Merge branch 'for-5.11/elecom' into for-linus
[platform/kernel/linux-starfive.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29         ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35  * If we did not store the node number in the page then we have to
36  * do a lookup in the section_to_node_table in order to find which
37  * node the page belongs to.
38  */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
45 int page_to_nid(const struct page *page)
46 {
47         return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53         section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64         struct mem_section *section = NULL;
65         unsigned long array_size = SECTIONS_PER_ROOT *
66                                    sizeof(struct mem_section);
67
68         if (slab_is_available()) {
69                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70         } else {
71                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
72                                               nid);
73                 if (!section)
74                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
75                               __func__, array_size, nid);
76         }
77
78         return section;
79 }
80
81 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 {
83         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
84         struct mem_section *section;
85
86         /*
87          * An existing section is possible in the sub-section hotplug
88          * case. First hot-add instantiates, follow-on hot-add reuses
89          * the existing section.
90          *
91          * The mem_hotplug_lock resolves the apparent race below.
92          */
93         if (mem_section[root])
94                 return 0;
95
96         section = sparse_index_alloc(nid);
97         if (!section)
98                 return -ENOMEM;
99
100         mem_section[root] = section;
101
102         return 0;
103 }
104 #else /* !SPARSEMEM_EXTREME */
105 static inline int sparse_index_init(unsigned long section_nr, int nid)
106 {
107         return 0;
108 }
109 #endif
110
111 #ifdef CONFIG_SPARSEMEM_EXTREME
112 unsigned long __section_nr(struct mem_section *ms)
113 {
114         unsigned long root_nr;
115         struct mem_section *root = NULL;
116
117         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
118                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
119                 if (!root)
120                         continue;
121
122                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
123                      break;
124         }
125
126         VM_BUG_ON(!root);
127
128         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
129 }
130 #else
131 unsigned long __section_nr(struct mem_section *ms)
132 {
133         return (unsigned long)(ms - mem_section[0]);
134 }
135 #endif
136
137 /*
138  * During early boot, before section_mem_map is used for an actual
139  * mem_map, we use section_mem_map to store the section's NUMA
140  * node.  This keeps us from having to use another data structure.  The
141  * node information is cleared just before we store the real mem_map.
142  */
143 static inline unsigned long sparse_encode_early_nid(int nid)
144 {
145         return (nid << SECTION_NID_SHIFT);
146 }
147
148 static inline int sparse_early_nid(struct mem_section *section)
149 {
150         return (section->section_mem_map >> SECTION_NID_SHIFT);
151 }
152
153 /* Validate the physical addressing limitations of the model */
154 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155                                                 unsigned long *end_pfn)
156 {
157         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
158
159         /*
160          * Sanity checks - do not allow an architecture to pass
161          * in larger pfns than the maximum scope of sparsemem:
162          */
163         if (*start_pfn > max_sparsemem_pfn) {
164                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166                         *start_pfn, *end_pfn, max_sparsemem_pfn);
167                 WARN_ON_ONCE(1);
168                 *start_pfn = max_sparsemem_pfn;
169                 *end_pfn = max_sparsemem_pfn;
170         } else if (*end_pfn > max_sparsemem_pfn) {
171                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173                         *start_pfn, *end_pfn, max_sparsemem_pfn);
174                 WARN_ON_ONCE(1);
175                 *end_pfn = max_sparsemem_pfn;
176         }
177 }
178
179 /*
180  * There are a number of times that we loop over NR_MEM_SECTIONS,
181  * looking for section_present() on each.  But, when we have very
182  * large physical address spaces, NR_MEM_SECTIONS can also be
183  * very large which makes the loops quite long.
184  *
185  * Keeping track of this gives us an easy way to break out of
186  * those loops early.
