Merge branch 'CR_3027_pinctrl_hal.feng' into 'jh7110-5.15.y-devel'
[platform/kernel/linux-starfive.git] / mm / sparse-vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
32
33 #include <asm/dma.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36
37 /**
38  * struct vmemmap_remap_walk - walk vmemmap page table
39  *
40  * @remap_pte:          called for each lowest-level entry (PTE).
41  * @nr_walked:          the number of walked pte.
42  * @reuse_page:         the page which is reused for the tail vmemmap pages.
43  * @reuse_addr:         the virtual address of the @reuse_page page.
44  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
45  *                      or is mapped from.
46  */
47 struct vmemmap_remap_walk {
48         void (*remap_pte)(pte_t *pte, unsigned long addr,
49                           struct vmemmap_remap_walk *walk);
50         unsigned long nr_walked;
51         struct page *reuse_page;
52         unsigned long reuse_addr;
53         struct list_head *vmemmap_pages;
54 };
55
56 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
57                                   struct vmemmap_remap_walk *walk)
58 {
59         pmd_t __pmd;
60         int i;
61         unsigned long addr = start;
62         struct page *page = pmd_page(*pmd);
63         pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
64
65         if (!pgtable)
66                 return -ENOMEM;
67
68         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
69
70         for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
71                 pte_t entry, *pte;
72                 pgprot_t pgprot = PAGE_KERNEL;
73
74                 entry = mk_pte(page + i, pgprot);
75                 pte = pte_offset_kernel(&__pmd, addr);
76                 set_pte_at(&init_mm, addr, pte, entry);
77         }
78
79         /* Make pte visible before pmd. See comment in __pte_alloc(). */
80         smp_wmb();
81         pmd_populate_kernel(&init_mm, pmd, pgtable);
82
83         flush_tlb_kernel_range(start, start + PMD_SIZE);
84
85         return 0;
86 }
87
88 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
89                               unsigned long end,
90                               struct vmemmap_remap_walk *walk)
91 {
92         pte_t *pte = pte_offset_kernel(pmd, addr);
93
94         /*
95          * The reuse_page is found 'first' in table walk before we start
96          * remapping (which is calling @walk->remap_pte).
97          */
98         if (!walk->reuse_page) {
99                 walk->reuse_page = pte_page(*pte);
100                 /*
101                  * Because the reuse address is part of the range that we are
102                  * walking, skip the reuse address range.
103                  */
104                 addr += PAGE_SIZE;
105                 pte++;
106                 walk->nr_walked++;
107         }
108
109         for (; addr != end; addr += PAGE_SIZE, pte++) {
110                 walk->remap_pte(pte, addr, walk);
111                 walk->nr_walked++;
112         }
113 }
114
115 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
116                              unsigned long end,
117                              struct vmemmap_remap_walk *walk)
118 {
119         pmd_t *pmd;
120         unsigned long next;
121
122         pmd = pmd_offset(pud, addr);
123         do {
124                 if (pmd_leaf(*pmd)) {
125                         int ret;
126
127                         ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
128                         if (ret)
129                                 return ret;
130                 }
131                 next = pmd_addr_end(addr, end);
132                 vmemmap_pte_range(pmd, addr, next, walk);
133         } while (pmd++, addr = next, addr != end);
134
135         return 0;
136 }
137
138 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
139                              unsigned long end,
140                              struct vmemmap_remap_walk *walk)
141 {
142         pud_t *pud;
143         unsigned long next;
144
145         pud = pud_offset(p4d, addr);
146         do {
147                 int ret;
148
149                 next = pud_addr_end(addr, end);
150                 ret = vmemmap_pmd_range(pud, addr, next, walk);
151                 if (ret)
152                         return ret;
153         } while (pud++, addr = next, addr != end);
154
155         return 0;
156 }
157
158 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
159                              unsigned long end,
160                              struct vmemmap_remap_walk *walk)
161 {
162         p4d_t *p4d;
163         unsigned long next;
164
165         p4d = p4d_offset(pgd, addr);
166         do {
167                 int ret;
168
169                 next = p4d_addr_end(addr, end);
170                 ret = vmemmap_pud_range(p4d, addr, next, walk);
171                 if (ret)
172                         return ret;
173         } while (p4d++, addr = next, addr != end);
174
175         return 0;
176 }
177
178 static int vmemmap_remap_range(unsigned long start, unsigned long end,
179                                struct vmemmap_remap_walk *walk)
180 {
181         unsigned long addr = start;
182         unsigned long next;
183         pgd_t *pgd;
184
185         VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
186         VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
187
188         pgd = pgd_offset_k(addr);
189         do {
190                 int ret;
191
192                 next = pgd_addr_end(addr, end);
193                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
194                 if (ret)
195                         return ret;
196         } while (pgd++, addr = next, addr != end);
197
198         /*
199          * We only change the mapping of the vmemmap virtual address range
200          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
201          * belongs to the range.
