mm: memcg/slab: fix percpu slab vmstats flushing
[platform/kernel/linux-starfive.git] / mm / sparse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * sparse memory mappings.
4  */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/memblock.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16
17 #include "internal.h"
18 #include <asm/dma.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
21
22 /*
23  * Permanent SPARSEMEM data:
24  *
25  * 1) mem_section       - memory sections, mem_map's for valid memory
26  */
27 #ifdef CONFIG_SPARSEMEM_EXTREME
28 struct mem_section **mem_section;
29 #else
30 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
31         ____cacheline_internodealigned_in_smp;
32 #endif
33 EXPORT_SYMBOL(mem_section);
34
35 #ifdef NODE_NOT_IN_PAGE_FLAGS
36 /*
37  * If we did not store the node number in the page then we have to
38  * do a lookup in the section_to_node_table in order to find which
39  * node the page belongs to.
40  */
41 #if MAX_NUMNODES <= 256
42 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #else
44 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
45 #endif
46
47 int page_to_nid(const struct page *page)
48 {
49         return section_to_node_table[page_to_section(page)];
50 }
51 EXPORT_SYMBOL(page_to_nid);
52
53 static void set_section_nid(unsigned long section_nr, int nid)
54 {
55         section_to_node_table[section_nr] = nid;
56 }
57 #else /* !NODE_NOT_IN_PAGE_FLAGS */
58 static inline void set_section_nid(unsigned long section_nr, int nid)
59 {
60 }
61 #endif
62
63 #ifdef CONFIG_SPARSEMEM_EXTREME
64 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
65 {
66         struct mem_section *section = NULL;
67         unsigned long array_size = SECTIONS_PER_ROOT *
68                                    sizeof(struct mem_section);
69
70         if (slab_is_available()) {
71                 section = kzalloc_node(array_size, GFP_KERNEL, nid);
72         } else {
73                 section = memblock_alloc_node(array_size, SMP_CACHE_BYTES,
74                                               nid);
75                 if (!section)
76                         panic("%s: Failed to allocate %lu bytes nid=%d\n",
77                               __func__, array_size, nid);
78         }
79
80         return section;
81 }
82
83 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
84 {
85         unsigned long root = SECTION_NR_TO_ROOT(section_nr);
86         struct mem_section *section;
87
88         /*
89          * An existing section is possible in the sub-section hotplug
90          * case. First hot-add instantiates, follow-on hot-add reuses
91          * the existing section.
92          *
93          * The mem_hotplug_lock resolves the apparent race below.
94          */
95         if (mem_section[root])
96                 return 0;
97
98         section = sparse_index_alloc(nid);
99         if (!section)
100                 return -ENOMEM;
101
102         mem_section[root] = section;
103
104         return 0;
105 }
106 #else /* !SPARSEMEM_EXTREME */
107 static inline int sparse_index_init(unsigned long section_nr, int nid)
108 {
109         return 0;
110 }
111 #endif
112
113 #ifdef CONFIG_SPARSEMEM_EXTREME
114 unsigned long __section_nr(struct mem_section *ms)
115 {
116         unsigned long root_nr;
117         struct mem_section *root = NULL;
118
119         for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
120                 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
121                 if (!root)
122                         continue;
123
124                 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
125                      break;
126         }
127
128         VM_BUG_ON(!root);
129
130         return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
131 }
132 #else
133 unsigned long __section_nr(struct mem_section *ms)
134 {
135         return (unsigned long)(ms - mem_section[0]);
136 }
137 #endif
138
139 /*
140  * During early boot, before section_mem_map is used for an actual
141  * mem_map, we use section_mem_map to store the section's NUMA
142  * node.  This keeps us from having to use another data structure.  The
143  * node information is cleared just before we store the real mem_map.
