1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
50 * 1. slab_mutex (Global Mutex)
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
53 * 4. slab_lock(slab) (Only on some arches or for debugging)
54 * 5. object_map_lock (Only for debugging)
58 * The role of the slab_mutex is to protect the list of all the slabs
59 * and to synchronize major metadata changes to slab cache structures.
60 * Also synchronizes memory hotplug callbacks.
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * The slab_lock is only used for debugging and on arches that do not
68 * have the ability to do a cmpxchg_double. It only protects:
69 * A. slab->freelist -> List of free objects in a slab
70 * B. slab->inuse -> Number of objects in use
71 * C. slab->objects -> Number of objects in slab
72 * D. slab->frozen -> frozen state
76 * If a slab is frozen then it is exempt from list management. It is not
77 * on any list except per cpu partial list. The processor that froze the
78 * slab is the one who can perform list operations on the slab. Other
79 * processors may put objects onto the freelist but the processor that
80 * froze the slab is the only one that can retrieve the objects from the
85 * The list_lock protects the partial and full list on each node and
86 * the partial slab counter. If taken then no new slabs may be added or
87 * removed from the lists nor make the number of partial slabs be modified.
88 * (Note that the total number of slabs is an atomic value that may be
89 * modified without taking the list lock).
91 * The list_lock is a centralized lock and thus we avoid taking it as
92 * much as possible. As long as SLUB does not have to handle partial
93 * slabs, operations can continue without any centralized lock. F.e.
94 * allocating a long series of objects that fill up slabs does not require
97 * cpu_slab->lock local lock
99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
100 * except the stat counters. This is a percpu structure manipulated only by
101 * the local cpu, so the lock protects against being preempted or interrupted
102 * by an irq. Fast path operations rely on lockless operations instead.
103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104 * prevent the lockless operations), so fastpath operations also need to take
105 * the lock and are no longer lockless.
109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110 * are fully lockless when satisfied from the percpu slab (and when
111 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
112 * They also don't disable preemption or migration or irqs. They rely on
113 * the transaction id (tid) field to detect being preempted or moved to
116 * irq, preemption, migration considerations
118 * Interrupts are disabled as part of list_lock or local_lock operations, or
119 * around the slab_lock operation, in order to make the slab allocator safe
120 * to use in the context of an irq.
122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125 * doesn't have to be revalidated in each section protected by the local lock.
127 * SLUB assigns one slab for allocation to each processor.
128 * Allocations only occur from these slabs called cpu slabs.
130 * Slabs with free elements are kept on a partial list and during regular
131 * operations no list for full slabs is used. If an object in a full slab is
132 * freed then the slab will show up again on the partial lists.
133 * We track full slabs for debugging purposes though because otherwise we
134 * cannot scan all objects.
136 * Slabs are freed when they become empty. Teardown and setup is
137 * minimal so we rely on the page allocators per cpu caches for
138 * fast frees and allocs.
140 * slab->frozen The slab is frozen and exempt from list processing.
141 * This means that the slab is dedicated to a purpose
142 * such as satisfying allocations for a specific
143 * processor. Objects may be freed in the slab while
144 * it is frozen but slab_free will then skip the usual
145 * list operations. It is up to the processor holding
146 * the slab to integrate the slab into the slab lists
147 * when the slab is no longer needed.
149 * One use of this flag is to mark slabs that are
150 * used for allocations. Then such a slab becomes a cpu
151 * slab. The cpu slab may be equipped with an additional
152 * freelist that allows lockless access to
153 * free objects in addition to the regular freelist
154 * that requires the slab lock.
156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
157 * options set. This moves slab handling out of
158 * the fast path and disables lockless freelists.
162 * We could simply use migrate_disable()/enable() but as long as it's a
163 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
169 #define slub_get_cpu_ptr(var) \
174 #define slub_put_cpu_ptr(var) \
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
187 #endif /* CONFIG_SLUB_DEBUG */
189 static inline bool kmem_cache_debug(struct kmem_cache *s)
191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
194 void *fixup_red_left(struct kmem_cache *s, void *p)
196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 p += s->red_left_pad;
202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 return !kmem_cache_debug(s);
212 * Issues still to be resolved:
214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
216 * - Variable sizing of the per node arrays
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
223 * Minimum number of partial slabs. These will be left on the partial
224 * lists even if they are empty. kmem_cache_shrink may reclaim them.
226 #define MIN_PARTIAL 5
229 * Maximum number of desirable partial slabs.
230 * The existence of more partial slabs makes kmem_cache_shrink
231 * sort the partial list by the number of objects in use.
233 #define MAX_PARTIAL 10
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 SLAB_POISON | SLAB_STORE_USER)
239 * These debug flags cannot use CMPXCHG because there might be consistency
240 * issues when checking or reading debug information
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
247 * Debugging flags that require metadata to be stored in the slab. These get
248 * disabled when slub_debug=O is used and a cache's min order increases with
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
254 #define OO_MASK ((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
257 /* Internal SLUB flags */
259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
264 * Tracking user of a slab.
266 #define TRACK_ADDRS_COUNT 16
268 unsigned long addr; /* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 depot_stack_handle_t handle;
272 int cpu; /* Was running on cpu */
273 int pid; /* Pid context */
274 unsigned long when; /* When did the operation occur */
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
296 #ifdef CONFIG_SLUB_STATS
298 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 * avoid this_cpu_add()'s irq-disable overhead.
301 raw_cpu_inc(s->cpu_slab->stat[si]);
306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308 * differ during memory hotplug/hotremove operations.
309 * Protected by slab_mutex.
311 static nodemask_t slab_nodes;
314 * Workqueue used for flush_cpu_slab().
316 static struct workqueue_struct *flushwq;
318 /********************************************************************
319 * Core slab cache functions
320 *******************************************************************/
323 * Returns freelist pointer (ptr). With hardening, this is obfuscated
324 * with an XOR of the address where the pointer is held and a per-cache
327 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
328 unsigned long ptr_addr)
330 #ifdef CONFIG_SLAB_FREELIST_HARDENED
332 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
333 * Normally, this doesn't cause any issues, as both set_freepointer()
334 * and get_freepointer() are called with a pointer with the same tag.
335 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
336 * example, when __free_slub() iterates over objects in a cache, it
337 * passes untagged pointers to check_object(). check_object() in turns
338 * calls get_freepointer() with an untagged pointer, which causes the
339 * freepointer to be restored incorrectly.
