2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000UL /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000UL /* Not yet visible via sysfs */
168 static int kmem_size = sizeof(struct kmem_cache);
171 static struct notifier_block slab_notifier;
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works but does not show up in sysfs */
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock);
183 static LIST_HEAD(slab_caches);
186 * Tracking user of a slab.
189 unsigned long addr; /* Called from address */
190 int cpu; /* Was running on cpu */
191 int pid; /* Pid context */
192 unsigned long when; /* When did the operation occur */
195 enum track_item { TRACK_ALLOC, TRACK_FREE };
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache *);
199 static int sysfs_slab_alias(struct kmem_cache *, const char *);
200 static void sysfs_slab_remove(struct kmem_cache *);
203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
206 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 static inline void stat(struct kmem_cache *s, enum stat_item si)
215 #ifdef CONFIG_SLUB_STATS
216 __this_cpu_inc(s->cpu_slab->stat[si]);
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
224 int slab_is_available(void)
226 return slab_state >= UP;
229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
232 return s->node[node];
234 return &s->local_node;
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
256 static inline void *get_freepointer(struct kmem_cache *s, void *object)
258 return *(void **)(object + s->offset);
261 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 *(void **)(object + s->offset) = fp;
266 /* Loop over all objects in a slab */
267 #define for_each_object(__p, __s, __addr, __objects) \
268 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 #define for_each_free_object(__p, __s, __free) \
273 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275 /* Determine object index from a given position */
276 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 return (p - addr) / s->size;
281 static inline struct kmem_cache_order_objects oo_make(int order,
284 struct kmem_cache_order_objects x = {
285 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
291 static inline int oo_order(struct kmem_cache_order_objects x)
293 return x.x >> OO_SHIFT;
296 static inline int oo_objects(struct kmem_cache_order_objects x)
298 return x.x & OO_MASK;
301 #ifdef CONFIG_SLUB_DEBUG
305 #ifdef CONFIG_SLUB_DEBUG_ON
306 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 static int slub_debug;
311 static char *slub_debug_slabs;
312 static int disable_higher_order_debug;
317 static void print_section(char *text, u8 *addr, unsigned int length)
325 for (i = 0; i < length; i++) {
327 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
330 printk(KERN_CONT " %02x", addr[i]);
332 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 printk(KERN_CONT " %s\n", ascii);
341 printk(KERN_CONT " ");
345 printk(KERN_CONT " %s\n", ascii);
349 static struct track *get_track(struct kmem_cache *s, void *object,
350 enum track_item alloc)
355 p = object + s->offset + sizeof(void *);
357 p = object + s->inuse;
362 static void set_track(struct kmem_cache *s, void *object,
363 enum track_item alloc, unsigned long addr)
365 struct track *p = get_track(s, object, alloc);
369 p->cpu = smp_processor_id();
370 p->pid = current->pid;
373 memset(p, 0, sizeof(struct track));
376 static void init_tracking(struct kmem_cache *s, void *object)
378 if (!(s->flags & SLAB_STORE_USER))
381 set_track(s, object, TRACK_FREE, 0UL);
382 set_track(s, object, TRACK_ALLOC, 0UL);
385 static void print_track(const char *s, struct track *t)
390 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
391 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
394 static void print_tracking(struct kmem_cache *s, void *object)
396 if (!(s->flags & SLAB_STORE_USER))
399 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
400 print_track("Freed", get_track(s, object, TRACK_FREE));
403 static void print_page_info(struct page *page)
405 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
406 page, page->objects, page->inuse, page->freelist, page->flags);
410 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
416 vsnprintf(buf, sizeof(buf), fmt, args);
418 printk(KERN_ERR "========================================"
419 "=====================================\n");
420 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
421 printk(KERN_ERR "----------------------------------------"
422 "-------------------------------------\n\n");
425 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
431 vsnprintf(buf, sizeof(buf), fmt, args);
433 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
436 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438 unsigned int off; /* Offset of last byte */
439 u8 *addr = page_address(page);
441 print_tracking(s, p);
443 print_page_info(page);
445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
446 p, p - addr, get_freepointer(s, p));
449 print_section("Bytes b4", p - 16, 16);
451 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453 if (s->flags & SLAB_RED_ZONE)
454 print_section("Redzone", p + s->objsize,
455 s->inuse - s->objsize);
458 off = s->offset + sizeof(void *);
462 if (s->flags & SLAB_STORE_USER)
463 off += 2 * sizeof(struct track);
466 /* Beginning of the filler is the free pointer */
467 print_section("Padding", p + off, s->size - off);
472 static void object_err(struct kmem_cache *s, struct page *page,
473 u8 *object, char *reason)
475 slab_bug(s, "%s", reason);
476 print_trailer(s, page, object);
479 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
485 vsnprintf(buf, sizeof(buf), fmt, args);
487 slab_bug(s, "%s", buf);
488 print_page_info(page);
492 static void init_object(struct kmem_cache *s, void *object, int active)
496 if (s->flags & __OBJECT_POISON) {
497 memset(p, POISON_FREE, s->objsize - 1);
498 p[s->objsize - 1] = POISON_END;
501 if (s->flags & SLAB_RED_ZONE)
502 memset(p + s->objsize,
503 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
504 s->inuse - s->objsize);
507 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
510 if (*start != (u8)value)
518 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
519 void *from, void *to)
521 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
522 memset(from, data, to - from);
525 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
526 u8 *object, char *what,
527 u8 *start, unsigned int value, unsigned int bytes)
532 fault = check_bytes(start, value, bytes);
537 while (end > fault && end[-1] == value)
540 slab_bug(s, "%s overwritten", what);
541 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
542 fault, end - 1, fault[0], value);
543 print_trailer(s, page, object);
545 restore_bytes(s, what, value, fault, end);
553 * Bytes of the object to be managed.
554 * If the freepointer may overlay the object then the free
555 * pointer is the first word of the object.
557 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
560 * object + s->objsize
561 * Padding to reach word boundary. This is also used for Redzoning.
562 * Padding is extended by another word if Redzoning is enabled and
565 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
566 * 0xcc (RED_ACTIVE) for objects in use.
569 * Meta data starts here.
571 * A. Free pointer (if we cannot overwrite object on free)
572 * B. Tracking data for SLAB_STORE_USER
573 * C. Padding to reach required alignment boundary or at mininum
574 * one word if debugging is on to be able to detect writes
575 * before the word boundary.
577 * Padding is done using 0x5a (POISON_INUSE)
580 * Nothing is used beyond s->size.
582 * If slabcaches are merged then the objsize and inuse boundaries are mostly
583 * ignored. And therefore no slab options that rely on these boundaries
584 * may be used with merged slabcaches.
587 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589 unsigned long off = s->inuse; /* The end of info */
592 /* Freepointer is placed after the object. */
593 off += sizeof(void *);
595 if (s->flags & SLAB_STORE_USER)
596 /* We also have user information there */
597 off += 2 * sizeof(struct track);
602 return check_bytes_and_report(s, page, p, "Object padding",
603 p + off, POISON_INUSE, s->size - off);
606 /* Check the pad bytes at the end of a slab page */
607 static int slab_pad_check(struct kmem_cache *s, struct page *page)
615 if (!(s->flags & SLAB_POISON))
618 start = page_address(page);
619 length = (PAGE_SIZE << compound_order(page));
620 end = start + length;
621 remainder = length % s->size;
625 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
628 while (end > fault && end[-1] == POISON_INUSE)
631 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
632 print_section("Padding", end - remainder, remainder);
634 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
638 static int check_object(struct kmem_cache *s, struct page *page,
639 void *object, int active)
642 u8 *endobject = object + s->objsize;
644 if (s->flags & SLAB_RED_ZONE) {
646 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
648 if (!check_bytes_and_report(s, page, object, "Redzone",
649 endobject, red, s->inuse - s->objsize))
652 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
653 check_bytes_and_report(s, page, p, "Alignment padding",
654 endobject, POISON_INUSE, s->inuse - s->objsize);
658 if (s->flags & SLAB_POISON) {
659 if (!active && (s->flags & __OBJECT_POISON) &&
660 (!check_bytes_and_report(s, page, p, "Poison", p,
661 POISON_FREE, s->objsize - 1) ||
662 !check_bytes_and_report(s, page, p, "Poison",
663 p + s->objsize - 1, POISON_END, 1)))
666 * check_pad_bytes cleans up on its own.
668 check_pad_bytes(s, page, p);
671 if (!s->offset && active)
673 * Object and freepointer overlap. Cannot check
674 * freepointer while object is allocated.
678 /* Check free pointer validity */
679 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
680 object_err(s, page, p, "Freepointer corrupt");
682 * No choice but to zap it and thus lose the remainder
683 * of the free objects in this slab. May cause
684 * another error because the object count is now wrong.
686 set_freepointer(s, p, NULL);
692 static int check_slab(struct kmem_cache *s, struct page *page)
696 VM_BUG_ON(!irqs_disabled());
698 if (!PageSlab(page)) {
699 slab_err(s, page, "Not a valid slab page");
703 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
704 if (page->objects > maxobj) {
705 slab_err(s, page, "objects %u > max %u",
706 s->name, page->objects, maxobj);
709 if (page->inuse > page->objects) {
710 slab_err(s, page, "inuse %u > max %u",
711 s->name, page->inuse, page->objects);
714 /* Slab_pad_check fixes things up after itself */
715 slab_pad_check(s, page);
720 * Determine if a certain object on a page is on the freelist. Must hold the
721 * slab lock to guarantee that the chains are in a consistent state.
723 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
726 void *fp = page->freelist;
728 unsigned long max_objects;
730 while (fp && nr <= page->objects) {
733 if (!check_valid_pointer(s, page, fp)) {
735 object_err(s, page, object,
736 "Freechain corrupt");
737 set_freepointer(s, object, NULL);
740 slab_err(s, page, "Freepointer corrupt");
741 page->freelist = NULL;
742 page->inuse = page->objects;
743 slab_fix(s, "Freelist cleared");
749 fp = get_freepointer(s, object);
753 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
754 if (max_objects > MAX_OBJS_PER_PAGE)
755 max_objects = MAX_OBJS_PER_PAGE;
757 if (page->objects != max_objects) {
758 slab_err(s, page, "Wrong number of objects. Found %d but "
759 "should be %d", page->objects, max_objects);
760 page->objects = max_objects;
761 slab_fix(s, "Number of objects adjusted.");
763 if (page->inuse != page->objects - nr) {
764 slab_err(s, page, "Wrong object count. Counter is %d but "
765 "counted were %d", page->inuse, page->objects - nr);
766 page->inuse = page->objects - nr;
767 slab_fix(s, "Object count adjusted.");
769 return search == NULL;
772 static void trace(struct kmem_cache *s, struct page *page, void *object,
775 if (s->flags & SLAB_TRACE) {
776 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
778 alloc ? "alloc" : "free",
783 print_section("Object", (void *)object, s->objsize);
790 * Tracking of fully allocated slabs for debugging purposes.
