1 // SPDX-License-Identifier: GPL-2.0
3 * sparse memory mappings.
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
23 * Permanent SPARSEMEM data:
25 * 1) mem_section - memory sections, mem_map's for valid memory
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31 ____cacheline_internodealigned_in_smp;
33 EXPORT_SYMBOL(mem_section);
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
37 * If we did not store the node number in the page then we have to
38 * do a lookup in the section_to_node_table in order to find which
39 * node the page belongs to.
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
47 int page_to_nid(const struct page *page)
49 return section_to_node_table[page_to_section(page)];
51 EXPORT_SYMBOL(page_to_nid);
53 static void set_section_nid(unsigned long section_nr, int nid)
55 section_to_node_table[section_nr] = nid;
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
66 struct mem_section *section = NULL;
67 unsigned long array_size = SECTIONS_PER_ROOT *
68 sizeof(struct mem_section);
70 if (slab_is_available()) {
71 section = kzalloc_node(array_size, GFP_KERNEL, nid);
73 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
76 panic("%s: Failed to allocate %lu bytes nid=%d\n",
77 __func__, array_size, nid);
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
85 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86 struct mem_section *section;
89 * An existing section is possible in the sub-section hotplug
90 * case. First hot-add instantiates, follow-on hot-add reuses
91 * the existing section.
93 * The mem_hotplug_lock resolves the apparent race below.
95 if (mem_section[root])
98 section = sparse_index_alloc(nid);
102 mem_section[root] = section;
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
116 unsigned long root_nr;
117 struct mem_section *root = NULL;
119 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
124 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
130 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
133 unsigned long __section_nr(struct mem_section *ms)
135 return (unsigned long)(ms - mem_section[0]);
140 * During early boot, before section_mem_map is used for an actual
141 * mem_map, we use section_mem_map to store the section's NUMA
142 * node. This keeps us from having to use another data structure. The
143 * node information is cleared just before we store the real mem_map.
145 static inline unsigned long sparse_encode_early_nid(int nid)
147 return (nid << SECTION_NID_SHIFT);
150 static inline int sparse_early_nid(struct mem_section *section)
152 return (section->section_mem_map >> SECTION_NID_SHIFT);
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157 unsigned long *end_pfn)
159 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
162 * Sanity checks - do not allow an architecture to pass
163 * in larger pfns than the maximum scope of sparsemem:
165 if (*start_pfn > max_sparsemem_pfn) {
166 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168 *start_pfn, *end_pfn, max_sparsemem_pfn);
170 *start_pfn = max_sparsemem_pfn;
171 *end_pfn = max_sparsemem_pfn;
172 } else if (*end_pfn > max_sparsemem_pfn) {
173 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175 *start_pfn, *end_pfn, max_sparsemem_pfn);
177 *end_pfn = max_sparsemem_pfn;
182 * There are a number of times that we loop over NR_MEM_SECTIONS,
183 * looking for section_present() on each. But, when we have very
184 * large physical address spaces, NR_MEM_SECTIONS can also be
185 * very large which makes the loops quite long.
