1 // SPDX-License-Identifier: GPL-2.0
3 * Virtual Memory Map support
5 * (C) 2007 sgi. Christoph Lameter.
7 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8 * virt_to_page, page_address() to be implemented as a base offset
9 * calculation without memory access.
11 * However, virtual mappings need a page table and TLBs. Many Linux
12 * architectures already map their physical space using 1-1 mappings
13 * via TLBs. For those arches the virtual memory map is essentially
14 * for free if we use the same page size as the 1-1 mappings. In that
15 * case the overhead consists of a few additional pages that are
16 * allocated to create a view of memory for vmemmap.
18 * The architecture is expected to provide a vmemmap_populate() function
19 * to instantiate the mapping.
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
38 * struct vmemmap_remap_walk - walk vmemmap page table
40 * @remap_pte: called for each lowest-level entry (PTE).
41 * @nr_walked: the number of walked pte.
42 * @reuse_page: the page which is reused for the tail vmemmap pages.
43 * @reuse_addr: the virtual address of the @reuse_page page.
44 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
47 struct vmemmap_remap_walk {
48 void (*remap_pte)(pte_t *pte, unsigned long addr,
49 struct vmemmap_remap_walk *walk);
50 unsigned long nr_walked;
51 struct page *reuse_page;
52 unsigned long reuse_addr;
53 struct list_head *vmemmap_pages;
56 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start,
57 struct vmemmap_remap_walk *walk)
61 unsigned long addr = start;
62 struct page *page = pmd_page(*pmd);
63 pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
68 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
70 for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
72 pgprot_t pgprot = PAGE_KERNEL;
74 entry = mk_pte(page + i, pgprot);
75 pte = pte_offset_kernel(&__pmd, addr);
76 set_pte_at(&init_mm, addr, pte, entry);
79 /* Make pte visible before pmd. See comment in __pte_alloc(). */
81 pmd_populate_kernel(&init_mm, pmd, pgtable);
83 flush_tlb_kernel_range(start, start + PMD_SIZE);
88 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
90 struct vmemmap_remap_walk *walk)
92 pte_t *pte = pte_offset_kernel(pmd, addr);
95 * The reuse_page is found 'first' in table walk before we start
96 * remapping (which is calling @walk->remap_pte).
98 if (!walk->reuse_page) {
99 walk->reuse_page = pte_page(*pte);
101 * Because the reuse address is part of the range that we are
102 * walking, skip the reuse address range.
109 for (; addr != end; addr += PAGE_SIZE, pte++) {
110 walk->remap_pte(pte, addr, walk);
115 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
117 struct vmemmap_remap_walk *walk)
122 pmd = pmd_offset(pud, addr);
124 if (pmd_leaf(*pmd)) {
127 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK, walk);
131 next = pmd_addr_end(addr, end);
132 vmemmap_pte_range(pmd, addr, next, walk);
133 } while (pmd++, addr = next, addr != end);
138 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
140 struct vmemmap_remap_walk *walk)
145 pud = pud_offset(p4d, addr);
149 next = pud_addr_end(addr, end);
150 ret = vmemmap_pmd_range(pud, addr, next, walk);
153 } while (pud++, addr = next, addr != end);
158 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
160 struct vmemmap_remap_walk *walk)
165 p4d = p4d_offset(pgd, addr);
169 next = p4d_addr_end(addr, end);
170 ret = vmemmap_pud_range(p4d, addr, next, walk);
173 } while (p4d++, addr = next, addr != end);
178 static int vmemmap_remap_range(unsigned long start, unsigned long end,
179 struct vmemmap_remap_walk *walk)
181 unsigned long addr = start;
185 VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
186 VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
188 pgd = pgd_offset_k(addr);
192 next = pgd_addr_end(addr, end);
193 ret = vmemmap_p4d_range(pgd, addr, next, walk);
196 } while (pgd++, addr = next, addr != end);
199 * We only change the mapping of the vmemmap virtual address range
200 * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
201 * belongs to the range.
203 flush_tlb_kernel_range(start + PAGE_SIZE, end);
209 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
210 * allocator or buddy allocator. If the PG_reserved flag is set, it means
211 * that it allocated from the memblock allocator, just free it via the
212 * free_bootmem_page(). Otherwise, use __free_page().
