Merge tag 'dmaengine-5.7-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[platform/kernel/linux-rpi.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21
22 /*
23  * Permanent SPARSEMEM data:
24  *
25  * 1) mem_section       - memory sections, mem_map's for valid memory
26  */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31         ____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37  * If we did not store the node number in the page then we have to
38  * do a lookup in the section_to_node_table in order to find which
39  * node the page belongs to.
40  */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46
47 int page_to_nid(const struct page *page)
48 {
49         return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55         section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66         struct mem_section *section = NULL;
67         unsigned long array_size = SECTIONS_PER_ROOT *
68                                    sizeof(struct mem_section);
69
70         if (slab_is_available()) {
71                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
72         } else {
73                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74                                               nid);
75                 if (!section)
76                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
77                               __func__, array_size, nid);
78         }
79
80         return section;
81 }
82
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86         struct mem_section *section;
87
88         /*
89          * An existing section is possible in the sub-section hotplug
90          * case. First hot-add instantiates, follow-on hot-add reuses
91          * the existing section.
92          *
93          * The mem_hotplug_lock resolves the apparent race below.
94          */
95         if (mem_section[root])
96                 return 0;
97
98         section = sparse_index_alloc(nid);
99         if (!section)
100                 return -ENOMEM;
101
102         mem_section[root] = section;
103
104         return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109         return 0;
110 }
111 #endif
112
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116         unsigned long root_nr;
117         struct mem_section *root = NULL;
118
119         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121                 if (!root)
122                         continue;
123
124                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125                      break;
126         }
127
128         VM_BUG_ON(!root);
129
130         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135         return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138
139 /*
140  * During early boot, before section_mem_map is used for an actual
141  * mem_map, we use section_mem_map to store the section's NUMA
142  * node.  This keeps us from having to use another data structure.  The
143  * node information is cleared just before we store the real mem_map.
144  */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147         return (nid << SECTION_NID_SHIFT);
148 }
149
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152         return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157                                                 unsigned long *end_pfn)
158 {
159         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161         /*
162          * Sanity checks - do not allow an architecture to pass
163          * in larger pfns than the maximum scope of sparsemem:
164          */
165         if (*start_pfn > max_sparsemem_pfn) {
166                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168                         *start_pfn, *end_pfn, max_sparsemem_pfn);
169                 WARN_ON_ONCE(1);
170                 *start_pfn = max_sparsemem_pfn;
171                 *end_pfn = max_sparsemem_pfn;
172         } else if (*end_pfn > max_sparsemem_pfn) {
173                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175                         *start_pfn, *end_pfn, max_sparsemem_pfn);
176                 WARN_ON_ONCE(1);
177                 *end_pfn = max_sparsemem_pfn;
178         }
179 }
180
181 /*
182  * There are a number of times that we loop over NR_MEM_SECTIONS,
183  * looking for section_present() on each.  But, when we have very
184  * large physical address spaces, NR_MEM_SECTIONS can also be
185  * very large which makes the loops quite long.
186  *
187  * Keeping track of this gives us an easy way to break out of
188  * those loops early.