187 * Keeping track of this gives us an easy way to break out of
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
193 unsigned long section_nr = __section_nr(ms);
195 if (section_nr > __highest_present_section_nr)
196 __highest_present_section_nr = section_nr;
198 ms->section_mem_map |= SECTION_MARKED_PRESENT;
201 static inline unsigned long next_present_section_nr(unsigned long section_nr)
205 if (present_section_nr(section_nr))
207 } while ((section_nr <= __highest_present_section_nr));
211 #define for_each_present_section_nr(start, section_nr) \
212 for (section_nr = next_present_section_nr(start-1); \
213 ((section_nr != -1) && \
214 (section_nr <= __highest_present_section_nr)); \
215 section_nr = next_present_section_nr(section_nr))
217 static inline unsigned long first_present_section_nr(void)
219 return next_present_section_nr(-1);
222 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223 unsigned long nr_pages)
225 int idx = subsection_map_index(pfn);
226 int end = subsection_map_index(pfn + nr_pages - 1);
228 bitmap_set(map, idx, end - idx + 1);
231 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
233 int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234 unsigned long nr, start_sec = pfn_to_section_nr(pfn);
239 for (nr = start_sec; nr <= end_sec; nr++) {
240 struct mem_section *ms;
243 pfns = min(nr_pages, PAGES_PER_SECTION
244 - (pfn & ~PAGE_SECTION_MASK));
245 ms = __nr_to_section(nr);
246 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
248 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249 pfns, subsection_map_index(pfn),
250 subsection_map_index(pfn + pfns - 1));
257 /* Record a memory area against a node. */
258 void __init memory_present(int nid, unsigned long start, unsigned long end)
262 #ifdef CONFIG_SPARSEMEM_EXTREME
263 if (unlikely(!mem_section)) {
264 unsigned long size, align;
266 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267 align = 1 << (INTERNODE_CACHE_SHIFT);
268 mem_section = memblock_alloc(size, align);
270 panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271 __func__, size, align);
275 start &= PAGE_SECTION_MASK;
276 mminit_validate_memmodel_limits(&start, &end);
277 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278 unsigned long section = pfn_to_section_nr(pfn);
279 struct mem_section *ms;
281 sparse_index_init(section, nid);
282 set_section_nid(section, nid);
284 ms = __nr_to_section(section);
285 if (!ms->section_mem_map) {
286 ms->section_mem_map = sparse_encode_early_nid(nid) |
288 section_mark_present(ms);
294 * Mark all memblocks as present using memory_present(). This is a
295 * convienence function that is useful for a number of arches
296 * to mark all of the systems memory as present during initialization.
298 void __init memblocks_present(void)
300 struct memblock_region *reg;
302 for_each_memblock(memory, reg) {
303 memory_present(memblock_get_region_node(reg),
304 memblock_region_memory_base_pfn(reg),
305 memblock_region_memory_end_pfn(reg));
310 * Subtle, we encode the real pfn into the mem_map such that
311 * the identity pfn - section_mem_map will return the actual
312 * physical page frame number.
314 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
316 unsigned long coded_mem_map =
317 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320 return coded_mem_map;
324 * Decode mem_map from the coded memmap
326 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
328 /* mask off the extra low bits of information */
329 coded_mem_map &= SECTION_MAP_MASK;
330 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
333 static void __meminit sparse_init_one_section(struct mem_section *ms,
334 unsigned long pnum, struct page *mem_map,
335 struct mem_section_usage *usage, unsigned long flags)
337 ms->section_mem_map &= ~SECTION_MAP_MASK;
338 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339 | SECTION_HAS_MEM_MAP | flags;
343 static unsigned long usemap_size(void)
345 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
348 size_t mem_section_usage_size(void)
350 return sizeof(struct mem_section_usage) + usemap_size();
353 #ifdef CONFIG_MEMORY_HOTREMOVE
354 static struct mem_section_usage * __init
355 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
358 struct mem_section_usage *usage;
359 unsigned long goal, limit;
362 * A page may contain usemaps for other sections preventing the
363 * page being freed and making a section unremovable while
364 * other sections referencing the usemap remain active. Similarly,
365 * a pgdat can prevent a section being removed. If section A
366 * contains a pgdat and section B contains the usemap, both
367 * sections become inter-dependent. This allocates usemaps
368 * from the same section as the pgdat where possible to avoid
371 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372 limit = goal + (1UL << PA_SECTION_SHIFT);
373 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
375 usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376 if (!usage && limit) {
383 static void __init check_usemap_section_nr(int nid,
384 struct mem_section_usage *usage)
386 unsigned long usemap_snr, pgdat_snr;
387 static unsigned long old_usemap_snr;
388 static unsigned long old_pgdat_snr;
389 struct pglist_data *pgdat = NODE_DATA(nid);
393 if (!old_usemap_snr) {
394 old_usemap_snr = NR_MEM_SECTIONS;
395 old_pgdat_snr = NR_MEM_SECTIONS;
398 usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400 if (usemap_snr == pgdat_snr)
403 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404 /* skip redundant message */
407 old_usemap_snr = usemap_snr;
408 old_pgdat_snr = pgdat_snr;
410 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411 if (usemap_nid != nid) {
412 pr_info("node %d must be removed before remove section %ld\n",
417 * There is a circular dependency.