792 static void add_full(struct kmem_cache_node *n, struct page *page)
794 spin_lock(&n->list_lock);
795 list_add(&page->lru, &n->full);
796 spin_unlock(&n->list_lock);
799 static void remove_full(struct kmem_cache *s, struct page *page)
801 struct kmem_cache_node *n;
803 if (!(s->flags & SLAB_STORE_USER))
806 n = get_node(s, page_to_nid(page));
808 spin_lock(&n->list_lock);
809 list_del(&page->lru);
810 spin_unlock(&n->list_lock);
813 /* Tracking of the number of slabs for debugging purposes */
814 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
816 struct kmem_cache_node *n = get_node(s, node);
818 return atomic_long_read(&n->nr_slabs);
821 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
823 return atomic_long_read(&n->nr_slabs);
826 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
828 struct kmem_cache_node *n = get_node(s, node);
831 * May be called early in order to allocate a slab for the
832 * kmem_cache_node structure. Solve the chicken-egg
833 * dilemma by deferring the increment of the count during
834 * bootstrap (see early_kmem_cache_node_alloc).
836 if (!NUMA_BUILD || n) {
837 atomic_long_inc(&n->nr_slabs);
838 atomic_long_add(objects, &n->total_objects);
841 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
843 struct kmem_cache_node *n = get_node(s, node);
845 atomic_long_dec(&n->nr_slabs);
846 atomic_long_sub(objects, &n->total_objects);
849 /* Object debug checks for alloc/free paths */
850 static void setup_object_debug(struct kmem_cache *s, struct page *page,
853 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
856 init_object(s, object, 0);
857 init_tracking(s, object);
860 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
861 void *object, unsigned long addr)
863 if (!check_slab(s, page))
866 if (!on_freelist(s, page, object)) {
867 object_err(s, page, object, "Object already allocated");
871 if (!check_valid_pointer(s, page, object)) {
872 object_err(s, page, object, "Freelist Pointer check fails");
876 if (!check_object(s, page, object, 0))
879 /* Success perform special debug activities for allocs */
880 if (s->flags & SLAB_STORE_USER)
881 set_track(s, object, TRACK_ALLOC, addr);
882 trace(s, page, object, 1);
883 init_object(s, object, 1);
887 if (PageSlab(page)) {
889 * If this is a slab page then lets do the best we can
890 * to avoid issues in the future. Marking all objects
891 * as used avoids touching the remaining objects.
893 slab_fix(s, "Marking all objects used");
894 page->inuse = page->objects;
895 page->freelist = NULL;
900 static int free_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, unsigned long addr)
903 if (!check_slab(s, page))
906 if (!check_valid_pointer(s, page, object)) {
907 slab_err(s, page, "Invalid object pointer 0x%p", object);
911 if (on_freelist(s, page, object)) {
912 object_err(s, page, object, "Object already free");
916 if (!check_object(s, page, object, 1))
919 if (unlikely(s != page->slab)) {
920 if (!PageSlab(page)) {
921 slab_err(s, page, "Attempt to free object(0x%p) "
922 "outside of slab", object);
923 } else if (!page->slab) {
925 "SLUB <none>: no slab for object 0x%p.\n",
929 object_err(s, page, object,
930 "page slab pointer corrupt.");
934 /* Special debug activities for freeing objects */
935 if (!PageSlubFrozen(page) && !page->freelist)
936 remove_full(s, page);
937 if (s->flags & SLAB_STORE_USER)
938 set_track(s, object, TRACK_FREE, addr);
939 trace(s, page, object, 0);
940 init_object(s, object, 0);
944 slab_fix(s, "Object at 0x%p not freed", object);
948 static int __init setup_slub_debug(char *str)
950 slub_debug = DEBUG_DEFAULT_FLAGS;
951 if (*str++ != '=' || !*str)
953 * No options specified. Switch on full debugging.
959 * No options but restriction on slabs. This means full
960 * debugging for slabs matching a pattern.
964 if (tolower(*str) == 'o') {
966 * Avoid enabling debugging on caches if its minimum order
967 * would increase as a result.
969 disable_higher_order_debug = 1;
976 * Switch off all debugging measures.
981 * Determine which debug features should be switched on
983 for (; *str && *str != ','; str++) {
984 switch (tolower(*str)) {
986 slub_debug |= SLAB_DEBUG_FREE;
989 slub_debug |= SLAB_RED_ZONE;
992 slub_debug |= SLAB_POISON;
995 slub_debug |= SLAB_STORE_USER;
998 slub_debug |= SLAB_TRACE;
1001 slub_debug |= SLAB_FAILSLAB;
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1011 slub_debug_slabs = str + 1;
1016 __setup("slub_debug", setup_slub_debug);
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1023 * Enable debugging if selected on the kernel commandline.
1025 if (slub_debug && (!slub_debug_slabs ||
1026 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1027 flags |= slub_debug;
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1052 #define slub_debug 0
1054 #define disable_higher_order_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1067 * Slab allocation and freeing
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1072 int order = oo_order(oo);
1074 flags |= __GFP_NOTRACK;
1076 if (node == NUMA_NO_NODE)
1077 return alloc_pages(flags, order);
1079 return alloc_pages_exact_node(node, flags, order);
1082 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1085 struct kmem_cache_order_objects oo = s->oo;
1088 flags |= s->allocflags;
1091 * Let the initial higher-order allocation fail under memory pressure
1092 * so we fall-back to the minimum order allocation.
1094 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1096 page = alloc_slab_page(alloc_gfp, node, oo);
1097 if (unlikely(!page)) {
1100 * Allocation may have failed due to fragmentation.
1101 * Try a lower order alloc if possible
1103 page = alloc_slab_page(flags, node, oo);
1107 stat(s, ORDER_FALLBACK);
1110 if (kmemcheck_enabled
1111 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1112 int pages = 1 << oo_order(oo);
1114 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1117 * Objects from caches that have a constructor don't get
1118 * cleared when they're allocated, so we need to do it here.
1121 kmemcheck_mark_uninitialized_pages(page, pages);
1123 kmemcheck_mark_unallocated_pages(page, pages);
1126 page->objects = oo_objects(oo);
1127 mod_zone_page_state(page_zone(page),
1128 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1129 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1135 static void setup_object(struct kmem_cache *s, struct page *page,
1138 setup_object_debug(s, page, object);
1139 if (unlikely(s->ctor))
1143 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1150 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1152 page = allocate_slab(s,
1153 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1157 inc_slabs_node(s, page_to_nid(page), page->objects);
1159 page->flags |= 1 << PG_slab;
1160 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1161 SLAB_STORE_USER | SLAB_TRACE))
1162 __SetPageSlubDebug(page);
1164 start = page_address(page);
1166 if (unlikely(s->flags & SLAB_POISON))
1167 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1170 for_each_object(p, s, start, page->objects) {
1171 setup_object(s, page, last);
1172 set_freepointer(s, last, p);
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, NULL);
1178 page->freelist = start;
1184 static void __free_slab(struct kmem_cache *s, struct page *page)
1186 int order = compound_order(page);
1187 int pages = 1 << order;
1189 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1192 slab_pad_check(s, page);
1193 for_each_object(p, s, page_address(page),
1195 check_object(s, page, p, 0);
1196 __ClearPageSlubDebug(page);
1199 kmemcheck_free_shadow(page, compound_order(page));
1201 mod_zone_page_state(page_zone(page),
1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1206 __ClearPageSlab(page);
1207 reset_page_mapcount(page);
1208 if (current->reclaim_state)
1209 current->reclaim_state->reclaimed_slab += pages;
1210 __free_pages(page, order);
1213 static void rcu_free_slab(struct rcu_head *h)
1217 page = container_of((struct list_head *)h, struct page, lru);
1218 __free_slab(page->slab, page);
1221 static void free_slab(struct kmem_cache *s, struct page *page)
1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1225 * RCU free overloads the RCU head over the LRU
1227 struct rcu_head *head = (void *)&page->lru;
1229 call_rcu(head, rcu_free_slab);
1231 __free_slab(s, page);
1234 static void discard_slab(struct kmem_cache *s, struct page *page)
1236 dec_slabs_node(s, page_to_nid(page), page->objects);
1241 * Per slab locking using the pagelock
1243 static __always_inline void slab_lock(struct page *page)
1245 bit_spin_lock(PG_locked, &page->flags);
1248 static __always_inline void slab_unlock(struct page *page)
1250 __bit_spin_unlock(PG_locked, &page->flags);
1253 static __always_inline int slab_trylock(struct page *page)
1257 rc = bit_spin_trylock(PG_locked, &page->flags);
1262 * Management of partially allocated slabs
1264 static void add_partial(struct kmem_cache_node *n,
1265 struct page *page, int tail)
1267 spin_lock(&n->list_lock);
1270 list_add_tail(&page->lru, &n->partial);
1272 list_add(&page->lru, &n->partial);
1273 spin_unlock(&n->list_lock);
1276 static void remove_partial(struct kmem_cache *s, struct page *page)
1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1280 spin_lock(&n->list_lock);
1281 list_del(&page->lru);
1283 spin_unlock(&n->list_lock);
1287 * Lock slab and remove from the partial list.
1289 * Must hold list_lock.
1291 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1294 if (slab_trylock(page)) {
1295 list_del(&page->lru);
1297 __SetPageSlubFrozen(page);
1304 * Try to allocate a partial slab from a specific node.
1306 static struct page *get_partial_node(struct kmem_cache_node *n)
1311 * Racy check. If we mistakenly see no partial slabs then we
1312 * just allocate an empty slab. If we mistakenly try to get a
1313 * partial slab and there is none available then get_partials()
1316 if (!n || !n->nr_partial)
1319 spin_lock(&n->list_lock);
1320 list_for_each_entry(page, &n->partial, lru)
1321 if (lock_and_freeze_slab(n, page))
1325 spin_unlock(&n->list_lock);
1330 * Get a page from somewhere. Search in increasing NUMA distances.
1332 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335 struct zonelist *zonelist;
1338 enum zone_type high_zoneidx = gfp_zone(flags);
1342 * The defrag ratio allows a configuration of the tradeoffs between
1343 * inter node defragmentation and node local allocations. A lower
1344 * defrag_ratio increases the tendency to do local allocations
1345 * instead of attempting to obtain partial slabs from other nodes.
1347 * If the defrag_ratio is set to 0 then kmalloc() always
1348 * returns node local objects. If the ratio is higher then kmalloc()
1349 * may return off node objects because partial slabs are obtained
1350 * from other nodes and filled up.
1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1353 * defrag_ratio = 1000) then every (well almost) allocation will
1354 * first attempt to defrag slab caches on other nodes. This means
1355 * scanning over all nodes to look for partial slabs which may be
1356 * expensive if we do it every time we are trying to find a slab
1357 * with available objects.
1359 if (!s->remote_node_defrag_ratio ||
1360 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1364 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1365 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1366 struct kmem_cache_node *n;
1368 n = get_node(s, zone_to_nid(zone));
1370 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1371 n->nr_partial > s->min_partial) {
1372 page = get_partial_node(n);
1385 * Get a partial page, lock it and return it.
1387 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1390 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1392 page = get_partial_node(get_node(s, searchnode));
1393 if (page || (flags & __GFP_THISNODE))
1396 return get_any_partial(s, flags);
1400 * Move a page back to the lists.