189  */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193         unsigned long section_nr = __section_nr(ms);
194
195         if (section_nr > __highest_present_section_nr)
196                 __highest_present_section_nr = section_nr;
197
198         ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200
201 #define for_each_present_section_nr(start, section_nr)          \
202         for (section_nr = next_present_section_nr(start-1);     \
203              ((section_nr != -1) &&                             \
204               (section_nr <= __highest_present_section_nr));    \
205              section_nr = next_present_section_nr(section_nr))
206
207 static inline unsigned long first_present_section_nr(void)
208 {
209         return next_present_section_nr(-1);
210 }
211
212 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
213                 unsigned long nr_pages)
214 {
215         int idx = subsection_map_index(pfn);
216         int end = subsection_map_index(pfn + nr_pages - 1);
217
218         bitmap_set(map, idx, end - idx + 1);
219 }
220
221 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
222 {
223         int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
224         unsigned long nr, start_sec = pfn_to_section_nr(pfn);
225
226         if (!nr_pages)
227                 return;
228
229         for (nr = start_sec; nr <= end_sec; nr++) {
230                 struct mem_section *ms;
231                 unsigned long pfns;
232
233                 pfns = min(nr_pages, PAGES_PER_SECTION
234                                 - (pfn & ~PAGE_SECTION_MASK));
235                 ms = __nr_to_section(nr);
236                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
237
238                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
239                                 pfns, subsection_map_index(pfn),
240                                 subsection_map_index(pfn + pfns - 1));
241
242                 pfn += pfns;
243                 nr_pages -= pfns;
244         }
245 }
246
247 /* Record a memory area against a node. */
248 void __init memory_present(int nid, unsigned long start, unsigned long end)
249 {
250         unsigned long pfn;
251
252 #ifdef CONFIG_SPARSEMEM_EXTREME
253         if (unlikely(!mem_section)) {
254                 unsigned long size, align;
255
256                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
257                 align = 1 << (INTERNODE_CACHE_SHIFT);
258                 mem_section = memblock_alloc(size, align);
259                 if (!mem_section)
260                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
261                               __func__, size, align);
262         }
263 #endif
264
265         start &= PAGE_SECTION_MASK;
266         mminit_validate_memmodel_limits(&start, &end);
267         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
268                 unsigned long section = pfn_to_section_nr(pfn);
269                 struct mem_section *ms;
270
271                 sparse_index_init(section, nid);
272                 set_section_nid(section, nid);
273
274                 ms = __nr_to_section(section);
275                 if (!ms->section_mem_map) {
276                         ms->section_mem_map = sparse_encode_early_nid(nid) |
277                                                         SECTION_IS_ONLINE;
278                         section_mark_present(ms);
279                 }
280         }
281 }
282
283 /*
284  * Mark all memblocks as present using memory_present(). This is a
285  * convienence function that is useful for a number of arches
286  * to mark all of the systems memory as present during initialization.
287  */
288 void __init memblocks_present(void)
289 {
290         struct memblock_region *reg;
291
292         for_each_memblock(memory, reg) {
293                 memory_present(memblock_get_region_node(reg),
294                                memblock_region_memory_base_pfn(reg),
295                                memblock_region_memory_end_pfn(reg));
296         }
297 }
298
299 /*
300  * Subtle, we encode the real pfn into the mem_map such that
301  * the identity pfn - section_mem_map will return the actual
302  * physical page frame number.
303  */
304 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
305 {
306         unsigned long coded_mem_map =
307                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
308         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
309         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
310         return coded_mem_map;
311 }
312
313 /*
314  * Decode mem_map from the coded memmap
315  */
316 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
317 {
318         /* mask off the extra low bits of information */
319         coded_mem_map &= SECTION_MAP_MASK;
320         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
321 }
322
323 static void __meminit sparse_init_one_section(struct mem_section *ms,
324                 unsigned long pnum, struct page *mem_map,
325                 struct mem_section_usage *usage, unsigned long flags)
326 {
327         ms->section_mem_map &= ~SECTION_MAP_MASK;
328         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
329                 | SECTION_HAS_MEM_MAP | flags;
330         ms->usage = usage;
331 }
332
333 static unsigned long usemap_size(void)
334 {
335         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
336 }
337
338 size_t mem_section_usage_size(void)
339 {
340         return sizeof(struct mem_section_usage) + usemap_size();
341 }
342
343 #ifdef CONFIG_MEMORY_HOTREMOVE
344 static struct mem_section_usage * __init
345 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
346                                          unsigned long size)
347 {
348         struct mem_section_usage *usage;
349         unsigned long goal, limit;
350         int nid;
351         /*
352          * A page may contain usemaps for other sections preventing the
353          * page being freed and making a section unremovable while
354          * other sections referencing the usemap remain active. Similarly,
355          * a pgdat can prevent a section being removed. If section A
356          * contains a pgdat and section B contains the usemap, both
357          * sections become inter-dependent. This allocates usemaps
358          * from the same section as the pgdat where possible to avoid
359          * this problem.