144  */
145 static inline unsigned long sparse_encode_early_nid(int nid)
146 {
147         return (nid << SECTION_NID_SHIFT);
148 }
149
150 static inline int sparse_early_nid(struct mem_section *section)
151 {
152         return (section->section_mem_map >> SECTION_NID_SHIFT);
153 }
154
155 /* Validate the physical addressing limitations of the model */
156 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
157                                                 unsigned long *end_pfn)
158 {
159         unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
160
161         /*
162          * Sanity checks - do not allow an architecture to pass
163          * in larger pfns than the maximum scope of sparsemem:
164          */
165         if (*start_pfn > max_sparsemem_pfn) {
166                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
167                         "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
168                         *start_pfn, *end_pfn, max_sparsemem_pfn);
169                 WARN_ON_ONCE(1);
170                 *start_pfn = max_sparsemem_pfn;
171                 *end_pfn = max_sparsemem_pfn;
172         } else if (*end_pfn > max_sparsemem_pfn) {
173                 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
174                         "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
175                         *start_pfn, *end_pfn, max_sparsemem_pfn);
176                 WARN_ON_ONCE(1);
177                 *end_pfn = max_sparsemem_pfn;
178         }
179 }
180
181 /*
182  * There are a number of times that we loop over NR_MEM_SECTIONS,
183  * looking for section_present() on each.  But, when we have very
184  * large physical address spaces, NR_MEM_SECTIONS can also be
185  * very large which makes the loops quite long.
186  *
187  * Keeping track of this gives us an easy way to break out of
188  * those loops early.
189  */
190 unsigned long __highest_present_section_nr;
191 static void section_mark_present(struct mem_section *ms)
192 {
193         unsigned long section_nr = __section_nr(ms);
194
195         if (section_nr > __highest_present_section_nr)
196                 __highest_present_section_nr = section_nr;
197
198         ms->section_mem_map |= SECTION_MARKED_PRESENT;
199 }
200
201 static inline unsigned long next_present_section_nr(unsigned long section_nr)
202 {
203         do {
204                 section_nr++;
205                 if (present_section_nr(section_nr))
206                         return section_nr;
207         } while ((section_nr <= __highest_present_section_nr));
208
209         return -1;
210 }
211 #define for_each_present_section_nr(start, section_nr)          \
212         for (section_nr = next_present_section_nr(start-1);     \
213              ((section_nr != -1) &&                             \
214               (section_nr <= __highest_present_section_nr));    \
215              section_nr = next_present_section_nr(section_nr))
216
217 static inline unsigned long first_present_section_nr(void)
218 {
219         return next_present_section_nr(-1);
220 }
221
222 static void subsection_mask_set(unsigned long *map, unsigned long pfn,
223                 unsigned long nr_pages)
224 {
225         int idx = subsection_map_index(pfn);
226         int end = subsection_map_index(pfn + nr_pages - 1);
227
228         bitmap_set(map, idx, end - idx + 1);
229 }
230
231 void __init subsection_map_init(unsigned long pfn, unsigned long nr_pages)
232 {
233         int end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
234         unsigned long nr, start_sec = pfn_to_section_nr(pfn);
235
236         if (!nr_pages)
237                 return;
238
239         for (nr = start_sec; nr <= end_sec; nr++) {
240                 struct mem_section *ms;
241                 unsigned long pfns;
242
243                 pfns = min(nr_pages, PAGES_PER_SECTION
244                                 - (pfn & ~PAGE_SECTION_MASK));
245                 ms = __nr_to_section(nr);
246                 subsection_mask_set(ms->usage->subsection_map, pfn, pfns);
247
248                 pr_debug("%s: sec: %lu pfns: %lu set(%d, %d)\n", __func__, nr,
249                                 pfns, subsection_map_index(pfn),
250                                 subsection_map_index(pfn + pfns - 1));
251
252                 pfn += pfns;
253                 nr_pages -= pfns;
254         }
255 }
256
257 /* Record a memory area against a node. */
258 void __init memory_present(int nid, unsigned long start, unsigned long end)
259 {
260         unsigned long pfn;
261
262 #ifdef CONFIG_SPARSEMEM_EXTREME
263         if (unlikely(!mem_section)) {
264                 unsigned long size, align;
265
266                 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
267                 align = 1 << (INTERNODE_CACHE_SHIFT);
268                 mem_section = memblock_alloc(size, align);
269                 if (!mem_section)
270                         panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
271                               __func__, size, align);
272         }
273 #endif
274
275         start &= PAGE_SECTION_MASK;
276         mminit_validate_memmodel_limits(&start, &end);
277         for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
278                 unsigned long section = pfn_to_section_nr(pfn);
279                 struct mem_section *ms;
280
281                 sparse_index_init(section, nid);
282                 set_section_nid(section, nid);
283
284                 ms = __nr_to_section(section);
285                 if (!ms->section_mem_map) {
286                         ms->section_mem_map = sparse_encode_early_nid(nid) |
287                                                         SECTION_IS_ONLINE;
288                         section_mark_present(ms);
289                 }
290         }
291 }
292
293 /*
294  * Mark all memblocks as present using memory_present(). This is a
295  * convienence function that is useful for a number of arches
296  * to mark all of the systems memory as present during initialization.
