1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmemcheck.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
40 #include <trace/events/kmem.h>
46 * 1. slab_mutex (Global Mutex)
48 * 3. slab_lock(page) (Only on some arches and for debugging)
52 * The role of the slab_mutex is to protect the list of all the slabs
53 * and to synchronize major metadata changes to slab cache structures.
55 * The slab_lock is only used for debugging and on arches that do not
56 * have the ability to do a cmpxchg_double. It only protects the second
57 * double word in the page struct. Meaning
58 * A. page->freelist -> List of object free in a page
59 * B. page->counters -> Counters of objects
60 * C. page->frozen -> frozen state
62 * If a slab is frozen then it is exempt from list management. It is not
63 * on any list. The processor that froze the slab is the one who can
64 * perform list operations on the page. Other processors may put objects
65 * onto the freelist but the processor that froze the slab is the only
66 * one that can retrieve the objects from the page's freelist.
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
97 * Overloading of page flags that are otherwise used for LRU management.
99 * PageActive The slab is frozen and exempt from list processing.
100 * This means that the slab is dedicated to a purpose
101 * such as satisfying allocations for a specific
102 * processor. Objects may be freed in the slab while
103 * it is frozen but slab_free will then skip the usual
104 * list operations. It is up to the processor holding
105 * the slab to integrate the slab into the slab lists
106 * when the slab is no longer needed.
108 * One use of this flag is to mark slabs that are
109 * used for allocations. Then such a slab becomes a cpu
110 * slab. The cpu slab may be equipped with an additional
111 * freelist that allows lockless access to
112 * free objects in addition to the regular freelist
113 * that requires the slab lock.
115 * PageError Slab requires special handling due to debug
116 * options set. This moves slab handling out of
117 * the fast path and disables lockless freelists.
120 static inline int kmem_cache_debug(struct kmem_cache *s)
122 #ifdef CONFIG_SLUB_DEBUG
123 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
129 void *fixup_red_left(struct kmem_cache *s, void *p)
131 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 p += s->red_left_pad;
137 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 #ifdef CONFIG_SLUB_CPU_PARTIAL
140 return !kmem_cache_debug(s);
147 * Issues still to be resolved:
149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 * - Variable sizing of the per node arrays
154 /* Enable to test recovery from slab corruption on boot */
155 #undef SLUB_RESILIENCY_TEST
157 /* Enable to log cmpxchg failures */
158 #undef SLUB_DEBUG_CMPXCHG
161 * Mininum number of partial slabs. These will be left on the partial
162 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 #define MIN_PARTIAL 5
167 * Maximum number of desirable partial slabs.
168 * The existence of more partial slabs makes kmem_cache_shrink
169 * sort the partial list by the number of objects in use.
171 #define MAX_PARTIAL 10
173 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_STORE_USER)
177 * These debug flags cannot use CMPXCHG because there might be consistency
178 * issues when checking or reading debug information
180 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
185 * Debugging flags that require metadata to be stored in the slab. These get
186 * disabled when slub_debug=O is used and a cache's min order increases with
189 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 #define OO_MASK ((1 << OO_SHIFT) - 1)
193 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
195 /* Internal SLUB flags */
197 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000UL)
198 /* Use cmpxchg_double */
199 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000UL)
202 * Tracking user of a slab.
204 #define TRACK_ADDRS_COUNT 16
206 unsigned long addr; /* Called from address */
207 #ifdef CONFIG_STACKTRACE
208 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
210 int cpu; /* Was running on cpu */
211 int pid; /* Pid context */
212 unsigned long when; /* When did the operation occur */
215 enum track_item { TRACK_ALLOC, TRACK_FREE };
218 static int sysfs_slab_add(struct kmem_cache *);
219 static int sysfs_slab_alias(struct kmem_cache *, const char *);
220 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
221 static void sysfs_slab_remove(struct kmem_cache *s);
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
226 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
227 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
230 static inline void stat(const struct kmem_cache *s, enum stat_item si)
232 #ifdef CONFIG_SLUB_STATS
234 * The rmw is racy on a preemptible kernel but this is acceptable, so
235 * avoid this_cpu_add()'s irq-disable overhead.
237 raw_cpu_inc(s->cpu_slab->stat[si]);
241 /********************************************************************
242 * Core slab cache functions
243 *******************************************************************/
246 * Returns freelist pointer (ptr). With hardening, this is obfuscated
247 * with an XOR of the address where the pointer is held and a per-cache
250 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
251 unsigned long ptr_addr)
253 #ifdef CONFIG_SLAB_FREELIST_HARDENED
254 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
260 /* Returns the freelist pointer recorded at location ptr_addr. */
261 static inline void *freelist_dereference(const struct kmem_cache *s,
264 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
265 (unsigned long)ptr_addr);
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
270 return freelist_dereference(s, object + s->offset);
273 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
276 prefetch(freelist_dereference(s, object + s->offset));
279 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
281 unsigned long freepointer_addr;
284 if (!debug_pagealloc_enabled())
285 return get_freepointer(s, object);
287 freepointer_addr = (unsigned long)object + s->offset;
288 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
289 return freelist_ptr(s, p, freepointer_addr);
292 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
294 unsigned long freeptr_addr = (unsigned long)object + s->offset;
296 #ifdef CONFIG_SLAB_FREELIST_HARDENED
297 BUG_ON(object == fp); /* naive detection of double free or corruption */
300 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
303 /* Loop over all objects in a slab */
304 #define for_each_object(__p, __s, __addr, __objects) \
305 for (__p = fixup_red_left(__s, __addr); \
306 __p < (__addr) + (__objects) * (__s)->size; \
309 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
310 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
311 __idx <= __objects; \
312 __p += (__s)->size, __idx++)
314 /* Determine object index from a given position */
315 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
317 return (p - addr) / s->size;
320 static inline int order_objects(int order, unsigned long size, int reserved)
322 return ((PAGE_SIZE << order) - reserved) / size;
325 static inline struct kmem_cache_order_objects oo_make(int order,
326 unsigned long size, int reserved)
328 struct kmem_cache_order_objects x = {
329 (order << OO_SHIFT) + order_objects(order, size, reserved)
335 static inline int oo_order(struct kmem_cache_order_objects x)
337 return x.x >> OO_SHIFT;
340 static inline int oo_objects(struct kmem_cache_order_objects x)
342 return x.x & OO_MASK;
346 * Per slab locking using the pagelock
348 static __always_inline void slab_lock(struct page *page)
350 VM_BUG_ON_PAGE(PageTail(page), page);
351 bit_spin_lock(PG_locked, &page->flags);
354 static __always_inline void slab_unlock(struct page *page)
356 VM_BUG_ON_PAGE(PageTail(page), page);
357 __bit_spin_unlock(PG_locked, &page->flags);
360 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
363 tmp.counters = counters_new;
365 * page->counters can cover frozen/inuse/objects as well
366 * as page->_refcount. If we assign to ->counters directly
367 * we run the risk of losing updates to page->_refcount, so
368 * be careful and only assign to the fields we need.
370 page->frozen = tmp.frozen;
371 page->inuse = tmp.inuse;
372 page->objects = tmp.objects;
375 /* Interrupts must be disabled (for the fallback code to work right) */
376 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
377 void *freelist_old, unsigned long counters_old,
378 void *freelist_new, unsigned long counters_new,
381 VM_BUG_ON(!irqs_disabled());
382 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
384 if (s->flags & __CMPXCHG_DOUBLE) {
385 if (cmpxchg_double(&page->freelist, &page->counters,
386 freelist_old, counters_old,
387 freelist_new, counters_new))
393 if (page->freelist == freelist_old &&
394 page->counters == counters_old) {
395 page->freelist = freelist_new;
396 set_page_slub_counters(page, counters_new);
404 stat(s, CMPXCHG_DOUBLE_FAIL);
406 #ifdef SLUB_DEBUG_CMPXCHG
407 pr_info("%s %s: cmpxchg double redo ", n, s->name);
413 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
414 void *freelist_old, unsigned long counters_old,
415 void *freelist_new, unsigned long counters_new,
418 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
419 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
420 if (s->flags & __CMPXCHG_DOUBLE) {
421 if (cmpxchg_double(&page->freelist, &page->counters,
422 freelist_old, counters_old,
423 freelist_new, counters_new))
430 local_irq_save(flags);
432 if (page->freelist == freelist_old &&
433 page->counters == counters_old) {
434 page->freelist = freelist_new;
435 set_page_slub_counters(page, counters_new);
437 local_irq_restore(flags);
441 local_irq_restore(flags);
445 stat(s, CMPXCHG_DOUBLE_FAIL);
447 #ifdef SLUB_DEBUG_CMPXCHG
448 pr_info("%s %s: cmpxchg double redo ", n, s->name);
454 #ifdef CONFIG_SLUB_DEBUG
456 * Determine a map of object in use on a page.
458 * Node listlock must be held to guarantee that the page does
459 * not vanish from under us.
461 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
464 void *addr = page_address(page);
466 for (p = page->freelist; p; p = get_freepointer(s, p))
467 set_bit(slab_index(p, s, addr), map);
470 static inline int size_from_object(struct kmem_cache *s)
472 if (s->flags & SLAB_RED_ZONE)
473 return s->size - s->red_left_pad;
478 static inline void *restore_red_left(struct kmem_cache *s, void *p)
480 if (s->flags & SLAB_RED_ZONE)
481 p -= s->red_left_pad;
489 #if defined(CONFIG_SLUB_DEBUG_ON)
490 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
492 static slab_flags_t slub_debug;
495 static char *slub_debug_slabs;
496 static int disable_higher_order_debug;
499 * slub is about to manipulate internal object metadata. This memory lies
500 * outside the range of the allocated object, so accessing it would normally
501 * be reported by kasan as a bounds error. metadata_access_enable() is used
502 * to tell kasan that these accesses are OK.
504 static inline void metadata_access_enable(void)
506 kasan_disable_current();
509 static inline void metadata_access_disable(void)
511 kasan_enable_current();
518 /* Verify that a pointer has an address that is valid within a slab page */
519 static inline int check_valid_pointer(struct kmem_cache *s,
520 struct page *page, void *object)
527 base = page_address(page);
528 object = restore_red_left(s, object);
529 if (object < base || object >= base + page->objects * s->size ||
530 (object - base) % s->size) {
537 static void print_section(char *level, char *text, u8 *addr,
540 metadata_access_enable();
541 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
543 metadata_access_disable();
546 static struct track *get_track(struct kmem_cache *s, void *object,
547 enum track_item alloc)
552 p = object + s->offset + sizeof(void *);
554 p = object + s->inuse;
559 static void set_track(struct kmem_cache *s, void *object,
560 enum track_item alloc, unsigned long addr)
562 struct track *p = get_track(s, object, alloc);
565 #ifdef CONFIG_STACKTRACE
566 struct stack_trace trace;
569 trace.nr_entries = 0;
570 trace.max_entries = TRACK_ADDRS_COUNT;
571 trace.entries = p->addrs;
573 metadata_access_enable();
574 save_stack_trace(&trace);
575 metadata_access_disable();
577 /* See rant in lockdep.c */
578 if (trace.nr_entries != 0 &&
579 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
582 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
586 p->cpu = smp_processor_id();
587 p->pid = current->pid;
590 memset(p, 0, sizeof(struct track));
593 static void init_tracking(struct kmem_cache *s, void *object)
595 if (!(s->flags & SLAB_STORE_USER))
598 set_track(s, object, TRACK_FREE, 0UL);
599 set_track(s, object, TRACK_ALLOC, 0UL);
602 static void print_track(const char *s, struct track *t)
607 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
608 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
609 #ifdef CONFIG_STACKTRACE
612 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
614 pr_err("\t%pS\n", (void *)t->addrs[i]);
621 static void print_tracking(struct kmem_cache *s, void *object)
623 if (!(s->flags & SLAB_STORE_USER))
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
627 print_track("Freed", get_track(s, object, TRACK_FREE));
630 static void print_page_info(struct page *page)
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page, page->objects, page->inuse, page->freelist, page->flags);
637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
639 struct va_format vaf;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 pr_err("-----------------------------------------------------------------------------\n\n");
649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
655 struct va_format vaf;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
667 unsigned int off; /* Offset of last byte */
668 u8 *addr = page_address(page);
670 print_tracking(s, p);
672 print_page_info(page);
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
677 if (s->flags & SLAB_RED_ZONE)
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
680 else if (p > addr + 16)
681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
683 print_section(KERN_ERR, "Object ", p,
684 min_t(unsigned long, s->object_size, PAGE_SIZE));
685 if (s->flags & SLAB_RED_ZONE)
686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 s->inuse - s->object_size);
690 off = s->offset + sizeof(void *);
694 if (s->flags & SLAB_STORE_USER)
695 off += 2 * sizeof(struct track);
697 off += kasan_metadata_size(s);
699 if (off != size_from_object(s))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
707 void object_err(struct kmem_cache *s, struct page *page,
708 u8 *object, char *reason)
710 slab_bug(s, "%s", reason);
711 print_trailer(s, page, object);
714 static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
721 vsnprintf(buf, sizeof(buf), fmt, args);
723 slab_bug(s, "%s", buf);
724 print_page_info(page);
728 static void init_object(struct kmem_cache *s, void *object, u8 val)
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
735 if (s->flags & __OBJECT_POISON) {
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
740 if (s->flags & SLAB_RED_ZONE)
741 memset(p + s->object_size, val, s->inuse - s->object_size);
744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
753 u8 *start, unsigned int value, unsigned int bytes)
758 metadata_access_enable();
759 fault = memchr_inv(start, value, bytes);
760 metadata_access_disable();
765 while (end > fault && end[-1] == value)
768 slab_bug(s, "%s overwritten", what);
769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
773 restore_bytes(s, what, value, fault, end);
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
788 * object + s->object_size
789 * Padding to reach word boundary. This is also used for Redzoning.
790 * Padding is extended by another word if Redzoning is enabled and
791 * object_size == inuse.
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
797 * Meta data starts here.
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
801 * C. Padding to reach required alignment boundary or at mininum
802 * one word if debugging is on to be able to detect writes
803 * before the word boundary.
805 * Padding is done using 0x5a (POISON_INUSE)
808 * Nothing is used beyond s->size.
810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
811 * ignored. And therefore no slab options that rely on these boundaries
812 * may be used with merged slabcaches.