341 return (void *)((unsigned long)ptr ^ s->random ^
342 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
348 /* Returns the freelist pointer recorded at location ptr_addr. */
349 static inline void *freelist_dereference(const struct kmem_cache *s,
352 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
353 (unsigned long)ptr_addr);
356 static inline void *get_freepointer(struct kmem_cache *s, void *object)
358 object = kasan_reset_tag(object);
359 return freelist_dereference(s, object + s->offset);
362 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
364 prefetchw(object + s->offset);
367 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
369 unsigned long freepointer_addr;
372 if (!debug_pagealloc_enabled_static())
373 return get_freepointer(s, object);
375 object = kasan_reset_tag(object);
376 freepointer_addr = (unsigned long)object + s->offset;
377 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
378 return freelist_ptr(s, p, freepointer_addr);
381 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
383 unsigned long freeptr_addr = (unsigned long)object + s->offset;
385 #ifdef CONFIG_SLAB_FREELIST_HARDENED
386 BUG_ON(object == fp); /* naive detection of double free or corruption */
389 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
390 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
393 /* Loop over all objects in a slab */
394 #define for_each_object(__p, __s, __addr, __objects) \
395 for (__p = fixup_red_left(__s, __addr); \
396 __p < (__addr) + (__objects) * (__s)->size; \
399 static inline unsigned int order_objects(unsigned int order, unsigned int size)
401 return ((unsigned int)PAGE_SIZE << order) / size;
404 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
407 struct kmem_cache_order_objects x = {
408 (order << OO_SHIFT) + order_objects(order, size)
414 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
416 return x.x >> OO_SHIFT;
419 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
421 return x.x & OO_MASK;
424 #ifdef CONFIG_SLUB_CPU_PARTIAL
425 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
427 unsigned int nr_slabs;
429 s->cpu_partial = nr_objects;
432 * We take the number of objects but actually limit the number of
433 * slabs on the per cpu partial list, in order to limit excessive
434 * growth of the list. For simplicity we assume that the slabs will
437 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
438 s->cpu_partial_slabs = nr_slabs;
442 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
445 #endif /* CONFIG_SLUB_CPU_PARTIAL */
448 * Per slab locking using the pagelock
450 static __always_inline void __slab_lock(struct slab *slab)
452 struct page *page = slab_page(slab);
454 VM_BUG_ON_PAGE(PageTail(page), page);
455 bit_spin_lock(PG_locked, &page->flags);
458 static __always_inline void __slab_unlock(struct slab *slab)
460 struct page *page = slab_page(slab);
462 VM_BUG_ON_PAGE(PageTail(page), page);
463 __bit_spin_unlock(PG_locked, &page->flags);
466 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
468 if (IS_ENABLED(CONFIG_PREEMPT_RT))
469 local_irq_save(*flags);
473 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
476 if (IS_ENABLED(CONFIG_PREEMPT_RT))
477 local_irq_restore(*flags);
481 * Interrupts must be disabled (for the fallback code to work right), typically
482 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
483 * so we disable interrupts as part of slab_[un]lock().
485 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
486 void *freelist_old, unsigned long counters_old,
487 void *freelist_new, unsigned long counters_new,
490 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
491 lockdep_assert_irqs_disabled();
492 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
493 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
494 if (s->flags & __CMPXCHG_DOUBLE) {
495 if (cmpxchg_double(&slab->freelist, &slab->counters,
496 freelist_old, counters_old,
497 freelist_new, counters_new))
502 /* init to 0 to prevent spurious warnings */
503 unsigned long flags = 0;
505 slab_lock(slab, &flags);
506 if (slab->freelist == freelist_old &&
507 slab->counters == counters_old) {
508 slab->freelist = freelist_new;
509 slab->counters = counters_new;
510 slab_unlock(slab, &flags);
513 slab_unlock(slab, &flags);
517 stat(s, CMPXCHG_DOUBLE_FAIL);
519 #ifdef SLUB_DEBUG_CMPXCHG
520 pr_info("%s %s: cmpxchg double redo ", n, s->name);
526 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
527 void *freelist_old, unsigned long counters_old,
528 void *freelist_new, unsigned long counters_new,
531 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
532 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
533 if (s->flags & __CMPXCHG_DOUBLE) {
534 if (cmpxchg_double(&slab->freelist, &slab->counters,
535 freelist_old, counters_old,
536 freelist_new, counters_new))
543 local_irq_save(flags);
545 if (slab->freelist == freelist_old &&
546 slab->counters == counters_old) {
547 slab->freelist = freelist_new;
548 slab->counters = counters_new;
550 local_irq_restore(flags);
554 local_irq_restore(flags);
558 stat(s, CMPXCHG_DOUBLE_FAIL);
560 #ifdef SLUB_DEBUG_CMPXCHG
561 pr_info("%s %s: cmpxchg double redo ", n, s->name);
567 #ifdef CONFIG_SLUB_DEBUG
568 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
569 static DEFINE_RAW_SPINLOCK(object_map_lock);
571 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
574 void *addr = slab_address(slab);
577 bitmap_zero(obj_map, slab->objects);
579 for (p = slab->freelist; p; p = get_freepointer(s, p))
580 set_bit(__obj_to_index(s, addr, p), obj_map);
583 #if IS_ENABLED(CONFIG_KUNIT)
584 static bool slab_add_kunit_errors(void)
586 struct kunit_resource *resource;
588 if (likely(!current->kunit_test))
591 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
595 (*(int *)resource->data)++;
596 kunit_put_resource(resource);
600 static inline bool slab_add_kunit_errors(void) { return false; }
604 * Determine a map of objects in use in a slab.
606 * Node listlock must be held to guarantee that the slab does
607 * not vanish from under us.
609 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
610 __acquires(&object_map_lock)
612 VM_BUG_ON(!irqs_disabled());
614 raw_spin_lock(&object_map_lock);
616 __fill_map(object_map, s, slab);
621 static void put_map(unsigned long *map) __releases(&object_map_lock)
623 VM_BUG_ON(map != object_map);
624 raw_spin_unlock(&object_map_lock);
627 static inline unsigned int size_from_object(struct kmem_cache *s)
629 if (s->flags & SLAB_RED_ZONE)
630 return s->size - s->red_left_pad;
635 static inline void *restore_red_left(struct kmem_cache *s, void *p)
637 if (s->flags & SLAB_RED_ZONE)
638 p -= s->red_left_pad;
646 #if defined(CONFIG_SLUB_DEBUG_ON)
647 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
649 static slab_flags_t slub_debug;
652 static char *slub_debug_string;
653 static int disable_higher_order_debug;
656 * slub is about to manipulate internal object metadata. This memory lies
657 * outside the range of the allocated object, so accessing it would normally
658 * be reported by kasan as a bounds error. metadata_access_enable() is used
659 * to tell kasan that these accesses are OK.
