Merge tag 'trace-v5.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[platform/kernel/linux-starfive.git] / mm / sparse-vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Virtual Memory Map support
4  *
5  * (C) 2007 sgi. Christoph Lameter.
6  *
7  * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
8  * virt_to_page, page_address() to be implemented as a base offset
9  * calculation without memory access.
10  *
11  * However, virtual mappings need a page table and TLBs. Many Linux
12  * architectures already map their physical space using 1-1 mappings
13  * via TLBs. For those arches the virtual memory map is essentially
14  * for free if we use the same page size as the 1-1 mappings. In that
15  * case the overhead consists of a few additional pages that are
16  * allocated to create a view of memory for vmemmap.
17  *
18  * The architecture is expected to provide a vmemmap_populate() function
19  * to instantiate the mapping.
20  */
21 #include <linux/mm.h>
22 #include <linux/mmzone.h>
23 #include <linux/memblock.h>
24 #include <linux/memremap.h>
25 #include <linux/highmem.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/bootmem_info.h>
32
33 #include <asm/dma.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36
37 #ifdef CONFIG_HUGETLB_PAGE_FREE_VMEMMAP
38 /**
39  * struct vmemmap_remap_walk - walk vmemmap page table
40  *
41  * @remap_pte:          called for each lowest-level entry (PTE).
42  * @nr_walked:          the number of walked pte.
43  * @reuse_page:         the page which is reused for the tail vmemmap pages.
44  * @reuse_addr:         the virtual address of the @reuse_page page.
45  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
46  *                      or is mapped from.
47  */
48 struct vmemmap_remap_walk {
49         void (*remap_pte)(pte_t *pte, unsigned long addr,
50                           struct vmemmap_remap_walk *walk);
51         unsigned long nr_walked;
52         struct page *reuse_page;
53         unsigned long reuse_addr;
54         struct list_head *vmemmap_pages;
55 };
56
57 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
58 {
59         pmd_t __pmd;
60         int i;
61         unsigned long addr = start;
62         struct page *page = pmd_page(*pmd);
63         pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
64
65         if (!pgtable)
66                 return -ENOMEM;
67
68         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
69
70         for (i = 0; i < PMD_SIZE / PAGE_SIZE; i++, addr += PAGE_SIZE) {
71                 pte_t entry, *pte;
72                 pgprot_t pgprot = PAGE_KERNEL;
73
74                 entry = mk_pte(page + i, pgprot);
75                 pte = pte_offset_kernel(&__pmd, addr);
76                 set_pte_at(&init_mm, addr, pte, entry);
77         }
78
79         spin_lock(&init_mm.page_table_lock);
80         if (likely(pmd_leaf(*pmd))) {
81                 /* Make pte visible before pmd. See comment in pmd_install(). */
82                 smp_wmb();
83                 pmd_populate_kernel(&init_mm, pmd, pgtable);
84                 flush_tlb_kernel_range(start, start + PMD_SIZE);
85         } else {
86                 pte_free_kernel(&init_mm, pgtable);
87         }
88         spin_unlock(&init_mm.page_table_lock);
89
90         return 0;
91 }
92
93 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
94 {
95         int leaf;
96
97         spin_lock(&init_mm.page_table_lock);
98         leaf = pmd_leaf(*pmd);
99         spin_unlock(&init_mm.page_table_lock);
100
101         if (!leaf)
102                 return 0;
103
104         return __split_vmemmap_huge_pmd(pmd, start);
105 }
106
107 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
108                               unsigned long end,
109                               struct vmemmap_remap_walk *walk)
110 {
111         pte_t *pte = pte_offset_kernel(pmd, addr);
112
113         /*
114          * The reuse_page is found 'first' in table walk before we start
115          * remapping (which is calling @walk->remap_pte).
116          */
117         if (!walk->reuse_page) {
118                 walk->reuse_page = pte_page(*pte);
119                 /*
120                  * Because the reuse address is part of the range that we are
121                  * walking, skip the reuse address range.
