1 // SPDX-License-Identifier: GPL-2.0
3 * Virtual Memory Map support
5 * (C) 2007 sgi. Christoph Lameter.
7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8 * virt_to_page, page_address() to be implemented as a base offset
9 * calculation without memory access.
11 * However, virtual mappings need a page table and TLBs. Many Linux
12 * architectures already map their physical space using 1-1 mappings
13 * via TLBs. For those arches the virtual memory map is essentially
14 * for free if we use the same page size as the 1-1 mappings. In that
15 * case the overhead consists of a few additional pages that are
16 * allocated to create a view of memory for vmemmap.
18 * The architecture is expected to provide a vmemmap_populate() function
19 * to instantiate the mapping.
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
37 #ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
39 * struct vmemmap_remap_walk - walk vmemmap page table
41 * @remap_pte: called for each lowest-level entry (PTE).
42 * @nr_walked: the number of walked pte.
43 * @reuse_page: the page which is reused for the tail vmemmap pages.
44 * @reuse_addr: the virtual address of the @reuse_page page.
45 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
48 struct vmemmap_remap_walk {
49 void (*remap_pte)(pte_t *pte, unsigned long addr,
50 struct vmemmap_remap_walk *walk);
51 unsigned long nr_walked;
52 struct page *reuse_page;
53 unsigned long reuse_addr;
54 struct list_head *vmemmap_pages;
57 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
61 unsigned long addr = start;
62 struct page *page = pmd_page(*pmd);
63 pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
68 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
70 for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
72 pgprot_t pgprot = PAGE_KERNEL;
74 entry = mk_pte(page + i, pgprot);
75 pte = pte_offset_kernel(&__pmd, addr);
76 set_pte_at(&init_mm, addr, pte, entry);
79 spin_lock(&init_mm.page_table_lock);
80 if (likely(pmd_leaf(*pmd))) {
82 * Higher order allocations from buddy allocator must be able to
83 * be treated as indepdenent small pages (as they can be freed
86 if (!PageReserved(page))
87 split_page(page, get_order(PMD_SIZE));
89 /* Make pte visible before pmd. See comment in pmd_install(). */
91 pmd_populate_kernel(&init_mm, pmd, pgtable);
92 flush_tlb_kernel_range(start, start + PMD_SIZE);
94 pte_free_kernel(&init_mm, pgtable);
96 spin_unlock(&init_mm.page_table_lock);
101 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
105 spin_lock(&init_mm.page_table_lock);
106 leaf = pmd_leaf(*pmd);
107 spin_unlock(&init_mm.page_table_lock);
112 return __split_vmemmap_huge_pmd(pmd, start);
115 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
117 struct vmemmap_remap_walk *walk)
119 pte_t *pte = pte_offset_kernel(pmd, addr);
122 * The reuse_page is found 'first' in table walk before we start
123 * remapping (which is calling @walk->remap_pte).
125 if (!walk->reuse_page) {
126 walk->reuse_page = pte_page(*pte);
128 * Because the reuse address is part of the range that we are
129 * walking, skip the reuse address range.
136 for (; addr != end; addr += PAGE_SIZE, pte++) {
137 walk->remap_pte(pte, addr, walk);
142 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
144 struct vmemmap_remap_walk *walk)
149 pmd = pmd_offset(pud, addr);
153 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
157 next = pmd_addr_end(addr, end);
158 vmemmap_pte_range(pmd, addr, next, walk);
159 } while (pmd++, addr = next, addr != end);
164 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
166 struct vmemmap_remap_walk *walk)
171 pud = pud_offset(p4d, addr);
175 next = pud_addr_end(addr, end);
176 ret = vmemmap_pmd_range(pud, addr, next, walk);
179 } while (pud++, addr = next, addr != end);
184 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
186 struct vmemmap_remap_walk *walk)
191 p4d = p4d_offset(pgd, addr);
195 next = p4d_addr_end(addr, end);
196 ret = vmemmap_pud_range(p4d, addr, next, walk);
199 } while (p4d++, addr = next, addr != end);
204 static int vmemmap_remap_range(unsigned long start, unsigned long end,
205 struct vmemmap_remap_walk *walk)
207 unsigned long addr = start;
211 VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
212 VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
214 pgd = pgd_offset_k(addr);
218 next = pgd_addr_end(addr, end);
219 ret = vmemmap_p4d_range(pgd, addr, next, walk);
222 } while (pgd++, addr = next, addr != end);
225 * We only change the mapping of the vmemmap virtual address range
226 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
227 * belongs to the range.