418 * Some platforms allow un-removable section because they will just
419 * gather other removable sections for dynamic partitioning.
420 * Just notify un-removable section's number here.
422 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423 usemap_snr, pgdat_snr, nid);
426 static struct mem_section_usage * __init
427 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
430 return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
433 static void __init check_usemap_section_nr(int nid,
434 struct mem_section_usage *usage)
437 #endif /* CONFIG_MEMORY_HOTREMOVE */
439 #ifdef CONFIG_SPARSEMEM_VMEMMAP
440 static unsigned long __init section_map_size(void)
442 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
446 static unsigned long __init section_map_size(void)
448 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
451 struct page __init *__populate_section_memmap(unsigned long pfn,
452 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
454 unsigned long size = section_map_size();
455 struct page *map = sparse_buffer_alloc(size);
456 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
461 map = memblock_alloc_try_nid_raw(size, size, addr,
462 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
464 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
465 __func__, size, PAGE_SIZE, nid, &addr);
469 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
471 static void *sparsemap_buf __meminitdata;
472 static void *sparsemap_buf_end __meminitdata;
474 static inline void __meminit sparse_buffer_free(unsigned long size)
476 WARN_ON(!sparsemap_buf || size == 0);
477 memblock_free_early(__pa(sparsemap_buf), size);
480 static void __init sparse_buffer_init(unsigned long size, int nid)
482 phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
483 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
485 * Pre-allocated buffer is mainly used by __populate_section_memmap
486 * and we want it to be properly aligned to the section size - this is
487 * especially the case for VMEMMAP which maps memmap to PMDs
489 sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
490 addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
491 sparsemap_buf_end = sparsemap_buf + size;
494 static void __init sparse_buffer_fini(void)
496 unsigned long size = sparsemap_buf_end - sparsemap_buf;
498 if (sparsemap_buf && size > 0)
499 sparse_buffer_free(size);
500 sparsemap_buf = NULL;
503 void * __meminit sparse_buffer_alloc(unsigned long size)
508 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
509 if (ptr + size > sparsemap_buf_end)
512 /* Free redundant aligned space */
513 if ((unsigned long)(ptr - sparsemap_buf) > 0)
514 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
515 sparsemap_buf = ptr + size;
521 void __weak __meminit vmemmap_populate_print_last(void)
526 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
527 * And number of present sections in this node is map_count.
529 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
530 unsigned long pnum_end,
531 unsigned long map_count)
533 struct mem_section_usage *usage;
537 usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
538 mem_section_usage_size() * map_count);
540 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
543 sparse_buffer_init(map_count * section_map_size(), nid);
544 for_each_present_section_nr(pnum_begin, pnum) {
545 unsigned long pfn = section_nr_to_pfn(pnum);
547 if (pnum >= pnum_end)
550 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
553 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
558 check_usemap_section_nr(nid, usage);
559 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
561 usage = (void *) usage + mem_section_usage_size();
563 sparse_buffer_fini();
566 /* We failed to allocate, mark all the following pnums as not present */
567 for_each_present_section_nr(pnum_begin, pnum) {
568 struct mem_section *ms;
570 if (pnum >= pnum_end)
572 ms = __nr_to_section(pnum);
573 ms->section_mem_map = 0;
578 * Allocate the accumulated non-linear sections, allocate a mem_map
579 * for each and record the physical to section mapping.