122                  */
123                 addr += PAGE_SIZE;
124                 pte++;
125                 walk->nr_walked++;
126         }
127
128         for (; addr != end; addr += PAGE_SIZE, pte++) {
129                 walk->remap_pte(pte, addr, walk);
130                 walk->nr_walked++;
131         }
132 }
133
134 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
135                              unsigned long end,
136                              struct vmemmap_remap_walk *walk)
137 {
138         pmd_t *pmd;
139         unsigned long next;
140
141         pmd = pmd_offset(pud, addr);
142         do {
143                 int ret;
144
145                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
146                 if (ret)
147                         return ret;
148
149                 next = pmd_addr_end(addr, end);
150                 vmemmap_pte_range(pmd, addr, next, walk);
151         } while (pmd++, addr = next, addr != end);
152
153         return 0;
154 }
155
156 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
157                              unsigned long end,
158                              struct vmemmap_remap_walk *walk)
159 {
160         pud_t *pud;
161         unsigned long next;
162
163         pud = pud_offset(p4d, addr);
164         do {
165                 int ret;
166
167                 next = pud_addr_end(addr, end);
168                 ret = vmemmap_pmd_range(pud, addr, next, walk);
169                 if (ret)
170                         return ret;
171         } while (pud++, addr = next, addr != end);
172
173         return 0;
174 }
175
176 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
177                              unsigned long end,
178                              struct vmemmap_remap_walk *walk)
179 {
180         p4d_t *p4d;
181         unsigned long next;
182
183         p4d = p4d_offset(pgd, addr);
184         do {
185                 int ret;
186
187                 next = p4d_addr_end(addr, end);
188                 ret = vmemmap_pud_range(p4d, addr, next, walk);
189                 if (ret)
190                         return ret;
191         } while (p4d++, addr = next, addr != end);
192
193         return 0;
194 }
195
196 static int vmemmap_remap_range(unsigned long start, unsigned long end,
197                                struct vmemmap_remap_walk *walk)
198 {
199         unsigned long addr = start;
200         unsigned long next;
201         pgd_t *pgd;
202
203         VM_BUG_ON(!IS_ALIGNED(start, PAGE_SIZE));
204         VM_BUG_ON(!IS_ALIGNED(end, PAGE_SIZE));
205
206         pgd = pgd_offset_k(addr);
207         do {
208                 int ret;
209
210                 next = pgd_addr_end(addr, end);
211                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
212                 if (ret)
213                         return ret;
214         } while (pgd++, addr = next, addr != end);
215
216         /*
217          * We only change the mapping of the vmemmap virtual address range
218          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
219          * belongs to the range.
220          */
221         flush_tlb_kernel_range(start + PAGE_SIZE, end);
222
223         return 0;
224 }
225
226 /*
227  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
228  * allocator or buddy allocator. If the PG_reserved flag is set, it means
229  * that it allocated from the memblock allocator, just free it via the
230  * free_bootmem_page(). Otherwise, use __free_page().
231  */
232 static inline void free_vmemmap_page(struct page *page)
233 {
234         if (PageReserved(page))
235                 free_bootmem_page(page);
236         else
237                 __free_page(page);
238 }
239
240 /* Free a list of the vmemmap pages */
241 static void free_vmemmap_page_list(struct list_head *list)
242 {
243         struct page *page, *next;
244
245         list_for_each_entry_safe(page, next, list, lru) {
246                 list_del(&page->lru);
247                 free_vmemmap_page(page);
248         }
249 }
250
251 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
252                               struct vmemmap_remap_walk *walk)
253 {
254         /*
255          * Remap the tail pages as read-only to catch illegal write operation
256          * to the tail pages.
257          */
258         pgprot_t pgprot = PAGE_KERNEL_RO;
259         pte_t entry = mk_pte(walk->reuse_page, pgprot);
260         struct page *page = pte_page(*pte);
261
262         list_add_tail(&page->lru, walk->vmemmap_pages);
263         set_pte_at(&init_mm, addr, pte, entry);
264 }
265
266 /*
267  * How many struct page structs need to be reset. When we reuse the head
268  * struct page, the special metadata (e.g. page->flags or page->mapping)
269  * cannot copy to the tail struct page structs. The invalid value will be
270  * checked in the free_tail_pages_check(). In order to avoid the message
271  * of "corrupted mapping in tail page". We need to reset at least 3 (one
272  * head struct page struct and two tail struct page structs) struct page
273  * structs.