360          */
361         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
362         limit = goal + (1UL << PA_SECTION_SHIFT);
363         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
364 again:
365         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
366         if (!usage && limit) {
367                 limit = 0;
368                 goto again;
369         }
370         return usage;
371 }
372
373 static void __init check_usemap_section_nr(int nid,
374                 struct mem_section_usage *usage)
375 {
376         unsigned long usemap_snr, pgdat_snr;
377         static unsigned long old_usemap_snr;
378         static unsigned long old_pgdat_snr;
379         struct pglist_data *pgdat = NODE_DATA(nid);
380         int usemap_nid;
381
382         /* First call */
383         if (!old_usemap_snr) {
384                 old_usemap_snr = NR_MEM_SECTIONS;
385                 old_pgdat_snr = NR_MEM_SECTIONS;
386         }
387
388         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
389         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
390         if (usemap_snr == pgdat_snr)
391                 return;
392
393         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
394                 /* skip redundant message */
395                 return;
396
397         old_usemap_snr = usemap_snr;
398         old_pgdat_snr = pgdat_snr;
399
400         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
401         if (usemap_nid != nid) {
402                 pr_info("node %d must be removed before remove section %ld\n",
403                         nid, usemap_snr);
404                 return;
405         }
406         /*
407          * There is a circular dependency.
408          * Some platforms allow un-removable section because they will just
409          * gather other removable sections for dynamic partitioning.
410          * Just notify un-removable section's number here.
411          */
412         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
413                 usemap_snr, pgdat_snr, nid);
414 }
415 #else
416 static struct mem_section_usage * __init
417 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
418                                          unsigned long size)
419 {
420         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
421 }
422
423 static void __init check_usemap_section_nr(int nid,
424                 struct mem_section_usage *usage)
425 {
426 }
427 #endif /* CONFIG_MEMORY_HOTREMOVE */
428
429 #ifdef CONFIG_SPARSEMEM_VMEMMAP
430 static unsigned long __init section_map_size(void)
431 {
432         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
433 }
434
435 #else
436 static unsigned long __init section_map_size(void)
437 {
438         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
439 }
440
441 struct page __init *__populate_section_memmap(unsigned long pfn,
442                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
443 {
444         unsigned long size = section_map_size();
445         struct page *map = sparse_buffer_alloc(size);
446         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
447
448         if (map)
449                 return map;
450
451         map = memblock_alloc_try_nid_raw(size, size, addr,
452                                           MEMBLOCK_ALLOC_ACCESSIBLE, nid);
453         if (!map)
454                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
455                       __func__, size, PAGE_SIZE, nid, &addr);
456
457         return map;
458 }
459 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
460
461 static void *sparsemap_buf __meminitdata;
462 static void *sparsemap_buf_end __meminitdata;
463
464 static inline void __meminit sparse_buffer_free(unsigned long size)
465 {
466         WARN_ON(!sparsemap_buf || size == 0);
467         memblock_free_early(__pa(sparsemap_buf), size);
468 }
469
470 static void __init sparse_buffer_init(unsigned long size, int nid)
471 {
472         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
473         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
474         /*
475          * Pre-allocated buffer is mainly used by __populate_section_memmap
476          * and we want it to be properly aligned to the section size - this is
477          * especially the case for VMEMMAP which maps memmap to PMDs
478          */
479         sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
480                                         addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
481         sparsemap_buf_end = sparsemap_buf + size;
482 }
483
484 static void __init sparse_buffer_fini(void)
485 {
486         unsigned long size = sparsemap_buf_end - sparsemap_buf;
487
488         if (sparsemap_buf && size > 0)
489                 sparse_buffer_free(size);
490         sparsemap_buf = NULL;
491 }
492
493 void * __meminit sparse_buffer_alloc(unsigned long size)
494 {
495         void *ptr = NULL;
496
497         if (sparsemap_buf) {
498                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
499                 if (ptr + size > sparsemap_buf_end)
500                         ptr = NULL;
501                 else {
502                         /* Free redundant aligned space */
503                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
504                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
505                         sparsemap_buf = ptr + size;
506                 }
507         }
508         return ptr;
509 }
510
511 void __weak __meminit vmemmap_populate_print_last(void)
512 {
513 }
514
515 /*
516  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
517  * And number of present sections in this node is map_count.