661 static inline void metadata_access_enable(void)
663 kasan_disable_current();
666 static inline void metadata_access_disable(void)
668 kasan_enable_current();
675 /* Verify that a pointer has an address that is valid within a slab page */
676 static inline int check_valid_pointer(struct kmem_cache *s,
677 struct slab *slab, void *object)
684 base = slab_address(slab);
685 object = kasan_reset_tag(object);
686 object = restore_red_left(s, object);
687 if (object < base || object >= base + slab->objects * s->size ||
688 (object - base) % s->size) {
695 static void print_section(char *level, char *text, u8 *addr,
698 metadata_access_enable();
699 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
700 16, 1, kasan_reset_tag((void *)addr), length, 1);
701 metadata_access_disable();
705 * See comment in calculate_sizes().
707 static inline bool freeptr_outside_object(struct kmem_cache *s)
709 return s->offset >= s->inuse;
713 * Return offset of the end of info block which is inuse + free pointer if
714 * not overlapping with object.
716 static inline unsigned int get_info_end(struct kmem_cache *s)
718 if (freeptr_outside_object(s))
719 return s->inuse + sizeof(void *);
724 static struct track *get_track(struct kmem_cache *s, void *object,
725 enum track_item alloc)
729 p = object + get_info_end(s);
731 return kasan_reset_tag(p + alloc);
734 #ifdef CONFIG_STACKDEPOT
735 static noinline depot_stack_handle_t set_track_prepare(void)
737 depot_stack_handle_t handle;
738 unsigned long entries[TRACK_ADDRS_COUNT];
739 unsigned int nr_entries;
741 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
742 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
747 static inline depot_stack_handle_t set_track_prepare(void)
753 static void set_track_update(struct kmem_cache *s, void *object,
754 enum track_item alloc, unsigned long addr,
755 depot_stack_handle_t handle)
757 struct track *p = get_track(s, object, alloc);
759 #ifdef CONFIG_STACKDEPOT
763 p->cpu = smp_processor_id();
764 p->pid = current->pid;
768 static __always_inline void set_track(struct kmem_cache *s, void *object,
769 enum track_item alloc, unsigned long addr)
771 depot_stack_handle_t handle = set_track_prepare();
773 set_track_update(s, object, alloc, addr, handle);
776 static void init_tracking(struct kmem_cache *s, void *object)
780 if (!(s->flags & SLAB_STORE_USER))
783 p = get_track(s, object, TRACK_ALLOC);
784 memset(p, 0, 2*sizeof(struct track));
787 static void print_track(const char *s, struct track *t, unsigned long pr_time)
789 depot_stack_handle_t handle __maybe_unused;
794 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
795 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
796 #ifdef CONFIG_STACKDEPOT
797 handle = READ_ONCE(t->handle);
799 stack_depot_print(handle);
801 pr_err("object allocation/free stack trace missing\n");
805 void print_tracking(struct kmem_cache *s, void *object)
807 unsigned long pr_time = jiffies;
808 if (!(s->flags & SLAB_STORE_USER))
811 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
812 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
815 static void print_slab_info(const struct slab *slab)
817 struct folio *folio = (struct folio *)slab_folio(slab);
819 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
820 slab, slab->objects, slab->inuse, slab->freelist,
821 folio_flags(folio, 0));
824 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
826 struct va_format vaf;
832 pr_err("=============================================================================\n");
833 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
834 pr_err("-----------------------------------------------------------------------------\n\n");
839 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
841 struct va_format vaf;
844 if (slab_add_kunit_errors())
850 pr_err("FIX %s: %pV\n", s->name, &vaf);
854 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
856 unsigned int off; /* Offset of last byte */
857 u8 *addr = slab_address(slab);
859 print_tracking(s, p);
861 print_slab_info(slab);
863 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
864 p, p - addr, get_freepointer(s, p));
866 if (s->flags & SLAB_RED_ZONE)
867 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
869 else if (p > addr + 16)
870 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
872 print_section(KERN_ERR, "Object ", p,
873 min_t(unsigned int, s->object_size, PAGE_SIZE));
874 if (s->flags & SLAB_RED_ZONE)
875 print_section(KERN_ERR, "Redzone ", p + s->object_size,
876 s->inuse - s->object_size);
878 off = get_info_end(s);
880 if (s->flags & SLAB_STORE_USER)
881 off += 2 * sizeof(struct track);
883 off += kasan_metadata_size(s);
885 if (off != size_from_object(s))
886 /* Beginning of the filler is the free pointer */
887 print_section(KERN_ERR, "Padding ", p + off,
888 size_from_object(s) - off);
893 static void object_err(struct kmem_cache *s, struct slab *slab,
894 u8 *object, char *reason)
896 if (slab_add_kunit_errors())
899 slab_bug(s, "%s", reason);
900 print_trailer(s, slab, object);
901 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
904 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
905 void **freelist, void *nextfree)
907 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
908 !check_valid_pointer(s, slab, nextfree) && freelist) {
909 object_err(s, slab, *freelist, "Freechain corrupt");
911 slab_fix(s, "Isolate corrupted freechain");
918 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
919 const char *fmt, ...)
924 if (slab_add_kunit_errors())
928 vsnprintf(buf, sizeof(buf), fmt, args);
930 slab_bug(s, "%s", buf);
931 print_slab_info(slab);
933 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
936 static void init_object(struct kmem_cache *s, void *object, u8 val)
938 u8 *p = kasan_reset_tag(object);
940 if (s->flags & SLAB_RED_ZONE)
941 memset(p - s->red_left_pad, val, s->red_left_pad);
943 if (s->flags & __OBJECT_POISON) {
944 memset(p, POISON_FREE, s->object_size - 1);
945 p[s->object_size - 1] = POISON_END;
948 if (s->flags & SLAB_RED_ZONE)
949 memset(p + s->object_size, val, s->inuse - s->object_size);
952 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
953 void *from, void *to)
955 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
956 memset(from, data, to - from);
959 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
960 u8 *object, char *what,
961 u8 *start, unsigned int value, unsigned int bytes)
965 u8 *addr = slab_address(slab);
967 metadata_access_enable();
968 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
969 metadata_access_disable();
974 while (end > fault && end[-1] == value)
977 if (slab_add_kunit_errors())
980 slab_bug(s, "%s overwritten", what);
981 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
982 fault, end - 1, fault - addr,
984 print_trailer(s, slab, object);
985 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
988 restore_bytes(s, what, value, fault, end);
996 * Bytes of the object to be managed.