274  */
275 #define NR_RESET_STRUCT_PAGE            3
276
277 static inline void reset_struct_pages(struct page *start)
278 {
279         int i;
280         struct page *from = start + NR_RESET_STRUCT_PAGE;
281
282         for (i = 0; i < NR_RESET_STRUCT_PAGE; i++)
283                 memcpy(start + i, from, sizeof(*from));
284 }
285
286 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
287                                 struct vmemmap_remap_walk *walk)
288 {
289         pgprot_t pgprot = PAGE_KERNEL;
290         struct page *page;
291         void *to;
292
293         BUG_ON(pte_page(*pte) != walk->reuse_page);
294
295         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
296         list_del(&page->lru);
297         to = page_to_virt(page);
298         copy_page(to, (void *)walk->reuse_addr);
299         reset_struct_pages(to);
300
301         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
302 }
303
304 /**
305  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
306  *                      to the page which @reuse is mapped to, then free vmemmap
307  *                      which the range are mapped to.
308  * @start:      start address of the vmemmap virtual address range that we want
309  *              to remap.
310  * @end:        end address of the vmemmap virtual address range that we want to
311  *              remap.
312  * @reuse:      reuse address.
313  *
314  * Return: %0 on success, negative error code otherwise.
315  */
316 int vmemmap_remap_free(unsigned long start, unsigned long end,
317                        unsigned long reuse)
318 {
319         int ret;
320         LIST_HEAD(vmemmap_pages);
321         struct vmemmap_remap_walk walk = {
322                 .remap_pte      = vmemmap_remap_pte,
323                 .reuse_addr     = reuse,
324                 .vmemmap_pages  = &vmemmap_pages,
325         };
326
327         /*
328          * In order to make remapping routine most efficient for the huge pages,
329          * the routine of vmemmap page table walking has the following rules
330          * (see more details from the vmemmap_pte_range()):
331          *
332          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
333          *   should be continuous.
334          * - The @reuse address is part of the range [@reuse, @end) that we are
335          *   walking which is passed to vmemmap_remap_range().
336          * - The @reuse address is the first in the complete range.
337          *
338          * So we need to make sure that @start and @reuse meet the above rules.
339          */
340         BUG_ON(start - reuse != PAGE_SIZE);
341
342         mmap_read_lock(&init_mm);
343         ret = vmemmap_remap_range(reuse, end, &walk);
344         if (ret && walk.nr_walked) {
345                 end = reuse + walk.nr_walked * PAGE_SIZE;
346                 /*
347                  * vmemmap_pages contains pages from the previous
348                  * vmemmap_remap_range call which failed.  These
349                  * are pages which were removed from the vmemmap.
350                  * They will be restored in the following call.
351                  */
352                 walk = (struct vmemmap_remap_walk) {
353                         .remap_pte      = vmemmap_restore_pte,
354                         .reuse_addr     = reuse,
355                         .vmemmap_pages  = &vmemmap_pages,
356                 };
357
358                 vmemmap_remap_range(reuse, end, &walk);
359         }
360         mmap_read_unlock(&init_mm);
361
362         free_vmemmap_page_list(&vmemmap_pages);
363
364         return ret;
365 }
366
367 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
368                                    gfp_t gfp_mask, struct list_head *list)
369 {
370         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
371         int nid = page_to_nid((struct page *)start);
372         struct page *page, *next;
373
374         while (nr_pages--) {
375                 page = alloc_pages_node(nid, gfp_mask, 0);
376                 if (!page)
377                         goto out;
378                 list_add_tail(&page->lru, list);
379         }
380
381         return 0;
382 out:
383         list_for_each_entry_safe(page, next, list, lru)
384                 __free_pages(page, 0);
385         return -ENOMEM;
386 }
387
388 /**
389  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
390  *                       to the page which is from the @vmemmap_pages
391  *                       respectively.