518  */
519 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
520                                    unsigned long pnum_end,
521                                    unsigned long map_count)
522 {
523         struct mem_section_usage *usage;
524         unsigned long pnum;
525         struct page *map;
526
527         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
528                         mem_section_usage_size() * map_count);
529         if (!usage) {
530                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
531                 goto failed;
532         }
533         sparse_buffer_init(map_count * section_map_size(), nid);
534         for_each_present_section_nr(pnum_begin, pnum) {
535                 unsigned long pfn = section_nr_to_pfn(pnum);
536
537                 if (pnum >= pnum_end)
538                         break;
539
540                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
541                                 nid, NULL);
542                 if (!map) {
543                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
544                                __func__, nid);
545                         pnum_begin = pnum;
546                         goto failed;
547                 }
548                 check_usemap_section_nr(nid, usage);
549                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
550                                 SECTION_IS_EARLY);
551                 usage = (void *) usage + mem_section_usage_size();
552         }
553         sparse_buffer_fini();
554         return;
555 failed:
556         /* We failed to allocate, mark all the following pnums as not present */
557         for_each_present_section_nr(pnum_begin, pnum) {
558                 struct mem_section *ms;
559
560                 if (pnum >= pnum_end)
561                         break;
562                 ms = __nr_to_section(pnum);
563                 ms->section_mem_map = 0;
564         }
565 }
566
567 /*
568  * Allocate the accumulated non-linear sections, allocate a mem_map
569  * for each and record the physical to section mapping.
570  */
571 void __init sparse_init(void)
572 {
573         unsigned long pnum_begin = first_present_section_nr();
574         int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
575         unsigned long pnum_end, map_count = 1;
576
577         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
578         set_pageblock_order();
579
580         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
581                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
582
583                 if (nid == nid_begin) {
584                         map_count++;
585                         continue;
586                 }
587                 /* Init node with sections in range [pnum_begin, pnum_end) */
588                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
589                 nid_begin = nid;
590                 pnum_begin = pnum_end;
591                 map_count = 1;
592         }
593         /* cover the last node */
594         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
595         vmemmap_populate_print_last();
596 }
597
598 #ifdef CONFIG_MEMORY_HOTPLUG
599
600 /* Mark all memory sections within the pfn range as online */
601 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
602 {
603         unsigned long pfn;
604
605         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
606                 unsigned long section_nr = pfn_to_section_nr(pfn);
607                 struct mem_section *ms;
608
609                 /* onlining code should never touch invalid ranges */
610                 if (WARN_ON(!valid_section_nr(section_nr)))
611                         continue;
612
613                 ms = __nr_to_section(section_nr);
614                 ms->section_mem_map |= SECTION_IS_ONLINE;
615         }
616 }
617
618 #ifdef CONFIG_MEMORY_HOTREMOVE
619 /* Mark all memory sections within the pfn range as offline */
620 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
621 {
622         unsigned long pfn;
623
624         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
625                 unsigned long section_nr = pfn_to_section_nr(pfn);
626                 struct mem_section *ms;
627
628                 /*
629                  * TODO this needs some double checking. Offlining code makes
630                  * sure to check pfn_valid but those checks might be just bogus
631                  */
632                 if (WARN_ON(!valid_section_nr(section_nr)))
633                         continue;
634
635                 ms = __nr_to_section(section_nr);
636                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
637         }
638 }
639 #endif
640
641 #ifdef CONFIG_SPARSEMEM_VMEMMAP
642 static struct page * __meminit populate_section_memmap(unsigned long pfn,
643                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
644 {
645         return __populate_section_memmap(pfn, nr_pages, nid, altmap);
646 }
647
648 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
649                 struct vmem_altmap *altmap)