187  */
188 unsigned long __highest_present_section_nr;
189 static void section_mark_present(struct mem_section *ms)
190 {
191         unsigned long section_nr = __section_nr(ms);
192
193         if (section_nr > __highest_present_section_nr)
194                 __highest_present_section_nr = section_nr;
195
196         ms->section_mem_map |= SECTION_MARKED_PRESENT;
197 }
198
199 #define for_each_present_section_nr(start, section_nr)          \
200         for (section_nr = next_present_section_nr(start-1);     \
201              ((section_nr != -1) &&                             \
202               (section_nr <= __highest_present_section_nr));    \
203              section_nr = next_present_section_nr(section_nr))
204
205 static inline unsigned long first_present_section_nr(void)
206 {
207         return next_present_section_nr(-1);
208 }
209
210 #ifdef CONFIG_SPARSEMEM_VMEMMAP
211 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
212                 unsigned long nr_pages)
213 {
214         int idx = subsection_map_index(pfn);
215         int end = subsection_map_index(pfn + nr_pages - 1);
216
217         bitmap_set(map, idx, end - idx + 1);
218 }
219
220 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
221 {
222         int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
223         unsigned long nr, start_sec = pfn_to_section_nr(pfn);
224
225         if (!nr_pages)
226                 return;
227
228         for (nr = start_sec; nr <= end_sec; nr++) {
229                 struct mem_section *ms;
230                 unsigned long pfns;
231
232                 pfns = min(nr_pages, PAGES_PER_SECTION
233                                 - (pfn & ~PAGE_SECTION_MASK));
234                 ms = __nr_to_section(nr);
235                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
236
237                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
238                                 pfns, subsection_map_index(pfn),
239                                 subsection_map_index(pfn + pfns - 1));
240
241                 pfn += pfns;
242                 nr_pages -= pfns;
243         }
244 }
245 #else
246 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
247 {
248 }
249 #endif
250
251 /* Record a memory area against a node. */
252 static void __init memory_present(int nid, unsigned long start, unsigned long end)
253 {
254         unsigned long pfn;
255
256 #ifdef CONFIG_SPARSEMEM_EXTREME
257         if (unlikely(!mem_section)) {
258                 unsigned long size, align;
259
260                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
261                 align = 1 << (INTERNODE_CACHE_SHIFT);
262                 mem_section = memblock_alloc(size, align);
263                 if (!mem_section)
264                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
265                               __func__, size, align);
266         }
267 #endif
268
269         start &= PAGE_SECTION_MASK;
270         mminit_validate_memmodel_limits(&start, &end);
271         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
272                 unsigned long section = pfn_to_section_nr(pfn);
273                 struct mem_section *ms;
274
275                 sparse_index_init(section, nid);
276                 set_section_nid(section, nid);
277
278                 ms = __nr_to_section(section);
279                 if (!ms->section_mem_map) {
280                         ms->section_mem_map = sparse_encode_early_nid(nid) |
281                                                         SECTION_IS_ONLINE;
282                         section_mark_present(ms);
283                 }
284         }
285 }
286
287 /*
288  * Mark all memblocks as present using memory_present().
289  * This is a convenience function that is useful to mark all of the systems
290  * memory as present during initialization.
291  */
292 static void __init memblocks_present(void)
293 {
294         unsigned long start, end;
295         int i, nid;
296
297         for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid)
298                 memory_present(nid, start, end);
299 }
300
301 /*
302  * Subtle, we encode the real pfn into the mem_map such that
303  * the identity pfn - section_mem_map will return the actual
304  * physical page frame number.
305  */
306 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
307 {
308         unsigned long coded_mem_map =
309                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
310         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
311         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
312         return coded_mem_map;
313 }
314
315 #ifdef CONFIG_MEMORY_HOTPLUG
316 /*
317  * Decode mem_map from the coded memmap
318  */
319 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
320 {
321         /* mask off the extra low bits of information */
322         coded_mem_map &= SECTION_MAP_MASK;
323         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
324 }
325 #endif /* CONFIG_MEMORY_HOTPLUG */
326
327 static void __meminit sparse_init_one_section(struct mem_section *ms,
328                 unsigned long pnum, struct page *mem_map,
329                 struct mem_section_usage *usage, unsigned long flags)
330 {
331         ms->section_mem_map &= ~SECTION_MAP_MASK;
332         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
333                 | SECTION_HAS_MEM_MAP | flags;
334         ms->usage = usage;
335 }
336
337 static unsigned long usemap_size(void)
338 {
339         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
340 }
341
342 size_t mem_section_usage_size(void)
343 {
344         return sizeof(struct mem_section_usage) + usemap_size();
345 }
346
347 #ifdef CONFIG_MEMORY_HOTREMOVE
348 static struct mem_section_usage * __init
349 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
350                                          unsigned long size)
351 {
352         struct mem_section_usage *usage;
353         unsigned long goal, limit;
354         int nid;
355         /*
356          * A page may contain usemaps for other sections preventing the
357          * page being freed and making a section unremovable while
358          * other sections referencing the usemap remain active. Similarly,
359          * a pgdat can prevent a section being removed. If section A
360          * contains a pgdat and section B contains the usemap, both
361          * sections become inter-dependent. This allocates usemaps
362          * from the same section as the pgdat where possible to avoid
363          * this problem.
