struct address_space *mapping,
1025                                 pgoff_t start, unsigned nr_entries,
1026                                 pgoff_t *indices)
1027 {
1028         pvec->nr = find_get_entries(mapping, start, nr_entries,
1029                                     pvec->pages, indices);
1030         return pagevec_count(pvec);
1031 }
1032
1033 /**
1034  * pagevec_remove_exceptionals - pagevec exceptionals pruning
1035  * @pvec:       The pagevec to prune
1036  *
1037  * pagevec_lookup_entries() fills both pages and exceptional radix
1038  * tree entries into the pagevec.  This function prunes all
1039  * exceptionals from @pvec without leaving holes, so that it can be
1040  * passed on to page-only pagevec operations.
1041  */
1042 void pagevec_remove_exceptionals(struct pagevec *pvec)
1043 {
1044         int i, j;
1045
1046         for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1047                 struct page *page = pvec->pages[i];
1048                 if (!xa_is_value(page))
1049                         pvec->pages[j++] = page;
1050         }
1051         pvec->nr = j;
1052 }
1053
1054 /**
1055  * pagevec_lookup_range - gang pagecache lookup
1056  * @pvec:       Where the resulting pages are placed
1057  * @mapping:    The address_space to search
1058  * @start:      The starting page index
1059  * @end:        The final page index
1060  *
1061  * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1062  * pages in the mapping starting from index @start and upto index @end
1063  * (inclusive).  The pages are placed in @pvec.  pagevec_lookup() takes a
1064  * reference against the pages in @pvec.
1065  *
1066  * The search returns a group of mapping-contiguous pages with ascending
1067  * indexes.  There may be holes in the indices due to not-present pages. We
1068  * also update @start to index the next page for the traversal.
1069  *
1070  * pagevec_lookup_range() returns the number of pages which were found. If this
1071  * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1072  * reached.
1073  */
1074 unsigned pagevec_lookup_range(struct pagevec *pvec,
1075                 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1076 {
1077         pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1078                                         pvec->pages);
1079         return pagevec_count(pvec);
1080 }
1081 EXPORT_SYMBOL(pagevec_lookup_range);
1082
1083 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1084                 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1085                 xa_mark_t tag)
1086 {
1087         pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1088                                         PAGEVEC_SIZE, pvec->pages);
1089         return pagevec_count(pvec);
1090 }
1091 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1092
1093 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1094                 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1095                 xa_mark_t tag, unsigned max_pages)
1096 {
1097         pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1098                 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1099         return pagevec_count(pvec);
1100 }
1101 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1102 /*
1103  * Perform any setup for the swap system
1104  */
1105 void __init swap_setup(void)
1106 {
1107         unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1108
1109         /* Use a smaller cluster for small-memory machines */
1110         if (megs < 16)
1111                 page_cluster = 2;
1112         else
1113                 page_cluster = 3;
1114         /*
1115          * Right now other parts of the system means that we
1116          * _really_ don't want to cluster much more
1117          */
1118 }
1119
1120 #ifdef CONFIG_DEV_PAGEMAP_OPS
1121 void put_devmap_managed_page(struct page *page)
1122 {
1123         int count;
1124
1125         if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1126                 return;
1127
1128         count = page_ref_dec_return(page);
1129
1130         /*
1131          * devmap page refcounts are 1-based, rather than 0-based: if
1132          * refcount is 1, then the page is free and the refcount is
1133          * stable because nobody holds a reference on the page.
1134          */
1135         if (count == 1)
1136                 free_devmap_managed_page(page);
1137         else if (!count)
1138                 __put_page(page);
1139 }
1140 EXPORT_SYMBOL(put_devmap_managed_page);
1141 #endif