650 {
651         unsigned long start = (unsigned long) pfn_to_page(pfn);
652         unsigned long end = start + nr_pages * sizeof(struct page);
653
654         vmemmap_free(start, end, altmap);
655 }
656 static void free_map_bootmem(struct page *memmap)
657 {
658         unsigned long start = (unsigned long)memmap;
659         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
660
661         vmemmap_free(start, end, NULL);
662 }
663 #else
664 struct page * __meminit populate_section_memmap(unsigned long pfn,
665                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
666 {
667         return kvmalloc_node(array_size(sizeof(struct page),
668                                         PAGES_PER_SECTION), GFP_KERNEL, nid);
669 }
670
671 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
672                 struct vmem_altmap *altmap)
673 {
674         kvfree(pfn_to_page(pfn));
675 }
676
677 static void free_map_bootmem(struct page *memmap)
678 {
679         unsigned long maps_section_nr, removing_section_nr, i;
680         unsigned long magic, nr_pages;
681         struct page *page = virt_to_page(memmap);
682
683         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
684                 >> PAGE_SHIFT;
685
686         for (i = 0; i < nr_pages; i++, page++) {
687                 magic = (unsigned long) page->freelist;
688
689                 BUG_ON(magic == NODE_INFO);
690
691                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
692                 removing_section_nr = page_private(page);
693
694                 /*
695                  * When this function is called, the removing section is
696                  * logical offlined state. This means all pages are isolated
697                  * from page allocator. If removing section's memmap is placed
698                  * on the same section, it must not be freed.
699                  * If it is freed, page allocator may allocate it which will
700                  * be removed physically soon.
701                  */
702                 if (maps_section_nr != removing_section_nr)
703                         put_page_bootmem(page);
704         }
705 }
706 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
707
708 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
709                 struct vmem_altmap *altmap)
710 {
711         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
712         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
713         struct mem_section *ms = __pfn_to_section(pfn);
714         bool section_is_early = early_section(ms);
715         struct page *memmap = NULL;
716         bool empty;
717         unsigned long *subsection_map = ms->usage
718                 ? &ms->usage->subsection_map[0] : NULL;
719
720         subsection_mask_set(map, pfn, nr_pages);
721         if (subsection_map)
722                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
723
724         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
725                                 "section already deactivated (%#lx + %ld)\n",
726                                 pfn, nr_pages))
727                 return;
728
729         /*
730          * There are 3 cases to handle across two configurations
731          * (SPARSEMEM_VMEMMAP={y,n}):
732          *
733          * 1/ deactivation of a partial hot-added section (only possible
734          * in the SPARSEMEM_VMEMMAP=y case).
735          *    a/ section was present at memory init
736          *    b/ section was hot-added post memory init
737          * 2/ deactivation of a complete hot-added section
738          * 3/ deactivation of a complete section from memory init
739          *
740          * For 1/, when subsection_map does not empty we will not be
741          * freeing the usage map, but still need to free the vmemmap
742          * range.
743          *
744          * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
745          */
746         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
747         empty = bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION);
748         if (empty) {
749                 unsigned long section_nr = pfn_to_section_nr(pfn);
750
751                 /*
752                  * When removing an early section, the usage map is kept (as the
753                  * usage maps of other sections fall into the same page). It
754                  * will be re-used when re-adding the section - which is then no
755                  * longer an early section. If the usage map is PageReserved, it
756                  * was allocated during boot.
757                  */
758                 if (!PageReserved(virt_to_page(ms->usage))) {
759                         kfree(ms->usage);
760                         ms->usage = NULL;
761                 }
762                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
763                 /*
764                  * Mark the section invalid so that valid_section()
765                  * return false. This prevents code from dereferencing
766                  * ms->usage array.