997 * If the freepointer may overlay the object then the free
998 * pointer is at the middle of the object.
1000 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1003 * object + s->object_size
1004 * Padding to reach word boundary. This is also used for Redzoning.
1005 * Padding is extended by another word if Redzoning is enabled and
1006 * object_size == inuse.
1008 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1009 * 0xcc (RED_ACTIVE) for objects in use.
1012 * Meta data starts here.
1014 * A. Free pointer (if we cannot overwrite object on free)
1015 * B. Tracking data for SLAB_STORE_USER
1016 * C. Padding to reach required alignment boundary or at minimum
1017 * one word if debugging is on to be able to detect writes
1018 * before the word boundary.
1020 * Padding is done using 0x5a (POISON_INUSE)
1023 * Nothing is used beyond s->size.
1025 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1026 * ignored. And therefore no slab options that rely on these boundaries
1027 * may be used with merged slabcaches.
1030 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1032 unsigned long off = get_info_end(s); /* The end of info */
1034 if (s->flags & SLAB_STORE_USER)
1035 /* We also have user information there */
1036 off += 2 * sizeof(struct track);
1038 off += kasan_metadata_size(s);
1040 if (size_from_object(s) == off)
1043 return check_bytes_and_report(s, slab, p, "Object padding",
1044 p + off, POISON_INUSE, size_from_object(s) - off);
1047 /* Check the pad bytes at the end of a slab page */
1048 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1057 if (!(s->flags & SLAB_POISON))
1060 start = slab_address(slab);
1061 length = slab_size(slab);
1062 end = start + length;
1063 remainder = length % s->size;
1067 pad = end - remainder;
1068 metadata_access_enable();
1069 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1070 metadata_access_disable();
1073 while (end > fault && end[-1] == POISON_INUSE)
1076 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1077 fault, end - 1, fault - start);
1078 print_section(KERN_ERR, "Padding ", pad, remainder);
1080 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1083 static int check_object(struct kmem_cache *s, struct slab *slab,
1084 void *object, u8 val)
1087 u8 *endobject = object + s->object_size;
1089 if (s->flags & SLAB_RED_ZONE) {
1090 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1091 object - s->red_left_pad, val, s->red_left_pad))
1094 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1095 endobject, val, s->inuse - s->object_size))
1098 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1099 check_bytes_and_report(s, slab, p, "Alignment padding",
1100 endobject, POISON_INUSE,
1101 s->inuse - s->object_size);
1105 if (s->flags & SLAB_POISON) {
1106 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1107 (!check_bytes_and_report(s, slab, p, "Poison", p,
1108 POISON_FREE, s->object_size - 1) ||
1109 !check_bytes_and_report(s, slab, p, "End Poison",
1110 p + s->object_size - 1, POISON_END, 1)))
1113 * check_pad_bytes cleans up on its own.
1115 check_pad_bytes(s, slab, p);
1118 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1120 * Object and freepointer overlap. Cannot check
1121 * freepointer while object is allocated.
1125 /* Check free pointer validity */
1126 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1127 object_err(s, slab, p, "Freepointer corrupt");
1129 * No choice but to zap it and thus lose the remainder
1130 * of the free objects in this slab. May cause
1131 * another error because the object count is now wrong.
1133 set_freepointer(s, p, NULL);
1139 static int check_slab(struct kmem_cache *s, struct slab *slab)
1143 if (!folio_test_slab(slab_folio(slab))) {
1144 slab_err(s, slab, "Not a valid slab page");
1148 maxobj = order_objects(slab_order(slab), s->size);
1149 if (slab->objects > maxobj) {
1150 slab_err(s, slab, "objects %u > max %u",
1151 slab->objects, maxobj);
1154 if (slab->inuse > slab->objects) {
1155 slab_err(s, slab, "inuse %u > max %u",
1156 slab->inuse, slab->objects);
1159 /* Slab_pad_check fixes things up after itself */
1160 slab_pad_check(s, slab);
1165 * Determine if a certain object in a slab is on the freelist. Must hold the
1166 * slab lock to guarantee that the chains are in a consistent state.
1168 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1172 void *object = NULL;
1175 fp = slab->freelist;
1176 while (fp && nr <= slab->objects) {
1179 if (!check_valid_pointer(s, slab, fp)) {
1181 object_err(s, slab, object,
1182 "Freechain corrupt");
1183 set_freepointer(s, object, NULL);
1185 slab_err(s, slab, "Freepointer corrupt");
1186 slab->freelist = NULL;
1187 slab->inuse = slab->objects;
1188 slab_fix(s, "Freelist cleared");
1194 fp = get_freepointer(s, object);
1198 max_objects = order_objects(slab_order(slab), s->size);
1199 if (max_objects > MAX_OBJS_PER_PAGE)
1200 max_objects = MAX_OBJS_PER_PAGE;
1202 if (slab->objects != max_objects) {
1203 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1204 slab->objects, max_objects);
1205 slab->objects = max_objects;
1206 slab_fix(s, "Number of objects adjusted");
1208 if (slab->inuse != slab->objects - nr) {
1209 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1210 slab->inuse, slab->objects - nr);
1211 slab->inuse = slab->objects - nr;
1212 slab_fix(s, "Object count adjusted");
1214 return search == NULL;
1217 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1220 if (s->flags & SLAB_TRACE) {
1221 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1223 alloc ? "alloc" : "free",
1224 object, slab->inuse,
1228 print_section(KERN_INFO, "Object ", (void *)object,
1236 * Tracking of fully allocated slabs for debugging purposes.
1238 static void add_full(struct kmem_cache *s,
1239 struct kmem_cache_node *n, struct slab *slab)
1241 if (!(s->flags & SLAB_STORE_USER))
1244 lockdep_assert_held(&n->list_lock);
1245 list_add(&slab->slab_list, &n->full);
1248 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1250 if (!(s->flags & SLAB_STORE_USER))
1253 lockdep_assert_held(&n->list_lock);
1254 list_del(&slab->slab_list);
1257 /* Tracking of the number of slabs for debugging purposes */
1258 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1260 struct kmem_cache_node *n = get_node(s, node);
1262 return atomic_long_read(&n->nr_slabs);
1265 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1267 return atomic_long_read(&n->nr_slabs);
1270 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1272 struct kmem_cache_node *n = get_node(s, node);
1275 * May be called early in order to allocate a slab for the
1276 * kmem_cache_node structure. Solve the chicken-egg
1277 * dilemma by deferring the increment of the count during
1278 * bootstrap (see early_kmem_cache_node_alloc).
