1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
103 * cpu_slab->lock local lock
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
124 * irq, preemption, migration considerations
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH() (true)
178 #define slub_get_cpu_ptr(var) \
183 #define slub_put_cpu_ptr(var) \
188 #define USE_LOCKLESS_FAST_PATH() (false)
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
194 #define __fastpath_inline
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
203 #endif /* CONFIG_SLUB_DEBUG */
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
209 unsigned int orig_size;
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
223 void *fixup_red_left(struct kmem_cache *s, void *p)
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
241 * Issues still to be resolved:
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
245 * - Variable sizing of the per node arrays
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
251 #ifndef CONFIG_SLUB_TINY
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
256 #define MIN_PARTIAL 5
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
263 #define MAX_PARTIAL 10
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
288 #define OO_MASK ((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
291 /* Internal SLUB flags */
293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
303 * Tracking user of a slab.
305 #define TRACK_ADDRS_COUNT 16
307 unsigned long addr; /* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
335 #ifdef CONFIG_SLUB_STATS
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
340 raw_cpu_inc(s->cpu_slab->stat[si]);
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
350 static nodemask_t slab_nodes;
352 #ifndef CONFIG_SLUB_TINY
354 * Workqueue used for flush_cpu_slab().
356 static struct workqueue_struct *flushwq;
359 /********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
364 * freeptr_t represents a SLUB freelist pointer, which might be encoded
365 * and not dereferenceable if CONFIG_SLAB_FREELIST_HARDENED is enabled.
367 typedef struct { unsigned long v; } freeptr_t;
370 * Returns freelist pointer (ptr). With hardening, this is obfuscated
371 * with an XOR of the address where the pointer is held and a per-cache
374 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
375 void *ptr, unsigned long ptr_addr)
377 unsigned long encoded;
379 #ifdef CONFIG_SLAB_FREELIST_HARDENED
380 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
382 encoded = (unsigned long)ptr;
384 return (freeptr_t){.v = encoded};
387 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
388 freeptr_t ptr, unsigned long ptr_addr)
392 #ifdef CONFIG_SLAB_FREELIST_HARDENED
393 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
395 decoded = (void *)ptr.v;
400 static inline void *get_freepointer(struct kmem_cache *s, void *object)
402 unsigned long ptr_addr;
405 object = kasan_reset_tag(object);
406 ptr_addr = (unsigned long)object + s->offset;
407 p = *(freeptr_t *)(ptr_addr);
408 return freelist_ptr_decode(s, p, ptr_addr);
411 #ifndef CONFIG_SLUB_TINY
412 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
414 prefetchw(object + s->offset);
419 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
420 * pointer value in the case the current thread loses the race for the next
421 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
422 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
423 * KMSAN will still check all arguments of cmpxchg because of imperfect
424 * handling of inline assembly.
425 * To work around this problem, we apply __no_kmsan_checks to ensure that
426 * get_freepointer_safe() returns initialized memory.
429 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
431 unsigned long freepointer_addr;
434 if (!debug_pagealloc_enabled_static())
435 return get_freepointer(s, object);
437 object = kasan_reset_tag(object);
438 freepointer_addr = (unsigned long)object + s->offset;
439 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
440 return freelist_ptr_decode(s, p, freepointer_addr);
443 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
445 unsigned long freeptr_addr = (unsigned long)object + s->offset;
447 #ifdef CONFIG_SLAB_FREELIST_HARDENED
448 BUG_ON(object == fp); /* naive detection of double free or corruption */
451 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
452 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
455 /* Loop over all objects in a slab */
456 #define for_each_object(__p, __s, __addr, __objects) \
457 for (__p = fixup_red_left(__s, __addr); \
458 __p < (__addr) + (__objects) * (__s)->size; \
461 static inline unsigned int order_objects(unsigned int order, unsigned int size)
463 return ((unsigned int)PAGE_SIZE << order) / size;
466 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
469 struct kmem_cache_order_objects x = {
470 (order << OO_SHIFT) + order_objects(order, size)
476 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
478 return x.x >> OO_SHIFT;
481 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
483 return x.x & OO_MASK;
486 #ifdef CONFIG_SLUB_CPU_PARTIAL
487 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
489 unsigned int nr_slabs;
491 s->cpu_partial = nr_objects;
494 * We take the number of objects but actually limit the number of
495 * slabs on the per cpu partial list, in order to limit excessive
496 * growth of the list. For simplicity we assume that the slabs will
499 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
500 s->cpu_partial_slabs = nr_slabs;
504 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
507 #endif /* CONFIG_SLUB_CPU_PARTIAL */
510 * Per slab locking using the pagelock
512 static __always_inline void slab_lock(struct slab *slab)
514 struct page *page = slab_page(slab);
516 VM_BUG_ON_PAGE(PageTail(page), page);
517 bit_spin_lock(PG_locked, &page->flags);
520 static __always_inline void slab_unlock(struct slab *slab)
522 struct page *page = slab_page(slab);
524 VM_BUG_ON_PAGE(PageTail(page), page);
525 __bit_spin_unlock(PG_locked, &page->flags);
529 __update_freelist_fast(struct slab *slab,
530 void *freelist_old, unsigned long counters_old,
531 void *freelist_new, unsigned long counters_new)
533 #ifdef system_has_freelist_aba
534 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
535 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
537 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
544 __update_freelist_slow(struct slab *slab,
545 void *freelist_old, unsigned long counters_old,
546 void *freelist_new, unsigned long counters_new)
551 if (slab->freelist == freelist_old &&
552 slab->counters == counters_old) {
553 slab->freelist = freelist_new;
554 slab->counters = counters_new;
563 * Interrupts must be disabled (for the fallback code to work right), typically
564 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
565 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
566 * allocation/ free operation in hardirq context. Therefore nothing can
567 * interrupt the operation.
569 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
570 void *freelist_old, unsigned long counters_old,
571 void *freelist_new, unsigned long counters_new,
576 if (USE_LOCKLESS_FAST_PATH())
577 lockdep_assert_irqs_disabled();
579 if (s->flags & __CMPXCHG_DOUBLE) {
580 ret = __update_freelist_fast(slab, freelist_old, counters_old,
581 freelist_new, counters_new);
583 ret = __update_freelist_slow(slab, freelist_old, counters_old,
584 freelist_new, counters_new);
590 stat(s, CMPXCHG_DOUBLE_FAIL);
592 #ifdef SLUB_DEBUG_CMPXCHG
593 pr_info("%s %s: cmpxchg double redo ", n, s->name);
599 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
600 void *freelist_old, unsigned long counters_old,
601 void *freelist_new, unsigned long counters_new,
606 if (s->flags & __CMPXCHG_DOUBLE) {
607 ret = __update_freelist_fast(slab, freelist_old, counters_old,
608 freelist_new, counters_new);
612 local_irq_save(flags);
613 ret = __update_freelist_slow(slab, freelist_old, counters_old,
614 freelist_new, counters_new);
615 local_irq_restore(flags);
621 stat(s, CMPXCHG_DOUBLE_FAIL);
623 #ifdef SLUB_DEBUG_CMPXCHG
624 pr_info("%s %s: cmpxchg double redo ", n, s->name);
630 #ifdef CONFIG_SLUB_DEBUG
631 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
632 static DEFINE_SPINLOCK(object_map_lock);
634 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
637 void *addr = slab_address(slab);
640 bitmap_zero(obj_map, slab->objects);
642 for (p = slab->freelist; p; p = get_freepointer(s, p))
643 set_bit(__obj_to_index(s, addr, p), obj_map);
646 #if IS_ENABLED(CONFIG_KUNIT)
647 static bool slab_add_kunit_errors(void)
649 struct kunit_resource *resource;
651 if (!kunit_get_current_test())
654 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
658 (*(int *)resource->data)++;
659 kunit_put_resource(resource);
663 static inline bool slab_add_kunit_errors(void) { return false; }
666 static inline unsigned int size_from_object(struct kmem_cache *s)
668 if (s->flags & SLAB_RED_ZONE)
669 return s->size - s->red_left_pad;
674 static inline void *restore_red_left(struct kmem_cache *s, void *p)
676 if (s->flags & SLAB_RED_ZONE)
677 p -= s->red_left_pad;
685 #if defined(CONFIG_SLUB_DEBUG_ON)
686 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
688 static slab_flags_t slub_debug;
691 static char *slub_debug_string;
692 static int disable_higher_order_debug;
695 * slub is about to manipulate internal object metadata. This memory lies
696 * outside the range of the allocated object, so accessing it would normally
697 * be reported by kasan as a bounds error. metadata_access_enable() is used
698 * to tell kasan that these accesses are OK.
700 static inline void metadata_access_enable(void)
702 kasan_disable_current();
705 static inline void metadata_access_disable(void)
707 kasan_enable_current();
714 /* Verify that a pointer has an address that is valid within a slab page */
715 static inline int check_valid_pointer(struct kmem_cache *s,
716 struct slab *slab, void *object)
723 base = slab_address(slab);
724 object = kasan_reset_tag(object);
725 object = restore_red_left(s, object);
726 if (object < base || object >= base + slab->objects * s->size ||
727 (object - base) % s->size) {
734 static void print_section(char *level, char *text, u8 *addr,
737 metadata_access_enable();
738 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
739 16, 1, kasan_reset_tag((void *)addr), length, 1);
740 metadata_access_disable();
744 * See comment in calculate_sizes().
746 static inline bool freeptr_outside_object(struct kmem_cache *s)
748 return s->offset >= s->inuse;
752 * Return offset of the end of info block which is inuse + free pointer if
753 * not overlapping with object.
755 static inline unsigned int get_info_end(struct kmem_cache *s)
757 if (freeptr_outside_object(s))
758 return s->inuse + sizeof(void *);
763 static struct track *get_track(struct kmem_cache *s, void *object,
764 enum track_item alloc)
768 p = object + get_info_end(s);
770 return kasan_reset_tag(p + alloc);
773 #ifdef CONFIG_STACKDEPOT
774 static noinline depot_stack_handle_t set_track_prepare(void)
776 depot_stack_handle_t handle;
777 unsigned long entries[TRACK_ADDRS_COUNT];
778 unsigned int nr_entries;
780 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
781 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
786 static inline depot_stack_handle_t set_track_prepare(void)
792 static void set_track_update(struct kmem_cache *s, void *object,
793 enum track_item alloc, unsigned long addr,
794 depot_stack_handle_t handle)
796 struct track *p = get_track(s, object, alloc);
798 #ifdef CONFIG_STACKDEPOT
802 p->cpu = smp_processor_id();
803 p->pid = current->pid;
807 static __always_inline void set_track(struct kmem_cache *s, void *object,
808 enum track_item alloc, unsigned long addr)
810 depot_stack_handle_t handle = set_track_prepare();
812 set_track_update(s, object, alloc, addr, handle);
815 static void init_tracking(struct kmem_cache *s, void *object)
819 if (!(s->flags & SLAB_STORE_USER))
822 p = get_track(s, object, TRACK_ALLOC);
823 memset(p, 0, 2*sizeof(struct track));
826 static void print_track(const char *s, struct track *t, unsigned long pr_time)
828 depot_stack_handle_t handle __maybe_unused;
833 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
834 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
835 #ifdef CONFIG_STACKDEPOT
836 handle = READ_ONCE(t->handle);
838 stack_depot_print(handle);
840 pr_err("object allocation/free stack trace missing\n");
844 void print_tracking(struct kmem_cache *s, void *object)
846 unsigned long pr_time = jiffies;
847 if (!(s->flags & SLAB_STORE_USER))
850 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
851 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
854 static void print_slab_info(const struct slab *slab)
856 struct folio *folio = (struct folio *)slab_folio(slab);
858 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
859 slab, slab->objects, slab->inuse, slab->freelist,
860 folio_flags(folio, 0));
864 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
865 * family will round up the real request size to these fixed ones, so
866 * there could be an extra area than what is requested. Save the original
867 * request size in the meta data area, for better debug and sanity check.
869 static inline void set_orig_size(struct kmem_cache *s,
870 void *object, unsigned int orig_size)
872 void *p = kasan_reset_tag(object);
874 if (!slub_debug_orig_size(s))
877 #ifdef CONFIG_KASAN_GENERIC
879 * KASAN could save its free meta data in object's data area at
880 * offset 0, if the size is larger than 'orig_size', it will
881 * overlap the data redzone in [orig_size+1, object_size], and
882 * the check should be skipped.
884 if (kasan_metadata_size(s, true) > orig_size)
885 orig_size = s->object_size;
888 p += get_info_end(s);
889 p += sizeof(struct track) * 2;
891 *(unsigned int *)p = orig_size;
894 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
896 void *p = kasan_reset_tag(object);
898 if (!slub_debug_orig_size(s))
899 return s->object_size;
901 p += get_info_end(s);
902 p += sizeof(struct track) * 2;
904 return *(unsigned int *)p;
907 void skip_orig_size_check(struct kmem_cache *s, const void *object)
909 set_orig_size(s, (void *)object, s->object_size);
912 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
914 struct va_format vaf;
920 pr_err("=============================================================================\n");
921 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
922 pr_err("-----------------------------------------------------------------------------\n\n");
927 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
929 struct va_format vaf;
932 if (slab_add_kunit_errors())
938 pr_err("FIX %s: %pV\n", s->name, &vaf);
942 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
944 unsigned int off; /* Offset of last byte */
945 u8 *addr = slab_address(slab);
947 print_tracking(s, p);
949 print_slab_info(slab);
951 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
952 p, p - addr, get_freepointer(s, p));
954 if (s->flags & SLAB_RED_ZONE)
955 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
957 else if (p > addr + 16)
958 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
960 print_section(KERN_ERR, "Object ", p,
961 min_t(unsigned int, s->object_size, PAGE_SIZE));
962 if (s->flags & SLAB_RED_ZONE)
963 print_section(KERN_ERR, "Redzone ", p + s->object_size,
964 s->inuse - s->object_size);
966 off = get_info_end(s);
968 if (s->flags & SLAB_STORE_USER)
969 off += 2 * sizeof(struct track);
971 if (slub_debug_orig_size(s))
972 off += sizeof(unsigned int);
974 off += kasan_metadata_size(s, false);
976 if (off != size_from_object(s))
977 /* Beginning of the filler is the free pointer */
978 print_section(KERN_ERR, "Padding ", p + off,
979 size_from_object(s) - off);
984 static void object_err(struct kmem_cache *s, struct slab *slab,
985 u8 *object, char *reason)
987 if (slab_add_kunit_errors())
990 slab_bug(s, "%s", reason);
991 print_trailer(s, slab, object);
992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
995 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
996 void **freelist, void *nextfree)
998 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
999 !check_valid_pointer(s, slab, nextfree) && freelist) {
1000 object_err(s, slab, *freelist, "Freechain corrupt");
1002 slab_fix(s, "Isolate corrupted freechain");
1009 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1010 const char *fmt, ...)
1015 if (slab_add_kunit_errors())
1018 va_start(args, fmt);
1019 vsnprintf(buf, sizeof(buf), fmt, args);
1021 slab_bug(s, "%s", buf);
1022 print_slab_info(slab);
1024 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1027 static void init_object(struct kmem_cache *s, void *object, u8 val)
1029 u8 *p = kasan_reset_tag(object);
1030 unsigned int poison_size = s->object_size;
1032 if (s->flags & SLAB_RED_ZONE) {
1033 memset(p - s->red_left_pad, val, s->red_left_pad);
1035 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1037 * Redzone the extra allocated space by kmalloc than
1038 * requested, and the poison size will be limited to
1039 * the original request size accordingly.
1041 poison_size = get_orig_size(s, object);
1045 if (s->flags & __OBJECT_POISON) {
1046 memset(p, POISON_FREE, poison_size - 1);
1047 p[poison_size - 1] = POISON_END;
1050 if (s->flags & SLAB_RED_ZONE)
1051 memset(p + poison_size, val, s->inuse - poison_size);
1054 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1055 void *from, void *to)
1057 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1058 memset(from, data, to - from);
1061 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1062 u8 *object, char *what,
1063 u8 *start, unsigned int value, unsigned int bytes)
1067 u8 *addr = slab_address(slab);
1069 metadata_access_enable();
1070 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1071 metadata_access_disable();
1075 end = start + bytes;
1076 while (end > fault && end[-1] == value)
1079 if (slab_add_kunit_errors())
1080 goto skip_bug_print;
1082 slab_bug(s, "%s overwritten", what);
1083 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1084 fault, end - 1, fault - addr,
1086 print_trailer(s, slab, object);
1087 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1090 restore_bytes(s, what, value, fault, end);
1098 * Bytes of the object to be managed.