815 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817 unsigned long off = s->inuse; /* The end of info */
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
827 off += kasan_metadata_size(s);
829 if (size_from_object(s) == off)
832 return check_bytes_and_report(s, page, p, "Object padding",
833 p + off, POISON_INUSE, size_from_object(s) - off);
836 /* Check the pad bytes at the end of a slab page */
837 static int slab_pad_check(struct kmem_cache *s, struct page *page)
845 if (!(s->flags & SLAB_POISON))
848 start = page_address(page);
849 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
850 end = start + length;
851 remainder = length % s->size;
855 metadata_access_enable();
856 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
857 metadata_access_disable();
860 while (end > fault && end[-1] == POISON_INUSE)
863 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
864 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
866 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
870 static int check_object(struct kmem_cache *s, struct page *page,
871 void *object, u8 val)
874 u8 *endobject = object + s->object_size;
876 if (s->flags & SLAB_RED_ZONE) {
877 if (!check_bytes_and_report(s, page, object, "Redzone",
878 object - s->red_left_pad, val, s->red_left_pad))
881 if (!check_bytes_and_report(s, page, object, "Redzone",
882 endobject, val, s->inuse - s->object_size))
885 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
886 check_bytes_and_report(s, page, p, "Alignment padding",
887 endobject, POISON_INUSE,
888 s->inuse - s->object_size);
892 if (s->flags & SLAB_POISON) {
893 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
894 (!check_bytes_and_report(s, page, p, "Poison", p,
895 POISON_FREE, s->object_size - 1) ||
896 !check_bytes_and_report(s, page, p, "Poison",
897 p + s->object_size - 1, POISON_END, 1)))
900 * check_pad_bytes cleans up on its own.
902 check_pad_bytes(s, page, p);
905 if (!s->offset && val == SLUB_RED_ACTIVE)
907 * Object and freepointer overlap. Cannot check
908 * freepointer while object is allocated.
912 /* Check free pointer validity */
913 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
914 object_err(s, page, p, "Freepointer corrupt");
916 * No choice but to zap it and thus lose the remainder
917 * of the free objects in this slab. May cause
918 * another error because the object count is now wrong.
920 set_freepointer(s, p, NULL);
926 static int check_slab(struct kmem_cache *s, struct page *page)
930 VM_BUG_ON(!irqs_disabled());
932 if (!PageSlab(page)) {
933 slab_err(s, page, "Not a valid slab page");
937 maxobj = order_objects(compound_order(page), s->size, s->reserved);
938 if (page->objects > maxobj) {
939 slab_err(s, page, "objects %u > max %u",
940 page->objects, maxobj);
943 if (page->inuse > page->objects) {
944 slab_err(s, page, "inuse %u > max %u",
945 page->inuse, page->objects);
948 /* Slab_pad_check fixes things up after itself */
949 slab_pad_check(s, page);
954 * Determine if a certain object on a page is on the freelist. Must hold the
955 * slab lock to guarantee that the chains are in a consistent state.
957 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
965 while (fp && nr <= page->objects) {
968 if (!check_valid_pointer(s, page, fp)) {
970 object_err(s, page, object,
971 "Freechain corrupt");
972 set_freepointer(s, object, NULL);
974 slab_err(s, page, "Freepointer corrupt");
975 page->freelist = NULL;
976 page->inuse = page->objects;
977 slab_fix(s, "Freelist cleared");
983 fp = get_freepointer(s, object);
987 max_objects = order_objects(compound_order(page), s->size, s->reserved);
988 if (max_objects > MAX_OBJS_PER_PAGE)
989 max_objects = MAX_OBJS_PER_PAGE;
991 if (page->objects != max_objects) {
992 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
993 page->objects, max_objects);
994 page->objects = max_objects;
995 slab_fix(s, "Number of objects adjusted.");
997 if (page->inuse != page->objects - nr) {
998 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
999 page->inuse, page->objects - nr);
1000 page->inuse = page->objects - nr;
1001 slab_fix(s, "Object count adjusted.");
1003 return search == NULL;
1006 static void trace(struct kmem_cache *s, struct page *page, void *object,
1009 if (s->flags & SLAB_TRACE) {
1010 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1012 alloc ? "alloc" : "free",
1013 object, page->inuse,
1017 print_section(KERN_INFO, "Object ", (void *)object,
1025 * Tracking of fully allocated slabs for debugging purposes.
1027 static void add_full(struct kmem_cache *s,
1028 struct kmem_cache_node *n, struct page *page)
1030 if (!(s->flags & SLAB_STORE_USER))
1033 lockdep_assert_held(&n->list_lock);
1034 list_add(&page->lru, &n->full);
1037 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1039 if (!(s->flags & SLAB_STORE_USER))
1042 lockdep_assert_held(&n->list_lock);
1043 list_del(&page->lru);
1046 /* Tracking of the number of slabs for debugging purposes */
1047 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1049 struct kmem_cache_node *n = get_node(s, node);
1051 return atomic_long_read(&n->nr_slabs);
1054 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1056 return atomic_long_read(&n->nr_slabs);
1059 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1061 struct kmem_cache_node *n = get_node(s, node);
1064 * May be called early in order to allocate a slab for the
1065 * kmem_cache_node structure. Solve the chicken-egg
1066 * dilemma by deferring the increment of the count during
1067 * bootstrap (see early_kmem_cache_node_alloc).
1070 atomic_long_inc(&n->nr_slabs);
1071 atomic_long_add(objects, &n->total_objects);
1074 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1076 struct kmem_cache_node *n = get_node(s, node);
1078 atomic_long_dec(&n->nr_slabs);
1079 atomic_long_sub(objects, &n->total_objects);
1082 /* Object debug checks for alloc/free paths */
1083 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1086 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1089 init_object(s, object, SLUB_RED_INACTIVE);
1090 init_tracking(s, object);
1093 static inline int alloc_consistency_checks(struct kmem_cache *s,
1095 void *object, unsigned long addr)
1097 if (!check_slab(s, page))
1100 if (!check_valid_pointer(s, page, object)) {
1101 object_err(s, page, object, "Freelist Pointer check fails");
1105 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1111 static noinline int alloc_debug_processing(struct kmem_cache *s,
1113 void *object, unsigned long addr)
1115 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1116 if (!alloc_consistency_checks(s, page, object, addr))
1120 /* Success perform special debug activities for allocs */
1121 if (s->flags & SLAB_STORE_USER)
1122 set_track(s, object, TRACK_ALLOC, addr);
1123 trace(s, page, object, 1);
1124 init_object(s, object, SLUB_RED_ACTIVE);
1128 if (PageSlab(page)) {
1130 * If this is a slab page then lets do the best we can
1131 * to avoid issues in the future. Marking all objects
1132 * as used avoids touching the remaining objects.
1134 slab_fix(s, "Marking all objects used");
1135 page->inuse = page->objects;
1136 page->freelist = NULL;
1141 static inline int free_consistency_checks(struct kmem_cache *s,
1142 struct page *page, void *object, unsigned long addr)
1144 if (!check_valid_pointer(s, page, object)) {
1145 slab_err(s, page, "Invalid object pointer 0x%p", object);
1149 if (on_freelist(s, page, object)) {
1150 object_err(s, page, object, "Object already free");
1154 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1157 if (unlikely(s != page->slab_cache)) {
1158 if (!PageSlab(page)) {
1159 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1161 } else if (!page->slab_cache) {
1162 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1166 object_err(s, page, object,
1167 "page slab pointer corrupt.");
1173 /* Supports checking bulk free of a constructed freelist */
1174 static noinline int free_debug_processing(
1175 struct kmem_cache *s, struct page *page,
1176 void *head, void *tail, int bulk_cnt,
1179 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1180 void *object = head;
1182 unsigned long uninitialized_var(flags);
1185 spin_lock_irqsave(&n->list_lock, flags);
1188 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1189 if (!check_slab(s, page))
1196 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1197 if (!free_consistency_checks(s, page, object, addr))
1201 if (s->flags & SLAB_STORE_USER)
1202 set_track(s, object, TRACK_FREE, addr);
1203 trace(s, page, object, 0);
1204 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1205 init_object(s, object, SLUB_RED_INACTIVE);
1207 /* Reached end of constructed freelist yet? */
1208 if (object != tail) {
1209 object = get_freepointer(s, object);
1215 if (cnt != bulk_cnt)
1216 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1220 spin_unlock_irqrestore(&n->list_lock, flags);
1222 slab_fix(s, "Object at 0x%p not freed", object);
1226 static int __init setup_slub_debug(char *str)
1228 slub_debug = DEBUG_DEFAULT_FLAGS;
1229 if (*str++ != '=' || !*str)
1231 * No options specified. Switch on full debugging.
1237 * No options but restriction on slabs. This means full
1238 * debugging for slabs matching a pattern.
1245 * Switch off all debugging measures.
1250 * Determine which debug features should be switched on
1252 for (; *str && *str != ','; str++) {
1253 switch (tolower(*str)) {
1255 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1258 slub_debug |= SLAB_RED_ZONE;
1261 slub_debug |= SLAB_POISON;
1264 slub_debug |= SLAB_STORE_USER;
1267 slub_debug |= SLAB_TRACE;
1270 slub_debug |= SLAB_FAILSLAB;
1274 * Avoid enabling debugging on caches if its minimum
1275 * order would increase as a result.
1277 disable_higher_order_debug = 1;
1280 pr_err("slub_debug option '%c' unknown. skipped\n",
1287 slub_debug_slabs = str + 1;
1292 __setup("slub_debug", setup_slub_debug);
1294 slab_flags_t kmem_cache_flags(unsigned long object_size,
1295 slab_flags_t flags, const char *name,
1296 void (*ctor)(void *))
1299 * Enable debugging if selected on the kernel commandline.
1301 if (slub_debug && (!slub_debug_slabs || (name &&
1302 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1303 flags |= slub_debug;
1307 #else /* !CONFIG_SLUB_DEBUG */
1308 static inline void setup_object_debug(struct kmem_cache *s,
1309 struct page *page, void *object) {}
1311 static inline int alloc_debug_processing(struct kmem_cache *s,
1312 struct page *page, void *object, unsigned long addr) { return 0; }
1314 static inline int free_debug_processing(
1315 struct kmem_cache *s, struct page *page,
1316 void *head, void *tail, int bulk_cnt,
1317 unsigned long addr) { return 0; }
1319 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1321 static inline int check_object(struct kmem_cache *s, struct page *page,
1322 void *object, u8 val) { return 1; }
1323 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1324 struct page *page) {}
1325 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
1327 slab_flags_t kmem_cache_flags(unsigned long object_size,
1328 slab_flags_t flags, const char *name,
1329 void (*ctor)(void *))
1333 #define slub_debug 0
1335 #define disable_higher_order_debug 0
1337 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1339 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1341 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1343 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1346 #endif /* CONFIG_SLUB_DEBUG */
1349 * Hooks for other subsystems that check memory allocations. In a typical
1350 * production configuration these hooks all should produce no code at all.
1352 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1354 kmemleak_alloc(ptr, size, 1, flags);
1355 kasan_kmalloc_large(ptr, size, flags);
1358 static inline void kfree_hook(const void *x)
1361 kasan_kfree_large(x);
1364 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1368 kmemleak_free_recursive(x, s->flags);
1371 * Trouble is that we may no longer disable interrupts in the fast path
1372 * So in order to make the debug calls that expect irqs to be
1373 * disabled we need to disable interrupts temporarily.
1375 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1377 unsigned long flags;
1379 local_irq_save(flags);
1380 kmemcheck_slab_free(s, x, s->object_size);
1381 debug_check_no_locks_freed(x, s->object_size);
1382 local_irq_restore(flags);
1385 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1386 debug_check_no_obj_freed(x, s->object_size);
1388 freeptr = get_freepointer(s, x);
1390 * kasan_slab_free() may put x into memory quarantine, delaying its
1391 * reuse. In this case the object's freelist pointer is changed.
1393 kasan_slab_free(s, x);
1397 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1398 void *head, void *tail)
1401 * Compiler cannot detect this function can be removed if slab_free_hook()
1402 * evaluates to nothing. Thus, catch all relevant config debug options here.
1404 #if defined(CONFIG_KMEMCHECK) || \
1405 defined(CONFIG_LOCKDEP) || \
1406 defined(CONFIG_DEBUG_KMEMLEAK) || \
1407 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1408 defined(CONFIG_KASAN)
1410 void *object = head;
1411 void *tail_obj = tail ? : head;
1415 freeptr = slab_free_hook(s, object);
1416 } while ((object != tail_obj) && (object = freeptr));
1420 static void setup_object(struct kmem_cache *s, struct page *page,
1423 setup_object_debug(s, page, object);
1424 kasan_init_slab_obj(s, object);
1425 if (unlikely(s->ctor)) {
1426 kasan_unpoison_object_data(s, object);
1428 kasan_poison_object_data(s, object);
1433 * Slab allocation and freeing
1435 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1436 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1439 int order = oo_order(oo);
1441 flags |= __GFP_NOTRACK;
1443 if (node == NUMA_NO_NODE)
1444 page = alloc_pages(flags, order);
1446 page = __alloc_pages_node(node, flags, order);
1448 if (page && memcg_charge_slab(page, flags, order, s)) {
1449 __free_pages(page, order);
1456 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1457 /* Pre-initialize the random sequence cache */
1458 static int init_cache_random_seq(struct kmem_cache *s)
1461 unsigned long i, count = oo_objects(s->oo);
1463 /* Bailout if already initialised */
1467 err = cache_random_seq_create(s, count, GFP_KERNEL);
1469 pr_err("SLUB: Unable to initialize free list for %s\n",
1474 /* Transform to an offset on the set of pages */
1475 if (s->random_seq) {
1476 for (i = 0; i < count; i++)
1477 s->random_seq[i] *= s->size;
1482 /* Initialize each random sequence freelist per cache */
1483 static void __init init_freelist_randomization(void)
1485 struct kmem_cache *s;
1487 mutex_lock(&slab_mutex);
1489 list_for_each_entry(s, &slab_caches, list)
1490 init_cache_random_seq(s);
1492 mutex_unlock(&slab_mutex);
1495 /* Get the next entry on the pre-computed freelist randomized */
1496 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1497 unsigned long *pos, void *start,
1498 unsigned long page_limit,
1499 unsigned long freelist_count)
1504 * If the target page allocation failed, the number of objects on the
1505 * page might be smaller than the usual size defined by the cache.
1508 idx = s->random_seq[*pos];
1510 if (*pos >= freelist_count)
1512 } while (unlikely(idx >= page_limit));
1514 return (char *)start + idx;
1517 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1518 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1523 unsigned long idx, pos, page_limit, freelist_count;
1525 if (page->objects < 2 || !s->random_seq)
1528 freelist_count = oo_objects(s->oo);
1529 pos = get_random_int() % freelist_count;
1531 page_limit = page->objects * s->size;
1532 start = fixup_red_left(s, page_address(page));
1534 /* First entry is used as the base of the freelist */
1535 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1537 page->freelist = cur;
1539 for (idx = 1; idx < page->objects; idx++) {
1540 setup_object(s, page, cur);
1541 next = next_freelist_entry(s, page, &pos, start, page_limit,
1543 set_freepointer(s, cur, next);
1546 setup_object(s, page, cur);
1547 set_freepointer(s, cur, NULL);
1552 static inline int init_cache_random_seq(struct kmem_cache *s)
1556 static inline void init_freelist_randomization(void) { }
1557 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1561 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1563 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1566 struct kmem_cache_order_objects oo = s->oo;
1572 flags &= gfp_allowed_mask;
1574 if (gfpflags_allow_blocking(flags))
1577 flags |= s->allocflags;
1580 * Let the initial higher-order allocation fail under memory pressure
1581 * so we fall-back to the minimum order allocation.