1281 atomic_long_inc(&n->nr_slabs);
1282 atomic_long_add(objects, &n->total_objects);
1285 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1287 struct kmem_cache_node *n = get_node(s, node);
1289 atomic_long_dec(&n->nr_slabs);
1290 atomic_long_sub(objects, &n->total_objects);
1293 /* Object debug checks for alloc/free paths */
1294 static void setup_object_debug(struct kmem_cache *s, void *object)
1296 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1299 init_object(s, object, SLUB_RED_INACTIVE);
1300 init_tracking(s, object);
1304 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1306 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1309 metadata_access_enable();
1310 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1311 metadata_access_disable();
1314 static inline int alloc_consistency_checks(struct kmem_cache *s,
1315 struct slab *slab, void *object)
1317 if (!check_slab(s, slab))
1320 if (!check_valid_pointer(s, slab, object)) {
1321 object_err(s, slab, object, "Freelist Pointer check fails");
1325 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1331 static noinline int alloc_debug_processing(struct kmem_cache *s,
1333 void *object, unsigned long addr)
1335 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1336 if (!alloc_consistency_checks(s, slab, object))
1340 /* Success perform special debug activities for allocs */
1341 if (s->flags & SLAB_STORE_USER)
1342 set_track(s, object, TRACK_ALLOC, addr);
1343 trace(s, slab, object, 1);
1344 init_object(s, object, SLUB_RED_ACTIVE);
1348 if (folio_test_slab(slab_folio(slab))) {
1350 * If this is a slab page then lets do the best we can
1351 * to avoid issues in the future. Marking all objects
1352 * as used avoids touching the remaining objects.
1354 slab_fix(s, "Marking all objects used");
1355 slab->inuse = slab->objects;
1356 slab->freelist = NULL;
1361 static inline int free_consistency_checks(struct kmem_cache *s,
1362 struct slab *slab, void *object, unsigned long addr)
1364 if (!check_valid_pointer(s, slab, object)) {
1365 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1369 if (on_freelist(s, slab, object)) {
1370 object_err(s, slab, object, "Object already free");
1374 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1377 if (unlikely(s != slab->slab_cache)) {
1378 if (!folio_test_slab(slab_folio(slab))) {
1379 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1381 } else if (!slab->slab_cache) {
1382 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1386 object_err(s, slab, object,
1387 "page slab pointer corrupt.");
1393 /* Supports checking bulk free of a constructed freelist */
1394 static noinline int free_debug_processing(
1395 struct kmem_cache *s, struct slab *slab,
1396 void *head, void *tail, int bulk_cnt,
1399 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1400 void *object = head;
1402 unsigned long flags, flags2;
1404 depot_stack_handle_t handle = 0;
1406 if (s->flags & SLAB_STORE_USER)
1407 handle = set_track_prepare();
1409 spin_lock_irqsave(&n->list_lock, flags);
1410 slab_lock(slab, &flags2);
1412 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1413 if (!check_slab(s, slab))
1420 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1421 if (!free_consistency_checks(s, slab, object, addr))
1425 if (s->flags & SLAB_STORE_USER)
1426 set_track_update(s, object, TRACK_FREE, addr, handle);
1427 trace(s, slab, object, 0);
1428 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1429 init_object(s, object, SLUB_RED_INACTIVE);
1431 /* Reached end of constructed freelist yet? */
1432 if (object != tail) {
1433 object = get_freepointer(s, object);
1439 if (cnt != bulk_cnt)
1440 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1443 slab_unlock(slab, &flags2);
1444 spin_unlock_irqrestore(&n->list_lock, flags);
1446 slab_fix(s, "Object at 0x%p not freed", object);
1451 * Parse a block of slub_debug options. Blocks are delimited by ';'
1453 * @str: start of block
1454 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1455 * @slabs: return start of list of slabs, or NULL when there's no list
1456 * @init: assume this is initial parsing and not per-kmem-create parsing
1458 * returns the start of next block if there's any, or NULL
1461 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1463 bool higher_order_disable = false;
1465 /* Skip any completely empty blocks */
1466 while (*str && *str == ';')
1471 * No options but restriction on slabs. This means full
1472 * debugging for slabs matching a pattern.
1474 *flags = DEBUG_DEFAULT_FLAGS;
1479 /* Determine which debug features should be switched on */
1480 for (; *str && *str != ',' && *str != ';'; str++) {
1481 switch (tolower(*str)) {
1486 *flags |= SLAB_CONSISTENCY_CHECKS;
1489 *flags |= SLAB_RED_ZONE;
1492 *flags |= SLAB_POISON;
1495 *flags |= SLAB_STORE_USER;
1498 *flags |= SLAB_TRACE;
1501 *flags |= SLAB_FAILSLAB;
1505 * Avoid enabling debugging on caches if its minimum
1506 * order would increase as a result.
1508 higher_order_disable = true;
1512 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1521 /* Skip over the slab list */
1522 while (*str && *str != ';')
1525 /* Skip any completely empty blocks */
1526 while (*str && *str == ';')
1529 if (init && higher_order_disable)
1530 disable_higher_order_debug = 1;
1538 static int __init setup_slub_debug(char *str)
1541 slab_flags_t global_flags;
1544 bool global_slub_debug_changed = false;
1545 bool slab_list_specified = false;
1547 global_flags = DEBUG_DEFAULT_FLAGS;
1548 if (*str++ != '=' || !*str)
1550 * No options specified. Switch on full debugging.
1556 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1559 global_flags = flags;
1560 global_slub_debug_changed = true;
1562 slab_list_specified = true;
1563 if (flags & SLAB_STORE_USER)
1564 stack_depot_want_early_init();
1569 * For backwards compatibility, a single list of flags with list of
1570 * slabs means debugging is only changed for those slabs, so the global
1571 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1572 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1573 * long as there is no option specifying flags without a slab list.
1575 if (slab_list_specified) {
1576 if (!global_slub_debug_changed)
1577 global_flags = slub_debug;
1578 slub_debug_string = saved_str;
1581 slub_debug = global_flags;
1582 if (slub_debug & SLAB_STORE_USER)
1583 stack_depot_want_early_init();
1584 if (slub_debug != 0 || slub_debug_string)
1585 static_branch_enable(&slub_debug_enabled);
1587 static_branch_disable(&slub_debug_enabled);
1588 if ((static_branch_unlikely(&init_on_alloc) ||
1589 static_branch_unlikely(&init_on_free)) &&
1590 (slub_debug & SLAB_POISON))
1591 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1595 __setup("slub_debug", setup_slub_debug);
1598 * kmem_cache_flags - apply debugging options to the cache
1599 * @object_size: the size of an object without meta data
1600 * @flags: flags to set
1601 * @name: name of the cache
1603 * Debug option(s) are applied to @flags. In addition to the debug
1604 * option(s), if a slab name (or multiple) is specified i.e.
