Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[platform/kernel/linux-rpi.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21  * Permanent SPARSEMEM data:
22  *
23  * 1) mem_section       - memory sections, mem_map's for valid memory
24  */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section *mem_section[NR_SECTION_ROOTS]
27         ____cacheline_internodealigned_in_smp;
28 #else
29 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
30         ____cacheline_internodealigned_in_smp;
31 #endif
32 EXPORT_SYMBOL(mem_section);
33
34 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 /*
36  * If we did not store the node number in the page then we have to
37  * do a lookup in the section_to_node_table in order to find which
38  * node the page belongs to.
39  */
40 #if MAX_NUMNODES <= 256
41 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
42 #else
43 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 #endif
45
46 int page_to_nid(const struct page *page)
47 {
48         return section_to_node_table[page_to_section(page)];
49 }
50 EXPORT_SYMBOL(page_to_nid);
51
52 static void set_section_nid(unsigned long section_nr, int nid)
53 {
54         section_to_node_table[section_nr] = nid;
55 }
56 #else /* !NODE_NOT_IN_PAGE_FLAGS */
57 static inline void set_section_nid(unsigned long section_nr, int nid)
58 {
59 }
60 #endif
61
62 #ifdef CONFIG_SPARSEMEM_EXTREME
63 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 {
65         struct mem_section *section = NULL;
66         unsigned long array_size = SECTIONS_PER_ROOT *
67                                    sizeof(struct mem_section);
68
69         if (slab_is_available())
70                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71         else
72                 section = memblock_virt_alloc_node(array_size, nid);
73
74         return section;
75 }
76
77 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
78 {
79         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
80         struct mem_section *section;
81
82         if (mem_section[root])
83                 return -EEXIST;
84
85         section = sparse_index_alloc(nid);
86         if (!section)
87                 return -ENOMEM;
88
89         mem_section[root] = section;
90
91         return 0;
92 }
93 #else /* !SPARSEMEM_EXTREME */
94 static inline int sparse_index_init(unsigned long section_nr, int nid)
95 {
96         return 0;
97 }
98 #endif
99
100 #ifdef CONFIG_SPARSEMEM_EXTREME
101 int __section_nr(struct mem_section* ms)
102 {
103         unsigned long root_nr;
104         struct mem_section* root;
105
106         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
107                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
108                 if (!root)
109                         continue;
110
111                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
112                      break;
113         }
114
115         VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
116
117         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
118 }
119 #else
120 int __section_nr(struct mem_section* ms)
121 {
122         return (int)(ms - mem_section[0]);
123 }
124 #endif
125
126 /*
127  * During early boot, before section_mem_map is used for an actual
128  * mem_map, we use section_mem_map to store the section's NUMA
129  * node.  This keeps us from having to use another data structure.  The
130  * node information is cleared just before we store the real mem_map.
131  */
132 static inline unsigned long sparse_encode_early_nid(int nid)
133 {
134         return (nid << SECTION_NID_SHIFT);
135 }
136
137 static inline int sparse_early_nid(struct mem_section *section)
138 {
139         return (section->section_mem_map >> SECTION_NID_SHIFT);
140 }
141
142 /* Validate the physical addressing limitations of the model */
143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144                                                 unsigned long *end_pfn)
145 {
146         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
147
148         /*
149          * Sanity checks - do not allow an architecture to pass
150          * in larger pfns than the maximum scope of sparsemem:
151          */
152         if (*start_pfn > max_sparsemem_pfn) {
153                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155                         *start_pfn, *end_pfn, max_sparsemem_pfn);
156                 WARN_ON_ONCE(1);
157                 *start_pfn = max_sparsemem_pfn;
158                 *end_pfn = max_sparsemem_pfn;
159         } else if (*end_pfn > max_sparsemem_pfn) {
160                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162                         *start_pfn, *end_pfn, max_sparsemem_pfn);
163                 WARN_ON_ONCE(1);
164                 *end_pfn = max_sparsemem_pfn;
165         }
166 }
167
168 /*
169  * There are a number of times that we loop over NR_MEM_SECTIONS,
170  * looking for section_present() on each.  But, when we have very
171  * large physical address spaces, NR_MEM_SECTIONS can also be
172  * very large which makes the loops quite long.