1583 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1584 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1585 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1587 page = alloc_slab_page(s, alloc_gfp, node, oo);
1588 if (unlikely(!page)) {
1592 * Allocation may have failed due to fragmentation.
1593 * Try a lower order alloc if possible
1595 page = alloc_slab_page(s, alloc_gfp, node, oo);
1596 if (unlikely(!page))
1598 stat(s, ORDER_FALLBACK);
1601 if (kmemcheck_enabled &&
1602 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1603 int pages = 1 << oo_order(oo);
1605 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1608 * Objects from caches that have a constructor don't get
1609 * cleared when they're allocated, so we need to do it here.
1612 kmemcheck_mark_uninitialized_pages(page, pages);
1614 kmemcheck_mark_unallocated_pages(page, pages);
1617 page->objects = oo_objects(oo);
1619 order = compound_order(page);
1620 page->slab_cache = s;
1621 __SetPageSlab(page);
1622 if (page_is_pfmemalloc(page))
1623 SetPageSlabPfmemalloc(page);
1625 start = page_address(page);
1627 if (unlikely(s->flags & SLAB_POISON))
1628 memset(start, POISON_INUSE, PAGE_SIZE << order);
1630 kasan_poison_slab(page);
1632 shuffle = shuffle_freelist(s, page);
1635 for_each_object_idx(p, idx, s, start, page->objects) {
1636 setup_object(s, page, p);
1637 if (likely(idx < page->objects))
1638 set_freepointer(s, p, p + s->size);
1640 set_freepointer(s, p, NULL);
1642 page->freelist = fixup_red_left(s, start);
1645 page->inuse = page->objects;
1649 if (gfpflags_allow_blocking(flags))
1650 local_irq_disable();
1654 mod_lruvec_page_state(page,
1655 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1656 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1659 inc_slabs_node(s, page_to_nid(page), page->objects);
1664 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1666 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1667 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1668 flags &= ~GFP_SLAB_BUG_MASK;
1669 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1670 invalid_mask, &invalid_mask, flags, &flags);
1674 return allocate_slab(s,
1675 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1678 static void __free_slab(struct kmem_cache *s, struct page *page)
1680 int order = compound_order(page);
1681 int pages = 1 << order;
1683 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1686 slab_pad_check(s, page);
1687 for_each_object(p, s, page_address(page),
1689 check_object(s, page, p, SLUB_RED_INACTIVE);
1692 kmemcheck_free_shadow(page, compound_order(page));
1694 mod_lruvec_page_state(page,
1695 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1696 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1699 __ClearPageSlabPfmemalloc(page);
1700 __ClearPageSlab(page);
1702 page_mapcount_reset(page);
1703 if (current->reclaim_state)
1704 current->reclaim_state->reclaimed_slab += pages;
1705 memcg_uncharge_slab(page, order, s);
1706 __free_pages(page, order);
1709 #define need_reserve_slab_rcu \
1710 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1712 static void rcu_free_slab(struct rcu_head *h)
1716 if (need_reserve_slab_rcu)
1717 page = virt_to_head_page(h);
1719 page = container_of((struct list_head *)h, struct page, lru);
1721 __free_slab(page->slab_cache, page);
1724 static void free_slab(struct kmem_cache *s, struct page *page)
1726 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1727 struct rcu_head *head;
1729 if (need_reserve_slab_rcu) {
1730 int order = compound_order(page);
1731 int offset = (PAGE_SIZE << order) - s->reserved;
1733 VM_BUG_ON(s->reserved != sizeof(*head));
1734 head = page_address(page) + offset;
1736 head = &page->rcu_head;
1739 call_rcu(head, rcu_free_slab);
1741 __free_slab(s, page);
1744 static void discard_slab(struct kmem_cache *s, struct page *page)
1746 dec_slabs_node(s, page_to_nid(page), page->objects);
1751 * Management of partially allocated slabs.
1754 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1757 if (tail == DEACTIVATE_TO_TAIL)
1758 list_add_tail(&page->lru, &n->partial);
1760 list_add(&page->lru, &n->partial);
1763 static inline void add_partial(struct kmem_cache_node *n,
1764 struct page *page, int tail)
1766 lockdep_assert_held(&n->list_lock);
1767 __add_partial(n, page, tail);
1770 static inline void remove_partial(struct kmem_cache_node *n,
1773 lockdep_assert_held(&n->list_lock);
1774 list_del(&page->lru);
1779 * Remove slab from the partial list, freeze it and
1780 * return the pointer to the freelist.
1782 * Returns a list of objects or NULL if it fails.
1784 static inline void *acquire_slab(struct kmem_cache *s,
1785 struct kmem_cache_node *n, struct page *page,
1786 int mode, int *objects)
1789 unsigned long counters;
1792 lockdep_assert_held(&n->list_lock);
1795 * Zap the freelist and set the frozen bit.
1796 * The old freelist is the list of objects for the
1797 * per cpu allocation list.
1799 freelist = page->freelist;
1800 counters = page->counters;
1801 new.counters = counters;
1802 *objects = new.objects - new.inuse;
1804 new.inuse = page->objects;
1805 new.freelist = NULL;
1807 new.freelist = freelist;
1810 VM_BUG_ON(new.frozen);
1813 if (!__cmpxchg_double_slab(s, page,
1815 new.freelist, new.counters,
1819 remove_partial(n, page);
1824 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1825 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1828 * Try to allocate a partial slab from a specific node.
1830 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1831 struct kmem_cache_cpu *c, gfp_t flags)
1833 struct page *page, *page2;
1834 void *object = NULL;
1839 * Racy check. If we mistakenly see no partial slabs then we
1840 * just allocate an empty slab. If we mistakenly try to get a
1841 * partial slab and there is none available then get_partials()
1844 if (!n || !n->nr_partial)
1847 spin_lock(&n->list_lock);
1848 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1851 if (!pfmemalloc_match(page, flags))
1854 t = acquire_slab(s, n, page, object == NULL, &objects);
1858 available += objects;
1861 stat(s, ALLOC_FROM_PARTIAL);
1864 put_cpu_partial(s, page, 0);
1865 stat(s, CPU_PARTIAL_NODE);
1867 if (!kmem_cache_has_cpu_partial(s)
1868 || available > slub_cpu_partial(s) / 2)
1872 spin_unlock(&n->list_lock);
1877 * Get a page from somewhere. Search in increasing NUMA distances.
1879 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1880 struct kmem_cache_cpu *c)
1883 struct zonelist *zonelist;
1886 enum zone_type high_zoneidx = gfp_zone(flags);
1888 unsigned int cpuset_mems_cookie;
1891 * The defrag ratio allows a configuration of the tradeoffs between
1892 * inter node defragmentation and node local allocations. A lower
1893 * defrag_ratio increases the tendency to do local allocations
1894 * instead of attempting to obtain partial slabs from other nodes.
1896 * If the defrag_ratio is set to 0 then kmalloc() always
1897 * returns node local objects. If the ratio is higher then kmalloc()
1898 * may return off node objects because partial slabs are obtained
1899 * from other nodes and filled up.
1901 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1902 * (which makes defrag_ratio = 1000) then every (well almost)
1903 * allocation will first attempt to defrag slab caches on other nodes.
1904 * This means scanning over all nodes to look for partial slabs which
1905 * may be expensive if we do it every time we are trying to find a slab
1906 * with available objects.
1908 if (!s->remote_node_defrag_ratio ||
1909 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1913 cpuset_mems_cookie = read_mems_allowed_begin();
1914 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1915 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1916 struct kmem_cache_node *n;
1918 n = get_node(s, zone_to_nid(zone));
1920 if (n && cpuset_zone_allowed(zone, flags) &&
1921 n->nr_partial > s->min_partial) {
1922 object = get_partial_node(s, n, c, flags);
1925 * Don't check read_mems_allowed_retry()
1926 * here - if mems_allowed was updated in
1927 * parallel, that was a harmless race
1928 * between allocation and the cpuset
1935 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1941 * Get a partial page, lock it and return it.
1943 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1944 struct kmem_cache_cpu *c)
1947 int searchnode = node;
1949 if (node == NUMA_NO_NODE)
1950 searchnode = numa_mem_id();
1951 else if (!node_present_pages(node))
1952 searchnode = node_to_mem_node(node);
1954 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1955 if (object || node != NUMA_NO_NODE)
1958 return get_any_partial(s, flags, c);
1961 #ifdef CONFIG_PREEMPT
1963 * Calculate the next globally unique transaction for disambiguiation
1964 * during cmpxchg. The transactions start with the cpu number and are then
1965 * incremented by CONFIG_NR_CPUS.
1967 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1970 * No preemption supported therefore also no need to check for
1976 static inline unsigned long next_tid(unsigned long tid)
1978 return tid + TID_STEP;
1981 static inline unsigned int tid_to_cpu(unsigned long tid)
1983 return tid % TID_STEP;
1986 static inline unsigned long tid_to_event(unsigned long tid)
1988 return tid / TID_STEP;
1991 static inline unsigned int init_tid(int cpu)
1996 static inline void note_cmpxchg_failure(const char *n,
1997 const struct kmem_cache *s, unsigned long tid)
1999 #ifdef SLUB_DEBUG_CMPXCHG
2000 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2002 pr_info("%s %s: cmpxchg redo ", n, s->name);
2004 #ifdef CONFIG_PREEMPT
2005 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2006 pr_warn("due to cpu change %d -> %d\n",
2007 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2010 if (tid_to_event(tid) != tid_to_event(actual_tid))
2011 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2012 tid_to_event(tid), tid_to_event(actual_tid));
2014 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2015 actual_tid, tid, next_tid(tid));
2017 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2020 static void init_kmem_cache_cpus(struct kmem_cache *s)
2024 for_each_possible_cpu(cpu)
2025 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2029 * Remove the cpu slab
2031 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2032 void *freelist, struct kmem_cache_cpu *c)
2034 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2035 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2037 enum slab_modes l = M_NONE, m = M_NONE;
2039 int tail = DEACTIVATE_TO_HEAD;
2043 if (page->freelist) {
2044 stat(s, DEACTIVATE_REMOTE_FREES);
2045 tail = DEACTIVATE_TO_TAIL;
2049 * Stage one: Free all available per cpu objects back
2050 * to the page freelist while it is still frozen. Leave the
2053 * There is no need to take the list->lock because the page
2056 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2058 unsigned long counters;
2061 prior = page->freelist;
2062 counters = page->counters;
2063 set_freepointer(s, freelist, prior);
2064 new.counters = counters;
2066 VM_BUG_ON(!new.frozen);
2068 } while (!__cmpxchg_double_slab(s, page,
2070 freelist, new.counters,
2071 "drain percpu freelist"));
2073 freelist = nextfree;
2077 * Stage two: Ensure that the page is unfrozen while the
2078 * list presence reflects the actual number of objects
2081 * We setup the list membership and then perform a cmpxchg
2082 * with the count. If there is a mismatch then the page
2083 * is not unfrozen but the page is on the wrong list.
2085 * Then we restart the process which may have to remove
2086 * the page from the list that we just put it on again
2087 * because the number of objects in the slab may have
2092 old.freelist = page->freelist;
2093 old.counters = page->counters;
2094 VM_BUG_ON(!old.frozen);
2096 /* Determine target state of the slab */
2097 new.counters = old.counters;
2100 set_freepointer(s, freelist, old.freelist);
2101 new.freelist = freelist;
2103 new.freelist = old.freelist;
2107 if (!new.inuse && n->nr_partial >= s->min_partial)
2109 else if (new.freelist) {
2114 * Taking the spinlock removes the possiblity
2115 * that acquire_slab() will see a slab page that
2118 spin_lock(&n->list_lock);
2122 if (kmem_cache_debug(s) && !lock) {
2125 * This also ensures that the scanning of full
2126 * slabs from diagnostic functions will not see
2129 spin_lock(&n->list_lock);
2137 remove_partial(n, page);
2139 else if (l == M_FULL)
2141 remove_full(s, n, page);
2143 if (m == M_PARTIAL) {
2145 add_partial(n, page, tail);
2148 } else if (m == M_FULL) {
2150 stat(s, DEACTIVATE_FULL);
2151 add_full(s, n, page);
2157 if (!__cmpxchg_double_slab(s, page,
2158 old.freelist, old.counters,
2159 new.freelist, new.counters,
2164 spin_unlock(&n->list_lock);
2167 stat(s, DEACTIVATE_EMPTY);
2168 discard_slab(s, page);
2177 * Unfreeze all the cpu partial slabs.
2179 * This function must be called with interrupts disabled
2180 * for the cpu using c (or some other guarantee must be there
2181 * to guarantee no concurrent accesses).
2183 static void unfreeze_partials(struct kmem_cache *s,
2184 struct kmem_cache_cpu *c)
2186 #ifdef CONFIG_SLUB_CPU_PARTIAL
2187 struct kmem_cache_node *n = NULL, *n2 = NULL;
2188 struct page *page, *discard_page = NULL;
2190 while ((page = c->partial)) {
2194 c->partial = page->next;
2196 n2 = get_node(s, page_to_nid(page));
2199 spin_unlock(&n->list_lock);
2202 spin_lock(&n->list_lock);
2207 old.freelist = page->freelist;
2208 old.counters = page->counters;
2209 VM_BUG_ON(!old.frozen);
2211 new.counters = old.counters;
2212 new.freelist = old.freelist;
2216 } while (!__cmpxchg_double_slab(s, page,
2217 old.freelist, old.counters,
2218 new.freelist, new.counters,
2219 "unfreezing slab"));
2221 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2222 page->next = discard_page;
2223 discard_page = page;
2225 add_partial(n, page, DEACTIVATE_TO_TAIL);
2226 stat(s, FREE_ADD_PARTIAL);
2231 spin_unlock(&n->list_lock);
2233 while (discard_page) {
2234 page = discard_page;
2235 discard_page = discard_page->next;
2237 stat(s, DEACTIVATE_EMPTY);
2238 discard_slab(s, page);
2245 * Put a page that was just frozen (in __slab_free) into a partial page
2246 * slot if available. This is done without interrupts disabled and without
2247 * preemption disabled. The cmpxchg is racy and may put the partial page
2248 * onto a random cpus partial slot.
2250 * If we did not find a slot then simply move all the partials to the
2251 * per node partial list.
2253 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2255 #ifdef CONFIG_SLUB_CPU_PARTIAL
2256 struct page *oldpage;
2264 oldpage = this_cpu_read(s->cpu_slab->partial);
2267 pobjects = oldpage->pobjects;
2268 pages = oldpage->pages;
2269 if (drain && pobjects > s->cpu_partial) {
2270 unsigned long flags;
2272 * partial array is full. Move the existing
2273 * set to the per node partial list.