1605 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1606 * then only the select slabs will receive the debug option(s).
1608 slab_flags_t kmem_cache_flags(unsigned int object_size,
1609 slab_flags_t flags, const char *name)
1614 slab_flags_t block_flags;
1615 slab_flags_t slub_debug_local = slub_debug;
1617 if (flags & SLAB_NO_USER_FLAGS)
1621 * If the slab cache is for debugging (e.g. kmemleak) then
1622 * don't store user (stack trace) information by default,
1623 * but let the user enable it via the command line below.
1625 if (flags & SLAB_NOLEAKTRACE)
1626 slub_debug_local &= ~SLAB_STORE_USER;
1629 next_block = slub_debug_string;
1630 /* Go through all blocks of debug options, see if any matches our slab's name */
1631 while (next_block) {
1632 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1635 /* Found a block that has a slab list, search it */
1640 end = strchrnul(iter, ',');
1641 if (next_block && next_block < end)
1642 end = next_block - 1;
1644 glob = strnchr(iter, end - iter, '*');
1646 cmplen = glob - iter;
1648 cmplen = max_t(size_t, len, (end - iter));
1650 if (!strncmp(name, iter, cmplen)) {
1651 flags |= block_flags;
1655 if (!*end || *end == ';')
1661 return flags | slub_debug_local;
1663 #else /* !CONFIG_SLUB_DEBUG */
1664 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1666 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1668 static inline int alloc_debug_processing(struct kmem_cache *s,
1669 struct slab *slab, void *object, unsigned long addr) { return 0; }
1671 static inline int free_debug_processing(
1672 struct kmem_cache *s, struct slab *slab,
1673 void *head, void *tail, int bulk_cnt,
1674 unsigned long addr) { return 0; }
1676 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1677 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1678 void *object, u8 val) { return 1; }
1679 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1680 struct slab *slab) {}
1681 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1682 struct slab *slab) {}
1683 slab_flags_t kmem_cache_flags(unsigned int object_size,
1684 slab_flags_t flags, const char *name)
1688 #define slub_debug 0
1690 #define disable_higher_order_debug 0
1692 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1694 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1696 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1698 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1701 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1702 void **freelist, void *nextfree)
1706 #endif /* CONFIG_SLUB_DEBUG */
1709 * Hooks for other subsystems that check memory allocations. In a typical
1710 * production configuration these hooks all should produce no code at all.
1712 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1714 ptr = kasan_kmalloc_large(ptr, size, flags);
1715 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1716 kmemleak_alloc(ptr, size, 1, flags);
1720 static __always_inline void kfree_hook(void *x)
1723 kasan_kfree_large(x);
1726 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1729 kmemleak_free_recursive(x, s->flags);
1731 debug_check_no_locks_freed(x, s->object_size);
1733 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1734 debug_check_no_obj_freed(x, s->object_size);
1736 /* Use KCSAN to help debug racy use-after-free. */
1737 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1738 __kcsan_check_access(x, s->object_size,
1739 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1742 * As memory initialization might be integrated into KASAN,
1743 * kasan_slab_free and initialization memset's must be
1744 * kept together to avoid discrepancies in behavior.
1746 * The initialization memset's clear the object and the metadata,
1747 * but don't touch the SLAB redzone.
1752 if (!kasan_has_integrated_init())
1753 memset(kasan_reset_tag(x), 0, s->object_size);
1754 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1755 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1756 s->size - s->inuse - rsize);
1758 /* KASAN might put x into memory quarantine, delaying its reuse. */
1759 return kasan_slab_free(s, x, init);
1762 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1763 void **head, void **tail,
1769 void *old_tail = *tail ? *tail : *head;
1771 if (is_kfence_address(next)) {
1772 slab_free_hook(s, next, false);
1776 /* Head and tail of the reconstructed freelist */
1782 next = get_freepointer(s, object);
1784 /* If object's reuse doesn't have to be delayed */
1785 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1786 /* Move object to the new freelist */
1787 set_freepointer(s, object, *head);
1793 * Adjust the reconstructed freelist depth
1794 * accordingly if object's reuse is delayed.
1798 } while (object != old_tail);
1803 return *head != NULL;
1806 static void *setup_object(struct kmem_cache *s, void *object)
1808 setup_object_debug(s, object);
1809 object = kasan_init_slab_obj(s, object);
1810 if (unlikely(s->ctor)) {
1811 kasan_unpoison_object_data(s, object);
1813 kasan_poison_object_data(s, object);
1819 * Slab allocation and freeing
1821 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1822 struct kmem_cache_order_objects oo)
1824 struct folio *folio;
1826 unsigned int order = oo_order(oo);
1828 if (node == NUMA_NO_NODE)
1829 folio = (struct folio *)alloc_pages(flags, order);
1831 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1836 slab = folio_slab(folio);
1837 __folio_set_slab(folio);
1838 if (page_is_pfmemalloc(folio_page(folio, 0)))
1839 slab_set_pfmemalloc(slab);
1844 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1845 /* Pre-initialize the random sequence cache */
1846 static int init_cache_random_seq(struct kmem_cache *s)
1848 unsigned int count = oo_objects(s->oo);
1851 /* Bailout if already initialised */
1855 err = cache_random_seq_create(s, count, GFP_KERNEL);
1857 pr_err("SLUB: Unable to initialize free list for %s\n",
1862 /* Transform to an offset on the set of pages */
1863 if (s->random_seq) {
1866 for (i = 0; i < count; i++)
1867 s->random_seq[i] *= s->size;
1872 /* Initialize each random sequence freelist per cache */
1873 static void __init init_freelist_randomization(void)
1875 struct kmem_cache *s;
1877 mutex_lock(&slab_mutex);
1879 list_for_each_entry(s, &slab_caches, list)
1880 init_cache_random_seq(s);
1882 mutex_unlock(&slab_mutex);
1885 /* Get the next entry on the pre-computed freelist randomized */
1886 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1887 unsigned long *pos, void *start,
1888 unsigned long page_limit,
1889 unsigned long freelist_count)
1894 * If the target page allocation failed, the number of objects on the
1895 * page might be smaller than the usual size defined by the cache.