173  *
174  * Keeping track of this gives us an easy way to break out of
175  * those loops early.
176  */
177 int __highest_present_section_nr;
178 static void section_mark_present(struct mem_section *ms)
179 {
180         int section_nr = __section_nr(ms);
181
182         if (section_nr > __highest_present_section_nr)
183                 __highest_present_section_nr = section_nr;
184
185         ms->section_mem_map |= SECTION_MARKED_PRESENT;
186 }
187
188 static inline int next_present_section_nr(int section_nr)
189 {
190         do {
191                 section_nr++;
192                 if (present_section_nr(section_nr))
193                         return section_nr;
194         } while ((section_nr < NR_MEM_SECTIONS) &&
195                  (section_nr <= __highest_present_section_nr));
196
197         return -1;
198 }
199 #define for_each_present_section_nr(start, section_nr)          \
200         for (section_nr = next_present_section_nr(start-1);     \
201              ((section_nr >= 0) &&                              \
202               (section_nr < NR_MEM_SECTIONS) &&                 \
203               (section_nr <= __highest_present_section_nr));    \
204              section_nr = next_present_section_nr(section_nr))
205
206 /* Record a memory area against a node. */
207 void __init memory_present(int nid, unsigned long start, unsigned long end)
208 {
209         unsigned long pfn;
210
211         start &= PAGE_SECTION_MASK;
212         mminit_validate_memmodel_limits(&start, &end);
213         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
214                 unsigned long section = pfn_to_section_nr(pfn);
215                 struct mem_section *ms;
216
217                 sparse_index_init(section, nid);
218                 set_section_nid(section, nid);
219
220                 ms = __nr_to_section(section);
221                 if (!ms->section_mem_map) {
222                         ms->section_mem_map = sparse_encode_early_nid(nid) |
223                                                         SECTION_IS_ONLINE;
224                         section_mark_present(ms);
225                 }
226         }
227 }
228
229 /*
230  * Only used by the i386 NUMA architecures, but relatively
231  * generic code.
232  */
233 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
234                                                      unsigned long end_pfn)
235 {
236         unsigned long pfn;
237         unsigned long nr_pages = 0;
238
239         mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
240         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
241                 if (nid != early_pfn_to_nid(pfn))
242                         continue;
243
244                 if (pfn_present(pfn))
245                         nr_pages += PAGES_PER_SECTION;
246         }
247
248         return nr_pages * sizeof(struct page);
249 }
250
251 /*
252  * Subtle, we encode the real pfn into the mem_map such that
253  * the identity pfn - section_mem_map will return the actual
254  * physical page frame number.
255  */
256 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
257 {
258         return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
259 }
260
261 /*
262  * Decode mem_map from the coded memmap
263  */
264 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
265 {
266         /* mask off the extra low bits of information */
267         coded_mem_map &= SECTION_MAP_MASK;
268         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
269 }
270
271 static int __meminit sparse_init_one_section(struct mem_section *ms,
272                 unsigned long pnum, struct page *mem_map,
273                 unsigned long *pageblock_bitmap)
274 {
275         if (!present_section(ms))
276                 return -EINVAL;
277
278         ms->section_mem_map &= ~SECTION_MAP_MASK;
279         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
280                                                         SECTION_HAS_MEM_MAP;
281         ms->pageblock_flags = pageblock_bitmap;
282
283         return 1;
284 }
285
286 unsigned long usemap_size(void)
287 {
288         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
289 }
290
291 #ifdef CONFIG_MEMORY_HOTPLUG
292 static unsigned long *__kmalloc_section_usemap(void)
293 {
294         return kmalloc(usemap_size(), GFP_KERNEL);
295 }
296 #endif /* CONFIG_MEMORY_HOTPLUG */
297
298 #ifdef CONFIG_MEMORY_HOTREMOVE
299 static unsigned long * __init
300 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
301                                          unsigned long size)
302 {
303         unsigned long goal, limit;
304         unsigned long *p;
305         int nid;
306         /*
307          * A page may contain usemaps for other sections preventing the
308          * page being freed and making a section unremovable while
309          * other sections referencing the usemap remain active. Similarly,
310          * a pgdat can prevent a section being removed. If section A
311          * contains a pgdat and section B contains the usemap, both
312          * sections become inter-dependent. This allocates usemaps
313          * from the same section as the pgdat where possible to avoid
314          * this problem.