1402 * Must be called with the slab lock held.
1404 * On exit the slab lock will have been dropped.
1406 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1408 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1410 __ClearPageSlubFrozen(page);
1413 if (page->freelist) {
1414 add_partial(n, page, tail);
1415 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1417 stat(s, DEACTIVATE_FULL);
1418 if (SLABDEBUG && PageSlubDebug(page) &&
1419 (s->flags & SLAB_STORE_USER))
1424 stat(s, DEACTIVATE_EMPTY);
1425 if (n->nr_partial < s->min_partial) {
1427 * Adding an empty slab to the partial slabs in order
1428 * to avoid page allocator overhead. This slab needs
1429 * to come after the other slabs with objects in
1430 * so that the others get filled first. That way the
1431 * size of the partial list stays small.
1433 * kmem_cache_shrink can reclaim any empty slabs from
1436 add_partial(n, page, 1);
1441 discard_slab(s, page);
1447 * Remove the cpu slab
1449 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1451 struct page *page = c->page;
1455 stat(s, DEACTIVATE_REMOTE_FREES);
1457 * Merge cpu freelist into slab freelist. Typically we get here
1458 * because both freelists are empty. So this is unlikely
1461 while (unlikely(c->freelist)) {
1464 tail = 0; /* Hot objects. Put the slab first */
1466 /* Retrieve object from cpu_freelist */
1467 object = c->freelist;
1468 c->freelist = get_freepointer(s, c->freelist);
1470 /* And put onto the regular freelist */
1471 set_freepointer(s, object, page->freelist);
1472 page->freelist = object;
1476 unfreeze_slab(s, page, tail);
1479 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1481 stat(s, CPUSLAB_FLUSH);
1483 deactivate_slab(s, c);
1489 * Called from IPI handler with interrupts disabled.
1491 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1493 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1495 if (likely(c && c->page))
1499 static void flush_cpu_slab(void *d)
1501 struct kmem_cache *s = d;
1503 __flush_cpu_slab(s, smp_processor_id());
1506 static void flush_all(struct kmem_cache *s)
1508 on_each_cpu(flush_cpu_slab, s, 1);
1512 * Check if the objects in a per cpu structure fit numa
1513 * locality expectations.
1515 static inline int node_match(struct kmem_cache_cpu *c, int node)
1518 if (node != NUMA_NO_NODE && c->node != node)
1524 static int count_free(struct page *page)
1526 return page->objects - page->inuse;
1529 static unsigned long count_partial(struct kmem_cache_node *n,
1530 int (*get_count)(struct page *))
1532 unsigned long flags;
1533 unsigned long x = 0;
1536 spin_lock_irqsave(&n->list_lock, flags);
1537 list_for_each_entry(page, &n->partial, lru)
1538 x += get_count(page);
1539 spin_unlock_irqrestore(&n->list_lock, flags);
1543 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1545 #ifdef CONFIG_SLUB_DEBUG
1546 return atomic_long_read(&n->total_objects);
1552 static noinline void
1553 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1558 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1560 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1561 "default order: %d, min order: %d\n", s->name, s->objsize,
1562 s->size, oo_order(s->oo), oo_order(s->min));
1564 if (oo_order(s->min) > get_order(s->objsize))
1565 printk(KERN_WARNING " %s debugging increased min order, use "
1566 "slub_debug=O to disable.\n", s->name);
1568 for_each_online_node(node) {
1569 struct kmem_cache_node *n = get_node(s, node);
1570 unsigned long nr_slabs;
1571 unsigned long nr_objs;
1572 unsigned long nr_free;
1577 nr_free = count_partial(n, count_free);
1578 nr_slabs = node_nr_slabs(n);
1579 nr_objs = node_nr_objs(n);
1582 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1583 node, nr_slabs, nr_objs, nr_free);
1588 * Slow path. The lockless freelist is empty or we need to perform
1591 * Interrupts are disabled.
1593 * Processing is still very fast if new objects have been freed to the
1594 * regular freelist. In that case we simply take over the regular freelist
1595 * as the lockless freelist and zap the regular freelist.
1597 * If that is not working then we fall back to the partial lists. We take the
1598 * first element of the freelist as the object to allocate now and move the
1599 * rest of the freelist to the lockless freelist.
1601 * And if we were unable to get a new slab from the partial slab lists then
1602 * we need to allocate a new slab. This is the slowest path since it involves
1603 * a call to the page allocator and the setup of a new slab.
1605 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1606 unsigned long addr, struct kmem_cache_cpu *c)
1611 /* We handle __GFP_ZERO in the caller */
1612 gfpflags &= ~__GFP_ZERO;
1618 if (unlikely(!node_match(c, node)))
1621 stat(s, ALLOC_REFILL);
1624 object = c->page->freelist;
1625 if (unlikely(!object))
1627 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1630 c->freelist = get_freepointer(s, object);
1631 c->page->inuse = c->page->objects;
1632 c->page->freelist = NULL;
1633 c->node = page_to_nid(c->page);
1635 slab_unlock(c->page);
1636 stat(s, ALLOC_SLOWPATH);
1640 deactivate_slab(s, c);
1643 new = get_partial(s, gfpflags, node);
1646 stat(s, ALLOC_FROM_PARTIAL);
1650 if (gfpflags & __GFP_WAIT)
1653 new = new_slab(s, gfpflags, node);
1655 if (gfpflags & __GFP_WAIT)
1656 local_irq_disable();
1659 c = __this_cpu_ptr(s->cpu_slab);
1660 stat(s, ALLOC_SLAB);
1664 __SetPageSlubFrozen(new);
1668 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1669 slab_out_of_memory(s, gfpflags, node);
1672 if (!alloc_debug_processing(s, c->page, object, addr))
1676 c->page->freelist = get_freepointer(s, object);
1682 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1683 * have the fastpath folded into their functions. So no function call
1684 * overhead for requests that can be satisfied on the fastpath.
1686 * The fastpath works by first checking if the lockless freelist can be used.
1687 * If not then __slab_alloc is called for slow processing.
1689 * Otherwise we can simply pick the next object from the lockless free list.
1691 static __always_inline void *slab_alloc(struct kmem_cache *s,
1692 gfp_t gfpflags, int node, unsigned long addr)
1695 struct kmem_cache_cpu *c;
1696 unsigned long flags;
1698 gfpflags &= gfp_allowed_mask;
1700 lockdep_trace_alloc(gfpflags);
1701 might_sleep_if(gfpflags & __GFP_WAIT);
1703 if (should_failslab(s->objsize, gfpflags, s->flags))
1706 local_irq_save(flags);
1707 c = __this_cpu_ptr(s->cpu_slab);
1708 object = c->freelist;
1709 if (unlikely(!object || !node_match(c, node)))
1711 object = __slab_alloc(s, gfpflags, node, addr, c);
1714 c->freelist = get_freepointer(s, object);
1715 stat(s, ALLOC_FASTPATH);
1717 local_irq_restore(flags);
1719 if (unlikely(gfpflags & __GFP_ZERO) && object)
1720 memset(object, 0, s->objsize);
1722 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1723 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1728 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1730 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1732 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1736 EXPORT_SYMBOL(kmem_cache_alloc);
1738 #ifdef CONFIG_TRACING
1739 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1741 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1743 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1747 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1749 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1751 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1752 s->objsize, s->size, gfpflags, node);
1756 EXPORT_SYMBOL(kmem_cache_alloc_node);
1759 #ifdef CONFIG_TRACING
1760 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1764 return slab_alloc(s, gfpflags, node, _RET_IP_);
1766 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1770 * Slow patch handling. This may still be called frequently since objects
1771 * have a longer lifetime than the cpu slabs in most processing loads.
1773 * So we still attempt to reduce cache line usage. Just take the slab
1774 * lock and free the item. If there is no additional partial page
1775 * handling required then we can return immediately.
1777 static void __slab_free(struct kmem_cache *s, struct page *page,
1778 void *x, unsigned long addr)
1781 void **object = (void *)x;
1783 stat(s, FREE_SLOWPATH);
1786 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1790 prior = page->freelist;
1791 set_freepointer(s, object, prior);
1792 page->freelist = object;
1795 if (unlikely(PageSlubFrozen(page))) {
1796 stat(s, FREE_FROZEN);
1800 if (unlikely(!page->inuse))
1804 * Objects left in the slab. If it was not on the partial list before
1807 if (unlikely(!prior)) {
1808 add_partial(get_node(s, page_to_nid(page)), page, 1);
1809 stat(s, FREE_ADD_PARTIAL);
1819 * Slab still on the partial list.
1821 remove_partial(s, page);
1822 stat(s, FREE_REMOVE_PARTIAL);
1826 discard_slab(s, page);
1830 if (!free_debug_processing(s, page, x, addr))
1836 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1837 * can perform fastpath freeing without additional function calls.
1839 * The fastpath is only possible if we are freeing to the current cpu slab
1840 * of this processor. This typically the case if we have just allocated
1843 * If fastpath is not possible then fall back to __slab_free where we deal
1844 * with all sorts of special processing.
1846 static __always_inline void slab_free(struct kmem_cache *s,
1847 struct page *page, void *x, unsigned long addr)
1849 void **object = (void *)x;
1850 struct kmem_cache_cpu *c;
1851 unsigned long flags;
1853 kmemleak_free_recursive(x, s->flags);
1854 local_irq_save(flags);
1855 c = __this_cpu_ptr(s->cpu_slab);
1856 kmemcheck_slab_free(s, object, s->objsize);
1857 debug_check_no_locks_freed(object, s->objsize);
1858 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1859 debug_check_no_obj_freed(object, s->objsize);
1860 if (likely(page == c->page && c->node >= 0)) {
1861 set_freepointer(s, object, c->freelist);
1862 c->freelist = object;
1863 stat(s, FREE_FASTPATH);
1865 __slab_free(s, page, x, addr);
1867 local_irq_restore(flags);
1870 void kmem_cache_free(struct kmem_cache *s, void *x)
1874 page = virt_to_head_page(x);
1876 slab_free(s, page, x, _RET_IP_);
1878 trace_kmem_cache_free(_RET_IP_, x);
1880 EXPORT_SYMBOL(kmem_cache_free);
1882 /* Figure out on which slab page the object resides */
1883 static struct page *get_object_page(const void *x)
1885 struct page *page = virt_to_head_page(x);
1887 if (!PageSlab(page))
1894 * Object placement in a slab is made very easy because we always start at
1895 * offset 0. If we tune the size of the object to the alignment then we can
1896 * get the required alignment by putting one properly sized object after
1899 * Notice that the allocation order determines the sizes of the per cpu
1900 * caches. Each processor has always one slab available for allocations.
1901 * Increasing the allocation order reduces the number of times that slabs
1902 * must be moved on and off the partial lists and is therefore a factor in
1907 * Mininum / Maximum order of slab pages. This influences locking overhead
1908 * and slab fragmentation. A higher order reduces the number of partial slabs
1909 * and increases the number of allocations possible without having to
1910 * take the list_lock.
1912 static int slub_min_order;
1913 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1914 static int slub_min_objects;
1917 * Merge control. If this is set then no merging of slab caches will occur.