1898 idx = s->random_seq[*pos];
1900 if (*pos >= freelist_count)
1902 } while (unlikely(idx >= page_limit));
1904 return (char *)start + idx;
1907 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1908 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1913 unsigned long idx, pos, page_limit, freelist_count;
1915 if (slab->objects < 2 || !s->random_seq)
1918 freelist_count = oo_objects(s->oo);
1919 pos = get_random_int() % freelist_count;
1921 page_limit = slab->objects * s->size;
1922 start = fixup_red_left(s, slab_address(slab));
1924 /* First entry is used as the base of the freelist */
1925 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1927 cur = setup_object(s, cur);
1928 slab->freelist = cur;
1930 for (idx = 1; idx < slab->objects; idx++) {
1931 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1933 next = setup_object(s, next);
1934 set_freepointer(s, cur, next);
1937 set_freepointer(s, cur, NULL);
1942 static inline int init_cache_random_seq(struct kmem_cache *s)
1946 static inline void init_freelist_randomization(void) { }
1947 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1951 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1953 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1956 struct kmem_cache_order_objects oo = s->oo;
1958 void *start, *p, *next;
1962 flags &= gfp_allowed_mask;
1964 flags |= s->allocflags;
1967 * Let the initial higher-order allocation fail under memory pressure
1968 * so we fall-back to the minimum order allocation.
1970 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1971 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1972 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1974 slab = alloc_slab_page(alloc_gfp, node, oo);
1975 if (unlikely(!slab)) {
1979 * Allocation may have failed due to fragmentation.
1980 * Try a lower order alloc if possible
1982 slab = alloc_slab_page(alloc_gfp, node, oo);
1983 if (unlikely(!slab))
1985 stat(s, ORDER_FALLBACK);
1988 slab->objects = oo_objects(oo);
1990 account_slab(slab, oo_order(oo), s, flags);
1992 slab->slab_cache = s;
1994 kasan_poison_slab(slab);
1996 start = slab_address(slab);
1998 setup_slab_debug(s, slab, start);
2000 shuffle = shuffle_freelist(s, slab);
2003 start = fixup_red_left(s, start);
2004 start = setup_object(s, start);
2005 slab->freelist = start;
2006 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2008 next = setup_object(s, next);
2009 set_freepointer(s, p, next);
2012 set_freepointer(s, p, NULL);
2015 slab->inuse = slab->objects;
2022 inc_slabs_node(s, slab_nid(slab), slab->objects);
2027 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2029 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2030 flags = kmalloc_fix_flags(flags);
2032 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2034 return allocate_slab(s,
2035 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2038 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2040 struct folio *folio = slab_folio(slab);
2041 int order = folio_order(folio);
2042 int pages = 1 << order;
2044 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2047 slab_pad_check(s, slab);
2048 for_each_object(p, s, slab_address(slab), slab->objects)
2049 check_object(s, slab, p, SLUB_RED_INACTIVE);
2052 __slab_clear_pfmemalloc(slab);
2053 __folio_clear_slab(folio);
2054 folio->mapping = NULL;
2055 if (current->reclaim_state)
2056 current->reclaim_state->reclaimed_slab += pages;
2057 unaccount_slab(slab, order, s);
2058 __free_pages(folio_page(folio, 0), order);
2061 static void rcu_free_slab(struct rcu_head *h)
2063 struct slab *slab = container_of(h, struct slab, rcu_head);
2065 __free_slab(slab->slab_cache, slab);
2068 static void free_slab(struct kmem_cache *s, struct slab *slab)
2070 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2071 call_rcu(&slab->rcu_head, rcu_free_slab);
2073 __free_slab(s, slab);
2076 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2078 dec_slabs_node(s, slab_nid(slab), slab->objects);
2083 * Management of partially allocated slabs.
2086 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2089 if (tail == DEACTIVATE_TO_TAIL)
2090 list_add_tail(&slab->slab_list, &n->partial);
2092 list_add(&slab->slab_list, &n->partial);
2095 static inline void add_partial(struct kmem_cache_node *n,
2096 struct slab *slab, int tail)
2098 lockdep_assert_held(&n->list_lock);
2099 __add_partial(n, slab, tail);
2102 static inline void remove_partial(struct kmem_cache_node *n,
2105 lockdep_assert_held(&n->list_lock);
2106 list_del(&slab->slab_list);
2111 * Remove slab from the partial list, freeze it and
2112 * return the pointer to the freelist.
2114 * Returns a list of objects or NULL if it fails.
2116 static inline void *acquire_slab(struct kmem_cache *s,
2117 struct kmem_cache_node *n, struct slab *slab,
2121 unsigned long counters;
2124 lockdep_assert_held(&n->list_lock);
2127 * Zap the freelist and set the frozen bit.
2128 * The old freelist is the list of objects for the
2129 * per cpu allocation list.
2131 freelist = slab->freelist;
2132 counters = slab->counters;
2133 new.counters = counters;
2135 new.inuse = slab->objects;
2136 new.freelist = NULL;
2138 new.freelist = freelist;
2141 VM_BUG_ON(new.frozen);
2144 if (!__cmpxchg_double_slab(s, slab,
2146 new.freelist, new.counters,
2150 remove_partial(n, slab);
2155 #ifdef CONFIG_SLUB_CPU_PARTIAL
2156 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2158 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2161 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2164 * Try to allocate a partial slab from a specific node.
2166 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2167 struct slab **ret_slab, gfp_t gfpflags)
2169 struct slab *slab, *slab2;
2170 void *object = NULL;
2171 unsigned long flags;
2172 unsigned int partial_slabs = 0;
2175 * Racy check. If we mistakenly see no partial slabs then we
2176 * just allocate an empty slab. If we mistakenly try to get a
2177 * partial slab and there is none available then get_partial()
2180 if (!n || !n->nr_partial)
2183 spin_lock_irqsave(&n->list_lock, flags);
2184 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2187 if (!pfmemalloc_match(slab, gfpflags))
2190 t = acquire_slab(s, n, slab, object == NULL);
2196 stat(s, ALLOC_FROM_PARTIAL);
2199 put_cpu_partial(s, slab, 0);
2200 stat(s, CPU_PARTIAL_NODE);
2203 #ifdef CONFIG_SLUB_CPU_PARTIAL
2204 if (!kmem_cache_has_cpu_partial(s)
2205 || partial_slabs > s->cpu_partial_slabs / 2)
2212 spin_unlock_irqrestore(&n->list_lock, flags);
2217 * Get a slab from somewhere. Search in increasing NUMA distances.
2219 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2220 struct slab **ret_slab)
2223 struct zonelist *zonelist;
2226 enum zone_type highest_zoneidx = gfp_zone(flags);
2228 unsigned int cpuset_mems_cookie;
2231 * The defrag ratio allows a configuration of the tradeoffs between
2232 * inter node defragmentation and node local allocations. A lower
2233 * defrag_ratio increases the tendency to do local allocations
2234 * instead of attempting to obtain partial slabs from other nodes.