297  */
298 void __init memblocks_present(void)
299 {
300         struct memblock_region *reg;
301
302         for_each_memblock(memory, reg) {
303                 memory_present(memblock_get_region_node(reg),
304                                memblock_region_memory_base_pfn(reg),
305                                memblock_region_memory_end_pfn(reg));
306         }
307 }
308
309 /*
310  * Subtle, we encode the real pfn into the mem_map such that
311  * the identity pfn - section_mem_map will return the actual
312  * physical page frame number.
313  */
314 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
315 {
316         unsigned long coded_mem_map =
317                 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
318         BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
319         BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
320         return coded_mem_map;
321 }
322
323 /*
324  * Decode mem_map from the coded memmap
325  */
326 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
327 {
328         /* mask off the extra low bits of information */
329         coded_mem_map &= SECTION_MAP_MASK;
330         return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
331 }
332
333 static void __meminit sparse_init_one_section(struct mem_section *ms,
334                 unsigned long pnum, struct page *mem_map,
335                 struct mem_section_usage *usage, unsigned long flags)
336 {
337         ms->section_mem_map &= ~SECTION_MAP_MASK;
338         ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum)
339                 | SECTION_HAS_MEM_MAP | flags;
340         ms->usage = usage;
341 }
342
343 static unsigned long usemap_size(void)
344 {
345         return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
346 }
347
348 size_t mem_section_usage_size(void)
349 {
350         return sizeof(struct mem_section_usage) + usemap_size();
351 }
352
353 #ifdef CONFIG_MEMORY_HOTREMOVE
354 static struct mem_section_usage * __init
355 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
356                                          unsigned long size)
357 {
358         struct mem_section_usage *usage;
359         unsigned long goal, limit;
360         int nid;
361         /*
362          * A page may contain usemaps for other sections preventing the
363          * page being freed and making a section unremovable while
364          * other sections referencing the usemap remain active. Similarly,
365          * a pgdat can prevent a section being removed. If section A
366          * contains a pgdat and section B contains the usemap, both
367          * sections become inter-dependent. This allocates usemaps
368          * from the same section as the pgdat where possible to avoid
369          * this problem.
370          */
371         goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
372         limit = goal + (1UL << PA_SECTION_SHIFT);
373         nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
374 again:
375         usage = memblock_alloc_try_nid(size, SMP_CACHE_BYTES, goal, limit, nid);
376         if (!usage && limit) {
377                 limit = 0;
378                 goto again;
379         }
380         return usage;
381 }
382
383 static void __init check_usemap_section_nr(int nid,
384                 struct mem_section_usage *usage)
385 {
386         unsigned long usemap_snr, pgdat_snr;
387         static unsigned long old_usemap_snr;
388         static unsigned long old_pgdat_snr;
389         struct pglist_data *pgdat = NODE_DATA(nid);
390         int usemap_nid;
391
392         /* First call */
393         if (!old_usemap_snr) {
394                 old_usemap_snr = NR_MEM_SECTIONS;
395                 old_pgdat_snr = NR_MEM_SECTIONS;
396         }
397
398         usemap_snr = pfn_to_section_nr(__pa(usage) >> PAGE_SHIFT);
399         pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
400         if (usemap_snr == pgdat_snr)
401                 return;
402
403         if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
404                 /* skip redundant message */
405                 return;
406
407         old_usemap_snr = usemap_snr;
408         old_pgdat_snr = pgdat_snr;
409
410         usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
411         if (usemap_nid != nid) {
412                 pr_info("node %d must be removed before remove section %ld\n",
413                         nid, usemap_snr);
414                 return;
415         }
416         /*
417          * There is a circular dependency.
418          * Some platforms allow un-removable section because they will just
419          * gather other removable sections for dynamic partitioning.
420          * Just notify un-removable section's number here.