364          */
365         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
366         limit = goal + (1UL << PA_SECTION_SHIFT);
367         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
368 again:
369         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
370         if (!usage && limit) {
371                 limit = 0;
372                 goto again;
373         }
374         return usage;
375 }
376
377 static void __init check_usemap_section_nr(int nid,
378                 struct mem_section_usage *usage)
379 {
380         unsigned long usemap_snr, pgdat_snr;
381         static unsigned long old_usemap_snr;
382         static unsigned long old_pgdat_snr;
383         struct pglist_data *pgdat = NODE_DATA(nid);
384         int usemap_nid;
385
386         /* First call */
387         if (!old_usemap_snr) {
388                 old_usemap_snr = NR_MEM_SECTIONS;
389                 old_pgdat_snr = NR_MEM_SECTIONS;
390         }
391
392         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
393         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
394         if (usemap_snr == pgdat_snr)
395                 return;
396
397         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
398                 /* skip redundant message */
399                 return;
400
401         old_usemap_snr = usemap_snr;
402         old_pgdat_snr = pgdat_snr;
403
404         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
405         if (usemap_nid != nid) {
406                 pr_info("node %d must be removed before remove section %ld\n",
407                         nid, usemap_snr);
408                 return;
409         }
410         /*
411          * There is a circular dependency.
412          * Some platforms allow un-removable section because they will just
413          * gather other removable sections for dynamic partitioning.
414          * Just notify un-removable section's number here.
415          */
416         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
417                 usemap_snr, pgdat_snr, nid);
418 }
419 #else
420 static struct mem_section_usage * __init
421 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
422                                          unsigned long size)
423 {
424         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
425 }
426
427 static void __init check_usemap_section_nr(int nid,
428                 struct mem_section_usage *usage)
429 {
430 }
431 #endif /* CONFIG_MEMORY_HOTREMOVE */
432
433 #ifdef CONFIG_SPARSEMEM_VMEMMAP
434 static unsigned long __init section_map_size(void)
435 {
436         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
437 }
438
439 #else
440 static unsigned long __init section_map_size(void)
441 {
442         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
443 }
444
445 struct page __init *__populate_section_memmap(unsigned long pfn,
446                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
447 {
448         unsigned long size = section_map_size();
449         struct page *map = sparse_buffer_alloc(size);
450         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
451
452         if (map)
453                 return map;
454
455         map = memblock_alloc_try_nid_raw(size, size, addr,
456                                           MEMBLOCK_ALLOC_ACCESSIBLE, nid);
457         if (!map)
458                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
459                       __func__, size, PAGE_SIZE, nid, &addr);
460
461         return map;
462 }
463 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
464
465 static void *sparsemap_buf __meminitdata;
466 static void *sparsemap_buf_end __meminitdata;
467
468 static inline void __meminit sparse_buffer_free(unsigned long size)
469 {
470         WARN_ON(!sparsemap_buf || size == 0);
471         memblock_free_early(__pa(sparsemap_buf), size);
472 }
473
474 static void __init sparse_buffer_init(unsigned long size, int nid)
475 {
476         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
477         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
478         /*
479          * Pre-allocated buffer is mainly used by __populate_section_memmap
480          * and we want it to be properly aligned to the section size - this is
481          * especially the case for VMEMMAP which maps memmap to PMDs
482          */
483         sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
484                                         addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
485         sparsemap_buf_end = sparsemap_buf + size;
486 }
487
488 static void __init sparse_buffer_fini(void)
489 {
490         unsigned long size = sparsemap_buf_end - sparsemap_buf;
491
492         if (sparsemap_buf && size > 0)
493                 sparse_buffer_free(size);
494         sparsemap_buf = NULL;
495 }
496
497 void * __meminit sparse_buffer_alloc(unsigned long size)
498 {
499         void *ptr = NULL;
500
501         if (sparsemap_buf) {
502                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
503                 if (ptr + size > sparsemap_buf_end)
504                         ptr = NULL;
505                 else {
506                         /* Free redundant aligned space */
507                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
508                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
509                         sparsemap_buf = ptr + size;
510                 }
511         }
512         return ptr;
513 }
514
515 void __weak __meminit vmemmap_populate_print_last(void)
516 {
517 }
518
519 /*
520  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
521  * And number of present sections in this node is map_count.