1918 * (Could be removed. This was introduced to pacify the merge skeptics.)
1920 static int slub_nomerge;
1923 * Calculate the order of allocation given an slab object size.
1925 * The order of allocation has significant impact on performance and other
1926 * system components. Generally order 0 allocations should be preferred since
1927 * order 0 does not cause fragmentation in the page allocator. Larger objects
1928 * be problematic to put into order 0 slabs because there may be too much
1929 * unused space left. We go to a higher order if more than 1/16th of the slab
1932 * In order to reach satisfactory performance we must ensure that a minimum
1933 * number of objects is in one slab. Otherwise we may generate too much
1934 * activity on the partial lists which requires taking the list_lock. This is
1935 * less a concern for large slabs though which are rarely used.
1937 * slub_max_order specifies the order where we begin to stop considering the
1938 * number of objects in a slab as critical. If we reach slub_max_order then
1939 * we try to keep the page order as low as possible. So we accept more waste
1940 * of space in favor of a small page order.
1942 * Higher order allocations also allow the placement of more objects in a
1943 * slab and thereby reduce object handling overhead. If the user has
1944 * requested a higher mininum order then we start with that one instead of
1945 * the smallest order which will fit the object.
1947 static inline int slab_order(int size, int min_objects,
1948 int max_order, int fract_leftover)
1952 int min_order = slub_min_order;
1954 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1955 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1957 for (order = max(min_order,
1958 fls(min_objects * size - 1) - PAGE_SHIFT);
1959 order <= max_order; order++) {
1961 unsigned long slab_size = PAGE_SIZE << order;
1963 if (slab_size < min_objects * size)
1966 rem = slab_size % size;
1968 if (rem <= slab_size / fract_leftover)
1976 static inline int calculate_order(int size)
1984 * Attempt to find best configuration for a slab. This
1985 * works by first attempting to generate a layout with
1986 * the best configuration and backing off gradually.
1988 * First we reduce the acceptable waste in a slab. Then
1989 * we reduce the minimum objects required in a slab.
1991 min_objects = slub_min_objects;
1993 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1994 max_objects = (PAGE_SIZE << slub_max_order)/size;
1995 min_objects = min(min_objects, max_objects);
1997 while (min_objects > 1) {
1999 while (fraction >= 4) {
2000 order = slab_order(size, min_objects,
2001 slub_max_order, fraction);
2002 if (order <= slub_max_order)
2010 * We were unable to place multiple objects in a slab. Now
2011 * lets see if we can place a single object there.
2013 order = slab_order(size, 1, slub_max_order, 1);
2014 if (order <= slub_max_order)
2018 * Doh this slab cannot be placed using slub_max_order.
2020 order = slab_order(size, 1, MAX_ORDER, 1);
2021 if (order < MAX_ORDER)
2027 * Figure out what the alignment of the objects will be.
2029 static unsigned long calculate_alignment(unsigned long flags,
2030 unsigned long align, unsigned long size)
2033 * If the user wants hardware cache aligned objects then follow that
2034 * suggestion if the object is sufficiently large.
2036 * The hardware cache alignment cannot override the specified
2037 * alignment though. If that is greater then use it.
2039 if (flags & SLAB_HWCACHE_ALIGN) {
2040 unsigned long ralign = cache_line_size();
2041 while (size <= ralign / 2)
2043 align = max(align, ralign);
2046 if (align < ARCH_SLAB_MINALIGN)
2047 align = ARCH_SLAB_MINALIGN;
2049 return ALIGN(align, sizeof(void *));
2053 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2056 spin_lock_init(&n->list_lock);
2057 INIT_LIST_HEAD(&n->partial);
2058 #ifdef CONFIG_SLUB_DEBUG
2059 atomic_long_set(&n->nr_slabs, 0);
2060 atomic_long_set(&n->total_objects, 0);
2061 INIT_LIST_HEAD(&n->full);
2065 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2067 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2069 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2071 * Boot time creation of the kmalloc array. Use static per cpu data
2072 * since the per cpu allocator is not available yet.
2074 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2076 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2086 * No kmalloc_node yet so do it by hand. We know that this is the first
2087 * slab on the node for this slabcache. There are no concurrent accesses
2090 * Note that this function only works on the kmalloc_node_cache
2091 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2092 * memory on a fresh node that has no slab structures yet.
2094 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2097 struct kmem_cache_node *n;
2098 unsigned long flags;
2100 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2102 page = new_slab(kmalloc_caches, gfpflags, node);
2105 if (page_to_nid(page) != node) {
2106 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2108 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2109 "in order to be able to continue\n");
2114 page->freelist = get_freepointer(kmalloc_caches, n);
2116 kmalloc_caches->node[node] = n;
2117 #ifdef CONFIG_SLUB_DEBUG
2118 init_object(kmalloc_caches, n, 1);
2119 init_tracking(kmalloc_caches, n);
2121 init_kmem_cache_node(n, kmalloc_caches);
2122 inc_slabs_node(kmalloc_caches, node, page->objects);
2125 * lockdep requires consistent irq usage for each lock
2126 * so even though there cannot be a race this early in
2127 * the boot sequence, we still disable irqs.
2129 local_irq_save(flags);
2130 add_partial(n, page, 0);
2131 local_irq_restore(flags);
2134 static void free_kmem_cache_nodes(struct kmem_cache *s)
2138 for_each_node_state(node, N_NORMAL_MEMORY) {
2139 struct kmem_cache_node *n = s->node[node];
2141 kmem_cache_free(kmalloc_caches, n);
2142 s->node[node] = NULL;
2146 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2150 for_each_node_state(node, N_NORMAL_MEMORY) {
2151 struct kmem_cache_node *n;
2153 if (slab_state == DOWN) {
2154 early_kmem_cache_node_alloc(gfpflags, node);
2157 n = kmem_cache_alloc_node(kmalloc_caches,
2161 free_kmem_cache_nodes(s);
2166 init_kmem_cache_node(n, s);
2171 static void free_kmem_cache_nodes(struct kmem_cache *s)
2175 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2177 init_kmem_cache_node(&s->local_node, s);
2182 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2184 if (min < MIN_PARTIAL)
2186 else if (min > MAX_PARTIAL)
2188 s->min_partial = min;
2192 * calculate_sizes() determines the order and the distribution of data within
2195 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2197 unsigned long flags = s->flags;
2198 unsigned long size = s->objsize;
2199 unsigned long align = s->align;
2203 * Round up object size to the next word boundary. We can only
2204 * place the free pointer at word boundaries and this determines
2205 * the possible location of the free pointer.
2207 size = ALIGN(size, sizeof(void *));
2209 #ifdef CONFIG_SLUB_DEBUG
2211 * Determine if we can poison the object itself. If the user of
2212 * the slab may touch the object after free or before allocation
2213 * then we should never poison the object itself.
2215 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2217 s->flags |= __OBJECT_POISON;
2219 s->flags &= ~__OBJECT_POISON;
2223 * If we are Redzoning then check if there is some space between the
2224 * end of the object and the free pointer. If not then add an
2225 * additional word to have some bytes to store Redzone information.
2227 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2228 size += sizeof(void *);
2232 * With that we have determined the number of bytes in actual use
2233 * by the object. This is the potential offset to the free pointer.
2237 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2240 * Relocate free pointer after the object if it is not
2241 * permitted to overwrite the first word of the object on
2244 * This is the case if we do RCU, have a constructor or
2245 * destructor or are poisoning the objects.
2248 size += sizeof(void *);
2251 #ifdef CONFIG_SLUB_DEBUG
2252 if (flags & SLAB_STORE_USER)
2254 * Need to store information about allocs and frees after
2257 size += 2 * sizeof(struct track);
2259 if (flags & SLAB_RED_ZONE)
2261 * Add some empty padding so that we can catch
2262 * overwrites from earlier objects rather than let
2263 * tracking information or the free pointer be
2264 * corrupted if a user writes before the start
2267 size += sizeof(void *);
2271 * Determine the alignment based on various parameters that the
2272 * user specified and the dynamic determination of cache line size
2275 align = calculate_alignment(flags, align, s->objsize);
2279 * SLUB stores one object immediately after another beginning from
2280 * offset 0. In order to align the objects we have to simply size
2281 * each object to conform to the alignment.
2283 size = ALIGN(size, align);
2285 if (forced_order >= 0)
2286 order = forced_order;
2288 order = calculate_order(size);
2295 s->allocflags |= __GFP_COMP;
2297 if (s->flags & SLAB_CACHE_DMA)
2298 s->allocflags |= SLUB_DMA;
2300 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2301 s->allocflags |= __GFP_RECLAIMABLE;
2304 * Determine the number of objects per slab
2306 s->oo = oo_make(order, size);
2307 s->min = oo_make(get_order(size), size);
2308 if (oo_objects(s->oo) > oo_objects(s->max))
2311 return !!oo_objects(s->oo);
2315 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2316 const char *name, size_t size,
2317 size_t align, unsigned long flags,
2318 void (*ctor)(void *))
2320 memset(s, 0, kmem_size);
2325 s->flags = kmem_cache_flags(size, flags, name, ctor);
2327 if (!calculate_sizes(s, -1))
2329 if (disable_higher_order_debug) {
2331 * Disable debugging flags that store metadata if the min slab
2334 if (get_order(s->size) > get_order(s->objsize)) {
2335 s->flags &= ~DEBUG_METADATA_FLAGS;
2337 if (!calculate_sizes(s, -1))
2343 * The larger the object size is, the more pages we want on the partial
2344 * list to avoid pounding the page allocator excessively.
2346 set_min_partial(s, ilog2(s->size));
2349 s->remote_node_defrag_ratio = 1000;
2351 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2354 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2357 free_kmem_cache_nodes(s);
2359 if (flags & SLAB_PANIC)
2360 panic("Cannot create slab %s size=%lu realsize=%u "
2361 "order=%u offset=%u flags=%lx\n",
2362 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2368 * Check if a given pointer is valid
2370 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2374 if (!kern_ptr_validate(object, s->size))
2377 page = get_object_page(object);
2379 if (!page || s != page->slab)
2380 /* No slab or wrong slab */
2383 if (!check_valid_pointer(s, page, object))
2387 * We could also check if the object is on the slabs freelist.
2388 * But this would be too expensive and it seems that the main
2389 * purpose of kmem_ptr_valid() is to check if the object belongs
2390 * to a certain slab.
2394 EXPORT_SYMBOL(kmem_ptr_validate);
2397 * Determine the size of a slab object
2399 unsigned int kmem_cache_size(struct kmem_cache *s)
2403 EXPORT_SYMBOL(kmem_cache_size);
2405 const char *kmem_cache_name(struct kmem_cache *s)
2409 EXPORT_SYMBOL(kmem_cache_name);
2411 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2414 #ifdef CONFIG_SLUB_DEBUG
2415 void *addr = page_address(page);
2417 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2422 slab_err(s, page, "%s", text);
2424 for_each_free_object(p, s, page->freelist)
2425 set_bit(slab_index(p, s, addr), map);
2427 for_each_object(p, s, addr, page->objects) {
2429 if (!test_bit(slab_index(p, s, addr), map)) {
2430 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2432 print_tracking(s, p);
2441 * Attempt to free all partial slabs on a node.