392  * @start:      start address of the vmemmap virtual address range that we want
393  *              to remap.
394  * @end:        end address of the vmemmap virtual address range that we want to
395  *              remap.
396  * @reuse:      reuse address.
397  * @gfp_mask:   GFP flag for allocating vmemmap pages.
398  *
399  * Return: %0 on success, negative error code otherwise.
400  */
401 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
402                         unsigned long reuse, gfp_t gfp_mask)
403 {
404         LIST_HEAD(vmemmap_pages);
405         struct vmemmap_remap_walk walk = {
406                 .remap_pte      = vmemmap_restore_pte,
407                 .reuse_addr     = reuse,
408                 .vmemmap_pages  = &vmemmap_pages,
409         };
410
411         /* See the comment in the vmemmap_remap_free(). */
412         BUG_ON(start - reuse != PAGE_SIZE);
413
414         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
415                 return -ENOMEM;
416
417         mmap_read_lock(&init_mm);
418         vmemmap_remap_range(reuse, end, &walk);
419         mmap_read_unlock(&init_mm);
420
421         return 0;
422 }
423 #endif /* CONFIG_HUGETLB_PAGE_FREE_VMEMMAP */
424
425 /*
426  * Allocate a block of memory to be used to back the virtual memory map
427  * or to back the page tables that are used to create the mapping.
428  * Uses the main allocators if they are available, else bootmem.
429  */
430
431 static void * __ref __earlyonly_bootmem_alloc(int node,
432                                 unsigned long size,
433                                 unsigned long align,
434                                 unsigned long goal)
435 {
436         return memblock_alloc_try_nid_raw(size, align, goal,
437                                                MEMBLOCK_ALLOC_ACCESSIBLE, node);
438 }
439
440 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
441 {
442         /* If the main allocator is up use that, fallback to bootmem. */
443         if (slab_is_available()) {
444                 gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
445                 int order = get_order(size);
446                 static bool warned;
447                 struct page *page;
448
449                 page = alloc_pages_node(node, gfp_mask, order);
450                 if (page)
451                         return page_address(page);
452
453                 if (!warned) {
454                         warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
455                                    "vmemmap alloc failure: order:%u", order);
456                         warned = true;
457                 }
458                 return NULL;
459         } else
460                 return __earlyonly_bootmem_alloc(node, size, size,
461                                 __pa(MAX_DMA_ADDRESS));
462 }
463
464 static void * __meminit altmap_alloc_block_buf(unsigned long size,
465                                                struct vmem_altmap *altmap);
466
467 /* need to make sure size is all the same during early stage */
468 void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
469                                          struct vmem_altmap *altmap)
470 {
471         void *ptr;
472
473         if (altmap)
474                 return altmap_alloc_block_buf(size, altmap);
475
476         ptr = sparse_buffer_alloc(size);
477         if (!ptr)
478                 ptr = vmemmap_alloc_block(size, node);
479         return ptr;
480 }
481
482 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
483 {
484         return altmap->base_pfn + altmap->reserve + altmap->alloc
485                 + altmap->align;
486 }
487
488 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
489 {
490         unsigned long allocated = altmap->alloc + altmap->align;
491
492         if (altmap->free > allocated)
493                 return altmap->free - allocated;
494         return 0;
495 }
496
497 static void * __meminit altmap_alloc_block_buf(unsigned long size,
498                                                struct vmem_altmap *altmap)
499 {
500         unsigned long pfn, nr_pfns, nr_align;
501
502         if (size & ~PAGE_MASK) {
503                 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
504                                 __func__, size);
505                 return NULL;
506         }
507
508         pfn = vmem_altmap_next_pfn(altmap);
509         nr_pfns = size >> PAGE_SHIFT;
510         nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
511         nr_align = ALIGN(pfn, nr_align) - pfn;
512         if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
513                 return NULL;
514
515         altmap->alloc += nr_pfns;
516         altmap->align += nr_align;
517         pfn += nr_align;
518
519         pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