202          */
203         flush_tlb_kernel_range(start + PAGE_SIZE, end);
204
205         return 0;
206 }
207
208 /*
209  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
210  * allocator or buddy allocator. If the PG_reserved flag is set, it means
211  * that it allocated from the memblock allocator, just free it via the
212  * free_bootmem_page(). Otherwise, use __free_page().
213  */
214 static inline void free_vmemmap_page(struct page *page)
215 {
216         if (PageReserved(page))
217                 free_bootmem_page(page);
218         else
219                 __free_page(page);
220 }
221
222 /* Free a list of the vmemmap pages */
223 static void free_vmemmap_page_list(struct list_head *list)
224 {
225         struct page *page, *next;
226
227         list_for_each_entry_safe(page, next, list, lru) {
228                 list_del(&page->lru);
229                 free_vmemmap_page(page);
230         }
231 }
232
233 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
234                               struct vmemmap_remap_walk *walk)
235 {
236         /*
237          * Remap the tail pages as read-only to catch illegal write operation
238          * to the tail pages.
239          */
240         pgprot_t pgprot = PAGE_KERNEL_RO;
241         pte_t entry = mk_pte(walk->reuse_page, pgprot);
242         struct page *page = pte_page(*pte);
243
244         list_add_tail(&page->lru, walk->vmemmap_pages);
245         set_pte_at(&init_mm, addr, pte, entry);
246 }
247
248 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
249                                 struct vmemmap_remap_walk *walk)
250 {
251         pgprot_t pgprot = PAGE_KERNEL;
252         struct page *page;
253         void *to;
254
255         BUG_ON(pte_page(*pte) != walk->reuse_page);
256
257         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
258         list_del(&page->lru);
259         to = page_to_virt(page);
260         copy_page(to, (void *)walk->reuse_addr);
261
262         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
263 }
264
265 /**
266  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
267  *                      to the page which @reuse is mapped to, then free vmemmap
268  *                      which the range are mapped to.
269  * @start:      start address of the vmemmap virtual address range that we want
270  *              to remap.
271  * @end:        end address of the vmemmap virtual address range that we want to
272  *              remap.
273  * @reuse:      reuse address.
274  *
275  * Return: %0 on success, negative error code otherwise.
276  */
277 int vmemmap_remap_free(unsigned long start, unsigned long end,
278                        unsigned long reuse)
279 {
280         int ret;
281         LIST_HEAD(vmemmap_pages);
282         struct vmemmap_remap_walk walk = {
283                 .remap_pte      = vmemmap_remap_pte,
284                 .reuse_addr     = reuse,
285                 .vmemmap_pages  = &vmemmap_pages,
286         };
287
288         /*
289          * In order to make remapping routine most efficient for the huge pages,
290          * the routine of vmemmap page table walking has the following rules
291          * (see more details from the vmemmap_pte_range()):
292          *
293          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
294          *   should be continuous.
295          * - The @reuse address is part of the range [@reuse, @end) that we are
296          *   walking which is passed to vmemmap_remap_range().
297          * - The @reuse address is the first in the complete range.
298          *
299          * So we need to make sure that @start and @reuse meet the above rules.
300          */
301         BUG_ON(start - reuse != PAGE_SIZE);
302
303         mmap_write_lock(&init_mm);
304         ret = vmemmap_remap_range(reuse, end, &walk);
305         mmap_write_downgrade(&init_mm);
306
307         if (ret && walk.nr_walked) {
308                 end = reuse + walk.nr_walked * PAGE_SIZE;
309                 /*
310                  * vmemmap_pages contains pages from the previous
311                  * vmemmap_remap_range call which failed.  These
312                  * are pages which were removed from the vmemmap.
313                  * They will be restored in the following call.