214 static inline void free_vmemmap_page(struct page *page)
216 if (PageReserved(page))
217 free_bootmem_page(page);
222 /* Free a list of the vmemmap pages */
223 static void free_vmemmap_page_list(struct list_head *list)
225 struct page *page, *next;
227 list_for_each_entry_safe(page, next, list, lru) {
228 list_del(&page->lru);
229 free_vmemmap_page(page);
233 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
234 struct vmemmap_remap_walk *walk)
237 * Remap the tail pages as read-only to catch illegal write operation
240 pgprot_t pgprot = PAGE_KERNEL_RO;
241 pte_t entry = mk_pte(walk->reuse_page, pgprot);
242 struct page *page = pte_page(*pte);
244 list_add_tail(&page->lru, walk->vmemmap_pages);
245 set_pte_at(&init_mm, addr, pte, entry);
248 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
249 struct vmemmap_remap_walk *walk)
251 pgprot_t pgprot = PAGE_KERNEL;
255 BUG_ON(pte_page(*pte) != walk->reuse_page);
257 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
258 list_del(&page->lru);
259 to = page_to_virt(page);
260 copy_page(to, (void *)walk->reuse_addr);
262 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
266 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
267 * to the page which @reuse is mapped to, then free vmemmap
268 * which the range are mapped to.
269 * @start: start address of the vmemmap virtual address range that we want
271 * @end: end address of the vmemmap virtual address range that we want to
273 * @reuse: reuse address.
275 * Return: %0 on success, negative error code otherwise.
277 int vmemmap_remap_free(unsigned long start, unsigned long end,
281 LIST_HEAD(vmemmap_pages);
282 struct vmemmap_remap_walk walk = {
283 .remap_pte = vmemmap_remap_pte,
285 .vmemmap_pages = &vmemmap_pages,
289 * In order to make remapping routine most efficient for the huge pages,
290 * the routine of vmemmap page table walking has the following rules
291 * (see more details from the vmemmap_pte_range()):
293 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
294 * should be continuous.
295 * - The @reuse address is part of the range [@reuse, @end) that we are
296 * walking which is passed to vmemmap_remap_range().
297 * - The @reuse address is the first in the complete range.
299 * So we need to make sure that @start and @reuse meet the above rules.
301 BUG_ON(start - reuse != PAGE_SIZE);
303 mmap_write_lock(&init_mm);
304 ret = vmemmap_remap_range(reuse, end, &walk);
305 mmap_write_downgrade(&init_mm);
307 if (ret && walk.nr_walked) {
308 end = reuse + walk.nr_walked * PAGE_SIZE;
310 * vmemmap_pages contains pages from the previous
311 * vmemmap_remap_range call which failed. These
312 * are pages which were removed from the vmemmap.
313 * They will be restored in the following call.
315 walk = (struct vmemmap_remap_walk) {
316 .remap_pte = vmemmap_restore_pte,
318 .vmemmap_pages = &vmemmap_pages,
321 vmemmap_remap_range(reuse, end, &walk);
323 mmap_read_unlock(&init_mm);
325 free_vmemmap_page_list(&vmemmap_pages);
330 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
331 gfp_t gfp_mask, struct list_head *list)
333 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
334 int nid = page_to_nid((struct page *)start);
335 struct page *page, *next;
338 page = alloc_pages_node(nid, gfp_mask, 0);
341 list_add_tail(&page->lru, list);
346 list_for_each_entry_safe(page, next, list, lru)
347 __free_pages(page, 0);
352 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
353 * to the page which is from the @vmemmap_pages
355 * @start: start address of the vmemmap virtual address range that we want
357 * @end: end address of the vmemmap virtual address range that we want to
359 * @reuse: reuse address.
360 * @gfp_mask: GFP flag for allocating vmemmap pages.
362 * Return: %0 on success, negative error code otherwise.
364 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
365 unsigned long reuse, gfp_t gfp_mask)
367 LIST_HEAD(vmemmap_pages);
368 struct vmemmap_remap_walk walk = {
369 .remap_pte = vmemmap_restore_pte,
371 .vmemmap_pages = &vmemmap_pages,
374 /* See the comment in the vmemmap_remap_free(). */
375 BUG_ON(start - reuse != PAGE_SIZE);
377 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
380 mmap_read_lock(&init_mm);
381 vmemmap_remap_range(reuse, end, &walk);
382 mmap_read_unlock(&init_mm);
388 * Allocate a block of memory to be used to back the virtual memory map
389 * or to back the page tables that are used to create the mapping.