522  */
523 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
524                                    unsigned long pnum_end,
525                                    unsigned long map_count)
526 {
527         struct mem_section_usage *usage;
528         unsigned long pnum;
529         struct page *map;
530
531         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
532                         mem_section_usage_size() * map_count);
533         if (!usage) {
534                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
535                 goto failed;
536         }
537         sparse_buffer_init(map_count * section_map_size(), nid);
538         for_each_present_section_nr(pnum_begin, pnum) {
539                 unsigned long pfn = section_nr_to_pfn(pnum);
540
541                 if (pnum >= pnum_end)
542                         break;
543
544                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
545                                 nid, NULL);
546                 if (!map) {
547                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
548                                __func__, nid);
549                         pnum_begin = pnum;
550                         goto failed;
551                 }
552                 check_usemap_section_nr(nid, usage);
553                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
554                                 SECTION_IS_EARLY);
555                 usage = (void *) usage + mem_section_usage_size();
556         }
557         sparse_buffer_fini();
558         return;
559 failed:
560         /* We failed to allocate, mark all the following pnums as not present */
561         for_each_present_section_nr(pnum_begin, pnum) {
562                 struct mem_section *ms;
563
564                 if (pnum >= pnum_end)
565                         break;
566                 ms = __nr_to_section(pnum);
567                 ms->section_mem_map = 0;
568         }
569 }
570
571 /*
572  * Allocate the accumulated non-linear sections, allocate a mem_map
573  * for each and record the physical to section mapping.
574  */
575 void __init sparse_init(void)
576 {
577         unsigned long pnum_end, pnum_begin, map_count = 1;
578         int nid_begin;
579
580         memblocks_present();
581
582         pnum_begin = first_present_section_nr();
583         nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
584
585         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
586         set_pageblock_order();
587
588         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
589                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
590
591                 if (nid == nid_begin) {
592                         map_count++;
593                         continue;
594                 }
595                 /* Init node with sections in range [pnum_begin, pnum_end) */
596                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
597                 nid_begin = nid;
598                 pnum_begin = pnum_end;
599                 map_count = 1;
600         }
601         /* cover the last node */
602         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
603         vmemmap_populate_print_last();
604 }
605
606 #ifdef CONFIG_MEMORY_HOTPLUG
607
608 /* Mark all memory sections within the pfn range as online */
609 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
610 {
611         unsigned long pfn;
612
613         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
614                 unsigned long section_nr = pfn_to_section_nr(pfn);
615                 struct mem_section *ms;
616
617                 /* onlining code should never touch invalid ranges */
618                 if (WARN_ON(!valid_section_nr(section_nr)))
619                         continue;
620
621                 ms = __nr_to_section(section_nr);
622                 ms->section_mem_map |= SECTION_IS_ONLINE;
623         }
624 }
625
626 #ifdef CONFIG_MEMORY_HOTREMOVE
627 /* Mark all memory sections within the pfn range as offline */
628 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
629 {
630         unsigned long pfn;
631
632         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
633                 unsigned long section_nr = pfn_to_section_nr(pfn);
634                 struct mem_section *ms;
635
636                 /*
637                  * TODO this needs some double checking. Offlining code makes
638                  * sure to check pfn_valid but those checks might be just bogus
639                  */
640                 if (WARN_ON(!valid_section_nr(section_nr)))
641                         continue;
642
643                 ms = __nr_to_section(section_nr);
644                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
645         }
646 }
647 #endif
648
649 #ifdef CONFIG_SPARSEMEM_VMEMMAP
650 static struct page * __meminit populate_section_memmap(unsigned long pfn,
651                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
652 {
653         return __populate_section_memmap(pfn, nr_pages, nid, altmap);
654 }
655
656 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
657                 struct vmem_altmap *altmap)
658 {
659         unsigned long start = (unsigned long) pfn_to_page(pfn);
660         unsigned long end = start + nr_pages * sizeof(struct page);
661
662         vmemmap_free(start, end, altmap);
663 }
664 static void free_map_bootmem(struct page *memmap)
665 {
666         unsigned long start = (unsigned long)memmap;
667         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
668
669         vmemmap_free(start, end, NULL);
670 }
671
672 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
673 {
674         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
675         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