2275 local_irq_save(flags);
2276 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2277 local_irq_restore(flags);
2281 stat(s, CPU_PARTIAL_DRAIN);
2286 pobjects += page->objects - page->inuse;
2288 page->pages = pages;
2289 page->pobjects = pobjects;
2290 page->next = oldpage;
2292 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2294 if (unlikely(!s->cpu_partial)) {
2295 unsigned long flags;
2297 local_irq_save(flags);
2298 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2299 local_irq_restore(flags);
2305 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2307 stat(s, CPUSLAB_FLUSH);
2308 deactivate_slab(s, c->page, c->freelist, c);
2310 c->tid = next_tid(c->tid);
2316 * Called from IPI handler with interrupts disabled.
2318 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2320 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2326 unfreeze_partials(s, c);
2330 static void flush_cpu_slab(void *d)
2332 struct kmem_cache *s = d;
2334 __flush_cpu_slab(s, smp_processor_id());
2337 static bool has_cpu_slab(int cpu, void *info)
2339 struct kmem_cache *s = info;
2340 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2342 return c->page || slub_percpu_partial(c);
2345 static void flush_all(struct kmem_cache *s)
2347 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2351 * Use the cpu notifier to insure that the cpu slabs are flushed when
2354 static int slub_cpu_dead(unsigned int cpu)
2356 struct kmem_cache *s;
2357 unsigned long flags;
2359 mutex_lock(&slab_mutex);
2360 list_for_each_entry(s, &slab_caches, list) {
2361 local_irq_save(flags);
2362 __flush_cpu_slab(s, cpu);
2363 local_irq_restore(flags);
2365 mutex_unlock(&slab_mutex);
2370 * Check if the objects in a per cpu structure fit numa
2371 * locality expectations.
2373 static inline int node_match(struct page *page, int node)
2376 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2382 #ifdef CONFIG_SLUB_DEBUG
2383 static int count_free(struct page *page)
2385 return page->objects - page->inuse;
2388 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2390 return atomic_long_read(&n->total_objects);
2392 #endif /* CONFIG_SLUB_DEBUG */
2394 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2395 static unsigned long count_partial(struct kmem_cache_node *n,
2396 int (*get_count)(struct page *))
2398 unsigned long flags;
2399 unsigned long x = 0;
2402 spin_lock_irqsave(&n->list_lock, flags);
2403 list_for_each_entry(page, &n->partial, lru)
2404 x += get_count(page);
2405 spin_unlock_irqrestore(&n->list_lock, flags);
2408 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2410 static noinline void
2411 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2413 #ifdef CONFIG_SLUB_DEBUG
2414 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2415 DEFAULT_RATELIMIT_BURST);
2417 struct kmem_cache_node *n;
2419 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2422 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2423 nid, gfpflags, &gfpflags);
2424 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2425 s->name, s->object_size, s->size, oo_order(s->oo),
2428 if (oo_order(s->min) > get_order(s->object_size))
2429 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2432 for_each_kmem_cache_node(s, node, n) {
2433 unsigned long nr_slabs;
2434 unsigned long nr_objs;
2435 unsigned long nr_free;
2437 nr_free = count_partial(n, count_free);
2438 nr_slabs = node_nr_slabs(n);
2439 nr_objs = node_nr_objs(n);
2441 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2442 node, nr_slabs, nr_objs, nr_free);
2447 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2448 int node, struct kmem_cache_cpu **pc)
2451 struct kmem_cache_cpu *c = *pc;
2454 freelist = get_partial(s, flags, node, c);
2459 page = new_slab(s, flags, node);
2461 c = raw_cpu_ptr(s->cpu_slab);
2466 * No other reference to the page yet so we can
2467 * muck around with it freely without cmpxchg
2469 freelist = page->freelist;
2470 page->freelist = NULL;
2472 stat(s, ALLOC_SLAB);
2481 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2483 if (unlikely(PageSlabPfmemalloc(page)))
2484 return gfp_pfmemalloc_allowed(gfpflags);
2490 * Check the page->freelist of a page and either transfer the freelist to the
2491 * per cpu freelist or deactivate the page.
2493 * The page is still frozen if the return value is not NULL.
2495 * If this function returns NULL then the page has been unfrozen.
2497 * This function must be called with interrupt disabled.
2499 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2502 unsigned long counters;
2506 freelist = page->freelist;
2507 counters = page->counters;
2509 new.counters = counters;
2510 VM_BUG_ON(!new.frozen);
2512 new.inuse = page->objects;
2513 new.frozen = freelist != NULL;
2515 } while (!__cmpxchg_double_slab(s, page,
2524 * Slow path. The lockless freelist is empty or we need to perform
2527 * Processing is still very fast if new objects have been freed to the
2528 * regular freelist. In that case we simply take over the regular freelist
2529 * as the lockless freelist and zap the regular freelist.
2531 * If that is not working then we fall back to the partial lists. We take the
2532 * first element of the freelist as the object to allocate now and move the
2533 * rest of the freelist to the lockless freelist.
2535 * And if we were unable to get a new slab from the partial slab lists then
2536 * we need to allocate a new slab. This is the slowest path since it involves
2537 * a call to the page allocator and the setup of a new slab.
2539 * Version of __slab_alloc to use when we know that interrupts are
2540 * already disabled (which is the case for bulk allocation).
2542 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2543 unsigned long addr, struct kmem_cache_cpu *c)
2553 if (unlikely(!node_match(page, node))) {
2554 int searchnode = node;
2556 if (node != NUMA_NO_NODE && !node_present_pages(node))
2557 searchnode = node_to_mem_node(node);
2559 if (unlikely(!node_match(page, searchnode))) {
2560 stat(s, ALLOC_NODE_MISMATCH);
2561 deactivate_slab(s, page, c->freelist, c);
2567 * By rights, we should be searching for a slab page that was
2568 * PFMEMALLOC but right now, we are losing the pfmemalloc
2569 * information when the page leaves the per-cpu allocator
2571 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2572 deactivate_slab(s, page, c->freelist, c);
2576 /* must check again c->freelist in case of cpu migration or IRQ */
2577 freelist = c->freelist;
2581 freelist = get_freelist(s, page);
2585 stat(s, DEACTIVATE_BYPASS);
2589 stat(s, ALLOC_REFILL);
2593 * freelist is pointing to the list of objects to be used.
2594 * page is pointing to the page from which the objects are obtained.
2595 * That page must be frozen for per cpu allocations to work.
2597 VM_BUG_ON(!c->page->frozen);
2598 c->freelist = get_freepointer(s, freelist);
2599 c->tid = next_tid(c->tid);
2604 if (slub_percpu_partial(c)) {
2605 page = c->page = slub_percpu_partial(c);
2606 slub_set_percpu_partial(c, page);
2607 stat(s, CPU_PARTIAL_ALLOC);
2611 freelist = new_slab_objects(s, gfpflags, node, &c);
2613 if (unlikely(!freelist)) {
2614 slab_out_of_memory(s, gfpflags, node);
2619 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2622 /* Only entered in the debug case */
2623 if (kmem_cache_debug(s) &&
2624 !alloc_debug_processing(s, page, freelist, addr))
2625 goto new_slab; /* Slab failed checks. Next slab needed */
2627 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2632 * Another one that disabled interrupt and compensates for possible
2633 * cpu changes by refetching the per cpu area pointer.
2635 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2636 unsigned long addr, struct kmem_cache_cpu *c)
2639 unsigned long flags;
2641 local_irq_save(flags);
2642 #ifdef CONFIG_PREEMPT
2644 * We may have been preempted and rescheduled on a different
2645 * cpu before disabling interrupts. Need to reload cpu area
2648 c = this_cpu_ptr(s->cpu_slab);
2651 p = ___slab_alloc(s, gfpflags, node, addr, c);
2652 local_irq_restore(flags);
2657 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2658 * have the fastpath folded into their functions. So no function call
2659 * overhead for requests that can be satisfied on the fastpath.
2661 * The fastpath works by first checking if the lockless freelist can be used.
2662 * If not then __slab_alloc is called for slow processing.
2664 * Otherwise we can simply pick the next object from the lockless free list.
2666 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2667 gfp_t gfpflags, int node, unsigned long addr)
2670 struct kmem_cache_cpu *c;
2674 s = slab_pre_alloc_hook(s, gfpflags);
2679 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2680 * enabled. We may switch back and forth between cpus while
2681 * reading from one cpu area. That does not matter as long
2682 * as we end up on the original cpu again when doing the cmpxchg.
2684 * We should guarantee that tid and kmem_cache are retrieved on
2685 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2686 * to check if it is matched or not.
2689 tid = this_cpu_read(s->cpu_slab->tid);
2690 c = raw_cpu_ptr(s->cpu_slab);
2691 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2692 unlikely(tid != READ_ONCE(c->tid)));
2695 * Irqless object alloc/free algorithm used here depends on sequence
2696 * of fetching cpu_slab's data. tid should be fetched before anything
2697 * on c to guarantee that object and page associated with previous tid
2698 * won't be used with current tid. If we fetch tid first, object and
2699 * page could be one associated with next tid and our alloc/free
2700 * request will be failed. In this case, we will retry. So, no problem.
2705 * The transaction ids are globally unique per cpu and per operation on
2706 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2707 * occurs on the right processor and that there was no operation on the
2708 * linked list in between.
2711 object = c->freelist;
2713 if (unlikely(!object || !node_match(page, node))) {
2714 object = __slab_alloc(s, gfpflags, node, addr, c);
2715 stat(s, ALLOC_SLOWPATH);
2717 void *next_object = get_freepointer_safe(s, object);
2720 * The cmpxchg will only match if there was no additional
2721 * operation and if we are on the right processor.
2723 * The cmpxchg does the following atomically (without lock
2725 * 1. Relocate first pointer to the current per cpu area.
2726 * 2. Verify that tid and freelist have not been changed
2727 * 3. If they were not changed replace tid and freelist
2729 * Since this is without lock semantics the protection is only
2730 * against code executing on this cpu *not* from access by
2733 if (unlikely(!this_cpu_cmpxchg_double(
2734 s->cpu_slab->freelist, s->cpu_slab->tid,
2736 next_object, next_tid(tid)))) {
2738 note_cmpxchg_failure("slab_alloc", s, tid);
2741 prefetch_freepointer(s, next_object);
2742 stat(s, ALLOC_FASTPATH);
2745 if (unlikely(gfpflags & __GFP_ZERO) && object)
2746 memset(object, 0, s->object_size);
2748 slab_post_alloc_hook(s, gfpflags, 1, &object);
2753 static __always_inline void *slab_alloc(struct kmem_cache *s,
2754 gfp_t gfpflags, unsigned long addr)
2756 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2759 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2761 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2763 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2768 EXPORT_SYMBOL(kmem_cache_alloc);
2770 #ifdef CONFIG_TRACING
2771 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2773 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2774 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2775 kasan_kmalloc(s, ret, size, gfpflags);
2778 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2782 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2784 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2786 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2787 s->object_size, s->size, gfpflags, node);
2791 EXPORT_SYMBOL(kmem_cache_alloc_node);
2793 #ifdef CONFIG_TRACING
2794 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2796 int node, size_t size)
2798 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2800 trace_kmalloc_node(_RET_IP_, ret,
2801 size, s->size, gfpflags, node);
2803 kasan_kmalloc(s, ret, size, gfpflags);
2806 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2811 * Slow path handling. This may still be called frequently since objects
2812 * have a longer lifetime than the cpu slabs in most processing loads.
2814 * So we still attempt to reduce cache line usage. Just take the slab
2815 * lock and free the item. If there is no additional partial page
2816 * handling required then we can return immediately.
2818 static void __slab_free(struct kmem_cache *s, struct page *page,
2819 void *head, void *tail, int cnt,
2826 unsigned long counters;
2827 struct kmem_cache_node *n = NULL;
2828 unsigned long uninitialized_var(flags);
2830 stat(s, FREE_SLOWPATH);
2832 if (kmem_cache_debug(s) &&
2833 !free_debug_processing(s, page, head, tail, cnt, addr))
2838 spin_unlock_irqrestore(&n->list_lock, flags);
2841 prior = page->freelist;
2842 counters = page->counters;
2843 set_freepointer(s, tail, prior);
2844 new.counters = counters;
2845 was_frozen = new.frozen;
2847 if ((!new.inuse || !prior) && !was_frozen) {
2849 if (kmem_cache_has_cpu_partial(s) && !prior) {
2852 * Slab was on no list before and will be
2854 * We can defer the list move and instead
2859 } else { /* Needs to be taken off a list */
2861 n = get_node(s, page_to_nid(page));
2863 * Speculatively acquire the list_lock.
2864 * If the cmpxchg does not succeed then we may
2865 * drop the list_lock without any processing.
2867 * Otherwise the list_lock will synchronize with
2868 * other processors updating the list of slabs.
2870 spin_lock_irqsave(&n->list_lock, flags);
2875 } while (!cmpxchg_double_slab(s, page,
2883 * If we just froze the page then put it onto the
2884 * per cpu partial list.
2886 if (new.frozen && !was_frozen) {
2887 put_cpu_partial(s, page, 1);
2888 stat(s, CPU_PARTIAL_FREE);
2891 * The list lock was not taken therefore no list
2892 * activity can be necessary.
2895 stat(s, FREE_FROZEN);
2899 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2903 * Objects left in the slab. If it was not on the partial list before
2906 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2907 if (kmem_cache_debug(s))
2908 remove_full(s, n, page);
2909 add_partial(n, page, DEACTIVATE_TO_TAIL);
2910 stat(s, FREE_ADD_PARTIAL);
2912 spin_unlock_irqrestore(&n->list_lock, flags);
2918 * Slab on the partial list.
2920 remove_partial(n, page);
2921 stat(s, FREE_REMOVE_PARTIAL);
2923 /* Slab must be on the full list */
2924 remove_full(s, n, page);
2927 spin_unlock_irqrestore(&n->list_lock, flags);
2929 discard_slab(s, page);
2933 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2934 * can perform fastpath freeing without additional function calls.
2936 * The fastpath is only possible if we are freeing to the current cpu slab
2937 * of this processor. This typically the case if we have just allocated
2940 * If fastpath is not possible then fall back to __slab_free where we deal
2941 * with all sorts of special processing.
2943 * Bulk free of a freelist with several objects (all pointing to the
2944 * same page) possible by specifying head and tail ptr, plus objects
2945 * count (cnt). Bulk free indicated by tail pointer being set.
2947 static __always_inline void do_slab_free(struct kmem_cache *s,
2948 struct page *page, void *head, void *tail,
2949 int cnt, unsigned long addr)
2951 void *tail_obj = tail ? : head;
2952 struct kmem_cache_cpu *c;
2956 * Determine the currently cpus per cpu slab.
2957 * The cpu may change afterward. However that does not matter since
2958 * data is retrieved via this pointer. If we are on the same cpu
2959 * during the cmpxchg then the free will succeed.