1099 * If the freepointer may overlay the object then the free
1100 * pointer is at the middle of the object.
1102 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1105 * object + s->object_size
1106 * Padding to reach word boundary. This is also used for Redzoning.
1107 * Padding is extended by another word if Redzoning is enabled and
1108 * object_size == inuse.
1110 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1111 * 0xcc (RED_ACTIVE) for objects in use.
1114 * Meta data starts here.
1116 * A. Free pointer (if we cannot overwrite object on free)
1117 * B. Tracking data for SLAB_STORE_USER
1118 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1119 * D. Padding to reach required alignment boundary or at minimum
1120 * one word if debugging is on to be able to detect writes
1121 * before the word boundary.
1123 * Padding is done using 0x5a (POISON_INUSE)
1126 * Nothing is used beyond s->size.
1128 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1129 * ignored. And therefore no slab options that rely on these boundaries
1130 * may be used with merged slabcaches.
1133 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1135 unsigned long off = get_info_end(s); /* The end of info */
1137 if (s->flags & SLAB_STORE_USER) {
1138 /* We also have user information there */
1139 off += 2 * sizeof(struct track);
1141 if (s->flags & SLAB_KMALLOC)
1142 off += sizeof(unsigned int);
1145 off += kasan_metadata_size(s, false);
1147 if (size_from_object(s) == off)
1150 return check_bytes_and_report(s, slab, p, "Object padding",
1151 p + off, POISON_INUSE, size_from_object(s) - off);
1154 /* Check the pad bytes at the end of a slab page */
1155 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1164 if (!(s->flags & SLAB_POISON))
1167 start = slab_address(slab);
1168 length = slab_size(slab);
1169 end = start + length;
1170 remainder = length % s->size;
1174 pad = end - remainder;
1175 metadata_access_enable();
1176 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1177 metadata_access_disable();
1180 while (end > fault && end[-1] == POISON_INUSE)
1183 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1184 fault, end - 1, fault - start);
1185 print_section(KERN_ERR, "Padding ", pad, remainder);
1187 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1190 static int check_object(struct kmem_cache *s, struct slab *slab,
1191 void *object, u8 val)
1194 u8 *endobject = object + s->object_size;
1195 unsigned int orig_size;
1197 if (s->flags & SLAB_RED_ZONE) {
1198 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1199 object - s->red_left_pad, val, s->red_left_pad))
1202 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1203 endobject, val, s->inuse - s->object_size))
1206 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1207 orig_size = get_orig_size(s, object);
1209 if (s->object_size > orig_size &&
1210 !check_bytes_and_report(s, slab, object,
1211 "kmalloc Redzone", p + orig_size,
1212 val, s->object_size - orig_size)) {
1217 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1218 check_bytes_and_report(s, slab, p, "Alignment padding",
1219 endobject, POISON_INUSE,
1220 s->inuse - s->object_size);
1224 if (s->flags & SLAB_POISON) {
1225 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1226 (!check_bytes_and_report(s, slab, p, "Poison", p,
1227 POISON_FREE, s->object_size - 1) ||
1228 !check_bytes_and_report(s, slab, p, "End Poison",
1229 p + s->object_size - 1, POISON_END, 1)))
1232 * check_pad_bytes cleans up on its own.
1234 check_pad_bytes(s, slab, p);
1237 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1239 * Object and freepointer overlap. Cannot check
1240 * freepointer while object is allocated.
1244 /* Check free pointer validity */
1245 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1246 object_err(s, slab, p, "Freepointer corrupt");
1248 * No choice but to zap it and thus lose the remainder
1249 * of the free objects in this slab. May cause
1250 * another error because the object count is now wrong.
1252 set_freepointer(s, p, NULL);
1258 static int check_slab(struct kmem_cache *s, struct slab *slab)
1262 if (!folio_test_slab(slab_folio(slab))) {
1263 slab_err(s, slab, "Not a valid slab page");
1267 maxobj = order_objects(slab_order(slab), s->size);
1268 if (slab->objects > maxobj) {
1269 slab_err(s, slab, "objects %u > max %u",
1270 slab->objects, maxobj);
1273 if (slab->inuse > slab->objects) {
1274 slab_err(s, slab, "inuse %u > max %u",
1275 slab->inuse, slab->objects);
1278 /* Slab_pad_check fixes things up after itself */
1279 slab_pad_check(s, slab);
1284 * Determine if a certain object in a slab is on the freelist. Must hold the
1285 * slab lock to guarantee that the chains are in a consistent state.
1287 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1291 void *object = NULL;
1294 fp = slab->freelist;
1295 while (fp && nr <= slab->objects) {
1298 if (!check_valid_pointer(s, slab, fp)) {
1300 object_err(s, slab, object,
1301 "Freechain corrupt");
1302 set_freepointer(s, object, NULL);
1304 slab_err(s, slab, "Freepointer corrupt");
1305 slab->freelist = NULL;
1306 slab->inuse = slab->objects;
1307 slab_fix(s, "Freelist cleared");
1313 fp = get_freepointer(s, object);
1317 max_objects = order_objects(slab_order(slab), s->size);
1318 if (max_objects > MAX_OBJS_PER_PAGE)
1319 max_objects = MAX_OBJS_PER_PAGE;
1321 if (slab->objects != max_objects) {
1322 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1323 slab->objects, max_objects);
1324 slab->objects = max_objects;
1325 slab_fix(s, "Number of objects adjusted");
1327 if (slab->inuse != slab->objects - nr) {
1328 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1329 slab->inuse, slab->objects - nr);
1330 slab->inuse = slab->objects - nr;
1331 slab_fix(s, "Object count adjusted");
1333 return search == NULL;
1336 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1339 if (s->flags & SLAB_TRACE) {
1340 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1342 alloc ? "alloc" : "free",
1343 object, slab->inuse,
1347 print_section(KERN_INFO, "Object ", (void *)object,
1355 * Tracking of fully allocated slabs for debugging purposes.
1357 static void add_full(struct kmem_cache *s,
1358 struct kmem_cache_node *n, struct slab *slab)
1360 if (!(s->flags & SLAB_STORE_USER))
1363 lockdep_assert_held(&n->list_lock);
1364 list_add(&slab->slab_list, &n->full);
1367 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1369 if (!(s->flags & SLAB_STORE_USER))
1372 lockdep_assert_held(&n->list_lock);
1373 list_del(&slab->slab_list);
1376 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1378 return atomic_long_read(&n->nr_slabs);
1381 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1383 struct kmem_cache_node *n = get_node(s, node);
1386 * May be called early in order to allocate a slab for the
1387 * kmem_cache_node structure. Solve the chicken-egg
1388 * dilemma by deferring the increment of the count during
1389 * bootstrap (see early_kmem_cache_node_alloc).
1392 atomic_long_inc(&n->nr_slabs);
1393 atomic_long_add(objects, &n->total_objects);
1396 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1398 struct kmem_cache_node *n = get_node(s, node);
1400 atomic_long_dec(&n->nr_slabs);
1401 atomic_long_sub(objects, &n->total_objects);
1404 /* Object debug checks for alloc/free paths */
1405 static void setup_object_debug(struct kmem_cache *s, void *object)
1407 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1410 init_object(s, object, SLUB_RED_INACTIVE);
1411 init_tracking(s, object);
1415 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1417 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1420 metadata_access_enable();
1421 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1422 metadata_access_disable();
1425 static inline int alloc_consistency_checks(struct kmem_cache *s,
1426 struct slab *slab, void *object)
1428 if (!check_slab(s, slab))
1431 if (!check_valid_pointer(s, slab, object)) {
1432 object_err(s, slab, object, "Freelist Pointer check fails");
1436 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1442 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1443 struct slab *slab, void *object, int orig_size)
1445 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1446 if (!alloc_consistency_checks(s, slab, object))
1450 /* Success. Perform special debug activities for allocs */
1451 trace(s, slab, object, 1);
1452 set_orig_size(s, object, orig_size);
1453 init_object(s, object, SLUB_RED_ACTIVE);
1457 if (folio_test_slab(slab_folio(slab))) {
1459 * If this is a slab page then lets do the best we can
1460 * to avoid issues in the future. Marking all objects
1461 * as used avoids touching the remaining objects.
1463 slab_fix(s, "Marking all objects used");
1464 slab->inuse = slab->objects;
1465 slab->freelist = NULL;
1470 static inline int free_consistency_checks(struct kmem_cache *s,
1471 struct slab *slab, void *object, unsigned long addr)
1473 if (!check_valid_pointer(s, slab, object)) {
1474 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1478 if (on_freelist(s, slab, object)) {
1479 object_err(s, slab, object, "Object already free");
1483 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1486 if (unlikely(s != slab->slab_cache)) {
1487 if (!folio_test_slab(slab_folio(slab))) {
1488 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1490 } else if (!slab->slab_cache) {
1491 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1495 object_err(s, slab, object,
1496 "page slab pointer corrupt.");
1503 * Parse a block of slub_debug options. Blocks are delimited by ';'
1505 * @str: start of block
1506 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1507 * @slabs: return start of list of slabs, or NULL when there's no list
1508 * @init: assume this is initial parsing and not per-kmem-create parsing
1510 * returns the start of next block if there's any, or NULL
1513 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1515 bool higher_order_disable = false;
1517 /* Skip any completely empty blocks */
1518 while (*str && *str == ';')
1523 * No options but restriction on slabs. This means full
1524 * debugging for slabs matching a pattern.
1526 *flags = DEBUG_DEFAULT_FLAGS;
1531 /* Determine which debug features should be switched on */
1532 for (; *str && *str != ',' && *str != ';'; str++) {
1533 switch (tolower(*str)) {
1538 *flags |= SLAB_CONSISTENCY_CHECKS;
1541 *flags |= SLAB_RED_ZONE;
1544 *flags |= SLAB_POISON;
1547 *flags |= SLAB_STORE_USER;
1550 *flags |= SLAB_TRACE;
1553 *flags |= SLAB_FAILSLAB;
1557 * Avoid enabling debugging on caches if its minimum
1558 * order would increase as a result.
1560 higher_order_disable = true;
1564 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1573 /* Skip over the slab list */
1574 while (*str && *str != ';')
1577 /* Skip any completely empty blocks */
1578 while (*str && *str == ';')
1581 if (init && higher_order_disable)
1582 disable_higher_order_debug = 1;
1590 static int __init setup_slub_debug(char *str)
1593 slab_flags_t global_flags;
1596 bool global_slub_debug_changed = false;
1597 bool slab_list_specified = false;
1599 global_flags = DEBUG_DEFAULT_FLAGS;
1600 if (*str++ != '=' || !*str)
1602 * No options specified. Switch on full debugging.
1608 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1611 global_flags = flags;
1612 global_slub_debug_changed = true;
1614 slab_list_specified = true;
1615 if (flags & SLAB_STORE_USER)
1616 stack_depot_request_early_init();
1621 * For backwards compatibility, a single list of flags with list of
1622 * slabs means debugging is only changed for those slabs, so the global
1623 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1624 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1625 * long as there is no option specifying flags without a slab list.
1627 if (slab_list_specified) {
1628 if (!global_slub_debug_changed)
1629 global_flags = slub_debug;
1630 slub_debug_string = saved_str;
1633 slub_debug = global_flags;
1634 if (slub_debug & SLAB_STORE_USER)
1635 stack_depot_request_early_init();
1636 if (slub_debug != 0 || slub_debug_string)
1637 static_branch_enable(&slub_debug_enabled);
1639 static_branch_disable(&slub_debug_enabled);
1640 if ((static_branch_unlikely(&init_on_alloc) ||
1641 static_branch_unlikely(&init_on_free)) &&
1642 (slub_debug & SLAB_POISON))
1643 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1647 __setup("slub_debug", setup_slub_debug);
1650 * kmem_cache_flags - apply debugging options to the cache
1651 * @object_size: the size of an object without meta data
1652 * @flags: flags to set
1653 * @name: name of the cache
1655 * Debug option(s) are applied to @flags. In addition to the debug
1656 * option(s), if a slab name (or multiple) is specified i.e.
1657 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1658 * then only the select slabs will receive the debug option(s).
1660 slab_flags_t kmem_cache_flags(unsigned int object_size,
1661 slab_flags_t flags, const char *name)
1666 slab_flags_t block_flags;
1667 slab_flags_t slub_debug_local = slub_debug;
1669 if (flags & SLAB_NO_USER_FLAGS)
1673 * If the slab cache is for debugging (e.g. kmemleak) then
1674 * don't store user (stack trace) information by default,
1675 * but let the user enable it via the command line below.
1677 if (flags & SLAB_NOLEAKTRACE)
1678 slub_debug_local &= ~SLAB_STORE_USER;
1681 next_block = slub_debug_string;
1682 /* Go through all blocks of debug options, see if any matches our slab's name */
1683 while (next_block) {
1684 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1687 /* Found a block that has a slab list, search it */
1692 end = strchrnul(iter, ',');
1693 if (next_block && next_block < end)
1694 end = next_block - 1;
1696 glob = strnchr(iter, end - iter, '*');
1698 cmplen = glob - iter;
1700 cmplen = max_t(size_t, len, (end - iter));
1702 if (!strncmp(name, iter, cmplen)) {
1703 flags |= block_flags;
1707 if (!*end || *end == ';')
1713 return flags | slub_debug_local;
1715 #else /* !CONFIG_SLUB_DEBUG */
1716 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1718 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1720 static inline bool alloc_debug_processing(struct kmem_cache *s,
1721 struct slab *slab, void *object, int orig_size) { return true; }
1723 static inline bool free_debug_processing(struct kmem_cache *s,
1724 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1725 unsigned long addr, depot_stack_handle_t handle) { return true; }
1727 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1728 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1729 void *object, u8 val) { return 1; }
1730 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1731 static inline void set_track(struct kmem_cache *s, void *object,
1732 enum track_item alloc, unsigned long addr) {}
1733 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1734 struct slab *slab) {}
1735 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1736 struct slab *slab) {}
1737 slab_flags_t kmem_cache_flags(unsigned int object_size,
1738 slab_flags_t flags, const char *name)
1742 #define slub_debug 0
1744 #define disable_higher_order_debug 0
1746 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1748 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1750 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1753 #ifndef CONFIG_SLUB_TINY
1754 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1755 void **freelist, void *nextfree)
1760 #endif /* CONFIG_SLUB_DEBUG */
1763 * Hooks for other subsystems that check memory allocations. In a typical
1764 * production configuration these hooks all should produce no code at all.
1766 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1769 kmemleak_free_recursive(x, s->flags);
1770 kmsan_slab_free(s, x);
1772 debug_check_no_locks_freed(x, s->object_size);
1774 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1775 debug_check_no_obj_freed(x, s->object_size);
1777 /* Use KCSAN to help debug racy use-after-free. */
1778 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1779 __kcsan_check_access(x, s->object_size,
1780 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1783 * As memory initialization might be integrated into KASAN,
1784 * kasan_slab_free and initialization memset's must be
1785 * kept together to avoid discrepancies in behavior.
1787 * The initialization memset's clear the object and the metadata,
1788 * but don't touch the SLAB redzone.
1793 if (!kasan_has_integrated_init())
1794 memset(kasan_reset_tag(x), 0, s->object_size);
1795 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1796 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1797 s->size - s->inuse - rsize);
1799 /* KASAN might put x into memory quarantine, delaying its reuse. */
1800 return kasan_slab_free(s, x, init);
1803 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1804 void **head, void **tail,
1810 void *old_tail = *tail ? *tail : *head;
1812 if (is_kfence_address(next)) {
1813 slab_free_hook(s, next, false);
1817 /* Head and tail of the reconstructed freelist */
1823 next = get_freepointer(s, object);
1825 /* If object's reuse doesn't have to be delayed */
1826 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1827 /* Move object to the new freelist */
1828 set_freepointer(s, object, *head);
1834 * Adjust the reconstructed freelist depth
1835 * accordingly if object's reuse is delayed.