315          */
316         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
317         limit = goal + (1UL << PA_SECTION_SHIFT);
318         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
319 again:
320         p = memblock_virt_alloc_try_nid_nopanic(size,
321                                                 SMP_CACHE_BYTES, goal, limit,
322                                                 nid);
323         if (!p && limit) {
324                 limit = 0;
325                 goto again;
326         }
327         return p;
328 }
329
330 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
331 {
332         unsigned long usemap_snr, pgdat_snr;
333         static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
334         static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
335         struct pglist_data *pgdat = NODE_DATA(nid);
336         int usemap_nid;
337
338         usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
339         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
340         if (usemap_snr == pgdat_snr)
341                 return;
342
343         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
344                 /* skip redundant message */
345                 return;
346
347         old_usemap_snr = usemap_snr;
348         old_pgdat_snr = pgdat_snr;
349
350         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
351         if (usemap_nid != nid) {
352                 pr_info("node %d must be removed before remove section %ld\n",
353                         nid, usemap_snr);
354                 return;
355         }
356         /*
357          * There is a circular dependency.
358          * Some platforms allow un-removable section because they will just
359          * gather other removable sections for dynamic partitioning.
360          * Just notify un-removable section's number here.
361          */
362         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
363                 usemap_snr, pgdat_snr, nid);
364 }
365 #else
366 static unsigned long * __init
367 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
368                                          unsigned long size)
369 {
370         return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
371 }
372
373 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
374 {
375 }
376 #endif /* CONFIG_MEMORY_HOTREMOVE */
377
378 static void __init sparse_early_usemaps_alloc_node(void *data,
379                                  unsigned long pnum_begin,
380                                  unsigned long pnum_end,
381                                  unsigned long usemap_count, int nodeid)
382 {
383         void *usemap;
384         unsigned long pnum;
385         unsigned long **usemap_map = (unsigned long **)data;
386         int size = usemap_size();
387
388         usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
389                                                           size * usemap_count);
390         if (!usemap) {
391                 pr_warn("%s: allocation failed\n", __func__);
392                 return;
393         }
394
395         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
396                 if (!present_section_nr(pnum))
397                         continue;
398                 usemap_map[pnum] = usemap;
399                 usemap += size;
400                 check_usemap_section_nr(nodeid, usemap_map[pnum]);
401         }
402 }
403
404 #ifndef CONFIG_SPARSEMEM_VMEMMAP
405 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
406 {
407         struct page *map;
408         unsigned long size;
409
410         map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
411         if (map)
412                 return map;
413
414         size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
415         map = memblock_virt_alloc_try_nid(size,
416                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
417                                           BOOTMEM_ALLOC_ACCESSIBLE, nid);
418         return map;
419 }
420 void __init sparse_mem_maps_populate_node(struct page **map_map,
421                                           unsigned long pnum_begin,
422                                           unsigned long pnum_end,
423                                           unsigned long map_count, int nodeid)
424 {
425         void *map;
426         unsigned long pnum;
427         unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
428
429         map = alloc_remap(nodeid, size * map_count);
430         if (map) {
431                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
432                         if (!present_section_nr(pnum))
433                                 continue;
434                         map_map[pnum] = map;
435                         map += size;
436                 }
437                 return;
438         }
439
440         size = PAGE_ALIGN(size);
441         map = memblock_virt_alloc_try_nid(size * map_count,
442                                           PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
443                                           BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
444         if (map) {