2962 tid = this_cpu_read(s->cpu_slab->tid);
2963 c = raw_cpu_ptr(s->cpu_slab);
2964 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2965 unlikely(tid != READ_ONCE(c->tid)));
2967 /* Same with comment on barrier() in slab_alloc_node() */
2970 if (likely(page == c->page)) {
2971 set_freepointer(s, tail_obj, c->freelist);
2973 if (unlikely(!this_cpu_cmpxchg_double(
2974 s->cpu_slab->freelist, s->cpu_slab->tid,
2976 head, next_tid(tid)))) {
2978 note_cmpxchg_failure("slab_free", s, tid);
2981 stat(s, FREE_FASTPATH);
2983 __slab_free(s, page, head, tail_obj, cnt, addr);
2987 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2988 void *head, void *tail, int cnt,
2991 slab_free_freelist_hook(s, head, tail);
2993 * slab_free_freelist_hook() could have put the items into quarantine.
2994 * If so, no need to free them.
2996 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2998 do_slab_free(s, page, head, tail, cnt, addr);
3002 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3004 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3008 void kmem_cache_free(struct kmem_cache *s, void *x)
3010 s = cache_from_obj(s, x);
3013 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3014 trace_kmem_cache_free(_RET_IP_, x);
3016 EXPORT_SYMBOL(kmem_cache_free);
3018 struct detached_freelist {
3023 struct kmem_cache *s;
3027 * This function progressively scans the array with free objects (with
3028 * a limited look ahead) and extract objects belonging to the same
3029 * page. It builds a detached freelist directly within the given
3030 * page/objects. This can happen without any need for
3031 * synchronization, because the objects are owned by running process.
3032 * The freelist is build up as a single linked list in the objects.
3033 * The idea is, that this detached freelist can then be bulk
3034 * transferred to the real freelist(s), but only requiring a single
3035 * synchronization primitive. Look ahead in the array is limited due
3036 * to performance reasons.
3039 int build_detached_freelist(struct kmem_cache *s, size_t size,
3040 void **p, struct detached_freelist *df)
3042 size_t first_skipped_index = 0;
3047 /* Always re-init detached_freelist */
3052 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3053 } while (!object && size);
3058 page = virt_to_head_page(object);
3060 /* Handle kalloc'ed objects */
3061 if (unlikely(!PageSlab(page))) {
3062 BUG_ON(!PageCompound(page));
3064 __free_pages(page, compound_order(page));
3065 p[size] = NULL; /* mark object processed */
3068 /* Derive kmem_cache from object */
3069 df->s = page->slab_cache;
3071 df->s = cache_from_obj(s, object); /* Support for memcg */
3074 /* Start new detached freelist */
3076 set_freepointer(df->s, object, NULL);
3078 df->freelist = object;
3079 p[size] = NULL; /* mark object processed */
3085 continue; /* Skip processed objects */
3087 /* df->page is always set at this point */
3088 if (df->page == virt_to_head_page(object)) {
3089 /* Opportunity build freelist */
3090 set_freepointer(df->s, object, df->freelist);
3091 df->freelist = object;
3093 p[size] = NULL; /* mark object processed */
3098 /* Limit look ahead search */
3102 if (!first_skipped_index)
3103 first_skipped_index = size + 1;
3106 return first_skipped_index;
3109 /* Note that interrupts must be enabled when calling this function. */
3110 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3116 struct detached_freelist df;
3118 size = build_detached_freelist(s, size, p, &df);
3122 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3123 } while (likely(size));
3125 EXPORT_SYMBOL(kmem_cache_free_bulk);
3127 /* Note that interrupts must be enabled when calling this function. */
3128 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3131 struct kmem_cache_cpu *c;
3134 /* memcg and kmem_cache debug support */
3135 s = slab_pre_alloc_hook(s, flags);
3139 * Drain objects in the per cpu slab, while disabling local
3140 * IRQs, which protects against PREEMPT and interrupts
3141 * handlers invoking normal fastpath.
3143 local_irq_disable();
3144 c = this_cpu_ptr(s->cpu_slab);
3146 for (i = 0; i < size; i++) {
3147 void *object = c->freelist;
3149 if (unlikely(!object)) {
3151 * Invoking slow path likely have side-effect
3152 * of re-populating per CPU c->freelist
3154 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3156 if (unlikely(!p[i]))
3159 c = this_cpu_ptr(s->cpu_slab);
3160 continue; /* goto for-loop */
3162 c->freelist = get_freepointer(s, object);
3165 c->tid = next_tid(c->tid);
3168 /* Clear memory outside IRQ disabled fastpath loop */
3169 if (unlikely(flags & __GFP_ZERO)) {
3172 for (j = 0; j < i; j++)
3173 memset(p[j], 0, s->object_size);
3176 /* memcg and kmem_cache debug support */
3177 slab_post_alloc_hook(s, flags, size, p);
3181 slab_post_alloc_hook(s, flags, i, p);
3182 __kmem_cache_free_bulk(s, i, p);
3185 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3189 * Object placement in a slab is made very easy because we always start at
3190 * offset 0. If we tune the size of the object to the alignment then we can
3191 * get the required alignment by putting one properly sized object after
3194 * Notice that the allocation order determines the sizes of the per cpu
3195 * caches. Each processor has always one slab available for allocations.
3196 * Increasing the allocation order reduces the number of times that slabs
3197 * must be moved on and off the partial lists and is therefore a factor in
3202 * Mininum / Maximum order of slab pages. This influences locking overhead
3203 * and slab fragmentation. A higher order reduces the number of partial slabs
3204 * and increases the number of allocations possible without having to
3205 * take the list_lock.
3207 static int slub_min_order;
3208 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3209 static int slub_min_objects;
3212 * Calculate the order of allocation given an slab object size.
3214 * The order of allocation has significant impact on performance and other
3215 * system components. Generally order 0 allocations should be preferred since
3216 * order 0 does not cause fragmentation in the page allocator. Larger objects
3217 * be problematic to put into order 0 slabs because there may be too much
3218 * unused space left. We go to a higher order if more than 1/16th of the slab
3221 * In order to reach satisfactory performance we must ensure that a minimum
3222 * number of objects is in one slab. Otherwise we may generate too much
3223 * activity on the partial lists which requires taking the list_lock. This is
3224 * less a concern for large slabs though which are rarely used.
3226 * slub_max_order specifies the order where we begin to stop considering the
3227 * number of objects in a slab as critical. If we reach slub_max_order then
3228 * we try to keep the page order as low as possible. So we accept more waste
3229 * of space in favor of a small page order.
3231 * Higher order allocations also allow the placement of more objects in a
3232 * slab and thereby reduce object handling overhead. If the user has
3233 * requested a higher mininum order then we start with that one instead of
3234 * the smallest order which will fit the object.
3236 static inline int slab_order(int size, int min_objects,
3237 int max_order, int fract_leftover, int reserved)
3241 int min_order = slub_min_order;
3243 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3244 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3246 for (order = max(min_order, get_order(min_objects * size + reserved));
3247 order <= max_order; order++) {
3249 unsigned long slab_size = PAGE_SIZE << order;
3251 rem = (slab_size - reserved) % size;
3253 if (rem <= slab_size / fract_leftover)
3260 static inline int calculate_order(int size, int reserved)
3268 * Attempt to find best configuration for a slab. This
3269 * works by first attempting to generate a layout with
3270 * the best configuration and backing off gradually.
3272 * First we increase the acceptable waste in a slab. Then
3273 * we reduce the minimum objects required in a slab.
3275 min_objects = slub_min_objects;
3277 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3278 max_objects = order_objects(slub_max_order, size, reserved);
3279 min_objects = min(min_objects, max_objects);
3281 while (min_objects > 1) {
3283 while (fraction >= 4) {
3284 order = slab_order(size, min_objects,
3285 slub_max_order, fraction, reserved);
3286 if (order <= slub_max_order)
3294 * We were unable to place multiple objects in a slab. Now
3295 * lets see if we can place a single object there.
3297 order = slab_order(size, 1, slub_max_order, 1, reserved);
3298 if (order <= slub_max_order)
3302 * Doh this slab cannot be placed using slub_max_order.
3304 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3305 if (order < MAX_ORDER)
3311 init_kmem_cache_node(struct kmem_cache_node *n)
3314 spin_lock_init(&n->list_lock);
3315 INIT_LIST_HEAD(&n->partial);
3316 #ifdef CONFIG_SLUB_DEBUG
3317 atomic_long_set(&n->nr_slabs, 0);
3318 atomic_long_set(&n->total_objects, 0);
3319 INIT_LIST_HEAD(&n->full);
3323 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3325 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3326 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3329 * Must align to double word boundary for the double cmpxchg
3330 * instructions to work; see __pcpu_double_call_return_bool().
3332 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3333 2 * sizeof(void *));
3338 init_kmem_cache_cpus(s);
3343 static struct kmem_cache *kmem_cache_node;
3346 * No kmalloc_node yet so do it by hand. We know that this is the first
3347 * slab on the node for this slabcache. There are no concurrent accesses
3350 * Note that this function only works on the kmem_cache_node
3351 * when allocating for the kmem_cache_node. This is used for bootstrapping
3352 * memory on a fresh node that has no slab structures yet.
3354 static void early_kmem_cache_node_alloc(int node)
3357 struct kmem_cache_node *n;
3359 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3361 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3364 if (page_to_nid(page) != node) {
3365 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3366 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3371 page->freelist = get_freepointer(kmem_cache_node, n);
3374 kmem_cache_node->node[node] = n;
3375 #ifdef CONFIG_SLUB_DEBUG
3376 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3377 init_tracking(kmem_cache_node, n);
3379 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3381 init_kmem_cache_node(n);
3382 inc_slabs_node(kmem_cache_node, node, page->objects);
3385 * No locks need to be taken here as it has just been
3386 * initialized and there is no concurrent access.
3388 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3391 static void free_kmem_cache_nodes(struct kmem_cache *s)
3394 struct kmem_cache_node *n;
3396 for_each_kmem_cache_node(s, node, n) {
3397 s->node[node] = NULL;
3398 kmem_cache_free(kmem_cache_node, n);
3402 void __kmem_cache_release(struct kmem_cache *s)
3404 cache_random_seq_destroy(s);
3405 free_percpu(s->cpu_slab);
3406 free_kmem_cache_nodes(s);
3409 static int init_kmem_cache_nodes(struct kmem_cache *s)
3413 for_each_node_state(node, N_NORMAL_MEMORY) {
3414 struct kmem_cache_node *n;
3416 if (slab_state == DOWN) {
3417 early_kmem_cache_node_alloc(node);
3420 n = kmem_cache_alloc_node(kmem_cache_node,
3424 free_kmem_cache_nodes(s);
3428 init_kmem_cache_node(n);
3434 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3436 if (min < MIN_PARTIAL)
3438 else if (min > MAX_PARTIAL)
3440 s->min_partial = min;
3443 static void set_cpu_partial(struct kmem_cache *s)
3445 #ifdef CONFIG_SLUB_CPU_PARTIAL
3447 * cpu_partial determined the maximum number of objects kept in the
3448 * per cpu partial lists of a processor.
3450 * Per cpu partial lists mainly contain slabs that just have one
3451 * object freed. If they are used for allocation then they can be
3452 * filled up again with minimal effort. The slab will never hit the
3453 * per node partial lists and therefore no locking will be required.
3455 * This setting also determines
3457 * A) The number of objects from per cpu partial slabs dumped to the
3458 * per node list when we reach the limit.
3459 * B) The number of objects in cpu partial slabs to extract from the
3460 * per node list when we run out of per cpu objects. We only fetch
3461 * 50% to keep some capacity around for frees.
3463 if (!kmem_cache_has_cpu_partial(s))
3465 else if (s->size >= PAGE_SIZE)
3467 else if (s->size >= 1024)
3469 else if (s->size >= 256)
3470 s->cpu_partial = 13;
3472 s->cpu_partial = 30;
3477 * calculate_sizes() determines the order and the distribution of data within
3480 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3482 slab_flags_t flags = s->flags;
3483 size_t size = s->object_size;
3487 * Round up object size to the next word boundary. We can only
3488 * place the free pointer at word boundaries and this determines
3489 * the possible location of the free pointer.
3491 size = ALIGN(size, sizeof(void *));
3493 #ifdef CONFIG_SLUB_DEBUG
3495 * Determine if we can poison the object itself. If the user of
3496 * the slab may touch the object after free or before allocation
3497 * then we should never poison the object itself.
3499 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3501 s->flags |= __OBJECT_POISON;
3503 s->flags &= ~__OBJECT_POISON;
3507 * If we are Redzoning then check if there is some space between the
3508 * end of the object and the free pointer. If not then add an
3509 * additional word to have some bytes to store Redzone information.
3511 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3512 size += sizeof(void *);
3516 * With that we have determined the number of bytes in actual use
3517 * by the object. This is the potential offset to the free pointer.
3521 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3524 * Relocate free pointer after the object if it is not
3525 * permitted to overwrite the first word of the object on
3528 * This is the case if we do RCU, have a constructor or
3529 * destructor or are poisoning the objects.
3532 size += sizeof(void *);
3535 #ifdef CONFIG_SLUB_DEBUG
3536 if (flags & SLAB_STORE_USER)
3538 * Need to store information about allocs and frees after
3541 size += 2 * sizeof(struct track);
3544 kasan_cache_create(s, &size, &s->flags);
3545 #ifdef CONFIG_SLUB_DEBUG
3546 if (flags & SLAB_RED_ZONE) {
3548 * Add some empty padding so that we can catch
3549 * overwrites from earlier objects rather than let
3550 * tracking information or the free pointer be
3551 * corrupted if a user writes before the start
3554 size += sizeof(void *);
3556 s->red_left_pad = sizeof(void *);
3557 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3558 size += s->red_left_pad;
3563 * SLUB stores one object immediately after another beginning from
3564 * offset 0. In order to align the objects we have to simply size
3565 * each object to conform to the alignment.
3567 size = ALIGN(size, s->align);
3569 if (forced_order >= 0)
3570 order = forced_order;
3572 order = calculate_order(size, s->reserved);
3579 s->allocflags |= __GFP_COMP;
3581 if (s->flags & SLAB_CACHE_DMA)
3582 s->allocflags |= GFP_DMA;
3584 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3585 s->allocflags |= __GFP_RECLAIMABLE;
3588 * Determine the number of objects per slab
3590 s->oo = oo_make(order, size, s->reserved);
3591 s->min = oo_make(get_order(size), size, s->reserved);
3592 if (oo_objects(s->oo) > oo_objects(s->max))
3595 return !!oo_objects(s->oo);
3598 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3600 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3602 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3603 s->random = get_random_long();
3606 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3607 s->reserved = sizeof(struct rcu_head);
3609 if (!calculate_sizes(s, -1))
3611 if (disable_higher_order_debug) {
3613 * Disable debugging flags that store metadata if the min slab
3616 if (get_order(s->size) > get_order(s->object_size)) {
3617 s->flags &= ~DEBUG_METADATA_FLAGS;
3619 if (!calculate_sizes(s, -1))
3624 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3625 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3626 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3627 /* Enable fast mode */
3628 s->flags |= __CMPXCHG_DOUBLE;
3632 * The larger the object size is, the more pages we want on the partial
3633 * list to avoid pounding the page allocator excessively.