2443 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2445 unsigned long flags;
2446 struct page *page, *h;
2448 spin_lock_irqsave(&n->list_lock, flags);
2449 list_for_each_entry_safe(page, h, &n->partial, lru) {
2451 list_del(&page->lru);
2452 discard_slab(s, page);
2455 list_slab_objects(s, page,
2456 "Objects remaining on kmem_cache_close()");
2459 spin_unlock_irqrestore(&n->list_lock, flags);
2463 * Release all resources used by a slab cache.
2465 static inline int kmem_cache_close(struct kmem_cache *s)
2470 free_percpu(s->cpu_slab);
2471 /* Attempt to free all objects */
2472 for_each_node_state(node, N_NORMAL_MEMORY) {
2473 struct kmem_cache_node *n = get_node(s, node);
2476 if (n->nr_partial || slabs_node(s, node))
2479 free_kmem_cache_nodes(s);
2484 * Close a cache and release the kmem_cache structure
2485 * (must be used for caches created using kmem_cache_create)
2487 void kmem_cache_destroy(struct kmem_cache *s)
2489 down_write(&slub_lock);
2493 up_write(&slub_lock);
2494 if (kmem_cache_close(s)) {
2495 printk(KERN_ERR "SLUB %s: %s called for cache that "
2496 "still has objects.\n", s->name, __func__);
2499 if (s->flags & SLAB_DESTROY_BY_RCU)
2501 sysfs_slab_remove(s);
2503 up_write(&slub_lock);
2505 EXPORT_SYMBOL(kmem_cache_destroy);
2507 /********************************************************************
2509 *******************************************************************/
2511 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2512 EXPORT_SYMBOL(kmalloc_caches);
2514 static int __init setup_slub_min_order(char *str)
2516 get_option(&str, &slub_min_order);
2521 __setup("slub_min_order=", setup_slub_min_order);
2523 static int __init setup_slub_max_order(char *str)
2525 get_option(&str, &slub_max_order);
2526 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2531 __setup("slub_max_order=", setup_slub_max_order);
2533 static int __init setup_slub_min_objects(char *str)
2535 get_option(&str, &slub_min_objects);
2540 __setup("slub_min_objects=", setup_slub_min_objects);
2542 static int __init setup_slub_nomerge(char *str)
2548 __setup("slub_nomerge", setup_slub_nomerge);
2550 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2551 const char *name, int size, gfp_t gfp_flags)
2553 unsigned int flags = 0;
2555 if (gfp_flags & SLUB_DMA)
2556 flags = SLAB_CACHE_DMA;
2559 * This function is called with IRQs disabled during early-boot on
2560 * single CPU so there's no need to take slub_lock here.
2562 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2566 list_add(&s->list, &slab_caches);
2568 if (sysfs_slab_add(s))
2573 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2576 #ifdef CONFIG_ZONE_DMA
2577 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2579 static void sysfs_add_func(struct work_struct *w)
2581 struct kmem_cache *s;
2583 down_write(&slub_lock);
2584 list_for_each_entry(s, &slab_caches, list) {
2585 if (s->flags & __SYSFS_ADD_DEFERRED) {
2586 s->flags &= ~__SYSFS_ADD_DEFERRED;
2590 up_write(&slub_lock);
2593 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2595 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2597 struct kmem_cache *s;
2600 unsigned long slabflags;
2603 s = kmalloc_caches_dma[index];
2607 /* Dynamically create dma cache */
2608 if (flags & __GFP_WAIT)
2609 down_write(&slub_lock);
2611 if (!down_write_trylock(&slub_lock))
2615 if (kmalloc_caches_dma[index])
2618 realsize = kmalloc_caches[index].objsize;
2619 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2620 (unsigned int)realsize);
2623 for (i = 0; i < KMALLOC_CACHES; i++)
2624 if (!kmalloc_caches[i].size)
2627 BUG_ON(i >= KMALLOC_CACHES);
2628 s = kmalloc_caches + i;
2631 * Must defer sysfs creation to a workqueue because we don't know
2632 * what context we are called from. Before sysfs comes up, we don't
2633 * need to do anything because our sysfs initcall will start by
2634 * adding all existing slabs to sysfs.
2636 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2637 if (slab_state >= SYSFS)
2638 slabflags |= __SYSFS_ADD_DEFERRED;
2640 if (!text || !kmem_cache_open(s, flags, text,
2641 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2647 list_add(&s->list, &slab_caches);
2648 kmalloc_caches_dma[index] = s;
2650 if (slab_state >= SYSFS)
2651 schedule_work(&sysfs_add_work);
2654 up_write(&slub_lock);
2656 return kmalloc_caches_dma[index];
2661 * Conversion table for small slabs sizes / 8 to the index in the
2662 * kmalloc array. This is necessary for slabs < 192 since we have non power
2663 * of two cache sizes there. The size of larger slabs can be determined using
2666 static s8 size_index[24] = {
2693 static inline int size_index_elem(size_t bytes)
2695 return (bytes - 1) / 8;
2698 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2704 return ZERO_SIZE_PTR;
2706 index = size_index[size_index_elem(size)];
2708 index = fls(size - 1);
2710 #ifdef CONFIG_ZONE_DMA
2711 if (unlikely((flags & SLUB_DMA)))
2712 return dma_kmalloc_cache(index, flags);
2715 return &kmalloc_caches[index];
2718 void *__kmalloc(size_t size, gfp_t flags)
2720 struct kmem_cache *s;
2723 if (unlikely(size > SLUB_MAX_SIZE))
2724 return kmalloc_large(size, flags);
2726 s = get_slab(size, flags);
2728 if (unlikely(ZERO_OR_NULL_PTR(s)))
2731 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2733 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2737 EXPORT_SYMBOL(__kmalloc);
2739 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2744 flags |= __GFP_COMP | __GFP_NOTRACK;
2745 page = alloc_pages_node(node, flags, get_order(size));
2747 ptr = page_address(page);
2749 kmemleak_alloc(ptr, size, 1, flags);
2754 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2756 struct kmem_cache *s;
2759 if (unlikely(size > SLUB_MAX_SIZE)) {
2760 ret = kmalloc_large_node(size, flags, node);
2762 trace_kmalloc_node(_RET_IP_, ret,
2763 size, PAGE_SIZE << get_order(size),
2769 s = get_slab(size, flags);
2771 if (unlikely(ZERO_OR_NULL_PTR(s)))
2774 ret = slab_alloc(s, flags, node, _RET_IP_);
2776 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2780 EXPORT_SYMBOL(__kmalloc_node);
2783 size_t ksize(const void *object)
2786 struct kmem_cache *s;
2788 if (unlikely(object == ZERO_SIZE_PTR))
2791 page = virt_to_head_page(object);
2793 if (unlikely(!PageSlab(page))) {
2794 WARN_ON(!PageCompound(page));
2795 return PAGE_SIZE << compound_order(page);
2799 #ifdef CONFIG_SLUB_DEBUG
2801 * Debugging requires use of the padding between object
2802 * and whatever may come after it.
2804 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2809 * If we have the need to store the freelist pointer
2810 * back there or track user information then we can
2811 * only use the space before that information.
2813 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2816 * Else we can use all the padding etc for the allocation
2820 EXPORT_SYMBOL(ksize);
2822 void kfree(const void *x)
2825 void *object = (void *)x;
2827 trace_kfree(_RET_IP_, x);
2829 if (unlikely(ZERO_OR_NULL_PTR(x)))
2832 page = virt_to_head_page(x);
2833 if (unlikely(!PageSlab(page))) {
2834 BUG_ON(!PageCompound(page));
2839 slab_free(page->slab, page, object, _RET_IP_);
2841 EXPORT_SYMBOL(kfree);
2844 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2845 * the remaining slabs by the number of items in use. The slabs with the
2846 * most items in use come first. New allocations will then fill those up
2847 * and thus they can be removed from the partial lists.
2849 * The slabs with the least items are placed last. This results in them
2850 * being allocated from last increasing the chance that the last objects
2851 * are freed in them.
2853 int kmem_cache_shrink(struct kmem_cache *s)
2857 struct kmem_cache_node *n;
2860 int objects = oo_objects(s->max);
2861 struct list_head *slabs_by_inuse =
2862 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2863 unsigned long flags;
2865 if (!slabs_by_inuse)
2869 for_each_node_state(node, N_NORMAL_MEMORY) {
2870 n = get_node(s, node);
2875 for (i = 0; i < objects; i++)
2876 INIT_LIST_HEAD(slabs_by_inuse + i);
2878 spin_lock_irqsave(&n->list_lock, flags);
2881 * Build lists indexed by the items in use in each slab.
2883 * Note that concurrent frees may occur while we hold the
2884 * list_lock. page->inuse here is the upper limit.
2886 list_for_each_entry_safe(page, t, &n->partial, lru) {
2887 if (!page->inuse && slab_trylock(page)) {
2889 * Must hold slab lock here because slab_free
2890 * may have freed the last object and be
2891 * waiting to release the slab.
2893 list_del(&page->lru);
2896 discard_slab(s, page);
2898 list_move(&page->lru,
2899 slabs_by_inuse + page->inuse);
2904 * Rebuild the partial list with the slabs filled up most
2905 * first and the least used slabs at the end.
2907 for (i = objects - 1; i >= 0; i--)
2908 list_splice(slabs_by_inuse + i, n->partial.prev);
2910 spin_unlock_irqrestore(&n->list_lock, flags);
2913 kfree(slabs_by_inuse);
2916 EXPORT_SYMBOL(kmem_cache_shrink);
2918 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2919 static int slab_mem_going_offline_callback(void *arg)
2921 struct kmem_cache *s;
2923 down_read(&slub_lock);
2924 list_for_each_entry(s, &slab_caches, list)
2925 kmem_cache_shrink(s);
2926 up_read(&slub_lock);
2931 static void slab_mem_offline_callback(void *arg)
2933 struct kmem_cache_node *n;
2934 struct kmem_cache *s;
2935 struct memory_notify *marg = arg;
2938 offline_node = marg->status_change_nid;
2941 * If the node still has available memory. we need kmem_cache_node
2944 if (offline_node < 0)
2947 down_read(&slub_lock);
2948 list_for_each_entry(s, &slab_caches, list) {
2949 n = get_node(s, offline_node);
2952 * if n->nr_slabs > 0, slabs still exist on the node
2953 * that is going down. We were unable to free them,
2954 * and offline_pages() function shouldn't call this
2955 * callback. So, we must fail.
2957 BUG_ON(slabs_node(s, offline_node));
2959 s->node[offline_node] = NULL;
2960 kmem_cache_free(kmalloc_caches, n);
2963 up_read(&slub_lock);
2966 static int slab_mem_going_online_callback(void *arg)
2968 struct kmem_cache_node *n;
2969 struct kmem_cache *s;
2970 struct memory_notify *marg = arg;
2971 int nid = marg->status_change_nid;
2975 * If the node's memory is already available, then kmem_cache_node is
2976 * already created. Nothing to do.