1839 } while (object != old_tail);
1844 return *head != NULL;
1847 static void *setup_object(struct kmem_cache *s, void *object)
1849 setup_object_debug(s, object);
1850 object = kasan_init_slab_obj(s, object);
1851 if (unlikely(s->ctor)) {
1852 kasan_unpoison_object_data(s, object);
1854 kasan_poison_object_data(s, object);
1860 * Slab allocation and freeing
1862 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1863 struct kmem_cache_order_objects oo)
1865 struct folio *folio;
1867 unsigned int order = oo_order(oo);
1869 if (node == NUMA_NO_NODE)
1870 folio = (struct folio *)alloc_pages(flags, order);
1872 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1877 slab = folio_slab(folio);
1878 __folio_set_slab(folio);
1879 /* Make the flag visible before any changes to folio->mapping */
1881 if (folio_is_pfmemalloc(folio))
1882 slab_set_pfmemalloc(slab);
1887 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1888 /* Pre-initialize the random sequence cache */
1889 static int init_cache_random_seq(struct kmem_cache *s)
1891 unsigned int count = oo_objects(s->oo);
1894 /* Bailout if already initialised */
1898 err = cache_random_seq_create(s, count, GFP_KERNEL);
1900 pr_err("SLUB: Unable to initialize free list for %s\n",
1905 /* Transform to an offset on the set of pages */
1906 if (s->random_seq) {
1909 for (i = 0; i < count; i++)
1910 s->random_seq[i] *= s->size;
1915 /* Initialize each random sequence freelist per cache */
1916 static void __init init_freelist_randomization(void)
1918 struct kmem_cache *s;
1920 mutex_lock(&slab_mutex);
1922 list_for_each_entry(s, &slab_caches, list)
1923 init_cache_random_seq(s);
1925 mutex_unlock(&slab_mutex);
1928 /* Get the next entry on the pre-computed freelist randomized */
1929 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1930 unsigned long *pos, void *start,
1931 unsigned long page_limit,
1932 unsigned long freelist_count)
1937 * If the target page allocation failed, the number of objects on the
1938 * page might be smaller than the usual size defined by the cache.
1941 idx = s->random_seq[*pos];
1943 if (*pos >= freelist_count)
1945 } while (unlikely(idx >= page_limit));
1947 return (char *)start + idx;
1950 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1951 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1956 unsigned long idx, pos, page_limit, freelist_count;
1958 if (slab->objects < 2 || !s->random_seq)
1961 freelist_count = oo_objects(s->oo);
1962 pos = get_random_u32_below(freelist_count);
1964 page_limit = slab->objects * s->size;
1965 start = fixup_red_left(s, slab_address(slab));
1967 /* First entry is used as the base of the freelist */
1968 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1970 cur = setup_object(s, cur);
1971 slab->freelist = cur;
1973 for (idx = 1; idx < slab->objects; idx++) {
1974 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1976 next = setup_object(s, next);
1977 set_freepointer(s, cur, next);
1980 set_freepointer(s, cur, NULL);
1985 static inline int init_cache_random_seq(struct kmem_cache *s)
1989 static inline void init_freelist_randomization(void) { }
1990 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1994 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1996 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1999 struct kmem_cache_order_objects oo = s->oo;
2001 void *start, *p, *next;
2005 flags &= gfp_allowed_mask;
2007 flags |= s->allocflags;
2010 * Let the initial higher-order allocation fail under memory pressure
2011 * so we fall-back to the minimum order allocation.
2013 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2014 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2015 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2017 slab = alloc_slab_page(alloc_gfp, node, oo);
2018 if (unlikely(!slab)) {
2022 * Allocation may have failed due to fragmentation.
2023 * Try a lower order alloc if possible
2025 slab = alloc_slab_page(alloc_gfp, node, oo);
2026 if (unlikely(!slab))
2028 stat(s, ORDER_FALLBACK);
2031 slab->objects = oo_objects(oo);
2035 account_slab(slab, oo_order(oo), s, flags);
2037 slab->slab_cache = s;
2039 kasan_poison_slab(slab);
2041 start = slab_address(slab);
2043 setup_slab_debug(s, slab, start);
2045 shuffle = shuffle_freelist(s, slab);
2048 start = fixup_red_left(s, start);
2049 start = setup_object(s, start);
2050 slab->freelist = start;
2051 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2053 next = setup_object(s, next);
2054 set_freepointer(s, p, next);
2057 set_freepointer(s, p, NULL);
2063 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2065 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2066 flags = kmalloc_fix_flags(flags);
2068 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2070 return allocate_slab(s,
2071 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2074 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2076 struct folio *folio = slab_folio(slab);
2077 int order = folio_order(folio);
2078 int pages = 1 << order;
2080 __slab_clear_pfmemalloc(slab);
2081 folio->mapping = NULL;
2082 /* Make the mapping reset visible before clearing the flag */
2084 __folio_clear_slab(folio);
2085 mm_account_reclaimed_pages(pages);
2086 unaccount_slab(slab, order, s);
2087 __free_pages(&folio->page, order);
2090 static void rcu_free_slab(struct rcu_head *h)
2092 struct slab *slab = container_of(h, struct slab, rcu_head);
2094 __free_slab(slab->slab_cache, slab);
2097 static void free_slab(struct kmem_cache *s, struct slab *slab)
2099 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2102 slab_pad_check(s, slab);
2103 for_each_object(p, s, slab_address(slab), slab->objects)
2104 check_object(s, slab, p, SLUB_RED_INACTIVE);
2107 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2108 call_rcu(&slab->rcu_head, rcu_free_slab);
2110 __free_slab(s, slab);
2113 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2115 dec_slabs_node(s, slab_nid(slab), slab->objects);
2120 * Management of partially allocated slabs.
2123 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2126 if (tail == DEACTIVATE_TO_TAIL)
2127 list_add_tail(&slab->slab_list, &n->partial);
2129 list_add(&slab->slab_list, &n->partial);
2132 static inline void add_partial(struct kmem_cache_node *n,
2133 struct slab *slab, int tail)
2135 lockdep_assert_held(&n->list_lock);
2136 __add_partial(n, slab, tail);
2139 static inline void remove_partial(struct kmem_cache_node *n,
2142 lockdep_assert_held(&n->list_lock);
2143 list_del(&slab->slab_list);
2148 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2149 * slab from the n->partial list. Remove only a single object from the slab, do
2150 * the alloc_debug_processing() checks and leave the slab on the list, or move
2151 * it to full list if it was the last free object.
2153 static void *alloc_single_from_partial(struct kmem_cache *s,
2154 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2158 lockdep_assert_held(&n->list_lock);
2160 object = slab->freelist;
2161 slab->freelist = get_freepointer(s, object);
2164 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2165 remove_partial(n, slab);
2169 if (slab->inuse == slab->objects) {
2170 remove_partial(n, slab);
2171 add_full(s, n, slab);
2178 * Called only for kmem_cache_debug() caches to allocate from a freshly
2179 * allocated slab. Allocate a single object instead of whole freelist
2180 * and put the slab to the partial (or full) list.
2182 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2183 struct slab *slab, int orig_size)
2185 int nid = slab_nid(slab);
2186 struct kmem_cache_node *n = get_node(s, nid);
2187 unsigned long flags;
2191 object = slab->freelist;
2192 slab->freelist = get_freepointer(s, object);
2195 if (!alloc_debug_processing(s, slab, object, orig_size))
2197 * It's not really expected that this would fail on a
2198 * freshly allocated slab, but a concurrent memory
2199 * corruption in theory could cause that.
2203 spin_lock_irqsave(&n->list_lock, flags);
2205 if (slab->inuse == slab->objects)
2206 add_full(s, n, slab);
2208 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2210 inc_slabs_node(s, nid, slab->objects);
2211 spin_unlock_irqrestore(&n->list_lock, flags);
2217 * Remove slab from the partial list, freeze it and
2218 * return the pointer to the freelist.
2220 * Returns a list of objects or NULL if it fails.
2222 static inline void *acquire_slab(struct kmem_cache *s,
2223 struct kmem_cache_node *n, struct slab *slab,
2227 unsigned long counters;
2230 lockdep_assert_held(&n->list_lock);
2233 * Zap the freelist and set the frozen bit.
2234 * The old freelist is the list of objects for the
2235 * per cpu allocation list.
2237 freelist = slab->freelist;
2238 counters = slab->counters;
2239 new.counters = counters;
2241 new.inuse = slab->objects;
2242 new.freelist = NULL;
2244 new.freelist = freelist;
2247 VM_BUG_ON(new.frozen);
2250 if (!__slab_update_freelist(s, slab,
2252 new.freelist, new.counters,
2256 remove_partial(n, slab);
2261 #ifdef CONFIG_SLUB_CPU_PARTIAL
2262 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2264 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2267 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2270 * Try to allocate a partial slab from a specific node.
2272 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2273 struct partial_context *pc)
2275 struct slab *slab, *slab2;
2276 void *object = NULL;
2277 unsigned long flags;
2278 unsigned int partial_slabs = 0;
2281 * Racy check. If we mistakenly see no partial slabs then we
2282 * just allocate an empty slab. If we mistakenly try to get a
2283 * partial slab and there is none available then get_partial()
2286 if (!n || !n->nr_partial)
2289 spin_lock_irqsave(&n->list_lock, flags);
2290 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2293 if (!pfmemalloc_match(slab, pc->flags))
2296 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2297 object = alloc_single_from_partial(s, n, slab,
2304 t = acquire_slab(s, n, slab, object == NULL);
2310 stat(s, ALLOC_FROM_PARTIAL);
2313 put_cpu_partial(s, slab, 0);
2314 stat(s, CPU_PARTIAL_NODE);
2317 #ifdef CONFIG_SLUB_CPU_PARTIAL
2318 if (!kmem_cache_has_cpu_partial(s)
2319 || partial_slabs > s->cpu_partial_slabs / 2)
2326 spin_unlock_irqrestore(&n->list_lock, flags);
2331 * Get a slab from somewhere. Search in increasing NUMA distances.
2333 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2336 struct zonelist *zonelist;
2339 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2341 unsigned int cpuset_mems_cookie;
2344 * The defrag ratio allows a configuration of the tradeoffs between
2345 * inter node defragmentation and node local allocations. A lower
2346 * defrag_ratio increases the tendency to do local allocations
2347 * instead of attempting to obtain partial slabs from other nodes.
2349 * If the defrag_ratio is set to 0 then kmalloc() always
2350 * returns node local objects. If the ratio is higher then kmalloc()
2351 * may return off node objects because partial slabs are obtained
2352 * from other nodes and filled up.
2354 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2355 * (which makes defrag_ratio = 1000) then every (well almost)
2356 * allocation will first attempt to defrag slab caches on other nodes.
2357 * This means scanning over all nodes to look for partial slabs which
2358 * may be expensive if we do it every time we are trying to find a slab
2359 * with available objects.
2361 if (!s->remote_node_defrag_ratio ||
2362 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2366 cpuset_mems_cookie = read_mems_allowed_begin();
2367 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2368 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2369 struct kmem_cache_node *n;
2371 n = get_node(s, zone_to_nid(zone));
2373 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2374 n->nr_partial > s->min_partial) {
2375 object = get_partial_node(s, n, pc);
2378 * Don't check read_mems_allowed_retry()
2379 * here - if mems_allowed was updated in
2380 * parallel, that was a harmless race
2381 * between allocation and the cpuset
2388 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2389 #endif /* CONFIG_NUMA */
2394 * Get a partial slab, lock it and return it.
2396 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2399 int searchnode = node;
2401 if (node == NUMA_NO_NODE)
2402 searchnode = numa_mem_id();
2404 object = get_partial_node(s, get_node(s, searchnode), pc);
2405 if (object || node != NUMA_NO_NODE)
2408 return get_any_partial(s, pc);
2411 #ifndef CONFIG_SLUB_TINY
2413 #ifdef CONFIG_PREEMPTION
2415 * Calculate the next globally unique transaction for disambiguation
2416 * during cmpxchg. The transactions start with the cpu number and are then
2417 * incremented by CONFIG_NR_CPUS.
2419 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2422 * No preemption supported therefore also no need to check for
2426 #endif /* CONFIG_PREEMPTION */
2428 static inline unsigned long next_tid(unsigned long tid)
2430 return tid + TID_STEP;
2433 #ifdef SLUB_DEBUG_CMPXCHG
2434 static inline unsigned int tid_to_cpu(unsigned long tid)
2436 return tid % TID_STEP;
2439 static inline unsigned long tid_to_event(unsigned long tid)
2441 return tid / TID_STEP;
2445 static inline unsigned int init_tid(int cpu)
2450 static inline void note_cmpxchg_failure(const char *n,
2451 const struct kmem_cache *s, unsigned long tid)
2453 #ifdef SLUB_DEBUG_CMPXCHG
2454 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2456 pr_info("%s %s: cmpxchg redo ", n, s->name);
2458 #ifdef CONFIG_PREEMPTION
2459 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2460 pr_warn("due to cpu change %d -> %d\n",
2461 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2464 if (tid_to_event(tid) != tid_to_event(actual_tid))
2465 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2466 tid_to_event(tid), tid_to_event(actual_tid));
2468 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2469 actual_tid, tid, next_tid(tid));
2471 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2474 static void init_kmem_cache_cpus(struct kmem_cache *s)
2477 struct kmem_cache_cpu *c;
2479 for_each_possible_cpu(cpu) {
2480 c = per_cpu_ptr(s->cpu_slab, cpu);
2481 local_lock_init(&c->lock);
2482 c->tid = init_tid(cpu);
2487 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2488 * unfreezes the slabs and puts it on the proper list.
2489 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2492 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2495 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2496 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2498 enum slab_modes mode = M_NONE;
2499 void *nextfree, *freelist_iter, *freelist_tail;
2500 int tail = DEACTIVATE_TO_HEAD;
2501 unsigned long flags = 0;
2505 if (slab->freelist) {
2506 stat(s, DEACTIVATE_REMOTE_FREES);
2507 tail = DEACTIVATE_TO_TAIL;
2511 * Stage one: Count the objects on cpu's freelist as free_delta and
2512 * remember the last object in freelist_tail for later splicing.
2514 freelist_tail = NULL;
2515 freelist_iter = freelist;
2516 while (freelist_iter) {
2517 nextfree = get_freepointer(s, freelist_iter);
2520 * If 'nextfree' is invalid, it is possible that the object at
2521 * 'freelist_iter' is already corrupted. So isolate all objects
2522 * starting at 'freelist_iter' by skipping them.
2524 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2527 freelist_tail = freelist_iter;
2530 freelist_iter = nextfree;
2534 * Stage two: Unfreeze the slab while splicing the per-cpu
2535 * freelist to the head of slab's freelist.
2537 * Ensure that the slab is unfrozen while the list presence
2538 * reflects the actual number of objects during unfreeze.
2540 * We first perform cmpxchg holding lock and insert to list
2541 * when it succeed. If there is mismatch then the slab is not
2542 * unfrozen and number of objects in the slab may have changed.
2543 * Then release lock and retry cmpxchg again.
2547 old.freelist = READ_ONCE(slab->freelist);
2548 old.counters = READ_ONCE(slab->counters);
2549 VM_BUG_ON(!old.frozen);
2551 /* Determine target state of the slab */
2552 new.counters = old.counters;
2553 if (freelist_tail) {
2554 new.inuse -= free_delta;
2555 set_freepointer(s, freelist_tail, old.freelist);
2556 new.freelist = freelist;
2558 new.freelist = old.freelist;
2562 if (!new.inuse && n->nr_partial >= s->min_partial) {
2564 } else if (new.freelist) {
2567 * Taking the spinlock removes the possibility that
2568 * acquire_slab() will see a slab that is frozen
2570 spin_lock_irqsave(&n->list_lock, flags);
2572 mode = M_FULL_NOLIST;
2576 if (!slab_update_freelist(s, slab,
2577 old.freelist, old.counters,
2578 new.freelist, new.counters,
2579 "unfreezing slab")) {
2580 if (mode == M_PARTIAL)
2581 spin_unlock_irqrestore(&n->list_lock, flags);
2586 if (mode == M_PARTIAL) {
2587 add_partial(n, slab, tail);
2588 spin_unlock_irqrestore(&n->list_lock, flags);
2590 } else if (mode == M_FREE) {
2591 stat(s, DEACTIVATE_EMPTY);
2592 discard_slab(s, slab);
2594 } else if (mode == M_FULL_NOLIST) {
2595 stat(s, DEACTIVATE_FULL);
2599 #ifdef CONFIG_SLUB_CPU_PARTIAL
2600 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2602 struct kmem_cache_node *n = NULL, *n2 = NULL;
2603 struct slab *slab, *slab_to_discard = NULL;
2604 unsigned long flags = 0;
2606 while (partial_slab) {
2610 slab = partial_slab;
2611 partial_slab = slab->next;
2613 n2 = get_node(s, slab_nid(slab));
2616 spin_unlock_irqrestore(&n->list_lock, flags);
2619 spin_lock_irqsave(&n->list_lock, flags);
2624 old.freelist = slab->freelist;
2625 old.counters = slab->counters;
2626 VM_BUG_ON(!old.frozen);
2628 new.counters = old.counters;
2629 new.freelist = old.freelist;
2633 } while (!__slab_update_freelist(s, slab,
2634 old.freelist, old.counters,
2635 new.freelist, new.counters,
2636 "unfreezing slab"));
2638 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2639 slab->next = slab_to_discard;
2640 slab_to_discard = slab;
2642 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2643 stat(s, FREE_ADD_PARTIAL);
2648 spin_unlock_irqrestore(&n->list_lock, flags);
2650 while (slab_to_discard) {
2651 slab = slab_to_discard;
2652 slab_to_discard = slab_to_discard->next;
2654 stat(s, DEACTIVATE_EMPTY);
2655 discard_slab(s, slab);
2661 * Unfreeze all the cpu partial slabs.