229 flush_tlb_kernel_range(start + PAGE_SIZE, end);
235 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
236 * allocator or buddy allocator. If the PG_reserved flag is set, it means
237 * that it allocated from the memblock allocator, just free it via the
238 * free_bootmem_page(). Otherwise, use __free_page().
240 static inline void free_vmemmap_page(struct page *page)
242 if (PageReserved(page))
243 free_bootmem_page(page);
248 /* Free a list of the vmemmap pages */
249 static void free_vmemmap_page_list(struct list_head *list)
251 struct page *page, *next;
253 list_for_each_entry_safe(page, next, list, lru) {
254 list_del(&page->lru);
255 free_vmemmap_page(page);
259 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
260 struct vmemmap_remap_walk *walk)
263 * Remap the tail pages as read-only to catch illegal write operation
266 pgprot_t pgprot = PAGE_KERNEL_RO;
267 pte_t entry = mk_pte(walk->reuse_page, pgprot);
268 struct page *page = pte_page(*pte);
270 list_add_tail(&page->lru, walk->vmemmap_pages);
271 set_pte_at(&init_mm, addr, pte, entry);
275 * How many struct page structs need to be reset. When we reuse the head
276 * struct page, the special metadata (e.g. page->flags or page->mapping)
277 * cannot copy to the tail struct page structs. The invalid value will be
278 * checked in the free_tail_pages_check(). In order to avoid the message
279 * of "corrupted mapping in tail page". We need to reset at least 3 (one
280 * head struct page struct and two tail struct page structs) struct page
283 #define NR_RESET_STRUCT_PAGE 3
285 static inline void reset_struct_pages(struct page *start)
288 struct page *from = start + NR_RESET_STRUCT_PAGE;
290 for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
291 memcpy(start + i, from, sizeof(*from));
294 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
295 struct vmemmap_remap_walk *walk)
297 pgprot_t pgprot = PAGE_KERNEL;
301 BUG_ON(pte_page(*pte) != walk->reuse_page);
303 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
304 list_del(&page->lru);
305 to = page_to_virt(page);
306 copy_page(to, (void *)walk->reuse_addr);
307 reset_struct_pages(to);
309 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
313 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
314 * to the page which @reuse is mapped to, then free vmemmap
315 * which the range are mapped to.
316 * @start: start address of the vmemmap virtual address range that we want
318 * @end: end address of the vmemmap virtual address range that we want to
320 * @reuse: reuse address.
322 * Return: %0 on success, negative error code otherwise.
324 int vmemmap_remap_free(unsigned long start, unsigned long end,
328 LIST_HEAD(vmemmap_pages);
329 struct vmemmap_remap_walk walk = {
330 .remap_pte = vmemmap_remap_pte,
332 .vmemmap_pages = &vmemmap_pages,
336 * In order to make remapping routine most efficient for the huge pages,
337 * the routine of vmemmap page table walking has the following rules
338 * (see more details from the vmemmap_pte_range()):
340 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
341 * should be continuous.
342 * - The @reuse address is part of the range [@reuse, @end) that we are
343 * walking which is passed to vmemmap_remap_range().
344 * - The @reuse address is the first in the complete range.
346 * So we need to make sure that @start and @reuse meet the above rules.
348 BUG_ON(start - reuse != PAGE_SIZE);
350 mmap_read_lock(&init_mm);
351 ret = vmemmap_remap_range(reuse, end, &walk);
352 if (ret && walk.nr_walked) {
353 end = reuse + walk.nr_walked * PAGE_SIZE;
355 * vmemmap_pages contains pages from the previous
356 * vmemmap_remap_range call which failed. These
357 * are pages which were removed from the vmemmap.
358 * They will be restored in the following call.