676         struct mem_section *ms = __pfn_to_section(pfn);
677         unsigned long *subsection_map = ms->usage
678                 ? &ms->usage->subsection_map[0] : NULL;
679
680         subsection_mask_set(map, pfn, nr_pages);
681         if (subsection_map)
682                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
683
684         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
685                                 "section already deactivated (%#lx + %ld)\n",
686                                 pfn, nr_pages))
687                 return -EINVAL;
688
689         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
690         return 0;
691 }
692
693 static bool is_subsection_map_empty(struct mem_section *ms)
694 {
695         return bitmap_empty(&ms->usage->subsection_map[0],
696                             SUBSECTIONS_PER_SECTION);
697 }
698
699 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
700 {
701         struct mem_section *ms = __pfn_to_section(pfn);
702         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
703         unsigned long *subsection_map;
704         int rc = 0;
705
706         subsection_mask_set(map, pfn, nr_pages);
707
708         subsection_map = &ms->usage->subsection_map[0];
709
710         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
711                 rc = -EINVAL;
712         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
713                 rc = -EEXIST;
714         else
715                 bitmap_or(subsection_map, map, subsection_map,
716                                 SUBSECTIONS_PER_SECTION);
717
718         return rc;
719 }
720 #else
721 struct page * __meminit populate_section_memmap(unsigned long pfn,
722                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
723 {
724         return kvmalloc_node(array_size(sizeof(struct page),
725                                         PAGES_PER_SECTION), GFP_KERNEL, nid);
726 }
727
728 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
729                 struct vmem_altmap *altmap)
730 {
731         kvfree(pfn_to_page(pfn));
732 }
733
734 static void free_map_bootmem(struct page *memmap)
735 {
736         unsigned long maps_section_nr, removing_section_nr, i;
737         unsigned long magic, nr_pages;
738         struct page *page = virt_to_page(memmap);
739
740         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
741                 >> PAGE_SHIFT;
742
743         for (i = 0; i < nr_pages; i++, page++) {
744                 magic = (unsigned long) page->freelist;
745
746                 BUG_ON(magic == NODE_INFO);
747
748                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
749                 removing_section_nr = page_private(page);
750
751                 /*
752                  * When this function is called, the removing section is
753                  * logical offlined state. This means all pages are isolated
754                  * from page allocator. If removing section's memmap is placed
755                  * on the same section, it must not be freed.
756                  * If it is freed, page allocator may allocate it which will
757                  * be removed physically soon.
758                  */
759                 if (maps_section_nr != removing_section_nr)
760                         put_page_bootmem(page);
761         }
762 }
763
764 static int clear_subsection_map(unsigned long pfn, unsigned long nr_pages)
765 {
766         return 0;
767 }
768
769 static bool is_subsection_map_empty(struct mem_section *ms)
770 {
771         return true;
772 }
773
774 static int fill_subsection_map(unsigned long pfn, unsigned long nr_pages)
775 {
776         return 0;
777 }
778 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
779
780 /*
781  * To deactivate a memory region, there are 3 cases to handle across
782  * two configurations (SPARSEMEM_VMEMMAP={y,n}):
783  *
784  * 1. deactivation of a partial hot-added section (only possible in
785  *    the SPARSEMEM_VMEMMAP=y case).
786  *      a) section was present at memory init.
787  *      b) section was hot-added post memory init.
788  * 2. deactivation of a complete hot-added section.
789  * 3. deactivation of a complete section from memory init.
790  *
791  * For 1, when subsection_map does not empty we will not be freeing the
792  * usage map, but still need to free the vmemmap range.
793  *
794  * For 2 and 3, the SPARSEMEM_VMEMMAP={y,n} cases are unified
795  */
796 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
797                 struct vmem_altmap *altmap)
798 {
799         struct mem_section *ms = __pfn_to_section(pfn);
800         bool section_is_early = early_section(ms);
801         struct page *memmap = NULL;
802         bool empty;
803
804         if (clear_subsection_map(pfn, nr_pages))
805                 return;
806
807         empty = is_subsection_map_empty(ms);
808         if (empty) {
809                 unsigned long section_nr = pfn_to_section_nr(pfn);
810
811                 /*
812                  * When removing an early section, the usage map is kept (as the
813                  * usage maps of other sections fall into the same page). It
814                  * will be re-used when re-adding the section - which is then no
815                  * longer an early section. If the usage map is PageReserved, it
816                  * was allocated during boot.
817                  */
818                 if (!PageReserved(virt_to_page(ms->usage))) {
819                         kfree(ms->usage);
820                         ms->usage = NULL;
821                 }
822                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
823                 /*
824                  * Mark the section invalid so that valid_section()
825                  * return false. This prevents code from dereferencing
826                  * ms->usage array.