421          */
422         pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
423                 usemap_snr, pgdat_snr, nid);
424 }
425 #else
426 static struct mem_section_usage * __init
427 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
428                                          unsigned long size)
429 {
430         return memblock_alloc_node(size, SMP_CACHE_BYTES, pgdat->node_id);
431 }
432
433 static void __init check_usemap_section_nr(int nid,
434                 struct mem_section_usage *usage)
435 {
436 }
437 #endif /* CONFIG_MEMORY_HOTREMOVE */
438
439 #ifdef CONFIG_SPARSEMEM_VMEMMAP
440 static unsigned long __init section_map_size(void)
441 {
442         return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
443 }
444
445 #else
446 static unsigned long __init section_map_size(void)
447 {
448         return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
449 }
450
451 struct page __init *__populate_section_memmap(unsigned long pfn,
452                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
453 {
454         unsigned long size = section_map_size();
455         struct page *map = sparse_buffer_alloc(size);
456         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
457
458         if (map)
459                 return map;
460
461         map = memblock_alloc_try_nid_raw(size, size, addr,
462                                           MEMBLOCK_ALLOC_ACCESSIBLE, nid);
463         if (!map)
464                 panic("%s: Failed to allocate %lu bytes align=0x%lx nid=%d from=%pa\n",
465                       __func__, size, PAGE_SIZE, nid, &addr);
466
467         return map;
468 }
469 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
470
471 static void *sparsemap_buf __meminitdata;
472 static void *sparsemap_buf_end __meminitdata;
473
474 static inline void __meminit sparse_buffer_free(unsigned long size)
475 {
476         WARN_ON(!sparsemap_buf || size == 0);
477         memblock_free_early(__pa(sparsemap_buf), size);
478 }
479
480 static void __init sparse_buffer_init(unsigned long size, int nid)
481 {
482         phys_addr_t addr = __pa(MAX_DMA_ADDRESS);
483         WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
484         /*
485          * Pre-allocated buffer is mainly used by __populate_section_memmap
486          * and we want it to be properly aligned to the section size - this is
487          * especially the case for VMEMMAP which maps memmap to PMDs
488          */
489         sparsemap_buf = memblock_alloc_exact_nid_raw(size, section_map_size(),
490                                         addr, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
491         sparsemap_buf_end = sparsemap_buf + size;
492 }
493
494 static void __init sparse_buffer_fini(void)
495 {
496         unsigned long size = sparsemap_buf_end - sparsemap_buf;
497
498         if (sparsemap_buf && size > 0)
499                 sparse_buffer_free(size);
500         sparsemap_buf = NULL;
501 }
502
503 void * __meminit sparse_buffer_alloc(unsigned long size)
504 {
505         void *ptr = NULL;
506
507         if (sparsemap_buf) {
508                 ptr = (void *) roundup((unsigned long)sparsemap_buf, size);
509                 if (ptr + size > sparsemap_buf_end)
510                         ptr = NULL;
511                 else {
512                         /* Free redundant aligned space */
513                         if ((unsigned long)(ptr - sparsemap_buf) > 0)
514                                 sparse_buffer_free((unsigned long)(ptr - sparsemap_buf));
515                         sparsemap_buf = ptr + size;
516                 }
517         }
518         return ptr;
519 }
520
521 void __weak __meminit vmemmap_populate_print_last(void)
522 {
523 }
524
525 /*
526  * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
527  * And number of present sections in this node is map_count.
528  */
529 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
530                                    unsigned long pnum_end,
531                                    unsigned long map_count)
532 {
533         struct mem_section_usage *usage;
534         unsigned long pnum;
535         struct page *map;
536
537         usage = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
538                         mem_section_usage_size() * map_count);
539         if (!usage) {
540                 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
541                 goto failed;
542         }
543         sparse_buffer_init(map_count * section_map_size(), nid);
544         for_each_present_section_nr(pnum_begin, pnum) {
545                 unsigned long pfn = section_nr_to_pfn(pnum);
546
547                 if (pnum >= pnum_end)
548                         break;
549
550                 map = __populate_section_memmap(pfn, PAGES_PER_SECTION,
551                                 nid, NULL);
552                 if (!map) {
553                         pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
554                                __func__, nid);
555                         pnum_begin = pnum;
556                         goto failed;
557                 }
558                 check_usemap_section_nr(nid, usage);
559                 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usage,
560                                 SECTION_IS_EARLY);
561                 usage = (void *) usage + mem_section_usage_size();
562         }
563         sparse_buffer_fini();
564         return;
565 failed:
566         /* We failed to allocate, mark all the following pnums as not present */
567         for_each_present_section_nr(pnum_begin, pnum) {
568                 struct mem_section *ms;
569
570                 if (pnum >= pnum_end)
571                         break;
572                 ms = __nr_to_section(pnum);
573                 ms->section_mem_map = 0;
574         }
575 }
576
577 /*
578  * Allocate the accumulated non-linear sections, allocate a mem_map
579  * for each and record the physical to section mapping.