2663 static void unfreeze_partials(struct kmem_cache *s)
2665 struct slab *partial_slab;
2666 unsigned long flags;
2668 local_lock_irqsave(&s->cpu_slab->lock, flags);
2669 partial_slab = this_cpu_read(s->cpu_slab->partial);
2670 this_cpu_write(s->cpu_slab->partial, NULL);
2671 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2674 __unfreeze_partials(s, partial_slab);
2677 static void unfreeze_partials_cpu(struct kmem_cache *s,
2678 struct kmem_cache_cpu *c)
2680 struct slab *partial_slab;
2682 partial_slab = slub_percpu_partial(c);
2686 __unfreeze_partials(s, partial_slab);
2690 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2691 * partial slab slot if available.
2693 * If we did not find a slot then simply move all the partials to the
2694 * per node partial list.
2696 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2698 struct slab *oldslab;
2699 struct slab *slab_to_unfreeze = NULL;
2700 unsigned long flags;
2703 local_lock_irqsave(&s->cpu_slab->lock, flags);
2705 oldslab = this_cpu_read(s->cpu_slab->partial);
2708 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2710 * Partial array is full. Move the existing set to the
2711 * per node partial list. Postpone the actual unfreezing
2712 * outside of the critical section.
2714 slab_to_unfreeze = oldslab;
2717 slabs = oldslab->slabs;
2723 slab->slabs = slabs;
2724 slab->next = oldslab;
2726 this_cpu_write(s->cpu_slab->partial, slab);
2728 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2730 if (slab_to_unfreeze) {
2731 __unfreeze_partials(s, slab_to_unfreeze);
2732 stat(s, CPU_PARTIAL_DRAIN);
2736 #else /* CONFIG_SLUB_CPU_PARTIAL */
2738 static inline void unfreeze_partials(struct kmem_cache *s) { }
2739 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2740 struct kmem_cache_cpu *c) { }
2742 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2744 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2746 unsigned long flags;
2750 local_lock_irqsave(&s->cpu_slab->lock, flags);
2753 freelist = c->freelist;
2757 c->tid = next_tid(c->tid);
2759 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2762 deactivate_slab(s, slab, freelist);
2763 stat(s, CPUSLAB_FLUSH);
2767 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2769 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2770 void *freelist = c->freelist;
2771 struct slab *slab = c->slab;
2775 c->tid = next_tid(c->tid);
2778 deactivate_slab(s, slab, freelist);
2779 stat(s, CPUSLAB_FLUSH);
2782 unfreeze_partials_cpu(s, c);
2785 struct slub_flush_work {
2786 struct work_struct work;
2787 struct kmem_cache *s;
2794 * Called from CPU work handler with migration disabled.
2796 static void flush_cpu_slab(struct work_struct *w)
2798 struct kmem_cache *s;
2799 struct kmem_cache_cpu *c;
2800 struct slub_flush_work *sfw;
2802 sfw = container_of(w, struct slub_flush_work, work);
2805 c = this_cpu_ptr(s->cpu_slab);
2810 unfreeze_partials(s);
2813 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2815 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2817 return c->slab || slub_percpu_partial(c);
2820 static DEFINE_MUTEX(flush_lock);
2821 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2823 static void flush_all_cpus_locked(struct kmem_cache *s)
2825 struct slub_flush_work *sfw;
2828 lockdep_assert_cpus_held();
2829 mutex_lock(&flush_lock);
2831 for_each_online_cpu(cpu) {
2832 sfw = &per_cpu(slub_flush, cpu);
2833 if (!has_cpu_slab(cpu, s)) {
2837 INIT_WORK(&sfw->work, flush_cpu_slab);
2840 queue_work_on(cpu, flushwq, &sfw->work);
2843 for_each_online_cpu(cpu) {
2844 sfw = &per_cpu(slub_flush, cpu);
2847 flush_work(&sfw->work);
2850 mutex_unlock(&flush_lock);
2853 static void flush_all(struct kmem_cache *s)
2856 flush_all_cpus_locked(s);
2861 * Use the cpu notifier to insure that the cpu slabs are flushed when
2864 static int slub_cpu_dead(unsigned int cpu)
2866 struct kmem_cache *s;
2868 mutex_lock(&slab_mutex);
2869 list_for_each_entry(s, &slab_caches, list)
2870 __flush_cpu_slab(s, cpu);
2871 mutex_unlock(&slab_mutex);
2875 #else /* CONFIG_SLUB_TINY */
2876 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2877 static inline void flush_all(struct kmem_cache *s) { }
2878 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2879 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2880 #endif /* CONFIG_SLUB_TINY */
2883 * Check if the objects in a per cpu structure fit numa
2884 * locality expectations.
2886 static inline int node_match(struct slab *slab, int node)
2889 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2895 #ifdef CONFIG_SLUB_DEBUG
2896 static int count_free(struct slab *slab)
2898 return slab->objects - slab->inuse;
2901 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2903 return atomic_long_read(&n->total_objects);
2906 /* Supports checking bulk free of a constructed freelist */
2907 static inline bool free_debug_processing(struct kmem_cache *s,
2908 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2909 unsigned long addr, depot_stack_handle_t handle)
2911 bool checks_ok = false;
2912 void *object = head;
2915 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2916 if (!check_slab(s, slab))
2920 if (slab->inuse < *bulk_cnt) {
2921 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2922 slab->inuse, *bulk_cnt);
2928 if (++cnt > *bulk_cnt)
2931 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2932 if (!free_consistency_checks(s, slab, object, addr))
2936 if (s->flags & SLAB_STORE_USER)
2937 set_track_update(s, object, TRACK_FREE, addr, handle);
2938 trace(s, slab, object, 0);
2939 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2940 init_object(s, object, SLUB_RED_INACTIVE);
2942 /* Reached end of constructed freelist yet? */
2943 if (object != tail) {
2944 object = get_freepointer(s, object);
2950 if (cnt != *bulk_cnt) {
2951 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2959 slab_fix(s, "Object at 0x%p not freed", object);
2963 #endif /* CONFIG_SLUB_DEBUG */
2965 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2966 static unsigned long count_partial(struct kmem_cache_node *n,
2967 int (*get_count)(struct slab *))
2969 unsigned long flags;
2970 unsigned long x = 0;
2973 spin_lock_irqsave(&n->list_lock, flags);
2974 list_for_each_entry(slab, &n->partial, slab_list)
2975 x += get_count(slab);
2976 spin_unlock_irqrestore(&n->list_lock, flags);
2979 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2981 #ifdef CONFIG_SLUB_DEBUG
2982 static noinline void
2983 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2985 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2986 DEFAULT_RATELIMIT_BURST);
2988 struct kmem_cache_node *n;
2990 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2993 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2994 nid, gfpflags, &gfpflags);
2995 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2996 s->name, s->object_size, s->size, oo_order(s->oo),
2999 if (oo_order(s->min) > get_order(s->object_size))
3000 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
3003 for_each_kmem_cache_node(s, node, n) {
3004 unsigned long nr_slabs;
3005 unsigned long nr_objs;
3006 unsigned long nr_free;
3008 nr_free = count_partial(n, count_free);
3009 nr_slabs = node_nr_slabs(n);
3010 nr_objs = node_nr_objs(n);
3012 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3013 node, nr_slabs, nr_objs, nr_free);
3016 #else /* CONFIG_SLUB_DEBUG */
3018 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3021 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3023 if (unlikely(slab_test_pfmemalloc(slab)))
3024 return gfp_pfmemalloc_allowed(gfpflags);
3029 #ifndef CONFIG_SLUB_TINY
3031 __update_cpu_freelist_fast(struct kmem_cache *s,
3032 void *freelist_old, void *freelist_new,
3035 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3036 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3038 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3039 &old.full, new.full);
3043 * Check the slab->freelist and either transfer the freelist to the
3044 * per cpu freelist or deactivate the slab.
3046 * The slab is still frozen if the return value is not NULL.
3048 * If this function returns NULL then the slab has been unfrozen.
3050 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3053 unsigned long counters;
3056 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3059 freelist = slab->freelist;
3060 counters = slab->counters;
3062 new.counters = counters;
3063 VM_BUG_ON(!new.frozen);
3065 new.inuse = slab->objects;
3066 new.frozen = freelist != NULL;
3068 } while (!__slab_update_freelist(s, slab,
3077 * Slow path. The lockless freelist is empty or we need to perform
3080 * Processing is still very fast if new objects have been freed to the
3081 * regular freelist. In that case we simply take over the regular freelist
3082 * as the lockless freelist and zap the regular freelist.
3084 * If that is not working then we fall back to the partial lists. We take the
3085 * first element of the freelist as the object to allocate now and move the
3086 * rest of the freelist to the lockless freelist.
3088 * And if we were unable to get a new slab from the partial slab lists then
3089 * we need to allocate a new slab. This is the slowest path since it involves
3090 * a call to the page allocator and the setup of a new slab.
3092 * Version of __slab_alloc to use when we know that preemption is
3093 * already disabled (which is the case for bulk allocation).
3095 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3096 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3100 unsigned long flags;
3101 struct partial_context pc;
3103 stat(s, ALLOC_SLOWPATH);
3107 slab = READ_ONCE(c->slab);
3110 * if the node is not online or has no normal memory, just
3111 * ignore the node constraint
3113 if (unlikely(node != NUMA_NO_NODE &&
3114 !node_isset(node, slab_nodes)))
3115 node = NUMA_NO_NODE;
3120 if (unlikely(!node_match(slab, node))) {
3122 * same as above but node_match() being false already
3123 * implies node != NUMA_NO_NODE
3125 if (!node_isset(node, slab_nodes)) {
3126 node = NUMA_NO_NODE;
3128 stat(s, ALLOC_NODE_MISMATCH);
3129 goto deactivate_slab;
3134 * By rights, we should be searching for a slab page that was
3135 * PFMEMALLOC but right now, we are losing the pfmemalloc
3136 * information when the page leaves the per-cpu allocator
3138 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3139 goto deactivate_slab;
3141 /* must check again c->slab in case we got preempted and it changed */
3142 local_lock_irqsave(&s->cpu_slab->lock, flags);
3143 if (unlikely(slab != c->slab)) {
3144 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3147 freelist = c->freelist;
3151 freelist = get_freelist(s, slab);
3155 c->tid = next_tid(c->tid);
3156 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3157 stat(s, DEACTIVATE_BYPASS);
3161 stat(s, ALLOC_REFILL);
3165 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3168 * freelist is pointing to the list of objects to be used.
3169 * slab is pointing to the slab from which the objects are obtained.
3170 * That slab must be frozen for per cpu allocations to work.
3172 VM_BUG_ON(!c->slab->frozen);
3173 c->freelist = get_freepointer(s, freelist);
3174 c->tid = next_tid(c->tid);
3175 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3180 local_lock_irqsave(&s->cpu_slab->lock, flags);
3181 if (slab != c->slab) {
3182 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3185 freelist = c->freelist;
3188 c->tid = next_tid(c->tid);
3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3190 deactivate_slab(s, slab, freelist);
3194 if (slub_percpu_partial(c)) {
3195 local_lock_irqsave(&s->cpu_slab->lock, flags);
3196 if (unlikely(c->slab)) {
3197 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3200 if (unlikely(!slub_percpu_partial(c))) {
3201 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3202 /* we were preempted and partial list got empty */
3206 slab = c->slab = slub_percpu_partial(c);
3207 slub_set_percpu_partial(c, slab);
3208 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3209 stat(s, CPU_PARTIAL_ALLOC);
3215 pc.flags = gfpflags;
3217 pc.orig_size = orig_size;
3218 freelist = get_partial(s, node, &pc);
3220 goto check_new_slab;
3222 slub_put_cpu_ptr(s->cpu_slab);
3223 slab = new_slab(s, gfpflags, node);
3224 c = slub_get_cpu_ptr(s->cpu_slab);
3226 if (unlikely(!slab)) {
3227 slab_out_of_memory(s, gfpflags, node);
3231 stat(s, ALLOC_SLAB);
3233 if (kmem_cache_debug(s)) {
3234 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3236 if (unlikely(!freelist))
3239 if (s->flags & SLAB_STORE_USER)
3240 set_track(s, freelist, TRACK_ALLOC, addr);
3246 * No other reference to the slab yet so we can
3247 * muck around with it freely without cmpxchg
3249 freelist = slab->freelist;
3250 slab->freelist = NULL;
3251 slab->inuse = slab->objects;
3254 inc_slabs_node(s, slab_nid(slab), slab->objects);
3258 if (kmem_cache_debug(s)) {
3260 * For debug caches here we had to go through
3261 * alloc_single_from_partial() so just store the tracking info
3262 * and return the object
3264 if (s->flags & SLAB_STORE_USER)
3265 set_track(s, freelist, TRACK_ALLOC, addr);
3270 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3272 * For !pfmemalloc_match() case we don't load freelist so that
3273 * we don't make further mismatched allocations easier.
3275 deactivate_slab(s, slab, get_freepointer(s, freelist));
3281 local_lock_irqsave(&s->cpu_slab->lock, flags);
3282 if (unlikely(c->slab)) {
3283 void *flush_freelist = c->freelist;
3284 struct slab *flush_slab = c->slab;
3288 c->tid = next_tid(c->tid);
3290 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3292 deactivate_slab(s, flush_slab, flush_freelist);
3294 stat(s, CPUSLAB_FLUSH);
3296 goto retry_load_slab;
3304 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3305 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3308 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3309 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3313 #ifdef CONFIG_PREEMPT_COUNT
3315 * We may have been preempted and rescheduled on a different
3316 * cpu before disabling preemption. Need to reload cpu area
3319 c = slub_get_cpu_ptr(s->cpu_slab);
3322 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3323 #ifdef CONFIG_PREEMPT_COUNT
3324 slub_put_cpu_ptr(s->cpu_slab);
3329 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3330 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3332 struct kmem_cache_cpu *c;
3339 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3340 * enabled. We may switch back and forth between cpus while
3341 * reading from one cpu area. That does not matter as long
3342 * as we end up on the original cpu again when doing the cmpxchg.
3344 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3345 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3346 * the tid. If we are preempted and switched to another cpu between the
3347 * two reads, it's OK as the two are still associated with the same cpu
3348 * and cmpxchg later will validate the cpu.
3350 c = raw_cpu_ptr(s->cpu_slab);
3351 tid = READ_ONCE(c->tid);
3354 * Irqless object alloc/free algorithm used here depends on sequence
3355 * of fetching cpu_slab's data. tid should be fetched before anything
3356 * on c to guarantee that object and slab associated with previous tid
3357 * won't be used with current tid. If we fetch tid first, object and
3358 * slab could be one associated with next tid and our alloc/free
3359 * request will be failed. In this case, we will retry. So, no problem.
3364 * The transaction ids are globally unique per cpu and per operation on
3365 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3366 * occurs on the right processor and that there was no operation on the
3367 * linked list in between.
3370 object = c->freelist;
3373 if (!USE_LOCKLESS_FAST_PATH() ||
3374 unlikely(!object || !slab || !node_match(slab, node))) {
3375 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3377 void *next_object = get_freepointer_safe(s, object);
3380 * The cmpxchg will only match if there was no additional
3381 * operation and if we are on the right processor.