520                         __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
521         return __va(__pfn_to_phys(pfn));
522 }
523
524 void __meminit vmemmap_verify(pte_t *pte, int node,
525                                 unsigned long start, unsigned long end)
526 {
527         unsigned long pfn = pte_pfn(*pte);
528         int actual_node = early_pfn_to_nid(pfn);
529
530         if (node_distance(actual_node, node) > LOCAL_DISTANCE)
531                 pr_warn("[%lx-%lx] potential offnode page_structs\n",
532                         start, end - 1);
533 }
534
535 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
536                                        struct vmem_altmap *altmap)
537 {
538         pte_t *pte = pte_offset_kernel(pmd, addr);
539         if (pte_none(*pte)) {
540                 pte_t entry;
541                 void *p;
542
543                 p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
544                 if (!p)
545                         return NULL;
546                 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
547                 set_pte_at(&init_mm, addr, pte, entry);
548         }
549         return pte;
550 }
551
552 static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
553 {
554         void *p = vmemmap_alloc_block(size, node);
555
556         if (!p)
557                 return NULL;
558         memset(p, 0, size);
559
560         return p;
561 }
562
563 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
564 {
565         pmd_t *pmd = pmd_offset(pud, addr);
566         if (pmd_none(*pmd)) {
567                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
568                 if (!p)
569                         return NULL;
570                 pmd_populate_kernel(&init_mm, pmd, p);
571         }
572         return pmd;
573 }
574
575 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
576 {
577         pud_t *pud = pud_offset(p4d, addr);
578         if (pud_none(*pud)) {
579                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
580                 if (!p)
581                         return NULL;
582                 pud_populate(&init_mm, pud, p);
583         }
584         return pud;
585 }
586
587 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
588 {
589         p4d_t *p4d = p4d_offset(pgd, addr);
590         if (p4d_none(*p4d)) {
591                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
592                 if (!p)
593                         return NULL;
594                 p4d_populate(&init_mm, p4d, p);
595         }
596         return p4d;
597 }
598
599 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
600 {
601         pgd_t *pgd = pgd_offset_k(addr);
602         if (pgd_none(*pgd)) {
603                 void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
604                 if (!p)
605                         return NULL;
606                 pgd_populate(&init_mm, pgd, p);
607         }
608         return pgd;
609 }
610
611 int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
612                                          int node, struct vmem_altmap *altmap)
613 {
614         unsigned long addr = start;
615         pgd_t *pgd;
616         p4d_t *p4d;
617         pud_t *pud;
618         pmd_t *pmd;
619         pte_t *pte;
620
621         for (; addr < end; addr += PAGE_SIZE) {
622                 pgd = vmemmap_pgd_populate(addr, node);
623                 if (!pgd)
624                         return -ENOMEM;
625                 p4d = vmemmap_p4d_populate(pgd, addr, node);
626                 if (!p4d)
627                         return -ENOMEM;
628                 pud = vmemmap_pud_populate(p4d, addr, node);
629                 if (!pud)
630                         return -ENOMEM;
631                 pmd = vmemmap_pmd_populate(pud, addr, node);
632                 if (!pmd)
633                         return -ENOMEM;
634                 pte = vmemmap_pte_populate(pmd, addr, node, altmap);
635                 if (!pte)
636                         return -ENOMEM;
637                 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
638         }
639
640         return 0;
641 }
642
643 struct page * __meminit __populate_section_memmap(unsigned long pfn,
644                 unsigned long nr_pages, int nid, struct vmem_altmap *altmap)
645 {
646         unsigned long start = (unsigned long) pfn_to_page(pfn);
647         unsigned long end = start + nr_pages * sizeof(struct page);
648
649         if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
650                 !IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
651                 return NULL;
652
653         if (vmemmap_populate(start, end, nid, altmap))
654                 return NULL;
655
656         return pfn_to_page(pfn);
657 }