581 void __init sparse_init(void)
583 unsigned long pnum_begin = first_present_section_nr();
584 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585 unsigned long pnum_end, map_count = 1;
587 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588 set_pageblock_order();
590 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
591 int nid = sparse_early_nid(__nr_to_section(pnum_end));
593 if (nid == nid_begin) {
597 /* Init node with sections in range [pnum_begin, pnum_end) */
598 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
600 pnum_begin = pnum_end;
603 /* cover the last node */
604 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
605 vmemmap_populate_print_last();
608 #ifdef CONFIG_MEMORY_HOTPLUG
610 /* Mark all memory sections within the pfn range as online */
611 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
615 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616 unsigned long section_nr = pfn_to_section_nr(pfn);
617 struct mem_section *ms;
619 /* onlining code should never touch invalid ranges */
620 if (WARN_ON(!valid_section_nr(section_nr)))
623 ms = __nr_to_section(section_nr);
624 ms->section_mem_map |= SECTION_IS_ONLINE;
628 #ifdef CONFIG_MEMORY_HOTREMOVE
629 /* Mark all memory sections within the pfn range as offline */
630 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
634 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
635 unsigned long section_nr = pfn_to_section_nr(pfn);
636 struct mem_section *ms;
639 * TODO this needs some double checking. Offlining code makes
640 * sure to check pfn_valid but those checks might be just bogus
642 if (WARN_ON(!valid_section_nr(section_nr)))
645 ms = __nr_to_section(section_nr);
646 ms->section_mem_map &= ~SECTION_IS_ONLINE;
651 #ifdef CONFIG_SPARSEMEM_VMEMMAP
652 static struct page * __meminit populate_section_memmap(unsigned long pfn,
653 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
655 return __populate_section_memmap(pfn, nr_pages, nid, altmap);
658 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
659 struct vmem_altmap *altmap)
661 unsigned long start = (unsigned long) pfn_to_page(pfn);
662 unsigned long end = start + nr_pages * sizeof(struct page);
664 vmemmap_free(start, end, altmap);
666 static void free_map_bootmem(struct page *memmap)
668 unsigned long start = (unsigned long)memmap;
669 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
671 vmemmap_free(start, end, NULL);
674 struct page * __meminit populate_section_memmap(unsigned long pfn,
675 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
677 struct page *page, *ret;
678 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
680 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
684 ret = vmalloc(memmap_size);
690 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
696 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
697 struct vmem_altmap *altmap)
699 struct page *memmap = pfn_to_page(pfn);
701 if (is_vmalloc_addr(memmap))
704 free_pages((unsigned long)memmap,
705 get_order(sizeof(struct page) * PAGES_PER_SECTION));
708 static void free_map_bootmem(struct page *memmap)
710 unsigned long maps_section_nr, removing_section_nr, i;
711 unsigned long magic, nr_pages;
712 struct page *page = virt_to_page(memmap);
714 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
717 for (i = 0; i < nr_pages; i++, page++) {
718 magic = (unsigned long) page->freelist;
720 BUG_ON(magic == NODE_INFO);
722 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
723 removing_section_nr = page_private(page);
726 * When this function is called, the removing section is
727 * logical offlined state. This means all pages are isolated
728 * from page allocator. If removing section's memmap is placed
729 * on the same section, it must not be freed.
730 * If it is freed, page allocator may allocate it which will
731 * be removed physically soon.
733 if (maps_section_nr != removing_section_nr)
734 put_page_bootmem(page);
737 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
739 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
740 struct vmem_altmap *altmap)
742 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
743 DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
744 struct mem_section *ms = __pfn_to_section(pfn);
745 bool section_is_early = early_section(ms);
746 struct page *memmap = NULL;
747 unsigned long *subsection_map = ms->usage
748 ? &ms->usage->subsection_map[0] : NULL;
750 subsection_mask_set(map, pfn, nr_pages);
752 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
754 if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
755 "section already deactivated (%#lx + %ld)\n",
760 * There are 3 cases to handle across two configurations
761 * (SPARSEMEM_VMEMMAP={y,n}):
763 * 1/ deactivation of a partial hot-added section (only possible
764 * in the SPARSEMEM_VMEMMAP=y case).