3383 * The cmpxchg does the following atomically (without lock
3385 * 1. Relocate first pointer to the current per cpu area.
3386 * 2. Verify that tid and freelist have not been changed
3387 * 3. If they were not changed replace tid and freelist
3389 * Since this is without lock semantics the protection is only
3390 * against code executing on this cpu *not* from access by
3393 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3394 note_cmpxchg_failure("slab_alloc", s, tid);
3397 prefetch_freepointer(s, next_object);
3398 stat(s, ALLOC_FASTPATH);
3403 #else /* CONFIG_SLUB_TINY */
3404 static void *__slab_alloc_node(struct kmem_cache *s,
3405 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3407 struct partial_context pc;
3411 pc.flags = gfpflags;
3413 pc.orig_size = orig_size;
3414 object = get_partial(s, node, &pc);
3419 slab = new_slab(s, gfpflags, node);
3420 if (unlikely(!slab)) {
3421 slab_out_of_memory(s, gfpflags, node);
3425 object = alloc_single_from_new_slab(s, slab, orig_size);
3429 #endif /* CONFIG_SLUB_TINY */
3432 * If the object has been wiped upon free, make sure it's fully initialized by
3433 * zeroing out freelist pointer.
3435 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3438 if (unlikely(slab_want_init_on_free(s)) && obj)
3439 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3444 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3445 * have the fastpath folded into their functions. So no function call
3446 * overhead for requests that can be satisfied on the fastpath.
3448 * The fastpath works by first checking if the lockless freelist can be used.
3449 * If not then __slab_alloc is called for slow processing.
3451 * Otherwise we can simply pick the next object from the lockless free list.
3453 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3454 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3457 struct obj_cgroup *objcg = NULL;
3460 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3464 object = kfence_alloc(s, orig_size, gfpflags);
3465 if (unlikely(object))
3468 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3470 maybe_wipe_obj_freeptr(s, object);
3471 init = slab_want_init_on_alloc(gfpflags, s);
3475 * When init equals 'true', like for kzalloc() family, only
3476 * @orig_size bytes might be zeroed instead of s->object_size
3478 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3483 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3484 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3486 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3489 static __fastpath_inline
3490 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3493 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3495 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3500 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3502 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3504 EXPORT_SYMBOL(kmem_cache_alloc);
3506 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3509 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3511 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3513 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3514 int node, size_t orig_size,
3515 unsigned long caller)
3517 return slab_alloc_node(s, NULL, gfpflags, node,
3521 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3523 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3525 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3529 EXPORT_SYMBOL(kmem_cache_alloc_node);
3531 static noinline void free_to_partial_list(
3532 struct kmem_cache *s, struct slab *slab,
3533 void *head, void *tail, int bulk_cnt,
3536 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3537 struct slab *slab_free = NULL;
3539 unsigned long flags;
3540 depot_stack_handle_t handle = 0;
3542 if (s->flags & SLAB_STORE_USER)
3543 handle = set_track_prepare();
3545 spin_lock_irqsave(&n->list_lock, flags);
3547 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3548 void *prior = slab->freelist;
3550 /* Perform the actual freeing while we still hold the locks */
3552 set_freepointer(s, tail, prior);
3553 slab->freelist = head;
3556 * If the slab is empty, and node's partial list is full,
3557 * it should be discarded anyway no matter it's on full or
3560 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3564 /* was on full list */
3565 remove_full(s, n, slab);
3567 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3568 stat(s, FREE_ADD_PARTIAL);
3570 } else if (slab_free) {
3571 remove_partial(n, slab);
3572 stat(s, FREE_REMOVE_PARTIAL);
3578 * Update the counters while still holding n->list_lock to
3579 * prevent spurious validation warnings
3581 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3584 spin_unlock_irqrestore(&n->list_lock, flags);
3588 free_slab(s, slab_free);
3593 * Slow path handling. This may still be called frequently since objects
3594 * have a longer lifetime than the cpu slabs in most processing loads.
3596 * So we still attempt to reduce cache line usage. Just take the slab
3597 * lock and free the item. If there is no additional partial slab
3598 * handling required then we can return immediately.
3600 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3601 void *head, void *tail, int cnt,
3608 unsigned long counters;
3609 struct kmem_cache_node *n = NULL;
3610 unsigned long flags;
3612 stat(s, FREE_SLOWPATH);
3614 if (kfence_free(head))
3617 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3618 free_to_partial_list(s, slab, head, tail, cnt, addr);
3624 spin_unlock_irqrestore(&n->list_lock, flags);
3627 prior = slab->freelist;
3628 counters = slab->counters;
3629 set_freepointer(s, tail, prior);
3630 new.counters = counters;
3631 was_frozen = new.frozen;
3633 if ((!new.inuse || !prior) && !was_frozen) {
3635 if (kmem_cache_has_cpu_partial(s) && !prior) {
3638 * Slab was on no list before and will be
3640 * We can defer the list move and instead
3645 } else { /* Needs to be taken off a list */
3647 n = get_node(s, slab_nid(slab));
3649 * Speculatively acquire the list_lock.
3650 * If the cmpxchg does not succeed then we may
3651 * drop the list_lock without any processing.
3653 * Otherwise the list_lock will synchronize with
3654 * other processors updating the list of slabs.
3656 spin_lock_irqsave(&n->list_lock, flags);
3661 } while (!slab_update_freelist(s, slab,
3668 if (likely(was_frozen)) {
3670 * The list lock was not taken therefore no list
3671 * activity can be necessary.
3673 stat(s, FREE_FROZEN);
3674 } else if (new.frozen) {
3676 * If we just froze the slab then put it onto the
3677 * per cpu partial list.
3679 put_cpu_partial(s, slab, 1);
3680 stat(s, CPU_PARTIAL_FREE);
3686 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3690 * Objects left in the slab. If it was not on the partial list before
3693 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3694 remove_full(s, n, slab);
3695 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3696 stat(s, FREE_ADD_PARTIAL);
3698 spin_unlock_irqrestore(&n->list_lock, flags);
3704 * Slab on the partial list.
3706 remove_partial(n, slab);
3707 stat(s, FREE_REMOVE_PARTIAL);
3709 /* Slab must be on the full list */
3710 remove_full(s, n, slab);
3713 spin_unlock_irqrestore(&n->list_lock, flags);
3715 discard_slab(s, slab);
3718 #ifndef CONFIG_SLUB_TINY
3720 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3721 * can perform fastpath freeing without additional function calls.
3723 * The fastpath is only possible if we are freeing to the current cpu slab
3724 * of this processor. This typically the case if we have just allocated
3727 * If fastpath is not possible then fall back to __slab_free where we deal
3728 * with all sorts of special processing.
3730 * Bulk free of a freelist with several objects (all pointing to the
3731 * same slab) possible by specifying head and tail ptr, plus objects
3732 * count (cnt). Bulk free indicated by tail pointer being set.
3734 static __always_inline void do_slab_free(struct kmem_cache *s,
3735 struct slab *slab, void *head, void *tail,
3736 int cnt, unsigned long addr)
3738 void *tail_obj = tail ? : head;
3739 struct kmem_cache_cpu *c;
3745 * Determine the currently cpus per cpu slab.
3746 * The cpu may change afterward. However that does not matter since
3747 * data is retrieved via this pointer. If we are on the same cpu
3748 * during the cmpxchg then the free will succeed.
3750 c = raw_cpu_ptr(s->cpu_slab);
3751 tid = READ_ONCE(c->tid);
3753 /* Same with comment on barrier() in slab_alloc_node() */
3756 if (unlikely(slab != c->slab)) {
3757 __slab_free(s, slab, head, tail_obj, cnt, addr);
3761 if (USE_LOCKLESS_FAST_PATH()) {
3762 freelist = READ_ONCE(c->freelist);
3764 set_freepointer(s, tail_obj, freelist);
3766 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3767 note_cmpxchg_failure("slab_free", s, tid);
3771 /* Update the free list under the local lock */
3772 local_lock(&s->cpu_slab->lock);
3773 c = this_cpu_ptr(s->cpu_slab);
3774 if (unlikely(slab != c->slab)) {
3775 local_unlock(&s->cpu_slab->lock);
3779 freelist = c->freelist;
3781 set_freepointer(s, tail_obj, freelist);
3783 c->tid = next_tid(tid);
3785 local_unlock(&s->cpu_slab->lock);
3787 stat(s, FREE_FASTPATH);
3789 #else /* CONFIG_SLUB_TINY */
3790 static void do_slab_free(struct kmem_cache *s,
3791 struct slab *slab, void *head, void *tail,
3792 int cnt, unsigned long addr)
3794 void *tail_obj = tail ? : head;
3796 __slab_free(s, slab, head, tail_obj, cnt, addr);
3798 #endif /* CONFIG_SLUB_TINY */
3800 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3801 void *head, void *tail, void **p, int cnt,
3804 memcg_slab_free_hook(s, slab, p, cnt);
3806 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3807 * to remove objects, whose reuse must be delayed.
3809 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3810 do_slab_free(s, slab, head, tail, cnt, addr);
3813 #ifdef CONFIG_KASAN_GENERIC
3814 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3816 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3820 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3822 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3825 void kmem_cache_free(struct kmem_cache *s, void *x)
3827 s = cache_from_obj(s, x);
3830 trace_kmem_cache_free(_RET_IP_, x, s);
3831 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3833 EXPORT_SYMBOL(kmem_cache_free);
3835 struct detached_freelist {
3840 struct kmem_cache *s;
3844 * This function progressively scans the array with free objects (with
3845 * a limited look ahead) and extract objects belonging to the same
3846 * slab. It builds a detached freelist directly within the given
3847 * slab/objects. This can happen without any need for
3848 * synchronization, because the objects are owned by running process.
3849 * The freelist is build up as a single linked list in the objects.
3850 * The idea is, that this detached freelist can then be bulk
3851 * transferred to the real freelist(s), but only requiring a single
3852 * synchronization primitive. Look ahead in the array is limited due
3853 * to performance reasons.
3856 int build_detached_freelist(struct kmem_cache *s, size_t size,
3857 void **p, struct detached_freelist *df)
3861 struct folio *folio;
3865 folio = virt_to_folio(object);
3867 /* Handle kalloc'ed objects */
3868 if (unlikely(!folio_test_slab(folio))) {
3869 free_large_kmalloc(folio, object);
3873 /* Derive kmem_cache from object */
3874 df->slab = folio_slab(folio);
3875 df->s = df->slab->slab_cache;
3877 df->slab = folio_slab(folio);
3878 df->s = cache_from_obj(s, object); /* Support for memcg */
3881 /* Start new detached freelist */
3883 df->freelist = object;
3886 if (is_kfence_address(object))
3889 set_freepointer(df->s, object, NULL);
3894 /* df->slab is always set at this point */
3895 if (df->slab == virt_to_slab(object)) {
3896 /* Opportunity build freelist */
3897 set_freepointer(df->s, object, df->freelist);
3898 df->freelist = object;
3902 swap(p[size], p[same]);
3906 /* Limit look ahead search */
3914 /* Note that interrupts must be enabled when calling this function. */
3915 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3921 struct detached_freelist df;
3923 size = build_detached_freelist(s, size, p, &df);
3927 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3929 } while (likely(size));
3931 EXPORT_SYMBOL(kmem_cache_free_bulk);
3933 #ifndef CONFIG_SLUB_TINY
3934 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3935 size_t size, void **p, struct obj_cgroup *objcg)
3937 struct kmem_cache_cpu *c;
3938 unsigned long irqflags;
3942 * Drain objects in the per cpu slab, while disabling local
3943 * IRQs, which protects against PREEMPT and interrupts
3944 * handlers invoking normal fastpath.
3946 c = slub_get_cpu_ptr(s->cpu_slab);
3947 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3949 for (i = 0; i < size; i++) {
3950 void *object = kfence_alloc(s, s->object_size, flags);
3952 if (unlikely(object)) {
3957 object = c->freelist;
3958 if (unlikely(!object)) {
3960 * We may have removed an object from c->freelist using
3961 * the fastpath in the previous iteration; in that case,
3962 * c->tid has not been bumped yet.
3963 * Since ___slab_alloc() may reenable interrupts while
3964 * allocating memory, we should bump c->tid now.
3966 c->tid = next_tid(c->tid);
3968 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3971 * Invoking slow path likely have side-effect
3972 * of re-populating per CPU c->freelist
3974 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3975 _RET_IP_, c, s->object_size);
3976 if (unlikely(!p[i]))
3979 c = this_cpu_ptr(s->cpu_slab);
3980 maybe_wipe_obj_freeptr(s, p[i]);
3982 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3984 continue; /* goto for-loop */
3986 c->freelist = get_freepointer(s, object);
3988 maybe_wipe_obj_freeptr(s, p[i]);
3990 c->tid = next_tid(c->tid);
3991 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3992 slub_put_cpu_ptr(s->cpu_slab);
3997 slub_put_cpu_ptr(s->cpu_slab);
3998 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3999 kmem_cache_free_bulk(s, i, p);
4003 #else /* CONFIG_SLUB_TINY */
4004 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
4005 size_t size, void **p, struct obj_cgroup *objcg)
4009 for (i = 0; i < size; i++) {
4010 void *object = kfence_alloc(s, s->object_size, flags);
4012 if (unlikely(object)) {
4017 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4018 _RET_IP_, s->object_size);
4019 if (unlikely(!p[i]))
4022 maybe_wipe_obj_freeptr(s, p[i]);
4028 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4029 kmem_cache_free_bulk(s, i, p);
4032 #endif /* CONFIG_SLUB_TINY */
4034 /* Note that interrupts must be enabled when calling this function. */
4035 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4039 struct obj_cgroup *objcg = NULL;
4044 /* memcg and kmem_cache debug support */
4045 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4049 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4052 * memcg and kmem_cache debug support and memory initialization.
4053 * Done outside of the IRQ disabled fastpath loop.
4056 slab_post_alloc_hook(s, objcg, flags, size, p,
4057 slab_want_init_on_alloc(flags, s), s->object_size);
4060 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4064 * Object placement in a slab is made very easy because we always start at
4065 * offset 0. If we tune the size of the object to the alignment then we can
4066 * get the required alignment by putting one properly sized object after
4069 * Notice that the allocation order determines the sizes of the per cpu
4070 * caches. Each processor has always one slab available for allocations.
4071 * Increasing the allocation order reduces the number of times that slabs
4072 * must be moved on and off the partial lists and is therefore a factor in
4077 * Minimum / Maximum order of slab pages. This influences locking overhead
4078 * and slab fragmentation. A higher order reduces the number of partial slabs
4079 * and increases the number of allocations possible without having to
4080 * take the list_lock.
4082 static unsigned int slub_min_order;
4083 static unsigned int slub_max_order =
4084 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4085 static unsigned int slub_min_objects;
4088 * Calculate the order of allocation given an slab object size.
4090 * The order of allocation has significant impact on performance and other
4091 * system components. Generally order 0 allocations should be preferred since
4092 * order 0 does not cause fragmentation in the page allocator. Larger objects
4093 * be problematic to put into order 0 slabs because there may be too much
4094 * unused space left. We go to a higher order if more than 1/16th of the slab
4097 * In order to reach satisfactory performance we must ensure that a minimum
4098 * number of objects is in one slab. Otherwise we may generate too much
4099 * activity on the partial lists which requires taking the list_lock. This is
4100 * less a concern for large slabs though which are rarely used.
4102 * slub_max_order specifies the order where we begin to stop considering the
4103 * number of objects in a slab as critical. If we reach slub_max_order then
4104 * we try to keep the page order as low as possible. So we accept more waste
4105 * of space in favor of a small page order.
4107 * Higher order allocations also allow the placement of more objects in a
4108 * slab and thereby reduce object handling overhead. If the user has
4109 * requested a higher minimum order then we start with that one instead of
4110 * the smallest order which will fit the object.
4112 static inline unsigned int calc_slab_order(unsigned int size,
4113 unsigned int min_objects, unsigned int max_order,
4114 unsigned int fract_leftover)
4116 unsigned int min_order = slub_min_order;
4119 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4120 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4122 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4123 order <= max_order; order++) {
4125 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4128 rem = slab_size % size;
4130 if (rem <= slab_size / fract_leftover)
4137 static inline int calculate_order(unsigned int size)
4140 unsigned int min_objects;
4141 unsigned int max_objects;
4142 unsigned int nr_cpus;
4145 * Attempt to find best configuration for a slab. This
4146 * works by first attempting to generate a layout with
4147 * the best configuration and backing off gradually.