2982 * We are bringing a node online. No memory is available yet. We must
2983 * allocate a kmem_cache_node structure in order to bring the node
2986 down_read(&slub_lock);
2987 list_for_each_entry(s, &slab_caches, list) {
2989 * XXX: kmem_cache_alloc_node will fallback to other nodes
2990 * since memory is not yet available from the node that
2993 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2998 init_kmem_cache_node(n, s);
3002 up_read(&slub_lock);
3006 static int slab_memory_callback(struct notifier_block *self,
3007 unsigned long action, void *arg)
3012 case MEM_GOING_ONLINE:
3013 ret = slab_mem_going_online_callback(arg);
3015 case MEM_GOING_OFFLINE:
3016 ret = slab_mem_going_offline_callback(arg);
3019 case MEM_CANCEL_ONLINE:
3020 slab_mem_offline_callback(arg);
3023 case MEM_CANCEL_OFFLINE:
3027 ret = notifier_from_errno(ret);
3033 #endif /* CONFIG_MEMORY_HOTPLUG */
3035 /********************************************************************
3036 * Basic setup of slabs
3037 *******************************************************************/
3039 void __init kmem_cache_init(void)
3046 * Must first have the slab cache available for the allocations of the
3047 * struct kmem_cache_node's. There is special bootstrap code in
3048 * kmem_cache_open for slab_state == DOWN.
3050 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3051 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3052 kmalloc_caches[0].refcount = -1;
3055 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3058 /* Able to allocate the per node structures */
3059 slab_state = PARTIAL;
3061 /* Caches that are not of the two-to-the-power-of size */
3062 if (KMALLOC_MIN_SIZE <= 32) {
3063 create_kmalloc_cache(&kmalloc_caches[1],
3064 "kmalloc-96", 96, GFP_NOWAIT);
3067 if (KMALLOC_MIN_SIZE <= 64) {
3068 create_kmalloc_cache(&kmalloc_caches[2],
3069 "kmalloc-192", 192, GFP_NOWAIT);
3073 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3074 create_kmalloc_cache(&kmalloc_caches[i],
3075 "kmalloc", 1 << i, GFP_NOWAIT);
3081 * Patch up the size_index table if we have strange large alignment
3082 * requirements for the kmalloc array. This is only the case for
3083 * MIPS it seems. The standard arches will not generate any code here.
3085 * Largest permitted alignment is 256 bytes due to the way we
3086 * handle the index determination for the smaller caches.
3088 * Make sure that nothing crazy happens if someone starts tinkering
3089 * around with ARCH_KMALLOC_MINALIGN
3091 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3092 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3094 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3095 int elem = size_index_elem(i);
3096 if (elem >= ARRAY_SIZE(size_index))
3098 size_index[elem] = KMALLOC_SHIFT_LOW;
3101 if (KMALLOC_MIN_SIZE == 64) {
3103 * The 96 byte size cache is not used if the alignment
3106 for (i = 64 + 8; i <= 96; i += 8)
3107 size_index[size_index_elem(i)] = 7;
3108 } else if (KMALLOC_MIN_SIZE == 128) {
3110 * The 192 byte sized cache is not used if the alignment
3111 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3114 for (i = 128 + 8; i <= 192; i += 8)
3115 size_index[size_index_elem(i)] = 8;
3120 /* Provide the correct kmalloc names now that the caches are up */
3121 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3122 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3125 kmalloc_caches[i].name = s;
3129 register_cpu_notifier(&slab_notifier);
3132 kmem_size = offsetof(struct kmem_cache, node) +
3133 nr_node_ids * sizeof(struct kmem_cache_node *);
3135 kmem_size = sizeof(struct kmem_cache);
3139 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3140 " CPUs=%d, Nodes=%d\n",
3141 caches, cache_line_size(),
3142 slub_min_order, slub_max_order, slub_min_objects,
3143 nr_cpu_ids, nr_node_ids);
3146 void __init kmem_cache_init_late(void)
3151 * Find a mergeable slab cache
3153 static int slab_unmergeable(struct kmem_cache *s)
3155 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3162 * We may have set a slab to be unmergeable during bootstrap.
3164 if (s->refcount < 0)
3170 static struct kmem_cache *find_mergeable(size_t size,
3171 size_t align, unsigned long flags, const char *name,
3172 void (*ctor)(void *))
3174 struct kmem_cache *s;
3176 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3182 size = ALIGN(size, sizeof(void *));
3183 align = calculate_alignment(flags, align, size);
3184 size = ALIGN(size, align);
3185 flags = kmem_cache_flags(size, flags, name, NULL);
3187 list_for_each_entry(s, &slab_caches, list) {
3188 if (slab_unmergeable(s))
3194 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3197 * Check if alignment is compatible.
3198 * Courtesy of Adrian Drzewiecki
3200 if ((s->size & ~(align - 1)) != s->size)
3203 if (s->size - size >= sizeof(void *))
3211 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3212 size_t align, unsigned long flags, void (*ctor)(void *))
3214 struct kmem_cache *s;
3219 down_write(&slub_lock);
3220 s = find_mergeable(size, align, flags, name, ctor);
3224 * Adjust the object sizes so that we clear
3225 * the complete object on kzalloc.
3227 s->objsize = max(s->objsize, (int)size);
3228 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3229 up_write(&slub_lock);
3231 if (sysfs_slab_alias(s, name)) {
3232 down_write(&slub_lock);
3234 up_write(&slub_lock);
3240 s = kmalloc(kmem_size, GFP_KERNEL);
3242 if (kmem_cache_open(s, GFP_KERNEL, name,
3243 size, align, flags, ctor)) {
3244 list_add(&s->list, &slab_caches);
3245 up_write(&slub_lock);
3246 if (sysfs_slab_add(s)) {
3247 down_write(&slub_lock);
3249 up_write(&slub_lock);
3257 up_write(&slub_lock);
3260 if (flags & SLAB_PANIC)
3261 panic("Cannot create slabcache %s\n", name);
3266 EXPORT_SYMBOL(kmem_cache_create);
3270 * Use the cpu notifier to insure that the cpu slabs are flushed when
3273 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3274 unsigned long action, void *hcpu)
3276 long cpu = (long)hcpu;
3277 struct kmem_cache *s;
3278 unsigned long flags;
3281 case CPU_UP_CANCELED:
3282 case CPU_UP_CANCELED_FROZEN:
3284 case CPU_DEAD_FROZEN:
3285 down_read(&slub_lock);
3286 list_for_each_entry(s, &slab_caches, list) {
3287 local_irq_save(flags);
3288 __flush_cpu_slab(s, cpu);
3289 local_irq_restore(flags);
3291 up_read(&slub_lock);
3299 static struct notifier_block __cpuinitdata slab_notifier = {
3300 .notifier_call = slab_cpuup_callback
3305 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3307 struct kmem_cache *s;
3310 if (unlikely(size > SLUB_MAX_SIZE))
3311 return kmalloc_large(size, gfpflags);
3313 s = get_slab(size, gfpflags);
3315 if (unlikely(ZERO_OR_NULL_PTR(s)))
3318 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3320 /* Honor the call site pointer we recieved. */
3321 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3326 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3327 int node, unsigned long caller)
3329 struct kmem_cache *s;
3332 if (unlikely(size > SLUB_MAX_SIZE)) {
3333 ret = kmalloc_large_node(size, gfpflags, node);
3335 trace_kmalloc_node(caller, ret,
3336 size, PAGE_SIZE << get_order(size),
3342 s = get_slab(size, gfpflags);
3344 if (unlikely(ZERO_OR_NULL_PTR(s)))
3347 ret = slab_alloc(s, gfpflags, node, caller);
3349 /* Honor the call site pointer we recieved. */
3350 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3355 #ifdef CONFIG_SLUB_DEBUG
3356 static int count_inuse(struct page *page)
3361 static int count_total(struct page *page)
3363 return page->objects;
3366 static int validate_slab(struct kmem_cache *s, struct page *page,
3370 void *addr = page_address(page);
3372 if (!check_slab(s, page) ||
3373 !on_freelist(s, page, NULL))
3376 /* Now we know that a valid freelist exists */
3377 bitmap_zero(map, page->objects);
3379 for_each_free_object(p, s, page->freelist) {
3380 set_bit(slab_index(p, s, addr), map);
3381 if (!check_object(s, page, p, 0))
3385 for_each_object(p, s, addr, page->objects)
3386 if (!test_bit(slab_index(p, s, addr), map))
3387 if (!check_object(s, page, p, 1))
3392 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3395 if (slab_trylock(page)) {
3396 validate_slab(s, page, map);
3399 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3402 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3403 if (!PageSlubDebug(page))
3404 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3405 "on slab 0x%p\n", s->name, page);
3407 if (PageSlubDebug(page))
3408 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3409 "slab 0x%p\n", s->name, page);
3413 static int validate_slab_node(struct kmem_cache *s,
3414 struct kmem_cache_node *n, unsigned long *map)
3416 unsigned long count = 0;
3418 unsigned long flags;
3420 spin_lock_irqsave(&n->list_lock, flags);
3422 list_for_each_entry(page, &n->partial, lru) {
3423 validate_slab_slab(s, page, map);
3426 if (count != n->nr_partial)
3427 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3428 "counter=%ld\n", s->name, count, n->nr_partial);
3430 if (!(s->flags & SLAB_STORE_USER))
3433 list_for_each_entry(page, &n->full, lru) {
3434 validate_slab_slab(s, page, map);
3437 if (count != atomic_long_read(&n->nr_slabs))
3438 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3439 "counter=%ld\n", s->name, count,
3440 atomic_long_read(&n->nr_slabs));
3443 spin_unlock_irqrestore(&n->list_lock, flags);
3447 static long validate_slab_cache(struct kmem_cache *s)
3450 unsigned long count = 0;
3451 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3452 sizeof(unsigned long), GFP_KERNEL);
3458 for_each_node_state(node, N_NORMAL_MEMORY) {
3459 struct kmem_cache_node *n = get_node(s, node);
3461 count += validate_slab_node(s, n, map);
3467 #ifdef SLUB_RESILIENCY_TEST
3468 static void resiliency_test(void)
3472 printk(KERN_ERR "SLUB resiliency testing\n");
3473 printk(KERN_ERR "-----------------------\n");
3474 printk(KERN_ERR "A. Corruption after allocation\n");
3476 p = kzalloc(16, GFP_KERNEL);
3478 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3479 " 0x12->0x%p\n\n", p + 16);
3481 validate_slab_cache(kmalloc_caches + 4);
3483 /* Hmmm... The next two are dangerous */
3484 p = kzalloc(32, GFP_KERNEL);
3485 p[32 + sizeof(void *)] = 0x34;
3486 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3487 " 0x34 -> -0x%p\n", p);
3489 "If allocated object is overwritten then not detectable\n\n");
3491 validate_slab_cache(kmalloc_caches + 5);
3492 p = kzalloc(64, GFP_KERNEL);
3493 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3495 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3498 "If allocated object is overwritten then not detectable\n\n");
3499 validate_slab_cache(kmalloc_caches + 6);
3501 printk(KERN_ERR "\nB. Corruption after free\n");
3502 p = kzalloc(128, GFP_KERNEL);
3505 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3506 validate_slab_cache(kmalloc_caches + 7);
3508 p = kzalloc(256, GFP_KERNEL);
3511 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3513 validate_slab_cache(kmalloc_caches + 8);
3515 p = kzalloc(512, GFP_KERNEL);
3518 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3519 validate_slab_cache(kmalloc_caches + 9);
3522 static void resiliency_test(void) {};
3526 * Generate lists of code addresses where slabcache objects are allocated
3531 unsigned long count;
3538 DECLARE_BITMAP(cpus, NR_CPUS);
3544 unsigned long count;
3545 struct location *loc;
3548 static void free_loc_track(struct loc_track *t)
3551 free_pages((unsigned long)t->loc,
3552 get_order(sizeof(struct location) * t->max));
3555 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3560 order = get_order(sizeof(struct location) * max);
3562 l = (void *)__get_free_pages(flags, order);
3567 memcpy(l, t->loc, sizeof(struct location) * t->count);
3575 static int add_location(struct loc_track *t, struct kmem_cache *s,
3576 const struct track *track)
3578 long start, end, pos;
3580 unsigned long caddr;
3581 unsigned long age = jiffies - track->when;
3587 pos = start + (end - start + 1) / 2;
3590 * There is nothing at "end". If we end up there
3591 * we need to add something to before end.