3635 set_min_partial(s, ilog2(s->size) / 2);
3640 s->remote_node_defrag_ratio = 1000;
3643 /* Initialize the pre-computed randomized freelist if slab is up */
3644 if (slab_state >= UP) {
3645 if (init_cache_random_seq(s))
3649 if (!init_kmem_cache_nodes(s))
3652 if (alloc_kmem_cache_cpus(s))
3655 free_kmem_cache_nodes(s);
3657 if (flags & SLAB_PANIC)
3658 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3659 s->name, (unsigned long)s->size, s->size,
3660 oo_order(s->oo), s->offset, flags);
3664 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3667 #ifdef CONFIG_SLUB_DEBUG
3668 void *addr = page_address(page);
3670 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3671 sizeof(long), GFP_ATOMIC);
3674 slab_err(s, page, text, s->name);
3677 get_map(s, page, map);
3678 for_each_object(p, s, addr, page->objects) {
3680 if (!test_bit(slab_index(p, s, addr), map)) {
3681 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3682 print_tracking(s, p);
3691 * Attempt to free all partial slabs on a node.
3692 * This is called from __kmem_cache_shutdown(). We must take list_lock
3693 * because sysfs file might still access partial list after the shutdowning.
3695 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3698 struct page *page, *h;
3700 BUG_ON(irqs_disabled());
3701 spin_lock_irq(&n->list_lock);
3702 list_for_each_entry_safe(page, h, &n->partial, lru) {
3704 remove_partial(n, page);
3705 list_add(&page->lru, &discard);
3707 list_slab_objects(s, page,
3708 "Objects remaining in %s on __kmem_cache_shutdown()");
3711 spin_unlock_irq(&n->list_lock);
3713 list_for_each_entry_safe(page, h, &discard, lru)
3714 discard_slab(s, page);
3718 * Release all resources used by a slab cache.
3720 int __kmem_cache_shutdown(struct kmem_cache *s)
3723 struct kmem_cache_node *n;
3726 /* Attempt to free all objects */
3727 for_each_kmem_cache_node(s, node, n) {
3729 if (n->nr_partial || slabs_node(s, node))
3732 sysfs_slab_remove(s);
3736 /********************************************************************
3738 *******************************************************************/
3740 static int __init setup_slub_min_order(char *str)
3742 get_option(&str, &slub_min_order);
3747 __setup("slub_min_order=", setup_slub_min_order);
3749 static int __init setup_slub_max_order(char *str)
3751 get_option(&str, &slub_max_order);
3752 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3757 __setup("slub_max_order=", setup_slub_max_order);
3759 static int __init setup_slub_min_objects(char *str)
3761 get_option(&str, &slub_min_objects);
3766 __setup("slub_min_objects=", setup_slub_min_objects);
3768 void *__kmalloc(size_t size, gfp_t flags)
3770 struct kmem_cache *s;
3773 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3774 return kmalloc_large(size, flags);
3776 s = kmalloc_slab(size, flags);
3778 if (unlikely(ZERO_OR_NULL_PTR(s)))
3781 ret = slab_alloc(s, flags, _RET_IP_);
3783 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3785 kasan_kmalloc(s, ret, size, flags);
3789 EXPORT_SYMBOL(__kmalloc);
3792 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3797 flags |= __GFP_COMP | __GFP_NOTRACK;
3798 page = alloc_pages_node(node, flags, get_order(size));
3800 ptr = page_address(page);
3802 kmalloc_large_node_hook(ptr, size, flags);
3806 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3808 struct kmem_cache *s;
3811 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3812 ret = kmalloc_large_node(size, flags, node);
3814 trace_kmalloc_node(_RET_IP_, ret,
3815 size, PAGE_SIZE << get_order(size),
3821 s = kmalloc_slab(size, flags);
3823 if (unlikely(ZERO_OR_NULL_PTR(s)))
3826 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3828 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3830 kasan_kmalloc(s, ret, size, flags);
3834 EXPORT_SYMBOL(__kmalloc_node);
3837 #ifdef CONFIG_HARDENED_USERCOPY
3839 * Rejects objects that are incorrectly sized.
3841 * Returns NULL if check passes, otherwise const char * to name of cache
3842 * to indicate an error.
3844 const char *__check_heap_object(const void *ptr, unsigned long n,
3847 struct kmem_cache *s;
3848 unsigned long offset;
3851 /* Find object and usable object size. */
3852 s = page->slab_cache;
3853 object_size = slab_ksize(s);
3855 /* Reject impossible pointers. */
3856 if (ptr < page_address(page))
3859 /* Find offset within object. */
3860 offset = (ptr - page_address(page)) % s->size;
3862 /* Adjust for redzone and reject if within the redzone. */
3863 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3864 if (offset < s->red_left_pad)
3866 offset -= s->red_left_pad;
3869 /* Allow address range falling entirely within object size. */
3870 if (offset <= object_size && n <= object_size - offset)
3875 #endif /* CONFIG_HARDENED_USERCOPY */
3877 static size_t __ksize(const void *object)
3881 if (unlikely(object == ZERO_SIZE_PTR))
3884 page = virt_to_head_page(object);
3886 if (unlikely(!PageSlab(page))) {
3887 WARN_ON(!PageCompound(page));
3888 return PAGE_SIZE << compound_order(page);
3891 return slab_ksize(page->slab_cache);
3894 size_t ksize(const void *object)
3896 size_t size = __ksize(object);
3897 /* We assume that ksize callers could use whole allocated area,
3898 * so we need to unpoison this area.
3900 kasan_unpoison_shadow(object, size);
3903 EXPORT_SYMBOL(ksize);
3905 void kfree(const void *x)
3908 void *object = (void *)x;
3910 trace_kfree(_RET_IP_, x);
3912 if (unlikely(ZERO_OR_NULL_PTR(x)))
3915 page = virt_to_head_page(x);
3916 if (unlikely(!PageSlab(page))) {
3917 BUG_ON(!PageCompound(page));
3919 __free_pages(page, compound_order(page));
3922 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3924 EXPORT_SYMBOL(kfree);
3926 #define SHRINK_PROMOTE_MAX 32
3929 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3930 * up most to the head of the partial lists. New allocations will then
3931 * fill those up and thus they can be removed from the partial lists.
3933 * The slabs with the least items are placed last. This results in them
3934 * being allocated from last increasing the chance that the last objects
3935 * are freed in them.
3937 int __kmem_cache_shrink(struct kmem_cache *s)
3941 struct kmem_cache_node *n;
3944 struct list_head discard;
3945 struct list_head promote[SHRINK_PROMOTE_MAX];
3946 unsigned long flags;
3950 for_each_kmem_cache_node(s, node, n) {
3951 INIT_LIST_HEAD(&discard);
3952 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3953 INIT_LIST_HEAD(promote + i);
3955 spin_lock_irqsave(&n->list_lock, flags);
3958 * Build lists of slabs to discard or promote.
3960 * Note that concurrent frees may occur while we hold the
3961 * list_lock. page->inuse here is the upper limit.
3963 list_for_each_entry_safe(page, t, &n->partial, lru) {
3964 int free = page->objects - page->inuse;
3966 /* Do not reread page->inuse */
3969 /* We do not keep full slabs on the list */
3972 if (free == page->objects) {
3973 list_move(&page->lru, &discard);
3975 } else if (free <= SHRINK_PROMOTE_MAX)
3976 list_move(&page->lru, promote + free - 1);
3980 * Promote the slabs filled up most to the head of the
3983 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3984 list_splice(promote + i, &n->partial);
3986 spin_unlock_irqrestore(&n->list_lock, flags);
3988 /* Release empty slabs */
3989 list_for_each_entry_safe(page, t, &discard, lru)
3990 discard_slab(s, page);
3992 if (slabs_node(s, node))
4000 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4003 * Called with all the locks held after a sched RCU grace period.
4004 * Even if @s becomes empty after shrinking, we can't know that @s
4005 * doesn't have allocations already in-flight and thus can't
4006 * destroy @s until the associated memcg is released.
4008 * However, let's remove the sysfs files for empty caches here.
4009 * Each cache has a lot of interface files which aren't
4010 * particularly useful for empty draining caches; otherwise, we can
4011 * easily end up with millions of unnecessary sysfs files on
4012 * systems which have a lot of memory and transient cgroups.
4014 if (!__kmem_cache_shrink(s))
4015 sysfs_slab_remove(s);
4018 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4021 * Disable empty slabs caching. Used to avoid pinning offline
4022 * memory cgroups by kmem pages that can be freed.
4024 slub_set_cpu_partial(s, 0);
4028 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4029 * we have to make sure the change is visible before shrinking.
4031 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4035 static int slab_mem_going_offline_callback(void *arg)
4037 struct kmem_cache *s;
4039 mutex_lock(&slab_mutex);
4040 list_for_each_entry(s, &slab_caches, list)
4041 __kmem_cache_shrink(s);
4042 mutex_unlock(&slab_mutex);
4047 static void slab_mem_offline_callback(void *arg)
4049 struct kmem_cache_node *n;
4050 struct kmem_cache *s;
4051 struct memory_notify *marg = arg;
4054 offline_node = marg->status_change_nid_normal;
4057 * If the node still has available memory. we need kmem_cache_node
4060 if (offline_node < 0)
4063 mutex_lock(&slab_mutex);
4064 list_for_each_entry(s, &slab_caches, list) {
4065 n = get_node(s, offline_node);
4068 * if n->nr_slabs > 0, slabs still exist on the node
4069 * that is going down. We were unable to free them,
4070 * and offline_pages() function shouldn't call this
4071 * callback. So, we must fail.
4073 BUG_ON(slabs_node(s, offline_node));
4075 s->node[offline_node] = NULL;
4076 kmem_cache_free(kmem_cache_node, n);
4079 mutex_unlock(&slab_mutex);
4082 static int slab_mem_going_online_callback(void *arg)
4084 struct kmem_cache_node *n;
4085 struct kmem_cache *s;
4086 struct memory_notify *marg = arg;
4087 int nid = marg->status_change_nid_normal;
4091 * If the node's memory is already available, then kmem_cache_node is
4092 * already created. Nothing to do.
4098 * We are bringing a node online. No memory is available yet. We must
4099 * allocate a kmem_cache_node structure in order to bring the node
4102 mutex_lock(&slab_mutex);
4103 list_for_each_entry(s, &slab_caches, list) {
4105 * XXX: kmem_cache_alloc_node will fallback to other nodes
4106 * since memory is not yet available from the node that
4109 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4114 init_kmem_cache_node(n);
4118 mutex_unlock(&slab_mutex);
4122 static int slab_memory_callback(struct notifier_block *self,
4123 unsigned long action, void *arg)
4128 case MEM_GOING_ONLINE:
4129 ret = slab_mem_going_online_callback(arg);
4131 case MEM_GOING_OFFLINE:
4132 ret = slab_mem_going_offline_callback(arg);
4135 case MEM_CANCEL_ONLINE:
4136 slab_mem_offline_callback(arg);
4139 case MEM_CANCEL_OFFLINE:
4143 ret = notifier_from_errno(ret);
4149 static struct notifier_block slab_memory_callback_nb = {
4150 .notifier_call = slab_memory_callback,
4151 .priority = SLAB_CALLBACK_PRI,
4154 /********************************************************************
4155 * Basic setup of slabs
4156 *******************************************************************/
4159 * Used for early kmem_cache structures that were allocated using
4160 * the page allocator. Allocate them properly then fix up the pointers
4161 * that may be pointing to the wrong kmem_cache structure.
4164 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4167 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4168 struct kmem_cache_node *n;
4170 memcpy(s, static_cache, kmem_cache->object_size);
4173 * This runs very early, and only the boot processor is supposed to be
4174 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4177 __flush_cpu_slab(s, smp_processor_id());
4178 for_each_kmem_cache_node(s, node, n) {
4181 list_for_each_entry(p, &n->partial, lru)
4184 #ifdef CONFIG_SLUB_DEBUG
4185 list_for_each_entry(p, &n->full, lru)
4189 slab_init_memcg_params(s);
4190 list_add(&s->list, &slab_caches);
4191 memcg_link_cache(s);
4195 void __init kmem_cache_init(void)
4197 static __initdata struct kmem_cache boot_kmem_cache,
4198 boot_kmem_cache_node;
4200 if (debug_guardpage_minorder())
4203 kmem_cache_node = &boot_kmem_cache_node;
4204 kmem_cache = &boot_kmem_cache;
4206 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4207 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4209 register_hotmemory_notifier(&slab_memory_callback_nb);
4211 /* Able to allocate the per node structures */
4212 slab_state = PARTIAL;
4214 create_boot_cache(kmem_cache, "kmem_cache",
4215 offsetof(struct kmem_cache, node) +
4216 nr_node_ids * sizeof(struct kmem_cache_node *),
4217 SLAB_HWCACHE_ALIGN);
4219 kmem_cache = bootstrap(&boot_kmem_cache);
4222 * Allocate kmem_cache_node properly from the kmem_cache slab.
4223 * kmem_cache_node is separately allocated so no need to
4224 * update any list pointers.
4226 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4228 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4229 setup_kmalloc_cache_index_table();
4230 create_kmalloc_caches(0);
4232 /* Setup random freelists for each cache */
4233 init_freelist_randomization();
4235 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4238 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4240 slub_min_order, slub_max_order, slub_min_objects,
4241 nr_cpu_ids, nr_node_ids);
4244 void __init kmem_cache_init_late(void)
4249 __kmem_cache_alias(const char *name, size_t size, size_t align,
4250 slab_flags_t flags, void (*ctor)(void *))
4252 struct kmem_cache *s, *c;
4254 s = find_mergeable(size, align, flags, name, ctor);
4259 * Adjust the object sizes so that we clear
4260 * the complete object on kzalloc.