4149 * First we increase the acceptable waste in a slab. Then
4150 * we reduce the minimum objects required in a slab.
4152 min_objects = slub_min_objects;
4155 * Some architectures will only update present cpus when
4156 * onlining them, so don't trust the number if it's just 1. But
4157 * we also don't want to use nr_cpu_ids always, as on some other
4158 * architectures, there can be many possible cpus, but never
4159 * onlined. Here we compromise between trying to avoid too high
4160 * order on systems that appear larger than they are, and too
4161 * low order on systems that appear smaller than they are.
4163 nr_cpus = num_present_cpus();
4165 nr_cpus = nr_cpu_ids;
4166 min_objects = 4 * (fls(nr_cpus) + 1);
4168 max_objects = order_objects(slub_max_order, size);
4169 min_objects = min(min_objects, max_objects);
4171 while (min_objects > 1) {
4172 unsigned int fraction;
4175 while (fraction >= 4) {
4176 order = calc_slab_order(size, min_objects,
4177 slub_max_order, fraction);
4178 if (order <= slub_max_order)
4186 * We were unable to place multiple objects in a slab. Now
4187 * lets see if we can place a single object there.
4189 order = calc_slab_order(size, 1, slub_max_order, 1);
4190 if (order <= slub_max_order)
4194 * Doh this slab cannot be placed using slub_max_order.
4196 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4197 if (order <= MAX_ORDER)
4203 init_kmem_cache_node(struct kmem_cache_node *n)
4206 spin_lock_init(&n->list_lock);
4207 INIT_LIST_HEAD(&n->partial);
4208 #ifdef CONFIG_SLUB_DEBUG
4209 atomic_long_set(&n->nr_slabs, 0);
4210 atomic_long_set(&n->total_objects, 0);
4211 INIT_LIST_HEAD(&n->full);
4215 #ifndef CONFIG_SLUB_TINY
4216 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4218 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4219 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4220 sizeof(struct kmem_cache_cpu));
4223 * Must align to double word boundary for the double cmpxchg
4224 * instructions to work; see __pcpu_double_call_return_bool().
4226 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4227 2 * sizeof(void *));
4232 init_kmem_cache_cpus(s);
4237 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4241 #endif /* CONFIG_SLUB_TINY */
4243 static struct kmem_cache *kmem_cache_node;
4246 * No kmalloc_node yet so do it by hand. We know that this is the first
4247 * slab on the node for this slabcache. There are no concurrent accesses
4250 * Note that this function only works on the kmem_cache_node
4251 * when allocating for the kmem_cache_node. This is used for bootstrapping
4252 * memory on a fresh node that has no slab structures yet.
4254 static void early_kmem_cache_node_alloc(int node)
4257 struct kmem_cache_node *n;
4259 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4261 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4264 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4265 if (slab_nid(slab) != node) {
4266 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4267 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4272 #ifdef CONFIG_SLUB_DEBUG
4273 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4274 init_tracking(kmem_cache_node, n);
4276 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4277 slab->freelist = get_freepointer(kmem_cache_node, n);
4279 kmem_cache_node->node[node] = n;
4280 init_kmem_cache_node(n);
4281 inc_slabs_node(kmem_cache_node, node, slab->objects);
4284 * No locks need to be taken here as it has just been
4285 * initialized and there is no concurrent access.
4287 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4290 static void free_kmem_cache_nodes(struct kmem_cache *s)
4293 struct kmem_cache_node *n;
4295 for_each_kmem_cache_node(s, node, n) {
4296 s->node[node] = NULL;
4297 kmem_cache_free(kmem_cache_node, n);
4301 void __kmem_cache_release(struct kmem_cache *s)
4303 cache_random_seq_destroy(s);
4304 #ifndef CONFIG_SLUB_TINY
4305 free_percpu(s->cpu_slab);
4307 free_kmem_cache_nodes(s);
4310 static int init_kmem_cache_nodes(struct kmem_cache *s)
4314 for_each_node_mask(node, slab_nodes) {
4315 struct kmem_cache_node *n;
4317 if (slab_state == DOWN) {
4318 early_kmem_cache_node_alloc(node);
4321 n = kmem_cache_alloc_node(kmem_cache_node,
4325 free_kmem_cache_nodes(s);
4329 init_kmem_cache_node(n);
4335 static void set_cpu_partial(struct kmem_cache *s)
4337 #ifdef CONFIG_SLUB_CPU_PARTIAL
4338 unsigned int nr_objects;
4341 * cpu_partial determined the maximum number of objects kept in the
4342 * per cpu partial lists of a processor.
4344 * Per cpu partial lists mainly contain slabs that just have one
4345 * object freed. If they are used for allocation then they can be
4346 * filled up again with minimal effort. The slab will never hit the
4347 * per node partial lists and therefore no locking will be required.
4349 * For backwards compatibility reasons, this is determined as number
4350 * of objects, even though we now limit maximum number of pages, see
4351 * slub_set_cpu_partial()
4353 if (!kmem_cache_has_cpu_partial(s))
4355 else if (s->size >= PAGE_SIZE)
4357 else if (s->size >= 1024)
4359 else if (s->size >= 256)
4364 slub_set_cpu_partial(s, nr_objects);
4369 * calculate_sizes() determines the order and the distribution of data within
4372 static int calculate_sizes(struct kmem_cache *s)
4374 slab_flags_t flags = s->flags;
4375 unsigned int size = s->object_size;
4379 * Round up object size to the next word boundary. We can only
4380 * place the free pointer at word boundaries and this determines
4381 * the possible location of the free pointer.
4383 size = ALIGN(size, sizeof(void *));
4385 #ifdef CONFIG_SLUB_DEBUG
4387 * Determine if we can poison the object itself. If the user of
4388 * the slab may touch the object after free or before allocation
4389 * then we should never poison the object itself.
4391 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4393 s->flags |= __OBJECT_POISON;
4395 s->flags &= ~__OBJECT_POISON;
4399 * If we are Redzoning then check if there is some space between the
4400 * end of the object and the free pointer. If not then add an
4401 * additional word to have some bytes to store Redzone information.
4403 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4404 size += sizeof(void *);
4408 * With that we have determined the number of bytes in actual use
4409 * by the object and redzoning.
4413 if (slub_debug_orig_size(s) ||
4414 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4415 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4418 * Relocate free pointer after the object if it is not
4419 * permitted to overwrite the first word of the object on
4422 * This is the case if we do RCU, have a constructor or
4423 * destructor, are poisoning the objects, or are
4424 * redzoning an object smaller than sizeof(void *).
4426 * The assumption that s->offset >= s->inuse means free
4427 * pointer is outside of the object is used in the
4428 * freeptr_outside_object() function. If that is no
4429 * longer true, the function needs to be modified.
4432 size += sizeof(void *);
4435 * Store freelist pointer near middle of object to keep
4436 * it away from the edges of the object to avoid small
4437 * sized over/underflows from neighboring allocations.
4439 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4442 #ifdef CONFIG_SLUB_DEBUG
4443 if (flags & SLAB_STORE_USER) {
4445 * Need to store information about allocs and frees after
4448 size += 2 * sizeof(struct track);
4450 /* Save the original kmalloc request size */
4451 if (flags & SLAB_KMALLOC)
4452 size += sizeof(unsigned int);
4456 kasan_cache_create(s, &size, &s->flags);
4457 #ifdef CONFIG_SLUB_DEBUG
4458 if (flags & SLAB_RED_ZONE) {
4460 * Add some empty padding so that we can catch
4461 * overwrites from earlier objects rather than let
4462 * tracking information or the free pointer be
4463 * corrupted if a user writes before the start
4466 size += sizeof(void *);
4468 s->red_left_pad = sizeof(void *);
4469 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4470 size += s->red_left_pad;
4475 * SLUB stores one object immediately after another beginning from
4476 * offset 0. In order to align the objects we have to simply size
4477 * each object to conform to the alignment.
4479 size = ALIGN(size, s->align);
4481 s->reciprocal_size = reciprocal_value(size);
4482 order = calculate_order(size);
4489 s->allocflags |= __GFP_COMP;
4491 if (s->flags & SLAB_CACHE_DMA)
4492 s->allocflags |= GFP_DMA;
4494 if (s->flags & SLAB_CACHE_DMA32)
4495 s->allocflags |= GFP_DMA32;
4497 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4498 s->allocflags |= __GFP_RECLAIMABLE;
4501 * Determine the number of objects per slab
4503 s->oo = oo_make(order, size);
4504 s->min = oo_make(get_order(size), size);
4506 return !!oo_objects(s->oo);
4509 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4511 s->flags = kmem_cache_flags(s->size, flags, s->name);
4512 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4513 s->random = get_random_long();
4516 if (!calculate_sizes(s))
4518 if (disable_higher_order_debug) {
4520 * Disable debugging flags that store metadata if the min slab
4523 if (get_order(s->size) > get_order(s->object_size)) {
4524 s->flags &= ~DEBUG_METADATA_FLAGS;
4526 if (!calculate_sizes(s))
4531 #ifdef system_has_freelist_aba
4532 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4533 /* Enable fast mode */
4534 s->flags |= __CMPXCHG_DOUBLE;
4539 * The larger the object size is, the more slabs we want on the partial
4540 * list to avoid pounding the page allocator excessively.
4542 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4543 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4548 s->remote_node_defrag_ratio = 1000;
4551 /* Initialize the pre-computed randomized freelist if slab is up */
4552 if (slab_state >= UP) {
4553 if (init_cache_random_seq(s))
4557 if (!init_kmem_cache_nodes(s))
4560 if (alloc_kmem_cache_cpus(s))
4564 __kmem_cache_release(s);
4568 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4571 #ifdef CONFIG_SLUB_DEBUG
4572 void *addr = slab_address(slab);
4575 slab_err(s, slab, text, s->name);
4577 spin_lock(&object_map_lock);
4578 __fill_map(object_map, s, slab);
4580 for_each_object(p, s, addr, slab->objects) {
4582 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4583 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4584 print_tracking(s, p);
4587 spin_unlock(&object_map_lock);
4592 * Attempt to free all partial slabs on a node.
4593 * This is called from __kmem_cache_shutdown(). We must take list_lock
4594 * because sysfs file might still access partial list after the shutdowning.
4596 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4599 struct slab *slab, *h;
4601 BUG_ON(irqs_disabled());
4602 spin_lock_irq(&n->list_lock);
4603 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4605 remove_partial(n, slab);
4606 list_add(&slab->slab_list, &discard);
4608 list_slab_objects(s, slab,
4609 "Objects remaining in %s on __kmem_cache_shutdown()");
4612 spin_unlock_irq(&n->list_lock);
4614 list_for_each_entry_safe(slab, h, &discard, slab_list)
4615 discard_slab(s, slab);
4618 bool __kmem_cache_empty(struct kmem_cache *s)
4621 struct kmem_cache_node *n;
4623 for_each_kmem_cache_node(s, node, n)
4624 if (n->nr_partial || node_nr_slabs(n))
4630 * Release all resources used by a slab cache.
4632 int __kmem_cache_shutdown(struct kmem_cache *s)
4635 struct kmem_cache_node *n;
4637 flush_all_cpus_locked(s);
4638 /* Attempt to free all objects */
4639 for_each_kmem_cache_node(s, node, n) {
4641 if (n->nr_partial || node_nr_slabs(n))
4647 #ifdef CONFIG_PRINTK
4648 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4651 int __maybe_unused i;
4655 struct kmem_cache *s = slab->slab_cache;
4656 struct track __maybe_unused *trackp;
4658 kpp->kp_ptr = object;
4659 kpp->kp_slab = slab;
4660 kpp->kp_slab_cache = s;
4661 base = slab_address(slab);
4662 objp0 = kasan_reset_tag(object);
4663 #ifdef CONFIG_SLUB_DEBUG
4664 objp = restore_red_left(s, objp0);
4668 objnr = obj_to_index(s, slab, objp);
4669 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4670 objp = base + s->size * objnr;
4671 kpp->kp_objp = objp;
4672 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4673 || (objp - base) % s->size) ||
4674 !(s->flags & SLAB_STORE_USER))
4676 #ifdef CONFIG_SLUB_DEBUG
4677 objp = fixup_red_left(s, objp);
4678 trackp = get_track(s, objp, TRACK_ALLOC);
4679 kpp->kp_ret = (void *)trackp->addr;
4680 #ifdef CONFIG_STACKDEPOT
4682 depot_stack_handle_t handle;
4683 unsigned long *entries;
4684 unsigned int nr_entries;
4686 handle = READ_ONCE(trackp->handle);
4688 nr_entries = stack_depot_fetch(handle, &entries);
4689 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 kpp->kp_stack[i] = (void *)entries[i];
4693 trackp = get_track(s, objp, TRACK_FREE);
4694 handle = READ_ONCE(trackp->handle);
4696 nr_entries = stack_depot_fetch(handle, &entries);
4697 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4698 kpp->kp_free_stack[i] = (void *)entries[i];
4706 /********************************************************************
4708 *******************************************************************/
4710 static int __init setup_slub_min_order(char *str)
4712 get_option(&str, (int *)&slub_min_order);
4717 __setup("slub_min_order=", setup_slub_min_order);
4719 static int __init setup_slub_max_order(char *str)
4721 get_option(&str, (int *)&slub_max_order);
4722 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4727 __setup("slub_max_order=", setup_slub_max_order);
4729 static int __init setup_slub_min_objects(char *str)
4731 get_option(&str, (int *)&slub_min_objects);
4736 __setup("slub_min_objects=", setup_slub_min_objects);
4738 #ifdef CONFIG_HARDENED_USERCOPY
4740 * Rejects incorrectly sized objects and objects that are to be copied
4741 * to/from userspace but do not fall entirely within the containing slab
4742 * cache's usercopy region.
4744 * Returns NULL if check passes, otherwise const char * to name of cache
4745 * to indicate an error.
4747 void __check_heap_object(const void *ptr, unsigned long n,
4748 const struct slab *slab, bool to_user)
4750 struct kmem_cache *s;
4751 unsigned int offset;
4752 bool is_kfence = is_kfence_address(ptr);
4754 ptr = kasan_reset_tag(ptr);
4756 /* Find object and usable object size. */
4757 s = slab->slab_cache;
4759 /* Reject impossible pointers. */
4760 if (ptr < slab_address(slab))
4761 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4764 /* Find offset within object. */
4766 offset = ptr - kfence_object_start(ptr);
4768 offset = (ptr - slab_address(slab)) % s->size;
4770 /* Adjust for redzone and reject if within the redzone. */
4771 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4772 if (offset < s->red_left_pad)
4773 usercopy_abort("SLUB object in left red zone",
4774 s->name, to_user, offset, n);
4775 offset -= s->red_left_pad;
4778 /* Allow address range falling entirely within usercopy region. */
4779 if (offset >= s->useroffset &&
4780 offset - s->useroffset <= s->usersize &&
4781 n <= s->useroffset - offset + s->usersize)
4784 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4786 #endif /* CONFIG_HARDENED_USERCOPY */
4788 #define SHRINK_PROMOTE_MAX 32
4791 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4792 * up most to the head of the partial lists. New allocations will then
4793 * fill those up and thus they can be removed from the partial lists.
4795 * The slabs with the least items are placed last. This results in them
4796 * being allocated from last increasing the chance that the last objects
4797 * are freed in them.
4799 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4803 struct kmem_cache_node *n;
4806 struct list_head discard;
4807 struct list_head promote[SHRINK_PROMOTE_MAX];
4808 unsigned long flags;
4811 for_each_kmem_cache_node(s, node, n) {
4812 INIT_LIST_HEAD(&discard);
4813 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4814 INIT_LIST_HEAD(promote + i);
4816 spin_lock_irqsave(&n->list_lock, flags);
4819 * Build lists of slabs to discard or promote.
4821 * Note that concurrent frees may occur while we hold the
4822 * list_lock. slab->inuse here is the upper limit.