390 * Uses the main allocators if they are available, else bootmem.
393 static void * __ref __earlyonly_bootmem_alloc(int node,
398 return memblock_alloc_try_nid_raw(size, align, goal,
399 MEMBLOCK_ALLOC_ACCESSIBLE, node);
402 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
404 /* If the main allocator is up use that, fallback to bootmem. */
405 if (slab_is_available()) {
406 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
407 int order = get_order(size);
411 page = alloc_pages_node(node, gfp_mask, order);
413 return page_address(page);
416 warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
417 "vmemmap alloc failure: order:%u", order);
422 return __earlyonly_bootmem_alloc(node, size, size,
423 __pa(MAX_DMA_ADDRESS));
426 static void * __meminit altmap_alloc_block_buf(unsigned long size,
427 struct vmem_altmap *altmap);
429 /* need to make sure size is all the same during early stage */
430 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
431 struct vmem_altmap *altmap)
436 return altmap_alloc_block_buf(size, altmap);
438 ptr = sparse_buffer_alloc(size);
440 ptr = vmemmap_alloc_block(size, node);
444 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
446 return altmap->base_pfn + altmap->reserve + altmap->alloc
450 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
452 unsigned long allocated = altmap->alloc + altmap->align;
454 if (altmap->free > allocated)
455 return altmap->free - allocated;
459 static void * __meminit altmap_alloc_block_buf(unsigned long size,
460 struct vmem_altmap *altmap)
462 unsigned long pfn, nr_pfns, nr_align;
464 if (size & ~PAGE_MASK) {
465 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
470 pfn = vmem_altmap_next_pfn(altmap);
471 nr_pfns = size >> PAGE_SHIFT;
472 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
473 nr_align = ALIGN(pfn, nr_align) - pfn;
474 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
477 altmap->alloc += nr_pfns;
478 altmap->align += nr_align;
481 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
482 __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
483 return __va(__pfn_to_phys(pfn));
486 void __meminit vmemmap_verify(pte_t *pte, int node,
487 unsigned long start, unsigned long end)
489 unsigned long pfn = pte_pfn(*pte);
490 int actual_node = early_pfn_to_nid(pfn);
492 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
493 pr_warn("[%lx-%lx] potential offnode page_structs\n",
497 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
498 struct vmem_altmap *altmap)
500 pte_t *pte = pte_offset_kernel(pmd, addr);
501 if (pte_none(*pte)) {
505 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
508 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
509 set_pte_at(&init_mm, addr, pte, entry);
514 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
516 void *p = vmemmap_alloc_block(size, node);
525 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
527 pmd_t *pmd = pmd_offset(pud, addr);
528 if (pmd_none(*pmd)) {
529 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
532 pmd_populate_kernel(&init_mm, pmd, p);
537 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
539 pud_t *pud = pud_offset(p4d, addr);
540 if (pud_none(*pud)) {
541 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
544 pud_populate(&init_mm, pud, p);
549 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
551 p4d_t *p4d = p4d_offset(pgd, addr);
552 if (p4d_none(*p4d)) {
553 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
556 p4d_populate(&init_mm, p4d, p);
561 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
563 pgd_t *pgd = pgd_offset_k(addr);
564 if (pgd_none(*pgd)) {
565 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
568 pgd_populate(&init_mm, pgd, p);
573 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
574 int node, struct vmem_altmap *altmap)
576 unsigned long addr = start;
583 for (; addr < end; addr += PAGE_SIZE) {
584 pgd = vmemmap_pgd_populate(addr, node);
587 p4d = vmemmap_p4d_populate(pgd, addr, node);
590 pud = vmemmap_pud_populate(p4d, addr, node);
593 pmd = vmemmap_pmd_populate(pud, addr, node);
596 pte = vmemmap_pte_populate(pmd, addr, node, altmap);
599 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
605 struct page * __meminit __populate_section_memmap(unsigned long pfn,
606 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
608 unsigned long start = (unsigned long) pfn_to_page(pfn);
609 unsigned long end = start + nr_pages * sizeof(struct page);
611 if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
612 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
615 if (vmemmap_populate(start, end, nid, altmap))
618 return pfn_to_page(pfn);