580  */
581 void __init sparse_init(void)
582 {
583         unsigned long pnum_begin = first_present_section_nr();
584         int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
585         unsigned long pnum_end, map_count = 1;
586
587         /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
588         set_pageblock_order();
589
590         for_each_present_section_nr(pnum_begin + 1, pnum_end) {
591                 int nid = sparse_early_nid(__nr_to_section(pnum_end));
592
593                 if (nid == nid_begin) {
594                         map_count++;
595                         continue;
596                 }
597                 /* Init node with sections in range [pnum_begin, pnum_end) */
598                 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
599                 nid_begin = nid;
600                 pnum_begin = pnum_end;
601                 map_count = 1;
602         }
603         /* cover the last node */
604         sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
605         vmemmap_populate_print_last();
606 }
607
608 #ifdef CONFIG_MEMORY_HOTPLUG
609
610 /* Mark all memory sections within the pfn range as online */
611 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
612 {
613         unsigned long pfn;
614
615         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
616                 unsigned long section_nr = pfn_to_section_nr(pfn);
617                 struct mem_section *ms;
618
619                 /* onlining code should never touch invalid ranges */
620                 if (WARN_ON(!valid_section_nr(section_nr)))
621                         continue;
622
623                 ms = __nr_to_section(section_nr);
624                 ms->section_mem_map |= SECTION_IS_ONLINE;
625         }
626 }
627
628 #ifdef CONFIG_MEMORY_HOTREMOVE
629 /* Mark all memory sections within the pfn range as offline */
630 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
631 {
632         unsigned long pfn;
633
634         for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
635                 unsigned long section_nr = pfn_to_section_nr(pfn);
636                 struct mem_section *ms;
637
638                 /*
639                  * TODO this needs some double checking. Offlining code makes
640                  * sure to check pfn_valid but those checks might be just bogus
641                  */
642                 if (WARN_ON(!valid_section_nr(section_nr)))
643                         continue;
644
645                 ms = __nr_to_section(section_nr);
646                 ms->section_mem_map &= ~SECTION_IS_ONLINE;
647         }
648 }
649 #endif
650
651 #ifdef CONFIG_SPARSEMEM_VMEMMAP
652 static struct page * __meminit populate_section_memmap(unsigned long pfn,
653                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
654 {
655         return __populate_section_memmap(pfn, nr_pages, nid, altmap);
656 }
657
658 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
659                 struct vmem_altmap *altmap)
660 {
661         unsigned long start = (unsigned long) pfn_to_page(pfn);
662         unsigned long end = start + nr_pages * sizeof(struct page);
663
664         vmemmap_free(start, end, altmap);
665 }
666 static void free_map_bootmem(struct page *memmap)
667 {
668         unsigned long start = (unsigned long)memmap;
669         unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
670
671         vmemmap_free(start, end, NULL);
672 }
673 #else
674 struct page * __meminit populate_section_memmap(unsigned long pfn,
675                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
676 {
677         struct page *page, *ret;
678         unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
679
680         page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
681         if (page)
682                 goto got_map_page;
683
684         ret = vmalloc(memmap_size);
685         if (ret)
686                 goto got_map_ptr;
687
688         return NULL;
689 got_map_page:
690         ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
691 got_map_ptr:
692
693         return ret;
694 }
695
696 static void depopulate_section_memmap(unsigned long pfn, unsigned long nr_pages,
697                 struct vmem_altmap *altmap)
698 {
699         struct page *memmap = pfn_to_page(pfn);
700
701         if (is_vmalloc_addr(memmap))
702                 vfree(memmap);
703         else
704                 free_pages((unsigned long)memmap,
705                            get_order(sizeof(struct page) * PAGES_PER_SECTION));
706 }
707
708 static void free_map_bootmem(struct page *memmap)
709 {
710         unsigned long maps_section_nr, removing_section_nr, i;
711         unsigned long magic, nr_pages;
712         struct page *page = virt_to_page(memmap);
713
714         nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
715                 >> PAGE_SHIFT;
716
717         for (i = 0; i < nr_pages; i++, page++) {
718                 magic = (unsigned long) page->freelist;
719
720                 BUG_ON(magic == NODE_INFO);
721
722                 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
723                 removing_section_nr = page_private(page);
724
725                 /*
726                  * When this function is called, the removing section is
727                  * logical offlined state. This means all pages are isolated
728                  * from page allocator. If removing section's memmap is placed
729                  * on the same section, it must not be freed.