4824 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4825 int free = slab->objects - slab->inuse;
4827 /* Do not reread slab->inuse */
4830 /* We do not keep full slabs on the list */
4833 if (free == slab->objects) {
4834 list_move(&slab->slab_list, &discard);
4836 dec_slabs_node(s, node, slab->objects);
4837 } else if (free <= SHRINK_PROMOTE_MAX)
4838 list_move(&slab->slab_list, promote + free - 1);
4842 * Promote the slabs filled up most to the head of the
4845 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4846 list_splice(promote + i, &n->partial);
4848 spin_unlock_irqrestore(&n->list_lock, flags);
4850 /* Release empty slabs */
4851 list_for_each_entry_safe(slab, t, &discard, slab_list)
4854 if (node_nr_slabs(n))
4861 int __kmem_cache_shrink(struct kmem_cache *s)
4864 return __kmem_cache_do_shrink(s);
4867 static int slab_mem_going_offline_callback(void *arg)
4869 struct kmem_cache *s;
4871 mutex_lock(&slab_mutex);
4872 list_for_each_entry(s, &slab_caches, list) {
4873 flush_all_cpus_locked(s);
4874 __kmem_cache_do_shrink(s);
4876 mutex_unlock(&slab_mutex);
4881 static void slab_mem_offline_callback(void *arg)
4883 struct memory_notify *marg = arg;
4886 offline_node = marg->status_change_nid_normal;
4889 * If the node still has available memory. we need kmem_cache_node
4892 if (offline_node < 0)
4895 mutex_lock(&slab_mutex);
4896 node_clear(offline_node, slab_nodes);
4898 * We no longer free kmem_cache_node structures here, as it would be
4899 * racy with all get_node() users, and infeasible to protect them with
4902 mutex_unlock(&slab_mutex);
4905 static int slab_mem_going_online_callback(void *arg)
4907 struct kmem_cache_node *n;
4908 struct kmem_cache *s;
4909 struct memory_notify *marg = arg;
4910 int nid = marg->status_change_nid_normal;
4914 * If the node's memory is already available, then kmem_cache_node is
4915 * already created. Nothing to do.
4921 * We are bringing a node online. No memory is available yet. We must
4922 * allocate a kmem_cache_node structure in order to bring the node
4925 mutex_lock(&slab_mutex);
4926 list_for_each_entry(s, &slab_caches, list) {
4928 * The structure may already exist if the node was previously
4929 * onlined and offlined.
4931 if (get_node(s, nid))
4934 * XXX: kmem_cache_alloc_node will fallback to other nodes
4935 * since memory is not yet available from the node that
4938 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4943 init_kmem_cache_node(n);
4947 * Any cache created after this point will also have kmem_cache_node
4948 * initialized for the new node.
4950 node_set(nid, slab_nodes);
4952 mutex_unlock(&slab_mutex);
4956 static int slab_memory_callback(struct notifier_block *self,
4957 unsigned long action, void *arg)
4962 case MEM_GOING_ONLINE:
4963 ret = slab_mem_going_online_callback(arg);
4965 case MEM_GOING_OFFLINE:
4966 ret = slab_mem_going_offline_callback(arg);
4969 case MEM_CANCEL_ONLINE:
4970 slab_mem_offline_callback(arg);
4973 case MEM_CANCEL_OFFLINE:
4977 ret = notifier_from_errno(ret);
4983 /********************************************************************
4984 * Basic setup of slabs
4985 *******************************************************************/
4988 * Used for early kmem_cache structures that were allocated using
4989 * the page allocator. Allocate them properly then fix up the pointers
4990 * that may be pointing to the wrong kmem_cache structure.
4993 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4996 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4997 struct kmem_cache_node *n;
4999 memcpy(s, static_cache, kmem_cache->object_size);
5002 * This runs very early, and only the boot processor is supposed to be
5003 * up. Even if it weren't true, IRQs are not up so we couldn't fire
5006 __flush_cpu_slab(s, smp_processor_id());
5007 for_each_kmem_cache_node(s, node, n) {
5010 list_for_each_entry(p, &n->partial, slab_list)
5013 #ifdef CONFIG_SLUB_DEBUG
5014 list_for_each_entry(p, &n->full, slab_list)
5018 list_add(&s->list, &slab_caches);
5022 void __init kmem_cache_init(void)
5024 static __initdata struct kmem_cache boot_kmem_cache,
5025 boot_kmem_cache_node;
5028 if (debug_guardpage_minorder())
5031 /* Print slub debugging pointers without hashing */
5032 if (__slub_debug_enabled())
5033 no_hash_pointers_enable(NULL);
5035 kmem_cache_node = &boot_kmem_cache_node;
5036 kmem_cache = &boot_kmem_cache;
5039 * Initialize the nodemask for which we will allocate per node
5040 * structures. Here we don't need taking slab_mutex yet.
5042 for_each_node_state(node, N_NORMAL_MEMORY)
5043 node_set(node, slab_nodes);
5045 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5046 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5048 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5050 /* Able to allocate the per node structures */
5051 slab_state = PARTIAL;
5053 create_boot_cache(kmem_cache, "kmem_cache",
5054 offsetof(struct kmem_cache, node) +
5055 nr_node_ids * sizeof(struct kmem_cache_node *),
5056 SLAB_HWCACHE_ALIGN, 0, 0);
5058 kmem_cache = bootstrap(&boot_kmem_cache);
5059 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5061 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5062 setup_kmalloc_cache_index_table();
5063 create_kmalloc_caches(0);
5065 /* Setup random freelists for each cache */
5066 init_freelist_randomization();
5068 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5071 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5073 slub_min_order, slub_max_order, slub_min_objects,
5074 nr_cpu_ids, nr_node_ids);
5077 void __init kmem_cache_init_late(void)
5079 #ifndef CONFIG_SLUB_TINY
5080 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5086 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5087 slab_flags_t flags, void (*ctor)(void *))
5089 struct kmem_cache *s;
5091 s = find_mergeable(size, align, flags, name, ctor);
5093 if (sysfs_slab_alias(s, name))
5099 * Adjust the object sizes so that we clear
5100 * the complete object on kzalloc.
5102 s->object_size = max(s->object_size, size);
5103 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5109 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5113 err = kmem_cache_open(s, flags);
5117 /* Mutex is not taken during early boot */
5118 if (slab_state <= UP)
5121 err = sysfs_slab_add(s);
5123 __kmem_cache_release(s);
5127 if (s->flags & SLAB_STORE_USER)
5128 debugfs_slab_add(s);
5133 #ifdef SLAB_SUPPORTS_SYSFS
5134 static int count_inuse(struct slab *slab)
5139 static int count_total(struct slab *slab)
5141 return slab->objects;
5145 #ifdef CONFIG_SLUB_DEBUG
5146 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5147 unsigned long *obj_map)
5150 void *addr = slab_address(slab);
5152 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5155 /* Now we know that a valid freelist exists */
5156 __fill_map(obj_map, s, slab);
5157 for_each_object(p, s, addr, slab->objects) {
5158 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5159 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5161 if (!check_object(s, slab, p, val))
5166 static int validate_slab_node(struct kmem_cache *s,
5167 struct kmem_cache_node *n, unsigned long *obj_map)
5169 unsigned long count = 0;
5171 unsigned long flags;
5173 spin_lock_irqsave(&n->list_lock, flags);
5175 list_for_each_entry(slab, &n->partial, slab_list) {
5176 validate_slab(s, slab, obj_map);
5179 if (count != n->nr_partial) {
5180 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5181 s->name, count, n->nr_partial);
5182 slab_add_kunit_errors();
5185 if (!(s->flags & SLAB_STORE_USER))
5188 list_for_each_entry(slab, &n->full, slab_list) {
5189 validate_slab(s, slab, obj_map);
5192 if (count != node_nr_slabs(n)) {
5193 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5194 s->name, count, node_nr_slabs(n));
5195 slab_add_kunit_errors();
5199 spin_unlock_irqrestore(&n->list_lock, flags);
5203 long validate_slab_cache(struct kmem_cache *s)
5206 unsigned long count = 0;
5207 struct kmem_cache_node *n;
5208 unsigned long *obj_map;
5210 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5215 for_each_kmem_cache_node(s, node, n)
5216 count += validate_slab_node(s, n, obj_map);
5218 bitmap_free(obj_map);
5222 EXPORT_SYMBOL(validate_slab_cache);
5224 #ifdef CONFIG_DEBUG_FS
5226 * Generate lists of code addresses where slabcache objects are allocated
5231 depot_stack_handle_t handle;
5232 unsigned long count;
5234 unsigned long waste;
5240 DECLARE_BITMAP(cpus, NR_CPUS);
5246 unsigned long count;
5247 struct location *loc;
5251 static struct dentry *slab_debugfs_root;
5253 static void free_loc_track(struct loc_track *t)
5256 free_pages((unsigned long)t->loc,
5257 get_order(sizeof(struct location) * t->max));
5260 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5265 order = get_order(sizeof(struct location) * max);
5267 l = (void *)__get_free_pages(flags, order);
5272 memcpy(l, t->loc, sizeof(struct location) * t->count);
5280 static int add_location(struct loc_track *t, struct kmem_cache *s,
5281 const struct track *track,
5282 unsigned int orig_size)
5284 long start, end, pos;
5286 unsigned long caddr, chandle, cwaste;
5287 unsigned long age = jiffies - track->when;
5288 depot_stack_handle_t handle = 0;
5289 unsigned int waste = s->object_size - orig_size;
5291 #ifdef CONFIG_STACKDEPOT
5292 handle = READ_ONCE(track->handle);
5298 pos = start + (end - start + 1) / 2;
5301 * There is nothing at "end". If we end up there
5302 * we need to add something to before end.
5309 chandle = l->handle;
5311 if ((track->addr == caddr) && (handle == chandle) &&
5312 (waste == cwaste)) {
5317 if (age < l->min_time)
5319 if (age > l->max_time)
5322 if (track->pid < l->min_pid)
5323 l->min_pid = track->pid;
5324 if (track->pid > l->max_pid)
5325 l->max_pid = track->pid;
5327 cpumask_set_cpu(track->cpu,
5328 to_cpumask(l->cpus));
5330 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5334 if (track->addr < caddr)
5336 else if (track->addr == caddr && handle < chandle)
5338 else if (track->addr == caddr && handle == chandle &&
5346 * Not found. Insert new tracking element.
5348 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5354 (t->count - pos) * sizeof(struct location));
5357 l->addr = track->addr;
5361 l->min_pid = track->pid;
5362 l->max_pid = track->pid;
5365 cpumask_clear(to_cpumask(l->cpus));
5366 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5367 nodes_clear(l->nodes);
5368 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5372 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5373 struct slab *slab, enum track_item alloc,
5374 unsigned long *obj_map)
5376 void *addr = slab_address(slab);
5377 bool is_alloc = (alloc == TRACK_ALLOC);
5380 __fill_map(obj_map, s, slab);
5382 for_each_object(p, s, addr, slab->objects)
5383 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5384 add_location(t, s, get_track(s, p, alloc),
5385 is_alloc ? get_orig_size(s, p) :
5388 #endif /* CONFIG_DEBUG_FS */
5389 #endif /* CONFIG_SLUB_DEBUG */
5391 #ifdef SLAB_SUPPORTS_SYSFS
5392 enum slab_stat_type {
5393 SL_ALL, /* All slabs */
5394 SL_PARTIAL, /* Only partially allocated slabs */
5395 SL_CPU, /* Only slabs used for cpu caches */
5396 SL_OBJECTS, /* Determine allocated objects not slabs */
5397 SL_TOTAL /* Determine object capacity not slabs */
5400 #define SO_ALL (1 << SL_ALL)
5401 #define SO_PARTIAL (1 << SL_PARTIAL)
5402 #define SO_CPU (1 << SL_CPU)
5403 #define SO_OBJECTS (1 << SL_OBJECTS)
5404 #define SO_TOTAL (1 << SL_TOTAL)
5406 static ssize_t show_slab_objects(struct kmem_cache *s,
5407 char *buf, unsigned long flags)
5409 unsigned long total = 0;
5412 unsigned long *nodes;
5415 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5419 if (flags & SO_CPU) {
5422 for_each_possible_cpu(cpu) {
5423 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5428 slab = READ_ONCE(c->slab);
5432 node = slab_nid(slab);
5433 if (flags & SO_TOTAL)
5435 else if (flags & SO_OBJECTS)
5443 #ifdef CONFIG_SLUB_CPU_PARTIAL
5444 slab = slub_percpu_partial_read_once(c);
5446 node = slab_nid(slab);
5447 if (flags & SO_TOTAL)
5449 else if (flags & SO_OBJECTS)
5461 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5462 * already held which will conflict with an existing lock order:
5464 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5466 * We don't really need mem_hotplug_lock (to hold off
5467 * slab_mem_going_offline_callback) here because slab's memory hot
5468 * unplug code doesn't destroy the kmem_cache->node[] data.