445                 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
446                         if (!present_section_nr(pnum))
447                                 continue;
448                         map_map[pnum] = map;
449                         map += size;
450                 }
451                 return;
452         }
453
454         /* fallback */
455         for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
456                 struct mem_section *ms;
457
458                 if (!present_section_nr(pnum))
459                         continue;
460                 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
461                 if (map_map[pnum])
462                         continue;
463                 ms = __nr_to_section(pnum);
464                 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
465                        __func__);
466                 ms->section_mem_map = 0;
467         }
468 }
469 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
470
471 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
472 static void __init sparse_early_mem_maps_alloc_node(void *data,
473                                  unsigned long pnum_begin,
474                                  unsigned long pnum_end,
475                                  unsigned long map_count, int nodeid)
476 {
477         struct page **map_map = (struct page **)data;
478         sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
479                                          map_count, nodeid);
480 }
481 #else
482 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
483 {
484         struct page *map;
485         struct mem_section *ms = __nr_to_section(pnum);
486         int nid = sparse_early_nid(ms);
487
488         map = sparse_mem_map_populate(pnum, nid);
489         if (map)
490                 return map;
491
492         pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
493                __func__);
494         ms->section_mem_map = 0;
495         return NULL;
496 }
497 #endif
498
499 void __weak __meminit vmemmap_populate_print_last(void)
500 {
501 }
502
503 /**
504  *  alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
505  *  @map: usemap_map for pageblock flags or mmap_map for vmemmap
506  */
507 static void __init alloc_usemap_and_memmap(void (*alloc_func)
508                                         (void *, unsigned long, unsigned long,
509                                         unsigned long, int), void *data)
510 {
511         unsigned long pnum;
512         unsigned long map_count;
513         int nodeid_begin = 0;
514         unsigned long pnum_begin = 0;
515
516         for_each_present_section_nr(0, pnum) {
517                 struct mem_section *ms;
518
519                 ms = __nr_to_section(pnum);
520                 nodeid_begin = sparse_early_nid(ms);
521                 pnum_begin = pnum;
522                 break;
523         }
524         map_count = 1;
525         for_each_present_section_nr(pnum_begin + 1, pnum) {
526                 struct mem_section *ms;
527                 int nodeid;
528
529                 ms = __nr_to_section(pnum);
530                 nodeid = sparse_early_nid(ms);
531                 if (nodeid == nodeid_begin) {
532                         map_count++;
533                         continue;
534                 }
535                 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
536                 alloc_func(data, pnum_begin, pnum,
537                                                 map_count, nodeid_begin);
538                 /* new start, update count etc*/
539                 nodeid_begin = nodeid;
540                 pnum_begin = pnum;
541                 map_count = 1;
542         }
543         /* ok, last chunk */
544         alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
545                                                 map_count, nodeid_begin);
546 }
547
548 /*
549  * Allocate the accumulated non-linear sections, allocate a mem_map
550  * for each and record the physical to section mapping.
551  */
552 void __init sparse_init(void)
553 {
554         unsigned long pnum;
555         struct page *map;
556         unsigned long *usemap;
557         unsigned long **usemap_map;
558         int size;
559 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
560         int size2;
561         struct page **map_map;
562 #endif
563
564         /* see include/linux/mmzone.h 'struct mem_section' definition */
565         BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
566
567         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
568         set_pageblock_order();
569
570         /*
571          * map is using big page (aka 2M in x86 64 bit)
572          * usemap is less one page (aka 24 bytes)
573          * so alloc 2M (with 2M align) and 24 bytes in turn will
574          * make next 2M slip to one more 2M later.
575          * then in big system, the memory will have a lot of holes...
576          * here try to allocate 2M pages continuously.
577          *
578          * powerpc need to call sparse_init_one_section right after each
579          * sparse_early_mem_map_alloc, so allocate usemap_map at first.