3596 caddr = t->loc[pos].addr;
3597 if (track->addr == caddr) {
3603 if (age < l->min_time)
3605 if (age > l->max_time)
3608 if (track->pid < l->min_pid)
3609 l->min_pid = track->pid;
3610 if (track->pid > l->max_pid)
3611 l->max_pid = track->pid;
3613 cpumask_set_cpu(track->cpu,
3614 to_cpumask(l->cpus));
3616 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3620 if (track->addr < caddr)
3627 * Not found. Insert new tracking element.
3629 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3635 (t->count - pos) * sizeof(struct location));
3638 l->addr = track->addr;
3642 l->min_pid = track->pid;
3643 l->max_pid = track->pid;
3644 cpumask_clear(to_cpumask(l->cpus));
3645 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3646 nodes_clear(l->nodes);
3647 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3651 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3652 struct page *page, enum track_item alloc,
3655 void *addr = page_address(page);
3658 bitmap_zero(map, page->objects);
3659 for_each_free_object(p, s, page->freelist)
3660 set_bit(slab_index(p, s, addr), map);
3662 for_each_object(p, s, addr, page->objects)
3663 if (!test_bit(slab_index(p, s, addr), map))
3664 add_location(t, s, get_track(s, p, alloc));
3667 static int list_locations(struct kmem_cache *s, char *buf,
3668 enum track_item alloc)
3672 struct loc_track t = { 0, 0, NULL };
3674 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3675 sizeof(unsigned long), GFP_KERNEL);
3677 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3680 return sprintf(buf, "Out of memory\n");
3682 /* Push back cpu slabs */
3685 for_each_node_state(node, N_NORMAL_MEMORY) {
3686 struct kmem_cache_node *n = get_node(s, node);
3687 unsigned long flags;
3690 if (!atomic_long_read(&n->nr_slabs))
3693 spin_lock_irqsave(&n->list_lock, flags);
3694 list_for_each_entry(page, &n->partial, lru)
3695 process_slab(&t, s, page, alloc, map);
3696 list_for_each_entry(page, &n->full, lru)
3697 process_slab(&t, s, page, alloc, map);
3698 spin_unlock_irqrestore(&n->list_lock, flags);
3701 for (i = 0; i < t.count; i++) {
3702 struct location *l = &t.loc[i];
3704 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3706 len += sprintf(buf + len, "%7ld ", l->count);
3709 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3711 len += sprintf(buf + len, "<not-available>");
3713 if (l->sum_time != l->min_time) {
3714 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3716 (long)div_u64(l->sum_time, l->count),
3719 len += sprintf(buf + len, " age=%ld",
3722 if (l->min_pid != l->max_pid)
3723 len += sprintf(buf + len, " pid=%ld-%ld",
3724 l->min_pid, l->max_pid);
3726 len += sprintf(buf + len, " pid=%ld",
3729 if (num_online_cpus() > 1 &&
3730 !cpumask_empty(to_cpumask(l->cpus)) &&
3731 len < PAGE_SIZE - 60) {
3732 len += sprintf(buf + len, " cpus=");
3733 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3734 to_cpumask(l->cpus));
3737 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3738 len < PAGE_SIZE - 60) {
3739 len += sprintf(buf + len, " nodes=");
3740 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3744 len += sprintf(buf + len, "\n");
3750 len += sprintf(buf, "No data\n");
3754 enum slab_stat_type {
3755 SL_ALL, /* All slabs */
3756 SL_PARTIAL, /* Only partially allocated slabs */
3757 SL_CPU, /* Only slabs used for cpu caches */
3758 SL_OBJECTS, /* Determine allocated objects not slabs */
3759 SL_TOTAL /* Determine object capacity not slabs */
3762 #define SO_ALL (1 << SL_ALL)
3763 #define SO_PARTIAL (1 << SL_PARTIAL)
3764 #define SO_CPU (1 << SL_CPU)
3765 #define SO_OBJECTS (1 << SL_OBJECTS)
3766 #define SO_TOTAL (1 << SL_TOTAL)
3768 static ssize_t show_slab_objects(struct kmem_cache *s,
3769 char *buf, unsigned long flags)
3771 unsigned long total = 0;
3774 unsigned long *nodes;
3775 unsigned long *per_cpu;
3777 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3780 per_cpu = nodes + nr_node_ids;
3782 if (flags & SO_CPU) {
3785 for_each_possible_cpu(cpu) {
3786 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3788 if (!c || c->node < 0)
3792 if (flags & SO_TOTAL)
3793 x = c->page->objects;
3794 else if (flags & SO_OBJECTS)
3800 nodes[c->node] += x;
3806 if (flags & SO_ALL) {
3807 for_each_node_state(node, N_NORMAL_MEMORY) {
3808 struct kmem_cache_node *n = get_node(s, node);
3810 if (flags & SO_TOTAL)
3811 x = atomic_long_read(&n->total_objects);
3812 else if (flags & SO_OBJECTS)
3813 x = atomic_long_read(&n->total_objects) -
3814 count_partial(n, count_free);
3817 x = atomic_long_read(&n->nr_slabs);
3822 } else if (flags & SO_PARTIAL) {
3823 for_each_node_state(node, N_NORMAL_MEMORY) {
3824 struct kmem_cache_node *n = get_node(s, node);
3826 if (flags & SO_TOTAL)
3827 x = count_partial(n, count_total);
3828 else if (flags & SO_OBJECTS)
3829 x = count_partial(n, count_inuse);
3836 x = sprintf(buf, "%lu", total);
3838 for_each_node_state(node, N_NORMAL_MEMORY)
3840 x += sprintf(buf + x, " N%d=%lu",
3844 return x + sprintf(buf + x, "\n");
3847 static int any_slab_objects(struct kmem_cache *s)
3851 for_each_online_node(node) {
3852 struct kmem_cache_node *n = get_node(s, node);
3857 if (atomic_long_read(&n->total_objects))
3863 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3864 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3866 struct slab_attribute {
3867 struct attribute attr;
3868 ssize_t (*show)(struct kmem_cache *s, char *buf);
3869 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3872 #define SLAB_ATTR_RO(_name) \
3873 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3875 #define SLAB_ATTR(_name) \
3876 static struct slab_attribute _name##_attr = \
3877 __ATTR(_name, 0644, _name##_show, _name##_store)
3879 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3881 return sprintf(buf, "%d\n", s->size);
3883 SLAB_ATTR_RO(slab_size);
3885 static ssize_t align_show(struct kmem_cache *s, char *buf)
3887 return sprintf(buf, "%d\n", s->align);
3889 SLAB_ATTR_RO(align);
3891 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3893 return sprintf(buf, "%d\n", s->objsize);
3895 SLAB_ATTR_RO(object_size);
3897 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3899 return sprintf(buf, "%d\n", oo_objects(s->oo));
3901 SLAB_ATTR_RO(objs_per_slab);
3903 static ssize_t order_store(struct kmem_cache *s,
3904 const char *buf, size_t length)
3906 unsigned long order;
3909 err = strict_strtoul(buf, 10, &order);
3913 if (order > slub_max_order || order < slub_min_order)
3916 calculate_sizes(s, order);
3920 static ssize_t order_show(struct kmem_cache *s, char *buf)
3922 return sprintf(buf, "%d\n", oo_order(s->oo));
3926 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3928 return sprintf(buf, "%lu\n", s->min_partial);
3931 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3937 err = strict_strtoul(buf, 10, &min);
3941 set_min_partial(s, min);
3944 SLAB_ATTR(min_partial);
3946 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3949 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3951 return n + sprintf(buf + n, "\n");
3957 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3959 return sprintf(buf, "%d\n", s->refcount - 1);
3961 SLAB_ATTR_RO(aliases);
3963 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3965 return show_slab_objects(s, buf, SO_ALL);
3967 SLAB_ATTR_RO(slabs);
3969 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3971 return show_slab_objects(s, buf, SO_PARTIAL);
3973 SLAB_ATTR_RO(partial);
3975 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3977 return show_slab_objects(s, buf, SO_CPU);
3979 SLAB_ATTR_RO(cpu_slabs);
3981 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3983 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3985 SLAB_ATTR_RO(objects);
3987 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3989 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3991 SLAB_ATTR_RO(objects_partial);
3993 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3995 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
3997 SLAB_ATTR_RO(total_objects);
3999 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4001 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4004 static ssize_t sanity_checks_store(struct kmem_cache *s,
4005 const char *buf, size_t length)
4007 s->flags &= ~SLAB_DEBUG_FREE;
4009 s->flags |= SLAB_DEBUG_FREE;
4012 SLAB_ATTR(sanity_checks);
4014 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4016 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4019 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4022 s->flags &= ~SLAB_TRACE;
4024 s->flags |= SLAB_TRACE;
4029 #ifdef CONFIG_FAILSLAB
4030 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4032 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4035 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4038 s->flags &= ~SLAB_FAILSLAB;
4040 s->flags |= SLAB_FAILSLAB;
4043 SLAB_ATTR(failslab);
4046 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4048 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4051 static ssize_t reclaim_account_store(struct kmem_cache *s,
4052 const char *buf, size_t length)
4054 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4056 s->flags |= SLAB_RECLAIM_ACCOUNT;
4059 SLAB_ATTR(reclaim_account);
4061 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4063 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4065 SLAB_ATTR_RO(hwcache_align);
4067 #ifdef CONFIG_ZONE_DMA
4068 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4072 SLAB_ATTR_RO(cache_dma);
4075 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4079 SLAB_ATTR_RO(destroy_by_rcu);
4081 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4083 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4086 static ssize_t red_zone_store(struct kmem_cache *s,
4087 const char *buf, size_t length)
4089 if (any_slab_objects(s))
4092 s->flags &= ~SLAB_RED_ZONE;
4094 s->flags |= SLAB_RED_ZONE;
4095 calculate_sizes(s, -1);
4098 SLAB_ATTR(red_zone);
4100 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4102 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4105 static ssize_t poison_store(struct kmem_cache *s,
4106 const char *buf, size_t length)
4108 if (any_slab_objects(s))
4111 s->flags &= ~SLAB_POISON;
4113 s->flags |= SLAB_POISON;
4114 calculate_sizes(s, -1);
4119 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4121 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4124 static ssize_t store_user_store(struct kmem_cache *s,
4125 const char *buf, size_t length)
4127 if (any_slab_objects(s))
4130 s->flags &= ~SLAB_STORE_USER;
4132 s->flags |= SLAB_STORE_USER;
4133 calculate_sizes(s, -1);
4136 SLAB_ATTR(store_user);