730                  * If it is freed, page allocator may allocate it which will
731                  * be removed physically soon.
732                  */
733                 if (maps_section_nr != removing_section_nr)
734                         put_page_bootmem(page);
735         }
736 }
737 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
738
739 static void section_deactivate(unsigned long pfn, unsigned long nr_pages,
740                 struct vmem_altmap *altmap)
741 {
742         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
743         DECLARE_BITMAP(tmp, SUBSECTIONS_PER_SECTION) = { 0 };
744         struct mem_section *ms = __pfn_to_section(pfn);
745         bool section_is_early = early_section(ms);
746         struct page *memmap = NULL;
747         unsigned long *subsection_map = ms->usage
748                 ? &ms->usage->subsection_map[0] : NULL;
749
750         subsection_mask_set(map, pfn, nr_pages);
751         if (subsection_map)
752                 bitmap_and(tmp, map, subsection_map, SUBSECTIONS_PER_SECTION);
753
754         if (WARN(!subsection_map || !bitmap_equal(tmp, map, SUBSECTIONS_PER_SECTION),
755                                 "section already deactivated (%#lx + %ld)\n",
756                                 pfn, nr_pages))
757                 return;
758
759         /*
760          * There are 3 cases to handle across two configurations
761          * (SPARSEMEM_VMEMMAP={y,n}):
762          *
763          * 1/ deactivation of a partial hot-added section (only possible
764          * in the SPARSEMEM_VMEMMAP=y case).
765          *    a/ section was present at memory init
766          *    b/ section was hot-added post memory init
767          * 2/ deactivation of a complete hot-added section
768          * 3/ deactivation of a complete section from memory init
769          *
770          * For 1/, when subsection_map does not empty we will not be
771          * freeing the usage map, but still need to free the vmemmap
772          * range.
773          *
774          * For 2/ and 3/ the SPARSEMEM_VMEMMAP={y,n} cases are unified
775          */
776         bitmap_xor(subsection_map, map, subsection_map, SUBSECTIONS_PER_SECTION);
777         if (bitmap_empty(subsection_map, SUBSECTIONS_PER_SECTION)) {
778                 unsigned long section_nr = pfn_to_section_nr(pfn);
779
780                 /*
781                  * When removing an early section, the usage map is kept (as the
782                  * usage maps of other sections fall into the same page). It
783                  * will be re-used when re-adding the section - which is then no
784                  * longer an early section. If the usage map is PageReserved, it
785                  * was allocated during boot.
786                  */
787                 if (!PageReserved(virt_to_page(ms->usage))) {
788                         kfree(ms->usage);
789                         ms->usage = NULL;
790                 }
791                 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
792                 ms->section_mem_map = sparse_encode_mem_map(NULL, section_nr);
793         }
794
795         if (section_is_early && memmap)
796                 free_map_bootmem(memmap);
797         else
798                 depopulate_section_memmap(pfn, nr_pages, altmap);
799 }
800
801 static struct page * __meminit section_activate(int nid, unsigned long pfn,
802                 unsigned long nr_pages, struct vmem_altmap *altmap)
803 {
804         DECLARE_BITMAP(map, SUBSECTIONS_PER_SECTION) = { 0 };
805         struct mem_section *ms = __pfn_to_section(pfn);
806         struct mem_section_usage *usage = NULL;
807         unsigned long *subsection_map;
808         struct page *memmap;
809         int rc = 0;
810
811         subsection_mask_set(map, pfn, nr_pages);
812
813         if (!ms->usage) {
814                 usage = kzalloc(mem_section_usage_size(), GFP_KERNEL);
815                 if (!usage)
816                         return ERR_PTR(-ENOMEM);
817                 ms->usage = usage;
818         }
819         subsection_map = &ms->usage->subsection_map[0];
820
821         if (bitmap_empty(map, SUBSECTIONS_PER_SECTION))
822                 rc = -EINVAL;
823         else if (bitmap_intersects(map, subsection_map, SUBSECTIONS_PER_SECTION))
824                 rc = -EEXIST;
825         else
826                 bitmap_or(subsection_map, map, subsection_map,
827                                 SUBSECTIONS_PER_SECTION);
828
829         if (rc) {
830                 if (usage)
831                         ms->usage = NULL;
832                 kfree(usage);
833                 return ERR_PTR(rc);
834         }
835
836         /*
837          * The early init code does not consider partially populated
838          * initial sections, it simply assumes that memory will never be
839          * referenced.  If we hot-add memory into such a section then we
840          * do not need to populate the memmap and can simply reuse what
841          * is already there.