765 * a/ section was present at memory init
766 * b/ section was hot-added post memory init
767 * 2/ deactivation of a complete hot-added section
768 * 3/ deactivation of a complete section from memory init
770 * For 1/, when subsection_map does not empty we will not be
771 * freeing the usage map, but still need to free the vmemmap
774 * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
776 bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
777 if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
778 unsigned long section_nr = pfn_to_section_nr(pfn);
780 if (!section_is_early) {
784 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
785 ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
788 if (section_is_early && memmap)
789 free_map_bootmem(memmap);
791 depopulate_section_memmap(pfn, nr_pages, altmap);
794 static struct page * __meminit section_activate(int nid, unsigned long pfn,
795 unsigned long nr_pages, struct vmem_altmap *altmap)
797 DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
798 struct mem_section *ms = __pfn_to_section(pfn);
799 struct mem_section_usage *usage = NULL;
800 unsigned long *subsection_map;
804 subsection_mask_set(map, pfn, nr_pages);
807 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
809 return ERR_PTR(-ENOMEM);
812 subsection_map = &ms->usage->subsection_map[0];
814 if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
816 else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
819 bitmap_or(subsection_map, map, subsection_map,
820 SUBSECTIONS_PER_SECTION);
830 * The early init code does not consider partially populated
831 * initial sections, it simply assumes that memory will never be
832 * referenced. If we hot-add memory into such a section then we
833 * do not need to populate the memmap and can simply reuse what
836 if (nr_pages < PAGES_PER_SECTION && early_section(ms))
837 return pfn_to_page(pfn);
839 memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
841 section_deactivate(pfn, nr_pages, altmap);
842 return ERR_PTR(-ENOMEM);
849 * sparse_add_section - add a memory section, or populate an existing one
850 * @nid: The node to add section on
851 * @start_pfn: start pfn of the memory range
852 * @nr_pages: number of pfns to add in the section
853 * @altmap: device page map
855 * This is only intended for hotplug.
859 * * -EEXIST - Section has been present.
860 * * -ENOMEM - Out of memory.
862 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
863 unsigned long nr_pages, struct vmem_altmap *altmap)
865 unsigned long section_nr = pfn_to_section_nr(start_pfn);
866 struct mem_section *ms;
870 ret = sparse_index_init(section_nr, nid);
874 memmap = section_activate(nid, start_pfn, nr_pages, altmap);
876 return PTR_ERR(memmap);
879 * Poison uninitialized struct pages in order to catch invalid flags
882 page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
884 ms = __nr_to_section(section_nr);
885 set_section_nid(section_nr, nid);
886 section_mark_present(ms);
888 /* Align memmap to section boundary in the subsection case */
889 if (section_nr_to_pfn(section_nr) != start_pfn)
890 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
891 sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
896 #ifdef CONFIG_MEMORY_FAILURE
897 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
902 * A further optimization is to have per section refcounted
903 * num_poisoned_pages. But that would need more space per memmap, so
904 * for now just do a quick global check to speed up this routine in the
905 * absence of bad pages.
907 if (atomic_long_read(&num_poisoned_pages) == 0)
910 for (i = 0; i < nr_pages; i++) {
911 if (PageHWPoison(&memmap[i])) {
912 num_poisoned_pages_dec();
913 ClearPageHWPoison(&memmap[i]);
918 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
923 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
924 unsigned long nr_pages, unsigned long map_offset,
925 struct vmem_altmap *altmap)
927 clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
928 nr_pages - map_offset);
929 section_deactivate(pfn, nr_pages, altmap);
931 #endif /* CONFIG_MEMORY_HOTPLUG */