314                  */
315                 walk = (struct vmemmap_remap_walk) {
316                         .remap_pte      = vmemmap_restore_pte,
317                         .reuse_addr     = reuse,
318                         .vmemmap_pages  = &vmemmap_pages,
319                 };
320
321                 vmemmap_remap_range(reuse, end, &walk);
322         }
323         mmap_read_unlock(&init_mm);
324
325         free_vmemmap_page_list(&vmemmap_pages);
326
327         return ret;
328 }
329
330 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
331                                    gfp_t gfp_mask, struct list_head *list)
332 {
333         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
334         int nid = page_to_nid((struct page *)start);
335         struct page *page, *next;
336
337         while (nr_pages--) {
338                 page = alloc_pages_node(nid, gfp_mask, 0);
339                 if (!page)
340                         goto out;
341                 list_add_tail(&page->lru, list);
342         }
343
344         return 0;
345 out:
346         list_for_each_entry_safe(page, next, list, lru)
347                 __free_pages(page, 0);
348         return -ENOMEM;
349 }
350
351 /**
352  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
353  *                       to the page which is from the @vmemmap_pages
354  *                       respectively.
355  * @start:      start address of the vmemmap virtual address range that we want
356  *              to remap.
357  * @end:        end address of the vmemmap virtual address range that we want to
358  *              remap.
359  * @reuse:      reuse address.
360  * @gfp_mask:   GFP flag for allocating vmemmap pages.
361  *
362  * Return: %0 on success, negative error code otherwise.
363  */
364 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
365                         unsigned long reuse, gfp_t gfp_mask)
366 {
367         LIST_HEAD(vmemmap_pages);
368         struct vmemmap_remap_walk walk = {
369                 .remap_pte      = vmemmap_restore_pte,
370                 .reuse_addr     = reuse,
371                 .vmemmap_pages  = &vmemmap_pages,
372         };
373
374         /* See the comment in the vmemmap_remap_free(). */
375         BUG_ON(start - reuse != PAGE_SIZE);
376
377         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
378                 return -ENOMEM;
379
380         mmap_read_lock(&init_mm);
381         vmemmap_remap_range(reuse, end, &walk);
382         mmap_read_unlock(&init_mm);
383
384         return 0;
385 }
386
387 /*
388  * Allocate a block of memory to be used to back the virtual memory map
389  * or to back the page tables that are used to create the mapping.
390  * Uses the main allocators if they are available, else bootmem.
391  */
392
393 static void * __ref __earlyonly_bootmem_alloc(int node,
394                                 unsigned long size,
395                                 unsigned long align,
396                                 unsigned long goal)
397 {
398         return memblock_alloc_try_nid_raw(size, align, goal,
399                                                MEMBLOCK_ALLOC_ACCESSIBLE, node);
400 }
401
402 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
403 {
404         /* If the main allocator is up use that, fallback to bootmem. */
405         if (slab_is_available()) {
406                 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
407                 int order = get_order(size);
408                 static bool warned;
409                 struct page *page;
410
411                 page = alloc_pages_node(node, gfp_mask, order);
412                 if (page)
413                         return page_address(page);
414
415                 if (!warned) {
416                         warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
417                                    "vmemmap alloc failure: order:%u", order);
418                         warned = true;
419                 }
420                 return NULL;
421         } else
422                 return __earlyonly_bootmem_alloc(node, size, size,
423                                 __pa(MAX_DMA_ADDRESS));
424 }
425
426 static void * __meminit altmap_alloc_block_buf(unsigned long size,
427                                                struct vmem_altmap *altmap);
428
429 /* need to make sure size is all the same during early stage */
430 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
431                                          struct vmem_altmap *altmap)
432 {
433         void *ptr;
434
435         if (altmap)
436                 return altmap_alloc_block_buf(size, altmap);
437
438         ptr = sparse_buffer_alloc(size);
439         if (!ptr)
440                 ptr = vmemmap_alloc_block(size, node);
441         return ptr;
442 }
443
444 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
445 {
446         return altmap->base_pfn + altmap->reserve + altmap->alloc
447                 + altmap->align;
448 }
449
450 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
451 {
452         unsigned long allocated = altmap->alloc + altmap->align;
453
454         if (altmap->free > allocated)
455                 return altmap->free - allocated;
456         return 0;
457 }
458
459 static void * __meminit altmap_alloc_block_buf(unsigned long size,
460                                                struct vmem_altmap *altmap)
461 {
462         unsigned long pfn, nr_pfns, nr_align;