842          */
843         if (nr_pages < PAGES_PER_SECTION && early_section(ms))
844                 return pfn_to_page(pfn);
845
846         memmap = populate_section_memmap(pfn, nr_pages, nid, altmap);
847         if (!memmap) {
848                 section_deactivate(pfn, nr_pages, altmap);
849                 return ERR_PTR(-ENOMEM);
850         }
851
852         return memmap;
853 }
854
855 /**
856  * sparse_add_section - add a memory section, or populate an existing one
857  * @nid: The node to add section on
858  * @start_pfn: start pfn of the memory range
859  * @nr_pages: number of pfns to add in the section
860  * @altmap: device page map
861  *
862  * This is only intended for hotplug.
863  *
864  * Return:
865  * * 0          - On success.
866  * * -EEXIST    - Section has been present.
867  * * -ENOMEM    - Out of memory.
868  */
869 int __meminit sparse_add_section(int nid, unsigned long start_pfn,
870                 unsigned long nr_pages, struct vmem_altmap *altmap)
871 {
872         unsigned long section_nr = pfn_to_section_nr(start_pfn);
873         struct mem_section *ms;
874         struct page *memmap;
875         int ret;
876
877         ret = sparse_index_init(section_nr, nid);
878         if (ret < 0)
879                 return ret;
880
881         memmap = section_activate(nid, start_pfn, nr_pages, altmap);
882         if (IS_ERR(memmap))
883                 return PTR_ERR(memmap);
884
885         /*
886          * Poison uninitialized struct pages in order to catch invalid flags
887          * combinations.
888          */
889         page_init_poison(pfn_to_page(start_pfn), sizeof(struct page) * nr_pages);
890
891         ms = __nr_to_section(section_nr);
892         set_section_nid(section_nr, nid);
893         section_mark_present(ms);
894
895         /* Align memmap to section boundary in the subsection case */
896         if (section_nr_to_pfn(section_nr) != start_pfn)
897                 memmap = pfn_to_kaddr(section_nr_to_pfn(section_nr));
898         sparse_init_one_section(ms, section_nr, memmap, ms->usage, 0);
899
900         return 0;
901 }
902
903 #ifdef CONFIG_MEMORY_FAILURE
904 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
905 {
906         int i;
907
908         /*
909          * A further optimization is to have per section refcounted
910          * num_poisoned_pages.  But that would need more space per memmap, so
911          * for now just do a quick global check to speed up this routine in the
912          * absence of bad pages.
913          */
914         if (atomic_long_read(&num_poisoned_pages) == 0)
915                 return;
916
917         for (i = 0; i < nr_pages; i++) {
918                 if (PageHWPoison(&memmap[i])) {
919                         num_poisoned_pages_dec();
920                         ClearPageHWPoison(&memmap[i]);
921                 }
922         }
923 }
924 #else
925 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
926 {
927 }
928 #endif
929
930 void sparse_remove_section(struct mem_section *ms, unsigned long pfn,
931                 unsigned long nr_pages, unsigned long map_offset,
932                 struct vmem_altmap *altmap)
933 {
934         clear_hwpoisoned_pages(pfn_to_page(pfn) + map_offset,
935                         nr_pages - map_offset);
936         section_deactivate(pfn, nr_pages, altmap);
937 }
938 #endif /* CONFIG_MEMORY_HOTPLUG */