4262 s->object_size = max(s->object_size, (int)size);
4263 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4265 for_each_memcg_cache(c, s) {
4266 c->object_size = s->object_size;
4267 c->inuse = max_t(int, c->inuse,
4268 ALIGN(size, sizeof(void *)));
4271 if (sysfs_slab_alias(s, name)) {
4280 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4284 err = kmem_cache_open(s, flags);
4288 /* Mutex is not taken during early boot */
4289 if (slab_state <= UP)
4292 memcg_propagate_slab_attrs(s);
4293 err = sysfs_slab_add(s);
4295 __kmem_cache_release(s);
4300 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4302 struct kmem_cache *s;
4305 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4306 return kmalloc_large(size, gfpflags);
4308 s = kmalloc_slab(size, gfpflags);
4310 if (unlikely(ZERO_OR_NULL_PTR(s)))
4313 ret = slab_alloc(s, gfpflags, caller);
4315 /* Honor the call site pointer we received. */
4316 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4322 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4323 int node, unsigned long caller)
4325 struct kmem_cache *s;
4328 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4329 ret = kmalloc_large_node(size, gfpflags, node);
4331 trace_kmalloc_node(caller, ret,
4332 size, PAGE_SIZE << get_order(size),
4338 s = kmalloc_slab(size, gfpflags);
4340 if (unlikely(ZERO_OR_NULL_PTR(s)))
4343 ret = slab_alloc_node(s, gfpflags, node, caller);
4345 /* Honor the call site pointer we received. */
4346 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4353 static int count_inuse(struct page *page)
4358 static int count_total(struct page *page)
4360 return page->objects;
4364 #ifdef CONFIG_SLUB_DEBUG
4365 static int validate_slab(struct kmem_cache *s, struct page *page,
4369 void *addr = page_address(page);
4371 if (!check_slab(s, page) ||
4372 !on_freelist(s, page, NULL))
4375 /* Now we know that a valid freelist exists */
4376 bitmap_zero(map, page->objects);
4378 get_map(s, page, map);
4379 for_each_object(p, s, addr, page->objects) {
4380 if (test_bit(slab_index(p, s, addr), map))
4381 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4385 for_each_object(p, s, addr, page->objects)
4386 if (!test_bit(slab_index(p, s, addr), map))
4387 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4392 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4396 validate_slab(s, page, map);
4400 static int validate_slab_node(struct kmem_cache *s,
4401 struct kmem_cache_node *n, unsigned long *map)
4403 unsigned long count = 0;
4405 unsigned long flags;
4407 spin_lock_irqsave(&n->list_lock, flags);
4409 list_for_each_entry(page, &n->partial, lru) {
4410 validate_slab_slab(s, page, map);
4413 if (count != n->nr_partial)
4414 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4415 s->name, count, n->nr_partial);
4417 if (!(s->flags & SLAB_STORE_USER))
4420 list_for_each_entry(page, &n->full, lru) {
4421 validate_slab_slab(s, page, map);
4424 if (count != atomic_long_read(&n->nr_slabs))
4425 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4426 s->name, count, atomic_long_read(&n->nr_slabs));
4429 spin_unlock_irqrestore(&n->list_lock, flags);
4433 static long validate_slab_cache(struct kmem_cache *s)
4436 unsigned long count = 0;
4437 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4438 sizeof(unsigned long), GFP_KERNEL);
4439 struct kmem_cache_node *n;
4445 for_each_kmem_cache_node(s, node, n)
4446 count += validate_slab_node(s, n, map);
4451 * Generate lists of code addresses where slabcache objects are allocated
4456 unsigned long count;
4463 DECLARE_BITMAP(cpus, NR_CPUS);
4469 unsigned long count;
4470 struct location *loc;
4473 static void free_loc_track(struct loc_track *t)
4476 free_pages((unsigned long)t->loc,
4477 get_order(sizeof(struct location) * t->max));
4480 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4485 order = get_order(sizeof(struct location) * max);
4487 l = (void *)__get_free_pages(flags, order);
4492 memcpy(l, t->loc, sizeof(struct location) * t->count);
4500 static int add_location(struct loc_track *t, struct kmem_cache *s,
4501 const struct track *track)
4503 long start, end, pos;
4505 unsigned long caddr;
4506 unsigned long age = jiffies - track->when;
4512 pos = start + (end - start + 1) / 2;
4515 * There is nothing at "end". If we end up there
4516 * we need to add something to before end.
4521 caddr = t->loc[pos].addr;
4522 if (track->addr == caddr) {
4528 if (age < l->min_time)
4530 if (age > l->max_time)
4533 if (track->pid < l->min_pid)
4534 l->min_pid = track->pid;
4535 if (track->pid > l->max_pid)
4536 l->max_pid = track->pid;
4538 cpumask_set_cpu(track->cpu,
4539 to_cpumask(l->cpus));
4541 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4545 if (track->addr < caddr)
4552 * Not found. Insert new tracking element.
4554 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4560 (t->count - pos) * sizeof(struct location));
4563 l->addr = track->addr;
4567 l->min_pid = track->pid;
4568 l->max_pid = track->pid;
4569 cpumask_clear(to_cpumask(l->cpus));
4570 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4571 nodes_clear(l->nodes);
4572 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4576 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4577 struct page *page, enum track_item alloc,
4580 void *addr = page_address(page);
4583 bitmap_zero(map, page->objects);
4584 get_map(s, page, map);
4586 for_each_object(p, s, addr, page->objects)
4587 if (!test_bit(slab_index(p, s, addr), map))
4588 add_location(t, s, get_track(s, p, alloc));
4591 static int list_locations(struct kmem_cache *s, char *buf,
4592 enum track_item alloc)
4596 struct loc_track t = { 0, 0, NULL };
4598 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4599 sizeof(unsigned long), GFP_KERNEL);
4600 struct kmem_cache_node *n;
4602 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4605 return sprintf(buf, "Out of memory\n");
4607 /* Push back cpu slabs */
4610 for_each_kmem_cache_node(s, node, n) {
4611 unsigned long flags;
4614 if (!atomic_long_read(&n->nr_slabs))
4617 spin_lock_irqsave(&n->list_lock, flags);
4618 list_for_each_entry(page, &n->partial, lru)
4619 process_slab(&t, s, page, alloc, map);
4620 list_for_each_entry(page, &n->full, lru)
4621 process_slab(&t, s, page, alloc, map);
4622 spin_unlock_irqrestore(&n->list_lock, flags);
4625 for (i = 0; i < t.count; i++) {
4626 struct location *l = &t.loc[i];
4628 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4630 len += sprintf(buf + len, "%7ld ", l->count);
4633 len += sprintf(buf + len, "%pS", (void *)l->addr);
4635 len += sprintf(buf + len, "<not-available>");
4637 if (l->sum_time != l->min_time) {
4638 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4640 (long)div_u64(l->sum_time, l->count),
4643 len += sprintf(buf + len, " age=%ld",
4646 if (l->min_pid != l->max_pid)
4647 len += sprintf(buf + len, " pid=%ld-%ld",
4648 l->min_pid, l->max_pid);
4650 len += sprintf(buf + len, " pid=%ld",
4653 if (num_online_cpus() > 1 &&
4654 !cpumask_empty(to_cpumask(l->cpus)) &&
4655 len < PAGE_SIZE - 60)
4656 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4658 cpumask_pr_args(to_cpumask(l->cpus)));
4660 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4661 len < PAGE_SIZE - 60)
4662 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4664 nodemask_pr_args(&l->nodes));
4666 len += sprintf(buf + len, "\n");
4672 len += sprintf(buf, "No data\n");
4677 #ifdef SLUB_RESILIENCY_TEST
4678 static void __init resiliency_test(void)
4682 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4684 pr_err("SLUB resiliency testing\n");
4685 pr_err("-----------------------\n");
4686 pr_err("A. Corruption after allocation\n");
4688 p = kzalloc(16, GFP_KERNEL);
4690 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4693 validate_slab_cache(kmalloc_caches[4]);
4695 /* Hmmm... The next two are dangerous */
4696 p = kzalloc(32, GFP_KERNEL);
4697 p[32 + sizeof(void *)] = 0x34;
4698 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4700 pr_err("If allocated object is overwritten then not detectable\n\n");
4702 validate_slab_cache(kmalloc_caches[5]);
4703 p = kzalloc(64, GFP_KERNEL);
4704 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4706 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4708 pr_err("If allocated object is overwritten then not detectable\n\n");
4709 validate_slab_cache(kmalloc_caches[6]);
4711 pr_err("\nB. Corruption after free\n");
4712 p = kzalloc(128, GFP_KERNEL);
4715 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4716 validate_slab_cache(kmalloc_caches[7]);
4718 p = kzalloc(256, GFP_KERNEL);
4721 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4722 validate_slab_cache(kmalloc_caches[8]);
4724 p = kzalloc(512, GFP_KERNEL);
4727 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4728 validate_slab_cache(kmalloc_caches[9]);
4732 static void resiliency_test(void) {};
4737 enum slab_stat_type {
4738 SL_ALL, /* All slabs */
4739 SL_PARTIAL, /* Only partially allocated slabs */
4740 SL_CPU, /* Only slabs used for cpu caches */
4741 SL_OBJECTS, /* Determine allocated objects not slabs */
4742 SL_TOTAL /* Determine object capacity not slabs */
4745 #define SO_ALL (1 << SL_ALL)
4746 #define SO_PARTIAL (1 << SL_PARTIAL)
4747 #define SO_CPU (1 << SL_CPU)
4748 #define SO_OBJECTS (1 << SL_OBJECTS)
4749 #define SO_TOTAL (1 << SL_TOTAL)
4752 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4754 static int __init setup_slub_memcg_sysfs(char *str)
4758 if (get_option(&str, &v) > 0)
4759 memcg_sysfs_enabled = v;
4764 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4767 static ssize_t show_slab_objects(struct kmem_cache *s,
4768 char *buf, unsigned long flags)
4770 unsigned long total = 0;
4773 unsigned long *nodes;
4775 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4779 if (flags & SO_CPU) {
4782 for_each_possible_cpu(cpu) {
4783 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4788 page = READ_ONCE(c->page);
4792 node = page_to_nid(page);
4793 if (flags & SO_TOTAL)
4795 else if (flags & SO_OBJECTS)
4803 page = slub_percpu_partial_read_once(c);
4805 node = page_to_nid(page);
4806 if (flags & SO_TOTAL)
4808 else if (flags & SO_OBJECTS)
4819 #ifdef CONFIG_SLUB_DEBUG
4820 if (flags & SO_ALL) {
4821 struct kmem_cache_node *n;
4823 for_each_kmem_cache_node(s, node, n) {
4825 if (flags & SO_TOTAL)
4826 x = atomic_long_read(&n->total_objects);
4827 else if (flags & SO_OBJECTS)
4828 x = atomic_long_read(&n->total_objects) -
4829 count_partial(n, count_free);
4831 x = atomic_long_read(&n->nr_slabs);
4838 if (flags & SO_PARTIAL) {
4839 struct kmem_cache_node *n;
4841 for_each_kmem_cache_node(s, node, n) {
4842 if (flags & SO_TOTAL)
4843 x = count_partial(n, count_total);
4844 else if (flags & SO_OBJECTS)
4845 x = count_partial(n, count_inuse);
4852 x = sprintf(buf, "%lu", total);
4854 for (node = 0; node < nr_node_ids; node++)
4856 x += sprintf(buf + x, " N%d=%lu",
4861 return x + sprintf(buf + x, "\n");
4864 #ifdef CONFIG_SLUB_DEBUG
4865 static int any_slab_objects(struct kmem_cache *s)
4868 struct kmem_cache_node *n;
4870 for_each_kmem_cache_node(s, node, n)
4871 if (atomic_long_read(&n->total_objects))
4878 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4879 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4881 struct slab_attribute {
4882 struct attribute attr;
4883 ssize_t (*show)(struct kmem_cache *s, char *buf);
4884 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4887 #define SLAB_ATTR_RO(_name) \
4888 static struct slab_attribute _name##_attr = \
4889 __ATTR(_name, 0400, _name##_show, NULL)
4891 #define SLAB_ATTR(_name) \
4892 static struct slab_attribute _name##_attr = \
4893 __ATTR(_name, 0600, _name##_show, _name##_store)
4895 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4897 return sprintf(buf, "%d\n", s->size);
4899 SLAB_ATTR_RO(slab_size);
4901 static ssize_t align_show(struct kmem_cache *s, char *buf)
4903 return sprintf(buf, "%d\n", s->align);
4905 SLAB_ATTR_RO(align);
4907 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4909 return sprintf(buf, "%d\n", s->object_size);
4911 SLAB_ATTR_RO(object_size);
4913 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4915 return sprintf(buf, "%d\n", oo_objects(s->oo));
4917 SLAB_ATTR_RO(objs_per_slab);
4919 static ssize_t order_store(struct kmem_cache *s,
4920 const char *buf, size_t length)
4922 unsigned long order;
4925 err = kstrtoul(buf, 10, &order);
4929 if (order > slub_max_order || order < slub_min_order)
4932 calculate_sizes(s, order);
4936 static ssize_t order_show(struct kmem_cache *s, char *buf)
4938 return sprintf(buf, "%d\n", oo_order(s->oo));
4942 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4944 return sprintf(buf, "%lu\n", s->min_partial);
4947 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4953 err = kstrtoul(buf, 10, &min);
4957 set_min_partial(s, min);
4960 SLAB_ATTR(min_partial);
4962 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4964 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4967 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4970 unsigned long objects;
4973 err = kstrtoul(buf, 10, &objects);
4976 if (objects && !kmem_cache_has_cpu_partial(s))
4979 slub_set_cpu_partial(s, objects);
4983 SLAB_ATTR(cpu_partial);
4985 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4989 return sprintf(buf, "%pS\n", s->ctor);
4993 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4995 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4997 SLAB_ATTR_RO(aliases);
4999 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5001 return show_slab_objects(s, buf, SO_PARTIAL);
5003 SLAB_ATTR_RO(partial);
5005 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5007 return show_slab_objects(s, buf, SO_CPU);
5009 SLAB_ATTR_RO(cpu_slabs);
5011 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5013 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5015 SLAB_ATTR_RO(objects);
5017 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5019 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5021 SLAB_ATTR_RO(objects_partial);
5023 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5030 for_each_online_cpu(cpu) {
5033 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5036 pages += page->pages;
5037 objects += page->pobjects;
5041 len = sprintf(buf, "%d(%d)", objects, pages);
5044 for_each_online_cpu(cpu) {
5047 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5049 if (page && len < PAGE_SIZE - 20)
5050 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5051 page->pobjects, page->pages);
5054 return len + sprintf(buf + len, "\n");
5056 SLAB_ATTR_RO(slabs_cpu_partial);
5058 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5060 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5063 static ssize_t reclaim_account_store(struct kmem_cache *s,
5064 const char *buf, size_t length)
5066 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5068 s->flags |= SLAB_RECLAIM_ACCOUNT;
5071 SLAB_ATTR(reclaim_account);
5073 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5077 SLAB_ATTR_RO(hwcache_align);
5079 #ifdef CONFIG_ZONE_DMA
5080 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5082 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5084 SLAB_ATTR_RO(cache_dma);
5087 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5089 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5091 SLAB_ATTR_RO(destroy_by_rcu);
5093 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5095 return sprintf(buf, "%d\n", s->reserved);
5097 SLAB_ATTR_RO(reserved);
5099 #ifdef CONFIG_SLUB_DEBUG
5100 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5102 return show_slab_objects(s, buf, SO_ALL);
5104 SLAB_ATTR_RO(slabs);
5106 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5108 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5110 SLAB_ATTR_RO(total_objects);
5112 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5114 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5117 static ssize_t sanity_checks_store(struct kmem_cache *s,
5118 const char *buf, size_t length)
5120 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5121 if (buf[0] == '1') {
5122 s->flags &= ~__CMPXCHG_DOUBLE;
5123 s->flags |= SLAB_CONSISTENCY_CHECKS;
5127 SLAB_ATTR(sanity_checks);
5129 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5131 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5134 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5138 * Tracing a merged cache is going to give confusing results
5139 * as well as cause other issues like converting a mergeable
5140 * cache into an umergeable one.