827                  */
828                 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
829         }
830
831         /*
832          * The memmap of early sections is always fully populated. See
833          * section_activate() and pfn_valid() .
834          */
835         if (!section_is_early)
836                 depopulate_section_memmap(pfn, nr_pages, altmap);
837         else if (memmap)
838                 free_map_bootmem(memmap);
839
840         if (empty)
841                 ms->section_mem_map = (unsigned long)NULL;
842 }
843
844 static struct page * __meminit section_activate(int nid, unsigned long pfn,
845                 unsigned long nr_pages, struct vmem_altmap *altmap)
846 {
847         struct mem_section *ms = __pfn_to_section(pfn);
848         struct mem_section_usage *usage = NULL;
849         struct page *memmap;
850         int rc = 0;
851
852         if (!ms->usage) {
853                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
854                 if (!usage)
855                         return ERR_PTR(-ENOMEM);
856                 ms->usage = usage;
857         }
858
859         rc = fill_subsection_map(pfn, nr_pages);
860         if (rc) {
861                 if (usage)
862                         ms->usage = NULL;
863                 kfree(usage);
864                 return ERR_PTR(rc);
865         }
866
867         /*
868          * The early init code does not consider partially populated
869          * initial sections, it simply assumes that memory will never be
870          * referenced.  If we hot-add memory into such a section then we
871          * do not need to populate the memmap and can simply reuse what
872          * is already there.
873          */
874         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
875                 return pfn_to_page(pfn);
876
877         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
878         if (!memmap) {
879                 section_deactivate(pfn, nr_pages, altmap);
880                 return ERR_PTR(-ENOMEM);
881         }
882
883         return memmap;
884 }
885
886 /**
887  * sparse_add_section - add a memory section, or populate an existing one
888  * @nid: The node to add section on
889  * @start_pfn: start pfn of the memory range
890  * @nr_pages: number of pfns to add in the section
891  * @altmap: device page map
892  *
893  * This is only intended for hotplug.
894  *
895  * Note that only VMEMMAP supports sub-section aligned hotplug,
896  * the proper alignment and size are gated by check_pfn_span().
897  *
898  *
899  * Return:
900  * * 0          - On success.
901  * * -EEXIST    - Section has been present.
902  * * -ENOMEM    - Out of memory.
903  */
904 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
905                 unsigned long nr_pages, struct vmem_altmap *altmap)
906 {
907         unsigned long section_nr = pfn_to_section_nr(start_pfn);
908         struct mem_section *ms;
909         struct page *memmap;
910         int ret;
911
912         ret = sparse_index_init(section_nr, nid);
913         if (ret < 0)
914                 return ret;
915
916         memmap = section_activate(nid, start_pfn, nr_pages, altmap);
917         if (IS_ERR(memmap))
918                 return PTR_ERR(memmap);
919
920         /*
921          * Poison uninitialized struct pages in order to catch invalid flags
922          * combinations.
923          */
924         page_init_poison(memmap, sizeof(struct page) * nr_pages);
925
926         ms = __nr_to_section(section_nr);
927         set_section_nid(section_nr, nid);
928         section_mark_present(ms);
929
930         /* Align memmap to section boundary in the subsection case */
931         if (section_nr_to_pfn(section_nr) != start_pfn)
932                 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
933         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
934
935         return 0;
936 }
937
938 #ifdef CONFIG_MEMORY_FAILURE
939 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
940 {
941         int i;
942
943         /*
944          * A further optimization is to have per section refcounted
945          * num_poisoned_pages.  But that would need more space per memmap, so
946          * for now just do a quick global check to speed up this routine in the
947          * absence of bad pages.
948          */
949         if (atomic_long_read(&num_poisoned_pages) == 0)
950                 return;
951
952         for (i = 0; i < nr_pages; i++) {
953                 if (PageHWPoison(&memmap[i])) {
954                         num_poisoned_pages_dec();
955                         ClearPageHWPoison(&memmap[i]);
956                 }
957         }
958 }
959 #else
960 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
961 {
962 }
963 #endif
964
965 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
966                 unsigned long nr_pages, unsigned long map_offset,
967                 struct vmem_altmap *altmap)
968 {
969         clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
970                         nr_pages - map_offset);
971         section_deactivate(pfn, nr_pages, altmap);
972 }
973 #endif /* CONFIG_MEMORY_HOTPLUG */