463
464         if (size & ~PAGE_MASK) {
465                 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
466                                 __func__, size);
467                 return NULL;
468         }
469
470         pfn = vmem_altmap_next_pfn(altmap);
471         nr_pfns = size >> PAGE_SHIFT;
472         nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
473         nr_align = ALIGN(pfn, nr_align) - pfn;
474         if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
475                 return NULL;
476
477         altmap->alloc += nr_pfns;
478         altmap->align += nr_align;
479         pfn += nr_align;
480
481         pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
482                         __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
483         return __va(__pfn_to_phys(pfn));
484 }
485
486 void __meminit vmemmap_verify(pte_t *pte, int node,
487                                 unsigned long start, unsigned long end)
488 {
489         unsigned long pfn = pte_pfn(*pte);
490         int actual_node = early_pfn_to_nid(pfn);
491
492         if (node_distance(actual_node, node) > LOCAL_DISTANCE)
493                 pr_warn("[%lx-%lx] potential offnode page_structs\n",
494                         start, end - 1);
495 }
496
497 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
498                                        struct vmem_altmap *altmap)
499 {
500         pte_t *pte = pte_offset_kernel(pmd, addr);
501         if (pte_none(*pte)) {
502                 pte_t entry;
503                 void *p;
504
505                 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
506                 if (!p)
507                         return NULL;
508                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
509                 set_pte_at(&init_mm, addr, pte, entry);
510         }
511         return pte;
512 }
513
514 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
515 {
516         void *p = vmemmap_alloc_block(size, node);
517
518         if (!p)
519                 return NULL;
520         memset(p, 0, size);
521
522         return p;
523 }
524
525 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
526 {
527         pmd_t *pmd = pmd_offset(pud, addr);
528         if (pmd_none(*pmd)) {
529                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
530                 if (!p)
531                         return NULL;
532                 pmd_populate_kernel(&init_mm, pmd, p);
533         }
534         return pmd;
535 }
536
537 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
538 {
539         pud_t *pud = pud_offset(p4d, addr);
540         if (pud_none(*pud)) {
541                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
542                 if (!p)
543                         return NULL;
544                 pud_populate(&init_mm, pud, p);
545         }
546         return pud;
547 }
548
549 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
550 {
551         p4d_t *p4d = p4d_offset(pgd, addr);
552         if (p4d_none(*p4d)) {
553                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
554                 if (!p)
555                         return NULL;
556                 p4d_populate(&init_mm, p4d, p);
557         }
558         return p4d;
559 }
560
561 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
562 {
563         pgd_t *pgd = pgd_offset_k(addr);
564         if (pgd_none(*pgd)) {
565                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
566                 if (!p)
567                         return NULL;
568                 pgd_populate(&init_mm, pgd, p);
569         }
570         return pgd;
571 }
572
573 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
574                                          int node, struct vmem_altmap *altmap)
575 {
576         unsigned long addr = start;
577         pgd_t *pgd;
578         p4d_t *p4d;
579         pud_t *pud;
580         pmd_t *pmd;
581         pte_t *pte;
582
583         for (; addr < end; addr += PAGE_SIZE) {
584                 pgd = vmemmap_pgd_populate(addr, node);
585                 if (!pgd)
586                         return -ENOMEM;
587                 p4d = vmemmap_p4d_populate(pgd, addr, node);
588                 if (!p4d)
589                         return -ENOMEM;
590                 pud = vmemmap_pud_populate(p4d, addr, node);
591                 if (!pud)
592                         return -ENOMEM;
593                 pmd = vmemmap_pmd_populate(pud, addr, node);
594                 if (!pmd)
595                         return -ENOMEM;
596                 pte = vmemmap_pte_populate(pmd, addr, node, altmap);
597                 if (!pte)
598                         return -ENOMEM;
599                 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
600         }
601
602         return 0;
603 }
604
605 struct page * __meminit __populate_section_memmap(unsigned long pfn,
606                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
607 {
608         unsigned long start = (unsigned long) pfn_to_page(pfn);
609         unsigned long end = start + nr_pages * sizeof(struct page);
610
611         if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
612                 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
613                 return NULL;
614
615         if (vmemmap_populate(start, end, nid, altmap))
616                 return NULL;
617
618         return pfn_to_page(pfn);
619 }