5142 if (s->refcount > 1)
5145 s->flags &= ~SLAB_TRACE;
5146 if (buf[0] == '1') {
5147 s->flags &= ~__CMPXCHG_DOUBLE;
5148 s->flags |= SLAB_TRACE;
5154 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5156 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5159 static ssize_t red_zone_store(struct kmem_cache *s,
5160 const char *buf, size_t length)
5162 if (any_slab_objects(s))
5165 s->flags &= ~SLAB_RED_ZONE;
5166 if (buf[0] == '1') {
5167 s->flags |= SLAB_RED_ZONE;
5169 calculate_sizes(s, -1);
5172 SLAB_ATTR(red_zone);
5174 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5176 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5179 static ssize_t poison_store(struct kmem_cache *s,
5180 const char *buf, size_t length)
5182 if (any_slab_objects(s))
5185 s->flags &= ~SLAB_POISON;
5186 if (buf[0] == '1') {
5187 s->flags |= SLAB_POISON;
5189 calculate_sizes(s, -1);
5194 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5196 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5199 static ssize_t store_user_store(struct kmem_cache *s,
5200 const char *buf, size_t length)
5202 if (any_slab_objects(s))
5205 s->flags &= ~SLAB_STORE_USER;
5206 if (buf[0] == '1') {
5207 s->flags &= ~__CMPXCHG_DOUBLE;
5208 s->flags |= SLAB_STORE_USER;
5210 calculate_sizes(s, -1);
5213 SLAB_ATTR(store_user);
5215 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5220 static ssize_t validate_store(struct kmem_cache *s,
5221 const char *buf, size_t length)
5225 if (buf[0] == '1') {
5226 ret = validate_slab_cache(s);
5232 SLAB_ATTR(validate);
5234 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5236 if (!(s->flags & SLAB_STORE_USER))
5238 return list_locations(s, buf, TRACK_ALLOC);
5240 SLAB_ATTR_RO(alloc_calls);
5242 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5244 if (!(s->flags & SLAB_STORE_USER))
5246 return list_locations(s, buf, TRACK_FREE);
5248 SLAB_ATTR_RO(free_calls);
5249 #endif /* CONFIG_SLUB_DEBUG */
5251 #ifdef CONFIG_FAILSLAB
5252 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5254 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5257 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5260 if (s->refcount > 1)
5263 s->flags &= ~SLAB_FAILSLAB;
5265 s->flags |= SLAB_FAILSLAB;
5268 SLAB_ATTR(failslab);
5271 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5276 static ssize_t shrink_store(struct kmem_cache *s,
5277 const char *buf, size_t length)
5280 kmem_cache_shrink(s);
5288 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5290 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5293 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5294 const char *buf, size_t length)
5296 unsigned long ratio;
5299 err = kstrtoul(buf, 10, &ratio);
5304 s->remote_node_defrag_ratio = ratio * 10;
5308 SLAB_ATTR(remote_node_defrag_ratio);
5311 #ifdef CONFIG_SLUB_STATS
5312 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5314 unsigned long sum = 0;
5317 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5322 for_each_online_cpu(cpu) {
5323 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5329 len = sprintf(buf, "%lu", sum);
5332 for_each_online_cpu(cpu) {
5333 if (data[cpu] && len < PAGE_SIZE - 20)
5334 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5338 return len + sprintf(buf + len, "\n");
5341 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5345 for_each_online_cpu(cpu)
5346 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5349 #define STAT_ATTR(si, text) \
5350 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5352 return show_stat(s, buf, si); \
5354 static ssize_t text##_store(struct kmem_cache *s, \
5355 const char *buf, size_t length) \
5357 if (buf[0] != '0') \
5359 clear_stat(s, si); \
5364 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5365 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5366 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5367 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5368 STAT_ATTR(FREE_FROZEN, free_frozen);
5369 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5370 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5371 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5372 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5373 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5374 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5375 STAT_ATTR(FREE_SLAB, free_slab);
5376 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5377 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5378 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5379 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5380 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5381 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5382 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5383 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5384 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5385 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5386 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5387 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5388 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5389 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5392 static struct attribute *slab_attrs[] = {
5393 &slab_size_attr.attr,
5394 &object_size_attr.attr,
5395 &objs_per_slab_attr.attr,
5397 &min_partial_attr.attr,
5398 &cpu_partial_attr.attr,
5400 &objects_partial_attr.attr,
5402 &cpu_slabs_attr.attr,
5406 &hwcache_align_attr.attr,
5407 &reclaim_account_attr.attr,
5408 &destroy_by_rcu_attr.attr,
5410 &reserved_attr.attr,
5411 &slabs_cpu_partial_attr.attr,
5412 #ifdef CONFIG_SLUB_DEBUG
5413 &total_objects_attr.attr,
5415 &sanity_checks_attr.attr,
5417 &red_zone_attr.attr,
5419 &store_user_attr.attr,
5420 &validate_attr.attr,
5421 &alloc_calls_attr.attr,
5422 &free_calls_attr.attr,
5424 #ifdef CONFIG_ZONE_DMA
5425 &cache_dma_attr.attr,
5428 &remote_node_defrag_ratio_attr.attr,
5430 #ifdef CONFIG_SLUB_STATS
5431 &alloc_fastpath_attr.attr,
5432 &alloc_slowpath_attr.attr,
5433 &free_fastpath_attr.attr,
5434 &free_slowpath_attr.attr,
5435 &free_frozen_attr.attr,
5436 &free_add_partial_attr.attr,
5437 &free_remove_partial_attr.attr,
5438 &alloc_from_partial_attr.attr,
5439 &alloc_slab_attr.attr,
5440 &alloc_refill_attr.attr,
5441 &alloc_node_mismatch_attr.attr,
5442 &free_slab_attr.attr,
5443 &cpuslab_flush_attr.attr,
5444 &deactivate_full_attr.attr,
5445 &deactivate_empty_attr.attr,
5446 &deactivate_to_head_attr.attr,
5447 &deactivate_to_tail_attr.attr,
5448 &deactivate_remote_frees_attr.attr,
5449 &deactivate_bypass_attr.attr,
5450 &order_fallback_attr.attr,
5451 &cmpxchg_double_fail_attr.attr,
5452 &cmpxchg_double_cpu_fail_attr.attr,
5453 &cpu_partial_alloc_attr.attr,
5454 &cpu_partial_free_attr.attr,
5455 &cpu_partial_node_attr.attr,
5456 &cpu_partial_drain_attr.attr,
5458 #ifdef CONFIG_FAILSLAB
5459 &failslab_attr.attr,
5465 static const struct attribute_group slab_attr_group = {
5466 .attrs = slab_attrs,
5469 static ssize_t slab_attr_show(struct kobject *kobj,
5470 struct attribute *attr,
5473 struct slab_attribute *attribute;
5474 struct kmem_cache *s;
5477 attribute = to_slab_attr(attr);
5480 if (!attribute->show)
5483 err = attribute->show(s, buf);
5488 static ssize_t slab_attr_store(struct kobject *kobj,
5489 struct attribute *attr,
5490 const char *buf, size_t len)
5492 struct slab_attribute *attribute;
5493 struct kmem_cache *s;
5496 attribute = to_slab_attr(attr);
5499 if (!attribute->store)
5502 err = attribute->store(s, buf, len);
5504 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5505 struct kmem_cache *c;
5507 mutex_lock(&slab_mutex);
5508 if (s->max_attr_size < len)
5509 s->max_attr_size = len;
5512 * This is a best effort propagation, so this function's return
5513 * value will be determined by the parent cache only. This is
5514 * basically because not all attributes will have a well
5515 * defined semantics for rollbacks - most of the actions will
5516 * have permanent effects.
5518 * Returning the error value of any of the children that fail
5519 * is not 100 % defined, in the sense that users seeing the
5520 * error code won't be able to know anything about the state of
5523 * Only returning the error code for the parent cache at least
5524 * has well defined semantics. The cache being written to
5525 * directly either failed or succeeded, in which case we loop
5526 * through the descendants with best-effort propagation.
5528 for_each_memcg_cache(c, s)
5529 attribute->store(c, buf, len);
5530 mutex_unlock(&slab_mutex);
5536 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5540 char *buffer = NULL;
5541 struct kmem_cache *root_cache;
5543 if (is_root_cache(s))
5546 root_cache = s->memcg_params.root_cache;
5549 * This mean this cache had no attribute written. Therefore, no point
5550 * in copying default values around
5552 if (!root_cache->max_attr_size)
5555 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5558 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5561 if (!attr || !attr->store || !attr->show)
5565 * It is really bad that we have to allocate here, so we will
5566 * do it only as a fallback. If we actually allocate, though,
5567 * we can just use the allocated buffer until the end.
5569 * Most of the slub attributes will tend to be very small in
5570 * size, but sysfs allows buffers up to a page, so they can
5571 * theoretically happen.
5575 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5578 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5579 if (WARN_ON(!buffer))
5584 len = attr->show(root_cache, buf);
5586 attr->store(s, buf, len);
5590 free_page((unsigned long)buffer);
5594 static void kmem_cache_release(struct kobject *k)
5596 slab_kmem_cache_release(to_slab(k));
5599 static const struct sysfs_ops slab_sysfs_ops = {
5600 .show = slab_attr_show,
5601 .store = slab_attr_store,
5604 static struct kobj_type slab_ktype = {
5605 .sysfs_ops = &slab_sysfs_ops,
5606 .release = kmem_cache_release,
5609 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5611 struct kobj_type *ktype = get_ktype(kobj);
5613 if (ktype == &slab_ktype)
5618 static const struct kset_uevent_ops slab_uevent_ops = {
5619 .filter = uevent_filter,
5622 static struct kset *slab_kset;
5624 static inline struct kset *cache_kset(struct kmem_cache *s)
5627 if (!is_root_cache(s))
5628 return s->memcg_params.root_cache->memcg_kset;
5633 #define ID_STR_LENGTH 64
5635 /* Create a unique string id for a slab cache:
5637 * Format :[flags-]size
5639 static char *create_unique_id(struct kmem_cache *s)
5641 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5648 * First flags affecting slabcache operations. We will only
5649 * get here for aliasable slabs so we do not need to support
5650 * too many flags. The flags here must cover all flags that
5651 * are matched during merging to guarantee that the id is
5654 if (s->flags & SLAB_CACHE_DMA)
5656 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5658 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5660 if (!(s->flags & SLAB_NOTRACK))
5662 if (s->flags & SLAB_ACCOUNT)
5666 p += sprintf(p, "%07d", s->size);
5668 BUG_ON(p > name + ID_STR_LENGTH - 1);
5672 static void sysfs_slab_remove_workfn(struct work_struct *work)
5674 struct kmem_cache *s =
5675 container_of(work, struct kmem_cache, kobj_remove_work);
5677 if (!s->kobj.state_in_sysfs)
5679 * For a memcg cache, this may be called during
5680 * deactivation and again on shutdown. Remove only once.
5681 * A cache is never shut down before deactivation is
5682 * complete, so no need to worry about synchronization.
5687 kset_unregister(s->memcg_kset);
5689 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5690 kobject_del(&s->kobj);
5692 kobject_put(&s->kobj);
5695 static int sysfs_slab_add(struct kmem_cache *s)
5699 struct kset *kset = cache_kset(s);
5700 int unmergeable = slab_unmergeable(s);
5702 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5705 kobject_init(&s->kobj, &slab_ktype);
5711 * Slabcache can never be merged so we can use the name proper.
5712 * This is typically the case for debug situations. In that
5713 * case we can catch duplicate names easily.
5715 sysfs_remove_link(&slab_kset->kobj, s->name);
5719 * Create a unique name for the slab as a target
5722 name = create_unique_id(s);
5725 s->kobj.kset = kset;
5726 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5730 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5735 if (is_root_cache(s) && memcg_sysfs_enabled) {
5736 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5737 if (!s->memcg_kset) {
5744 kobject_uevent(&s->kobj, KOBJ_ADD);
5746 /* Setup first alias */
5747 sysfs_slab_alias(s, s->name);
5754 kobject_del(&s->kobj);
5758 static void sysfs_slab_remove(struct kmem_cache *s)
5760 if (slab_state < FULL)
5762 * Sysfs has not been setup yet so no need to remove the
5767 kobject_get(&s->kobj);
5768 schedule_work(&s->kobj_remove_work);
5771 void sysfs_slab_release(struct kmem_cache *s)
5773 if (slab_state >= FULL)
5774 kobject_put(&s->kobj);
5778 * Need to buffer aliases during bootup until sysfs becomes
5779 * available lest we lose that information.
5781 struct saved_alias {
5782 struct kmem_cache *s;
5784 struct saved_alias *next;
5787 static struct saved_alias *alias_list;
5789 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5791 struct saved_alias *al;
5793 if (slab_state == FULL) {
5795 * If we have a leftover link then remove it.
5797 sysfs_remove_link(&slab_kset->kobj, name);
5798 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5801 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5807 al->next = alias_list;
5812 static int __init slab_sysfs_init(void)
5814 struct kmem_cache *s;
5817 mutex_lock(&slab_mutex);
5819 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5821 mutex_unlock(&slab_mutex);
5822 pr_err("Cannot register slab subsystem.\n");
5828 list_for_each_entry(s, &slab_caches, list) {
5829 err = sysfs_slab_add(s);
5831 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5835 while (alias_list) {
5836 struct saved_alias *al = alias_list;
5838 alias_list = alias_list->next;
5839 err = sysfs_slab_alias(al->s, al->name);
5841 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5846 mutex_unlock(&slab_mutex);
5851 __initcall(slab_sysfs_init);
5852 #endif /* CONFIG_SYSFS */
5855 * The /proc/slabinfo ABI
5857 #ifdef CONFIG_SLUB_DEBUG
5858 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5860 unsigned long nr_slabs = 0;
5861 unsigned long nr_objs = 0;
5862 unsigned long nr_free = 0;
5864 struct kmem_cache_node *n;
5866 for_each_kmem_cache_node(s, node, n) {
5867 nr_slabs += node_nr_slabs(n);
5868 nr_objs += node_nr_objs(n);
5869 nr_free += count_partial(n, count_free);
5872 sinfo->active_objs = nr_objs - nr_free;
5873 sinfo->num_objs = nr_objs;
5874 sinfo->active_slabs = nr_slabs;
5875 sinfo->num_slabs = nr_slabs;
5876 sinfo->objects_per_slab = oo_objects(s->oo);
5877 sinfo->cache_order = oo_order(s->oo);
5880 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5884 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5885 size_t count, loff_t *ppos)
5889 #endif /* CONFIG_SLUB_DEBUG */