580          */
581         size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
582         usemap_map = memblock_virt_alloc(size, 0);
583         if (!usemap_map)
584                 panic("can not allocate usemap_map\n");
585         alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
586                                                         (void *)usemap_map);
587
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589         size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
590         map_map = memblock_virt_alloc(size2, 0);
591         if (!map_map)
592                 panic("can not allocate map_map\n");
593         alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
594                                                         (void *)map_map);
595 #endif
596
597         for_each_present_section_nr(0, pnum) {
598                 usemap = usemap_map[pnum];
599                 if (!usemap)
600                         continue;
601
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603                 map = map_map[pnum];
604 #else
605                 map = sparse_early_mem_map_alloc(pnum);
606 #endif
607                 if (!map)
608                         continue;
609
610                 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
611                                                                 usemap);
612         }
613
614         vmemmap_populate_print_last();
615
616 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
617         memblock_free_early(__pa(map_map), size2);
618 #endif
619         memblock_free_early(__pa(usemap_map), size);
620 }
621
622 #ifdef CONFIG_MEMORY_HOTPLUG
623
624 /* Mark all memory sections within the pfn range as online */
625 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
626 {
627         unsigned long pfn;
628
629         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
630                 unsigned long section_nr = pfn_to_section_nr(pfn);
631                 struct mem_section *ms;
632
633                 /* onlining code should never touch invalid ranges */
634                 if (WARN_ON(!valid_section_nr(section_nr)))
635                         continue;
636
637                 ms = __nr_to_section(section_nr);
638                 ms->section_mem_map |= SECTION_IS_ONLINE;
639         }
640 }
641
642 #ifdef CONFIG_MEMORY_HOTREMOVE
643 /* Mark all memory sections within the pfn range as online */
644 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
645 {
646         unsigned long pfn;
647
648         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
649                 unsigned long section_nr = pfn_to_section_nr(start_pfn);
650                 struct mem_section *ms;
651
652                 /*
653                  * TODO this needs some double checking. Offlining code makes
654                  * sure to check pfn_valid but those checks might be just bogus
655                  */
656                 if (WARN_ON(!valid_section_nr(section_nr)))
657                         continue;
658
659                 ms = __nr_to_section(section_nr);
660                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
661         }
662 }
663 #endif
664
665 #ifdef CONFIG_SPARSEMEM_VMEMMAP
666 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
667 {
668         /* This will make the necessary allocations eventually. */
669         return sparse_mem_map_populate(pnum, nid);
670 }
671 static void __kfree_section_memmap(struct page *memmap)
672 {
673         unsigned long start = (unsigned long)memmap;
674         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
675
676         vmemmap_free(start, end);
677 }
678 #ifdef CONFIG_MEMORY_HOTREMOVE
679 static void free_map_bootmem(struct page *memmap)
680 {
681         unsigned long start = (unsigned long)memmap;
682         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
683
684         vmemmap_free(start, end);
685 }
686 #endif /* CONFIG_MEMORY_HOTREMOVE */
687 #else
688 static struct page *__kmalloc_section_memmap(void)
689 {
690         struct page *page, *ret;
691         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
692
693         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
694         if (page)
695                 goto got_map_page;
696
697         ret = vmalloc(memmap_size);
698         if (ret)
699                 goto got_map_ptr;
700
701         return NULL;
702 got_map_page:
703         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
704 got_map_ptr:
705
706         return ret;
707 }
708
709 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
710 {
711         return __kmalloc_section_memmap();
712 }
713
714 static void __kfree_section_memmap(struct page *memmap)
715 {
716         if (is_vmalloc_addr(memmap))
717                 vfree(memmap);
718         else
719                 free_pages((unsigned long)memmap,
720                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
721 }
722
723 #ifdef CONFIG_MEMORY_HOTREMOVE
724 static void free_map_bootmem(struct page *memmap)
725 {
726         unsigned long maps_section_nr, removing_section_nr, i;
727         unsigned long magic, nr_pages;
728         struct page *page = virt_to_page(memmap);
729
730         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
731                 >> PAGE_SHIFT;
732
733         for (i = 0; i < nr_pages; i++, page++) {
734                 magic = (unsigned long) page->freelist;
735
736                 BUG_ON(magic == NODE_INFO);
737
738                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
739                 removing_section_nr = page_private(page);
740
741                 /*
742                  * When this function is called, the removing section is
743                  * logical offlined state. This means all pages are isolated
744                  * from page allocator. If removing section's memmap is placed
745                  * on the same section, it must not be freed.