767                  */
768                 ms->section_mem_map &= ~SECTION_HAS_MEM_MAP;
769         }
770
771         if (section_is_early && memmap)
772                 free_map_bootmem(memmap);
773         else
774                 depopulate_section_memmap(pfn, nr_pages, altmap);
775
776         if (empty)
777                 ms->section_mem_map = (unsigned long)NULL;
778 }
779
780 static struct page * __meminit section_activate(int nid, unsigned long pfn,
781                 unsigned long nr_pages, struct vmem_altmap *altmap)
782 {
783         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
784         struct mem_section *ms = __pfn_to_section(pfn);
785         struct mem_section_usage *usage = NULL;
786         unsigned long *subsection_map;
787         struct page *memmap;
788         int rc = 0;
789
790         subsection_mask_set(map, pfn, nr_pages);
791
792         if (!ms->usage) {
793                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
794                 if (!usage)
795                         return ERR_PTR(-ENOMEM);
796                 ms->usage = usage;
797         }
798         subsection_map = &ms->usage->subsection_map[0];
799
800         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
801                 rc = -EINVAL;
802         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
803                 rc = -EEXIST;
804         else
805                 bitmap_or(subsection_map, map, subsection_map,
806                                 SUBSECTIONS_PER_SECTION);
807
808         if (rc) {
809                 if (usage)
810                         ms->usage = NULL;
811                 kfree(usage);
812                 return ERR_PTR(rc);
813         }
814
815         /*
816          * The early init code does not consider partially populated
817          * initial sections, it simply assumes that memory will never be
818          * referenced.  If we hot-add memory into such a section then we
819          * do not need to populate the memmap and can simply reuse what
820          * is already there.
821          */
822         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
823                 return pfn_to_page(pfn);
824
825         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
826         if (!memmap) {
827                 section_deactivate(pfn, nr_pages, altmap);
828                 return ERR_PTR(-ENOMEM);
829         }
830
831         return memmap;
832 }
833
834 /**
835  * sparse_add_section - add a memory section, or populate an existing one
836  * @nid: The node to add section on
837  * @start_pfn: start pfn of the memory range
838  * @nr_pages: number of pfns to add in the section
839  * @altmap: device page map
840  *
841  * This is only intended for hotplug.
842  *
843  * Return:
844  * * 0          - On success.
845  * * -EEXIST    - Section has been present.
846  * * -ENOMEM    - Out of memory.
847  */
848 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
849                 unsigned long nr_pages, struct vmem_altmap *altmap)
850 {
851         unsigned long section_nr = pfn_to_section_nr(start_pfn);
852         struct mem_section *ms;
853         struct page *memmap;
854         int ret;
855
856         ret = sparse_index_init(section_nr, nid);
857         if (ret < 0)
858                 return ret;
859
860         memmap = section_activate(nid, start_pfn, nr_pages, altmap);
861         if (IS_ERR(memmap))
862                 return PTR_ERR(memmap);
863
864         /*
865          * Poison uninitialized struct pages in order to catch invalid flags
866          * combinations.
867          */
868         page_init_poison(memmap, sizeof(struct page) * nr_pages);
869
870         ms = __nr_to_section(section_nr);
871         set_section_nid(section_nr, nid);
872         section_mark_present(ms);
873
874         /* Align memmap to section boundary in the subsection case */
875         if (section_nr_to_pfn(section_nr) != start_pfn)
876                 memmap = pfn_to_page(section_nr_to_pfn(section_nr));
877         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
878
879         return 0;
880 }
881
882 #ifdef CONFIG_MEMORY_FAILURE
883 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
884 {
885         int i;
886
887         /*
888          * A further optimization is to have per section refcounted
889          * num_poisoned_pages.  But that would need more space per memmap, so
890          * for now just do a quick global check to speed up this routine in the
891          * absence of bad pages.
892          */
893         if (atomic_long_read(&num_poisoned_pages) == 0)
894                 return;
895
896         for (i = 0; i < nr_pages; i++) {
897                 if (PageHWPoison(&memmap[i])) {
898                         num_poisoned_pages_dec();
899                         ClearPageHWPoison(&memmap[i]);
900                 }
901         }
902 }
903 #else
904 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
905 {
906 }
907 #endif
908
909 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
910                 unsigned long nr_pages, unsigned long map_offset,
911                 struct vmem_altmap *altmap)
912 {
913         clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
914                         nr_pages - map_offset);
915         section_deactivate(pfn, nr_pages, altmap);
916 }
917 #endif /* CONFIG_MEMORY_HOTPLUG */