360 walk = (struct vmemmap_remap_walk) {
361 .remap_pte = vmemmap_restore_pte,
363 .vmemmap_pages = &vmemmap_pages,
366 vmemmap_remap_range(reuse, end, &walk);
368 mmap_read_unlock(&init_mm);
370 free_vmemmap_page_list(&vmemmap_pages);
375 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
376 gfp_t gfp_mask, struct list_head *list)
378 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
379 int nid = page_to_nid((struct page *)start);
380 struct page *page, *next;
383 page = alloc_pages_node(nid, gfp_mask, 0);
386 list_add_tail(&page->lru, list);
391 list_for_each_entry_safe(page, next, list, lru)
392 __free_pages(page, 0);
397 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
398 * to the page which is from the @vmemmap_pages
400 * @start: start address of the vmemmap virtual address range that we want
402 * @end: end address of the vmemmap virtual address range that we want to
404 * @reuse: reuse address.
405 * @gfp_mask: GFP flag for allocating vmemmap pages.
407 * Return: %0 on success, negative error code otherwise.
409 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
410 unsigned long reuse, gfp_t gfp_mask)
412 LIST_HEAD(vmemmap_pages);
413 struct vmemmap_remap_walk walk = {
414 .remap_pte = vmemmap_restore_pte,
416 .vmemmap_pages = &vmemmap_pages,
419 /* See the comment in the vmemmap_remap_free(). */
420 BUG_ON(start - reuse != PAGE_SIZE);
422 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
425 mmap_read_lock(&init_mm);
426 vmemmap_remap_range(reuse, end, &walk);
427 mmap_read_unlock(&init_mm);
431 #endif /* CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP */
434 * Allocate a block of memory to be used to back the virtual memory map
435 * or to back the page tables that are used to create the mapping.
436 * Uses the main allocators if they are available, else bootmem.
439 static void * __ref __earlyonly_bootmem_alloc(int node,
444 return memblock_alloc_try_nid_raw(size, align, goal,
445 MEMBLOCK_ALLOC_ACCESSIBLE, node);
448 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
450 /* If the main allocator is up use that, fallback to bootmem. */
451 if (slab_is_available()) {
452 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
453 int order = get_order(size);
457 page = alloc_pages_node(node, gfp_mask, order);
459 return page_address(page);
462 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
463 "vmemmap alloc failure: order:%u", order);
468 return __earlyonly_bootmem_alloc(node, size, size,
469 __pa(MAX_DMA_ADDRESS));
472 static void * __meminit altmap_alloc_block_buf(unsigned long size,
473 struct vmem_altmap *altmap);
475 /* need to make sure size is all the same during early stage */
476 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
477 struct vmem_altmap *altmap)
482 return altmap_alloc_block_buf(size, altmap);
484 ptr = sparse_buffer_alloc(size);
486 ptr = vmemmap_alloc_block(size, node);
490 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
492 return altmap->base_pfn + altmap->reserve + altmap->alloc
496 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
498 unsigned long allocated = altmap->alloc + altmap->align;
500 if (altmap->free > allocated)
501 return altmap->free - allocated;
505 static void * __meminit altmap_alloc_block_buf(unsigned long size,
506 struct vmem_altmap *altmap)
508 unsigned long pfn, nr_pfns, nr_align;
510 if (size & ~PAGE_MASK) {
511 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
516 pfn = vmem_altmap_next_pfn(altmap);
517 nr_pfns = size >> PAGE_SHIFT;
518 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
519 nr_align = ALIGN(pfn, nr_align) - pfn;
520 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
523 altmap->alloc += nr_pfns;
524 altmap->align += nr_align;
527 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
528 __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
529 return __va(__pfn_to_phys(pfn));
532 void __meminit vmemmap_verify(pte_t *pte, int node,
533 unsigned long start, unsigned long end)
535 unsigned long pfn = pte_pfn(*pte);
536 int actual_node = early_pfn_to_nid(pfn);
538 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
539 pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
543 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
544 struct vmem_altmap *altmap,
547 pte_t *pte = pte_offset_kernel(pmd, addr);
548 if (pte_none(*pte)) {
553 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
558 * When a PTE/PMD entry is freed from the init_mm
559 * there's a a free_pages() call to this page allocated
560 * above. Thus this get_page() is paired with the
561 * put_page_testzero() on the freeing path.