746                  * If it is freed, page allocator may allocate it which will
747                  * be removed physically soon.
748                  */
749                 if (maps_section_nr != removing_section_nr)
750                         put_page_bootmem(page);
751         }
752 }
753 #endif /* CONFIG_MEMORY_HOTREMOVE */
754 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
755
756 /*
757  * returns the number of sections whose mem_maps were properly
758  * set.  If this is <=0, then that means that the passed-in
759  * map was not consumed and must be freed.
760  */
761 int __meminit sparse_add_one_section(struct pglist_data *pgdat, unsigned long start_pfn)
762 {
763         unsigned long section_nr = pfn_to_section_nr(start_pfn);
764         struct mem_section *ms;
765         struct page *memmap;
766         unsigned long *usemap;
767         unsigned long flags;
768         int ret;
769
770         /*
771          * no locking for this, because it does its own
772          * plus, it does a kmalloc
773          */
774         ret = sparse_index_init(section_nr, pgdat->node_id);
775         if (ret < 0 && ret != -EEXIST)
776                 return ret;
777         memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
778         if (!memmap)
779                 return -ENOMEM;
780         usemap = __kmalloc_section_usemap();
781         if (!usemap) {
782                 __kfree_section_memmap(memmap);
783                 return -ENOMEM;
784         }
785
786         pgdat_resize_lock(pgdat, &flags);
787
788         ms = __pfn_to_section(start_pfn);
789         if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
790                 ret = -EEXIST;
791                 goto out;
792         }
793
794         memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
795
796         section_mark_present(ms);
797
798         ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
799
800 out:
801         pgdat_resize_unlock(pgdat, &flags);
802         if (ret <= 0) {
803                 kfree(usemap);
804                 __kfree_section_memmap(memmap);
805         }
806         return ret;
807 }
808
809 #ifdef CONFIG_MEMORY_HOTREMOVE
810 #ifdef CONFIG_MEMORY_FAILURE
811 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
812 {
813         int i;
814
815         if (!memmap)
816                 return;
817
818         for (i = 0; i < nr_pages; i++) {
819                 if (PageHWPoison(&memmap[i])) {
820                         atomic_long_sub(1, &num_poisoned_pages);
821                         ClearPageHWPoison(&memmap[i]);
822                 }
823         }
824 }
825 #else
826 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
827 {
828 }
829 #endif
830
831 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
832 {
833         struct page *usemap_page;
834
835         if (!usemap)
836                 return;
837
838         usemap_page = virt_to_page(usemap);
839         /*
840          * Check to see if allocation came from hot-plug-add
841          */
842         if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
843                 kfree(usemap);
844                 if (memmap)
845                         __kfree_section_memmap(memmap);
846                 return;
847         }
848
849         /*
850          * The usemap came from bootmem. This is packed with other usemaps
851          * on the section which has pgdat at boot time. Just keep it as is now.
852          */
853
854         if (memmap)
855                 free_map_bootmem(memmap);
856 }
857
858 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
859                 unsigned long map_offset)
860 {
861         struct page *memmap = NULL;
862         unsigned long *usemap = NULL, flags;
863         struct pglist_data *pgdat = zone->zone_pgdat;
864
865         pgdat_resize_lock(pgdat, &flags);
866         if (ms->section_mem_map) {
867                 usemap = ms->pageblock_flags;
868                 memmap = sparse_decode_mem_map(ms->section_mem_map,
869                                                 __section_nr(ms));
870                 ms->section_mem_map = 0;
871                 ms->pageblock_flags = NULL;
872         }
873         pgdat_resize_unlock(pgdat, &flags);
874
875         clear_hwpoisoned_pages(memmap + map_offset,
876                         PAGES_PER_SECTION - map_offset);
877         free_section_usemap(memmap, usemap);
878 }
879 #endif /* CONFIG_MEMORY_HOTREMOVE */
880 #endif /* CONFIG_MEMORY_HOTPLUG */