5471 #ifdef CONFIG_SLUB_DEBUG
5472 if (flags & SO_ALL) {
5473 struct kmem_cache_node *n;
5475 for_each_kmem_cache_node(s, node, n) {
5477 if (flags & SO_TOTAL)
5478 x = node_nr_objs(n);
5479 else if (flags & SO_OBJECTS)
5480 x = node_nr_objs(n) - count_partial(n, count_free);
5482 x = node_nr_slabs(n);
5489 if (flags & SO_PARTIAL) {
5490 struct kmem_cache_node *n;
5492 for_each_kmem_cache_node(s, node, n) {
5493 if (flags & SO_TOTAL)
5494 x = count_partial(n, count_total);
5495 else if (flags & SO_OBJECTS)
5496 x = count_partial(n, count_inuse);
5504 len += sysfs_emit_at(buf, len, "%lu", total);
5506 for (node = 0; node < nr_node_ids; node++) {
5508 len += sysfs_emit_at(buf, len, " N%d=%lu",
5512 len += sysfs_emit_at(buf, len, "\n");
5518 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5519 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5521 struct slab_attribute {
5522 struct attribute attr;
5523 ssize_t (*show)(struct kmem_cache *s, char *buf);
5524 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5527 #define SLAB_ATTR_RO(_name) \
5528 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5530 #define SLAB_ATTR(_name) \
5531 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5533 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5535 return sysfs_emit(buf, "%u\n", s->size);
5537 SLAB_ATTR_RO(slab_size);
5539 static ssize_t align_show(struct kmem_cache *s, char *buf)
5541 return sysfs_emit(buf, "%u\n", s->align);
5543 SLAB_ATTR_RO(align);
5545 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5547 return sysfs_emit(buf, "%u\n", s->object_size);
5549 SLAB_ATTR_RO(object_size);
5551 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5553 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5555 SLAB_ATTR_RO(objs_per_slab);
5557 static ssize_t order_show(struct kmem_cache *s, char *buf)
5559 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5561 SLAB_ATTR_RO(order);
5563 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5565 return sysfs_emit(buf, "%lu\n", s->min_partial);
5568 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5574 err = kstrtoul(buf, 10, &min);
5578 s->min_partial = min;
5581 SLAB_ATTR(min_partial);
5583 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5585 unsigned int nr_partial = 0;
5586 #ifdef CONFIG_SLUB_CPU_PARTIAL
5587 nr_partial = s->cpu_partial;
5590 return sysfs_emit(buf, "%u\n", nr_partial);
5593 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5596 unsigned int objects;
5599 err = kstrtouint(buf, 10, &objects);
5602 if (objects && !kmem_cache_has_cpu_partial(s))
5605 slub_set_cpu_partial(s, objects);
5609 SLAB_ATTR(cpu_partial);
5611 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5615 return sysfs_emit(buf, "%pS\n", s->ctor);
5619 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5621 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5623 SLAB_ATTR_RO(aliases);
5625 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5627 return show_slab_objects(s, buf, SO_PARTIAL);
5629 SLAB_ATTR_RO(partial);
5631 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5633 return show_slab_objects(s, buf, SO_CPU);
5635 SLAB_ATTR_RO(cpu_slabs);
5637 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5639 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5641 SLAB_ATTR_RO(objects_partial);
5643 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5647 int cpu __maybe_unused;
5650 #ifdef CONFIG_SLUB_CPU_PARTIAL
5651 for_each_online_cpu(cpu) {
5654 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5657 slabs += slab->slabs;
5661 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5662 objects = (slabs * oo_objects(s->oo)) / 2;
5663 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5665 #ifdef CONFIG_SLUB_CPU_PARTIAL
5666 for_each_online_cpu(cpu) {
5669 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5671 slabs = READ_ONCE(slab->slabs);
5672 objects = (slabs * oo_objects(s->oo)) / 2;
5673 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5674 cpu, objects, slabs);
5678 len += sysfs_emit_at(buf, len, "\n");
5682 SLAB_ATTR_RO(slabs_cpu_partial);
5684 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5686 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5688 SLAB_ATTR_RO(reclaim_account);
5690 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5692 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5694 SLAB_ATTR_RO(hwcache_align);
5696 #ifdef CONFIG_ZONE_DMA
5697 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5699 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5701 SLAB_ATTR_RO(cache_dma);
5704 #ifdef CONFIG_HARDENED_USERCOPY
5705 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5707 return sysfs_emit(buf, "%u\n", s->usersize);
5709 SLAB_ATTR_RO(usersize);
5712 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5714 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5716 SLAB_ATTR_RO(destroy_by_rcu);
5718 #ifdef CONFIG_SLUB_DEBUG
5719 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5721 return show_slab_objects(s, buf, SO_ALL);
5723 SLAB_ATTR_RO(slabs);
5725 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5727 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5729 SLAB_ATTR_RO(total_objects);
5731 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5733 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5735 SLAB_ATTR_RO(objects);
5737 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5739 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5741 SLAB_ATTR_RO(sanity_checks);
5743 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5745 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5747 SLAB_ATTR_RO(trace);
5749 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5751 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5754 SLAB_ATTR_RO(red_zone);
5756 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5758 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5761 SLAB_ATTR_RO(poison);
5763 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5765 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5768 SLAB_ATTR_RO(store_user);
5770 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5775 static ssize_t validate_store(struct kmem_cache *s,
5776 const char *buf, size_t length)
5780 if (buf[0] == '1' && kmem_cache_debug(s)) {
5781 ret = validate_slab_cache(s);
5787 SLAB_ATTR(validate);
5789 #endif /* CONFIG_SLUB_DEBUG */
5791 #ifdef CONFIG_FAILSLAB
5792 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5794 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5797 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5800 if (s->refcount > 1)
5804 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5806 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5810 SLAB_ATTR(failslab);
5813 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5818 static ssize_t shrink_store(struct kmem_cache *s,
5819 const char *buf, size_t length)
5822 kmem_cache_shrink(s);
5830 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5832 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5835 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5836 const char *buf, size_t length)
5841 err = kstrtouint(buf, 10, &ratio);
5847 s->remote_node_defrag_ratio = ratio * 10;
5851 SLAB_ATTR(remote_node_defrag_ratio);
5854 #ifdef CONFIG_SLUB_STATS
5855 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5857 unsigned long sum = 0;
5860 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5865 for_each_online_cpu(cpu) {
5866 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5872 len += sysfs_emit_at(buf, len, "%lu", sum);
5875 for_each_online_cpu(cpu) {
5877 len += sysfs_emit_at(buf, len, " C%d=%u",
5882 len += sysfs_emit_at(buf, len, "\n");
5887 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5891 for_each_online_cpu(cpu)
5892 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5895 #define STAT_ATTR(si, text) \
5896 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5898 return show_stat(s, buf, si); \
5900 static ssize_t text##_store(struct kmem_cache *s, \
5901 const char *buf, size_t length) \
5903 if (buf[0] != '0') \
5905 clear_stat(s, si); \
5910 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5911 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5912 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5913 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5914 STAT_ATTR(FREE_FROZEN, free_frozen);
5915 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5916 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5917 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5918 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5919 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5920 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5921 STAT_ATTR(FREE_SLAB, free_slab);
5922 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5923 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5924 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5925 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5926 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5927 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5928 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5929 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5930 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5931 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5932 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5933 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5934 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5935 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5936 #endif /* CONFIG_SLUB_STATS */
5938 #ifdef CONFIG_KFENCE
5939 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5941 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5944 static ssize_t skip_kfence_store(struct kmem_cache *s,
5945 const char *buf, size_t length)
5950 s->flags &= ~SLAB_SKIP_KFENCE;
5951 else if (buf[0] == '1')
5952 s->flags |= SLAB_SKIP_KFENCE;
5958 SLAB_ATTR(skip_kfence);
5961 static struct attribute *slab_attrs[] = {
5962 &slab_size_attr.attr,
5963 &object_size_attr.attr,
5964 &objs_per_slab_attr.attr,
5966 &min_partial_attr.attr,
5967 &cpu_partial_attr.attr,
5968 &objects_partial_attr.attr,
5970 &cpu_slabs_attr.attr,
5974 &hwcache_align_attr.attr,
5975 &reclaim_account_attr.attr,
5976 &destroy_by_rcu_attr.attr,
5978 &slabs_cpu_partial_attr.attr,
5979 #ifdef CONFIG_SLUB_DEBUG
5980 &total_objects_attr.attr,
5983 &sanity_checks_attr.attr,
5985 &red_zone_attr.attr,
5987 &store_user_attr.attr,
5988 &validate_attr.attr,
5990 #ifdef CONFIG_ZONE_DMA
5991 &cache_dma_attr.attr,
5994 &remote_node_defrag_ratio_attr.attr,
5996 #ifdef CONFIG_SLUB_STATS
5997 &alloc_fastpath_attr.attr,
5998 &alloc_slowpath_attr.attr,
5999 &free_fastpath_attr.attr,
6000 &free_slowpath_attr.attr,
6001 &free_frozen_attr.attr,
6002 &free_add_partial_attr.attr,
6003 &free_remove_partial_attr.attr,
6004 &alloc_from_partial_attr.attr,
6005 &alloc_slab_attr.attr,
6006 &alloc_refill_attr.attr,
6007 &alloc_node_mismatch_attr.attr,
6008 &free_slab_attr.attr,
6009 &cpuslab_flush_attr.attr,
6010 &deactivate_full_attr.attr,
6011 &deactivate_empty_attr.attr,
6012 &deactivate_to_head_attr.attr,
6013 &deactivate_to_tail_attr.attr,
6014 &deactivate_remote_frees_attr.attr,
6015 &deactivate_bypass_attr.attr,
6016 &order_fallback_attr.attr,
6017 &cmpxchg_double_fail_attr.attr,
6018 &cmpxchg_double_cpu_fail_attr.attr,
6019 &cpu_partial_alloc_attr.attr,
6020 &cpu_partial_free_attr.attr,
6021 &cpu_partial_node_attr.attr,
6022 &cpu_partial_drain_attr.attr,
6024 #ifdef CONFIG_FAILSLAB
6025 &failslab_attr.attr,
6027 #ifdef CONFIG_HARDENED_USERCOPY
6028 &usersize_attr.attr,
6030 #ifdef CONFIG_KFENCE
6031 &skip_kfence_attr.attr,
6037 static const struct attribute_group slab_attr_group = {
6038 .attrs = slab_attrs,
6041 static ssize_t slab_attr_show(struct kobject *kobj,
6042 struct attribute *attr,
6045 struct slab_attribute *attribute;
6046 struct kmem_cache *s;
6048 attribute = to_slab_attr(attr);
6051 if (!attribute->show)
6054 return attribute->show(s, buf);
6057 static ssize_t slab_attr_store(struct kobject *kobj,
6058 struct attribute *attr,
6059 const char *buf, size_t len)
6061 struct slab_attribute *attribute;
6062 struct kmem_cache *s;
6064 attribute = to_slab_attr(attr);
6067 if (!attribute->store)
6070 return attribute->store(s, buf, len);
6073 static void kmem_cache_release(struct kobject *k)
6075 slab_kmem_cache_release(to_slab(k));
6078 static const struct sysfs_ops slab_sysfs_ops = {
6079 .show = slab_attr_show,
6080 .store = slab_attr_store,
6083 static const struct kobj_type slab_ktype = {
6084 .sysfs_ops = &slab_sysfs_ops,
6085 .release = kmem_cache_release,
6088 static struct kset *slab_kset;
6090 static inline struct kset *cache_kset(struct kmem_cache *s)
6095 #define ID_STR_LENGTH 32
6097 /* Create a unique string id for a slab cache:
6099 * Format :[flags-]size
6101 static char *create_unique_id(struct kmem_cache *s)
6103 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6107 return ERR_PTR(-ENOMEM);
6111 * First flags affecting slabcache operations. We will only
6112 * get here for aliasable slabs so we do not need to support
6113 * too many flags. The flags here must cover all flags that
6114 * are matched during merging to guarantee that the id is
6117 if (s->flags & SLAB_CACHE_DMA)
6119 if (s->flags & SLAB_CACHE_DMA32)
6121 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6123 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6125 if (s->flags & SLAB_ACCOUNT)
6129 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6131 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6133 return ERR_PTR(-EINVAL);
6135 kmsan_unpoison_memory(name, p - name);
6139 static int sysfs_slab_add(struct kmem_cache *s)
6143 struct kset *kset = cache_kset(s);
6144 int unmergeable = slab_unmergeable(s);
6146 if (!unmergeable && disable_higher_order_debug &&
6147 (slub_debug & DEBUG_METADATA_FLAGS))
6152 * Slabcache can never be merged so we can use the name proper.
6153 * This is typically the case for debug situations. In that
6154 * case we can catch duplicate names easily.
6156 sysfs_remove_link(&slab_kset->kobj, s->name);
6160 * Create a unique name for the slab as a target
6163 name = create_unique_id(s);
6165 return PTR_ERR(name);
6168 s->kobj.kset = kset;
6169 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6173 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6178 /* Setup first alias */
6179 sysfs_slab_alias(s, s->name);
6186 kobject_del(&s->kobj);
6190 void sysfs_slab_unlink(struct kmem_cache *s)
6192 if (slab_state >= FULL)
6193 kobject_del(&s->kobj);
6196 void sysfs_slab_release(struct kmem_cache *s)
6198 if (slab_state >= FULL)
6199 kobject_put(&s->kobj);
6203 * Need to buffer aliases during bootup until sysfs becomes
6204 * available lest we lose that information.
6206 struct saved_alias {
6207 struct kmem_cache *s;
6209 struct saved_alias *next;
6212 static struct saved_alias *alias_list;
6214 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6216 struct saved_alias *al;
6218 if (slab_state == FULL) {
6220 * If we have a leftover link then remove it.
6222 sysfs_remove_link(&slab_kset->kobj, name);
6223 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6226 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6232 al->next = alias_list;
6234 kmsan_unpoison_memory(al, sizeof(*al));
6238 static int __init slab_sysfs_init(void)
6240 struct kmem_cache *s;
6243 mutex_lock(&slab_mutex);
6245 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6247 mutex_unlock(&slab_mutex);
6248 pr_err("Cannot register slab subsystem.\n");
6254 list_for_each_entry(s, &slab_caches, list) {
6255 err = sysfs_slab_add(s);
6257 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6261 while (alias_list) {
6262 struct saved_alias *al = alias_list;
6264 alias_list = alias_list->next;
6265 err = sysfs_slab_alias(al->s, al->name);
6267 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6272 mutex_unlock(&slab_mutex);
6275 late_initcall(slab_sysfs_init);
6276 #endif /* SLAB_SUPPORTS_SYSFS */
6278 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6279 static int slab_debugfs_show(struct seq_file *seq, void *v)
6281 struct loc_track *t = seq->private;
6285 idx = (unsigned long) t->idx;
6286 if (idx < t->count) {
6289 seq_printf(seq, "%7ld ", l->count);
6292 seq_printf(seq, "%pS", (void *)l->addr);
6294 seq_puts(seq, "<not-available>");
6297 seq_printf(seq, " waste=%lu/%lu",
6298 l->count * l->waste, l->waste);
6300 if (l->sum_time != l->min_time) {
6301 seq_printf(seq, " age=%ld/%llu/%ld",
6302 l->min_time, div_u64(l->sum_time, l->count),
6305 seq_printf(seq, " age=%ld", l->min_time);
6307 if (l->min_pid != l->max_pid)
6308 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6310 seq_printf(seq, " pid=%ld",
6313 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6314 seq_printf(seq, " cpus=%*pbl",
6315 cpumask_pr_args(to_cpumask(l->cpus)));
6317 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6318 seq_printf(seq, " nodes=%*pbl",
6319 nodemask_pr_args(&l->nodes));
6321 #ifdef CONFIG_STACKDEPOT
6323 depot_stack_handle_t handle;
6324 unsigned long *entries;
6325 unsigned int nr_entries, j;
6327 handle = READ_ONCE(l->handle);
6329 nr_entries = stack_depot_fetch(handle, &entries);
6330 seq_puts(seq, "\n");
6331 for (j = 0; j < nr_entries; j++)
6332 seq_printf(seq, " %pS\n", (void *)entries[j]);
6336 seq_puts(seq, "\n");
6339 if (!idx && !t->count)
6340 seq_puts(seq, "No data\n");
6345 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6349 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6351 struct loc_track *t = seq->private;
6354 if (*ppos <= t->count)
6360 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6362 struct location *loc1 = (struct location *)a;
6363 struct location *loc2 = (struct location *)b;
6365 if (loc1->count > loc2->count)
6371 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6373 struct loc_track *t = seq->private;
6379 static const struct seq_operations slab_debugfs_sops = {
6380 .start = slab_debugfs_start,
6381 .next = slab_debugfs_next,
6382 .stop = slab_debugfs_stop,
6383 .show = slab_debugfs_show,
6386 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6389 struct kmem_cache_node *n;
6390 enum track_item alloc;
6392 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6393 sizeof(struct loc_track));
6394 struct kmem_cache *s = file_inode(filep)->i_private;
6395 unsigned long *obj_map;
6400 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6402 seq_release_private(inode, filep);
6406 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6407 alloc = TRACK_ALLOC;
6411 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6412 bitmap_free(obj_map);
6413 seq_release_private(inode, filep);
6417 for_each_kmem_cache_node(s, node, n) {
6418 unsigned long flags;
6421 if (!node_nr_slabs(n))
6424 spin_lock_irqsave(&n->list_lock, flags);
6425 list_for_each_entry(slab, &n->partial, slab_list)
6426 process_slab(t, s, slab, alloc, obj_map);
6427 list_for_each_entry(slab, &n->full, slab_list)
6428 process_slab(t, s, slab, alloc, obj_map);
6429 spin_unlock_irqrestore(&n->list_lock, flags);
6432 /* Sort locations by count */
6433 sort_r(t->loc, t->count, sizeof(struct location),
6434 cmp_loc_by_count, NULL, NULL);
6436 bitmap_free(obj_map);
6440 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6442 struct seq_file *seq = file->private_data;
6443 struct loc_track *t = seq->private;
6446 return seq_release_private(inode, file);
6449 static const struct file_operations slab_debugfs_fops = {
6450 .open = slab_debug_trace_open,
6452 .llseek = seq_lseek,
6453 .release = slab_debug_trace_release,
6456 static void debugfs_slab_add(struct kmem_cache *s)
6458 struct dentry *slab_cache_dir;
6460 if (unlikely(!slab_debugfs_root))
6463 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6465 debugfs_create_file("alloc_traces", 0400,
6466 slab_cache_dir, s, &slab_debugfs_fops);
6468 debugfs_create_file("free_traces", 0400,
6469 slab_cache_dir, s, &slab_debugfs_fops);
6472 void debugfs_slab_release(struct kmem_cache *s)
6474 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6477 static int __init slab_debugfs_init(void)
6479 struct kmem_cache *s;
6481 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6483 list_for_each_entry(s, &slab_caches, list)
6484 if (s->flags & SLAB_STORE_USER)
6485 debugfs_slab_add(s);
6490 __initcall(slab_debugfs_init);
6493 * The /proc/slabinfo ABI
6495 #ifdef CONFIG_SLUB_DEBUG
6496 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6498 unsigned long nr_slabs = 0;
6499 unsigned long nr_objs = 0;
6500 unsigned long nr_free = 0;
6502 struct kmem_cache_node *n;
6504 for_each_kmem_cache_node(s, node, n) {
6505 nr_slabs += node_nr_slabs(n);
6506 nr_objs += node_nr_objs(n);
6507 nr_free += count_partial(n, count_free);
6510 sinfo->active_objs = nr_objs - nr_free;
6511 sinfo->num_objs = nr_objs;
6512 sinfo->active_slabs = nr_slabs;
6513 sinfo->num_slabs = nr_slabs;
6514 sinfo->objects_per_slab = oo_objects(s->oo);
6515 sinfo->cache_order = oo_order(s->oo);
6518 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6522 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6523 size_t count, loff_t *ppos)
6527 #endif /* CONFIG_SLUB_DEBUG */