562 * This can only called by certain ZONE_DEVICE path,
563 * and through vmemmap_populate_compound_pages() when
567 p = page_to_virt(reuse);
569 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
570 set_pte_at(&init_mm, addr, pte, entry);
575 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
577 void *p = vmemmap_alloc_block(size, node);
586 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
588 pmd_t *pmd = pmd_offset(pud, addr);
589 if (pmd_none(*pmd)) {
590 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
593 pmd_populate_kernel(&init_mm, pmd, p);
598 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
600 pud_t *pud = pud_offset(p4d, addr);
601 if (pud_none(*pud)) {
602 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
605 pud_populate(&init_mm, pud, p);
610 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
612 p4d_t *p4d = p4d_offset(pgd, addr);
613 if (p4d_none(*p4d)) {
614 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
617 p4d_populate(&init_mm, p4d, p);
622 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
624 pgd_t *pgd = pgd_offset_k(addr);
625 if (pgd_none(*pgd)) {
626 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
629 pgd_populate(&init_mm, pgd, p);
634 static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
635 struct vmem_altmap *altmap,
644 pgd = vmemmap_pgd_populate(addr, node);
647 p4d = vmemmap_p4d_populate(pgd, addr, node);
650 pud = vmemmap_pud_populate(p4d, addr, node);
653 pmd = vmemmap_pmd_populate(pud, addr, node);
656 pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
659 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
664 static int __meminit vmemmap_populate_range(unsigned long start,
665 unsigned long end, int node,
666 struct vmem_altmap *altmap,
669 unsigned long addr = start;
672 for (; addr < end; addr += PAGE_SIZE) {
673 pte = vmemmap_populate_address(addr, node, altmap, reuse);
681 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
682 int node, struct vmem_altmap *altmap)
684 return vmemmap_populate_range(start, end, node, altmap, NULL);
688 * For compound pages bigger than section size (e.g. x86 1G compound
689 * pages with 2M subsection size) fill the rest of sections as tail
692 * Note that memremap_pages() resets @nr_range value and will increment
693 * it after each range successful onlining. Thus the value or @nr_range
694 * at section memmap populate corresponds to the in-progress range
695 * being onlined here.
697 static bool __meminit reuse_compound_section(unsigned long start_pfn,
698 struct dev_pagemap *pgmap)
700 unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
701 unsigned long offset = start_pfn -
702 PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
704 return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
707 static pte_t * __meminit compound_section_tail_page(unsigned long addr)
714 * Assuming sections are populated sequentially, the previous section's
715 * page data can be reused.
717 pte = pte_offset_kernel(pmd_off_k(addr), addr);
724 static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
726 unsigned long end, int node,
727 struct dev_pagemap *pgmap)
729 unsigned long size, addr;
733 if (reuse_compound_section(start_pfn, pgmap)) {
734 pte = compound_section_tail_page(start);
739 * Reuse the page that was populated in the prior iteration
740 * with just tail struct pages.
742 return vmemmap_populate_range(start, end, node, NULL,
746 size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
747 for (addr = start; addr < end; addr += size) {
748 unsigned long next = addr, last = addr + size;
750 /* Populate the head page vmemmap page */
751 pte = vmemmap_populate_address(addr, node, NULL, NULL);
755 /* Populate the tail pages vmemmap page */
756 next = addr + PAGE_SIZE;
757 pte = vmemmap_populate_address(next, node, NULL, NULL);
762 * Reuse the previous page for the rest of tail pages
763 * See layout diagram in Documentation/vm/vmemmap_dedup.rst
766 rc = vmemmap_populate_range(next, last, node, NULL,
775 struct page * __meminit __populate_section_memmap(unsigned long pfn,
776 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
777 struct dev_pagemap *pgmap)
779 unsigned long start = (unsigned long) pfn_to_page(pfn);
780 unsigned long end = start + nr_pages * sizeof(struct page);
783 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
784 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
787 if (is_power_of_2(sizeof(struct page)) &&
788 pgmap && pgmap_vmemmap_nr(pgmap) > 1 && !altmap)
789 r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
791 r = vmemmap_populate(start, end, nid, altmap);
796 return pfn_to_page(pfn);