4138 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4143 static ssize_t validate_store(struct kmem_cache *s,
4144 const char *buf, size_t length)
4148 if (buf[0] == '1') {
4149 ret = validate_slab_cache(s);
4155 SLAB_ATTR(validate);
4157 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4162 static ssize_t shrink_store(struct kmem_cache *s,
4163 const char *buf, size_t length)
4165 if (buf[0] == '1') {
4166 int rc = kmem_cache_shrink(s);
4176 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4178 if (!(s->flags & SLAB_STORE_USER))
4180 return list_locations(s, buf, TRACK_ALLOC);
4182 SLAB_ATTR_RO(alloc_calls);
4184 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4186 if (!(s->flags & SLAB_STORE_USER))
4188 return list_locations(s, buf, TRACK_FREE);
4190 SLAB_ATTR_RO(free_calls);
4193 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4195 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4198 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4199 const char *buf, size_t length)
4201 unsigned long ratio;
4204 err = strict_strtoul(buf, 10, &ratio);
4209 s->remote_node_defrag_ratio = ratio * 10;
4213 SLAB_ATTR(remote_node_defrag_ratio);
4216 #ifdef CONFIG_SLUB_STATS
4217 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4219 unsigned long sum = 0;
4222 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4227 for_each_online_cpu(cpu) {
4228 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4234 len = sprintf(buf, "%lu", sum);
4237 for_each_online_cpu(cpu) {
4238 if (data[cpu] && len < PAGE_SIZE - 20)
4239 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4243 return len + sprintf(buf + len, "\n");
4246 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4250 for_each_online_cpu(cpu)
4251 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4254 #define STAT_ATTR(si, text) \
4255 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4257 return show_stat(s, buf, si); \
4259 static ssize_t text##_store(struct kmem_cache *s, \
4260 const char *buf, size_t length) \
4262 if (buf[0] != '0') \
4264 clear_stat(s, si); \
4269 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4270 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4271 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4272 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4273 STAT_ATTR(FREE_FROZEN, free_frozen);
4274 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4275 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4276 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4277 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4278 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4279 STAT_ATTR(FREE_SLAB, free_slab);
4280 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4281 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4282 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4283 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4284 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4285 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4286 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4289 static struct attribute *slab_attrs[] = {
4290 &slab_size_attr.attr,
4291 &object_size_attr.attr,
4292 &objs_per_slab_attr.attr,
4294 &min_partial_attr.attr,
4296 &objects_partial_attr.attr,
4297 &total_objects_attr.attr,
4300 &cpu_slabs_attr.attr,
4304 &sanity_checks_attr.attr,
4306 &hwcache_align_attr.attr,
4307 &reclaim_account_attr.attr,
4308 &destroy_by_rcu_attr.attr,
4309 &red_zone_attr.attr,
4311 &store_user_attr.attr,
4312 &validate_attr.attr,
4314 &alloc_calls_attr.attr,
4315 &free_calls_attr.attr,
4316 #ifdef CONFIG_ZONE_DMA
4317 &cache_dma_attr.attr,
4320 &remote_node_defrag_ratio_attr.attr,
4322 #ifdef CONFIG_SLUB_STATS
4323 &alloc_fastpath_attr.attr,
4324 &alloc_slowpath_attr.attr,
4325 &free_fastpath_attr.attr,
4326 &free_slowpath_attr.attr,
4327 &free_frozen_attr.attr,
4328 &free_add_partial_attr.attr,
4329 &free_remove_partial_attr.attr,
4330 &alloc_from_partial_attr.attr,
4331 &alloc_slab_attr.attr,
4332 &alloc_refill_attr.attr,
4333 &free_slab_attr.attr,
4334 &cpuslab_flush_attr.attr,
4335 &deactivate_full_attr.attr,
4336 &deactivate_empty_attr.attr,
4337 &deactivate_to_head_attr.attr,
4338 &deactivate_to_tail_attr.attr,
4339 &deactivate_remote_frees_attr.attr,
4340 &order_fallback_attr.attr,
4342 #ifdef CONFIG_FAILSLAB
4343 &failslab_attr.attr,
4349 static struct attribute_group slab_attr_group = {
4350 .attrs = slab_attrs,
4353 static ssize_t slab_attr_show(struct kobject *kobj,
4354 struct attribute *attr,
4357 struct slab_attribute *attribute;
4358 struct kmem_cache *s;
4361 attribute = to_slab_attr(attr);
4364 if (!attribute->show)
4367 err = attribute->show(s, buf);
4372 static ssize_t slab_attr_store(struct kobject *kobj,
4373 struct attribute *attr,
4374 const char *buf, size_t len)
4376 struct slab_attribute *attribute;
4377 struct kmem_cache *s;
4380 attribute = to_slab_attr(attr);
4383 if (!attribute->store)
4386 err = attribute->store(s, buf, len);
4391 static void kmem_cache_release(struct kobject *kobj)
4393 struct kmem_cache *s = to_slab(kobj);
4398 static const struct sysfs_ops slab_sysfs_ops = {
4399 .show = slab_attr_show,
4400 .store = slab_attr_store,
4403 static struct kobj_type slab_ktype = {
4404 .sysfs_ops = &slab_sysfs_ops,
4405 .release = kmem_cache_release
4408 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4410 struct kobj_type *ktype = get_ktype(kobj);
4412 if (ktype == &slab_ktype)
4417 static const struct kset_uevent_ops slab_uevent_ops = {
4418 .filter = uevent_filter,
4421 static struct kset *slab_kset;
4423 #define ID_STR_LENGTH 64
4425 /* Create a unique string id for a slab cache:
4427 * Format :[flags-]size
4429 static char *create_unique_id(struct kmem_cache *s)
4431 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4438 * First flags affecting slabcache operations. We will only
4439 * get here for aliasable slabs so we do not need to support
4440 * too many flags. The flags here must cover all flags that
4441 * are matched during merging to guarantee that the id is
4444 if (s->flags & SLAB_CACHE_DMA)
4446 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4448 if (s->flags & SLAB_DEBUG_FREE)
4450 if (!(s->flags & SLAB_NOTRACK))
4454 p += sprintf(p, "%07d", s->size);
4455 BUG_ON(p > name + ID_STR_LENGTH - 1);
4459 static int sysfs_slab_add(struct kmem_cache *s)
4465 if (slab_state < SYSFS)
4466 /* Defer until later */
4469 unmergeable = slab_unmergeable(s);
4472 * Slabcache can never be merged so we can use the name proper.
4473 * This is typically the case for debug situations. In that
4474 * case we can catch duplicate names easily.
4476 sysfs_remove_link(&slab_kset->kobj, s->name);
4480 * Create a unique name for the slab as a target
4483 name = create_unique_id(s);
4486 s->kobj.kset = slab_kset;
4487 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4489 kobject_put(&s->kobj);
4493 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4495 kobject_del(&s->kobj);
4496 kobject_put(&s->kobj);
4499 kobject_uevent(&s->kobj, KOBJ_ADD);
4501 /* Setup first alias */
4502 sysfs_slab_alias(s, s->name);
4508 static void sysfs_slab_remove(struct kmem_cache *s)
4510 if (slab_state < SYSFS)
4512 * Sysfs has not been setup yet so no need to remove the
4517 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4518 kobject_del(&s->kobj);
4519 kobject_put(&s->kobj);
4523 * Need to buffer aliases during bootup until sysfs becomes
4524 * available lest we lose that information.
4526 struct saved_alias {
4527 struct kmem_cache *s;
4529 struct saved_alias *next;
4532 static struct saved_alias *alias_list;
4534 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4536 struct saved_alias *al;
4538 if (slab_state == SYSFS) {
4540 * If we have a leftover link then remove it.
4542 sysfs_remove_link(&slab_kset->kobj, name);
4543 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4546 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4552 al->next = alias_list;
4557 static int __init slab_sysfs_init(void)
4559 struct kmem_cache *s;
4562 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4564 printk(KERN_ERR "Cannot register slab subsystem.\n");
4570 list_for_each_entry(s, &slab_caches, list) {
4571 err = sysfs_slab_add(s);
4573 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4574 " to sysfs\n", s->name);
4577 while (alias_list) {
4578 struct saved_alias *al = alias_list;
4580 alias_list = alias_list->next;
4581 err = sysfs_slab_alias(al->s, al->name);
4583 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4584 " %s to sysfs\n", s->name);
4592 __initcall(slab_sysfs_init);
4596 * The /proc/slabinfo ABI
4598 #ifdef CONFIG_SLABINFO
4599 static void print_slabinfo_header(struct seq_file *m)
4601 seq_puts(m, "slabinfo - version: 2.1\n");
4602 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4603 "<objperslab> <pagesperslab>");
4604 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4605 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4609 static void *s_start(struct seq_file *m, loff_t *pos)
4613 down_read(&slub_lock);
4615 print_slabinfo_header(m);
4617 return seq_list_start(&slab_caches, *pos);
4620 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4622 return seq_list_next(p, &slab_caches, pos);
4625 static void s_stop(struct seq_file *m, void *p)
4627 up_read(&slub_lock);
4630 static int s_show(struct seq_file *m, void *p)
4632 unsigned long nr_partials = 0;
4633 unsigned long nr_slabs = 0;
4634 unsigned long nr_inuse = 0;
4635 unsigned long nr_objs = 0;
4636 unsigned long nr_free = 0;
4637 struct kmem_cache *s;
4640 s = list_entry(p, struct kmem_cache, list);
4642 for_each_online_node(node) {
4643 struct kmem_cache_node *n = get_node(s, node);
4648 nr_partials += n->nr_partial;
4649 nr_slabs += atomic_long_read(&n->nr_slabs);
4650 nr_objs += atomic_long_read(&n->total_objects);
4651 nr_free += count_partial(n, count_free);
4654 nr_inuse = nr_objs - nr_free;
4656 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4657 nr_objs, s->size, oo_objects(s->oo),
4658 (1 << oo_order(s->oo)));
4659 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4660 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4666 static const struct seq_operations slabinfo_op = {
4673 static int slabinfo_open(struct inode *inode, struct file *file)
4675 return seq_open(file, &slabinfo_op);
4678 static const struct file_operations proc_slabinfo_operations = {
4679 .open = slabinfo_open,
4681 .llseek = seq_lseek,
4682 .release = seq_release,
4685 static int __init slab_proc_init(void)
4687 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4690 module_init(slab_proc_init);
4691 #endif /* CONFIG_SLABINFO */