2236 * If the defrag_ratio is set to 0 then kmalloc() always
2237 * returns node local objects. If the ratio is higher then kmalloc()
2238 * may return off node objects because partial slabs are obtained
2239 * from other nodes and filled up.
2241 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2242 * (which makes defrag_ratio = 1000) then every (well almost)
2243 * allocation will first attempt to defrag slab caches on other nodes.
2244 * This means scanning over all nodes to look for partial slabs which
2245 * may be expensive if we do it every time we are trying to find a slab
2246 * with available objects.
2248 if (!s->remote_node_defrag_ratio ||
2249 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2253 cpuset_mems_cookie = read_mems_allowed_begin();
2254 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2255 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2256 struct kmem_cache_node *n;
2258 n = get_node(s, zone_to_nid(zone));
2260 if (n && cpuset_zone_allowed(zone, flags) &&
2261 n->nr_partial > s->min_partial) {
2262 object = get_partial_node(s, n, ret_slab, flags);
2265 * Don't check read_mems_allowed_retry()
2266 * here - if mems_allowed was updated in
2267 * parallel, that was a harmless race
2268 * between allocation and the cpuset
2275 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2276 #endif /* CONFIG_NUMA */
2281 * Get a partial slab, lock it and return it.
2283 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2284 struct slab **ret_slab)
2287 int searchnode = node;
2289 if (node == NUMA_NO_NODE)
2290 searchnode = numa_mem_id();
2292 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2293 if (object || node != NUMA_NO_NODE)
2296 return get_any_partial(s, flags, ret_slab);
2299 #ifdef CONFIG_PREEMPTION
2301 * Calculate the next globally unique transaction for disambiguation
2302 * during cmpxchg. The transactions start with the cpu number and are then
2303 * incremented by CONFIG_NR_CPUS.
2305 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2308 * No preemption supported therefore also no need to check for
2314 static inline unsigned long next_tid(unsigned long tid)
2316 return tid + TID_STEP;
2319 #ifdef SLUB_DEBUG_CMPXCHG
2320 static inline unsigned int tid_to_cpu(unsigned long tid)
2322 return tid % TID_STEP;
2325 static inline unsigned long tid_to_event(unsigned long tid)
2327 return tid / TID_STEP;
2331 static inline unsigned int init_tid(int cpu)
2336 static inline void note_cmpxchg_failure(const char *n,
2337 const struct kmem_cache *s, unsigned long tid)
2339 #ifdef SLUB_DEBUG_CMPXCHG
2340 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2342 pr_info("%s %s: cmpxchg redo ", n, s->name);
2344 #ifdef CONFIG_PREEMPTION
2345 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2346 pr_warn("due to cpu change %d -> %d\n",
2347 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2350 if (tid_to_event(tid) != tid_to_event(actual_tid))
2351 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2352 tid_to_event(tid), tid_to_event(actual_tid));
2354 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2355 actual_tid, tid, next_tid(tid));
2357 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2360 static void init_kmem_cache_cpus(struct kmem_cache *s)
2363 struct kmem_cache_cpu *c;
2365 for_each_possible_cpu(cpu) {
2366 c = per_cpu_ptr(s->cpu_slab, cpu);
2367 local_lock_init(&c->lock);
2368 c->tid = init_tid(cpu);
2373 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2374 * unfreezes the slabs and puts it on the proper list.
2375 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2378 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2381 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2382 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2384 enum slab_modes mode = M_NONE;
2385 void *nextfree, *freelist_iter, *freelist_tail;
2386 int tail = DEACTIVATE_TO_HEAD;
2387 unsigned long flags = 0;
2391 if (slab->freelist) {
2392 stat(s, DEACTIVATE_REMOTE_FREES);
2393 tail = DEACTIVATE_TO_TAIL;
2397 * Stage one: Count the objects on cpu's freelist as free_delta and
2398 * remember the last object in freelist_tail for later splicing.
2400 freelist_tail = NULL;
2401 freelist_iter = freelist;
2402 while (freelist_iter) {
2403 nextfree = get_freepointer(s, freelist_iter);
2406 * If 'nextfree' is invalid, it is possible that the object at
2407 * 'freelist_iter' is already corrupted. So isolate all objects
2408 * starting at 'freelist_iter' by skipping them.
2410 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2413 freelist_tail = freelist_iter;
2416 freelist_iter = nextfree;
2420 * Stage two: Unfreeze the slab while splicing the per-cpu
2421 * freelist to the head of slab's freelist.
2423 * Ensure that the slab is unfrozen while the list presence
2424 * reflects the actual number of objects during unfreeze.
2426 * We first perform cmpxchg holding lock and insert to list
2427 * when it succeed. If there is mismatch then the slab is not
2428 * unfrozen and number of objects in the slab may have changed.
2429 * Then release lock and retry cmpxchg again.
2433 old.freelist = READ_ONCE(slab->freelist);
2434 old.counters = READ_ONCE(slab->counters);
2435 VM_BUG_ON(!old.frozen);
2437 /* Determine target state of the slab */
2438 new.counters = old.counters;
2439 if (freelist_tail) {
2440 new.inuse -= free_delta;
2441 set_freepointer(s, freelist_tail, old.freelist);
2442 new.freelist = freelist;
2444 new.freelist = old.freelist;
2448 if (!new.inuse && n->nr_partial >= s->min_partial) {
2450 } else if (new.freelist) {
2453 * Taking the spinlock removes the possibility that
2454 * acquire_slab() will see a slab that is frozen
2456 spin_lock_irqsave(&n->list_lock, flags);
2457 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2460 * This also ensures that the scanning of full
2461 * slabs from diagnostic functions will not see
2464 spin_lock_irqsave(&n->list_lock, flags);
2466 mode = M_FULL_NOLIST;
2470 if (!cmpxchg_double_slab(s, slab,
2471 old.freelist, old.counters,
2472 new.freelist, new.counters,
2473 "unfreezing slab")) {
2474 if (mode == M_PARTIAL || mode == M_FULL)
2475 spin_unlock_irqrestore(&n->list_lock, flags);
2480 if (mode == M_PARTIAL) {
2481 add_partial(n, slab, tail);
2482 spin_unlock_irqrestore(&n->list_lock, flags);
2484 } else if (mode == M_FREE) {
2485 stat(s, DEACTIVATE_EMPTY);
2486 discard_slab(s, slab);
2488 } else if (mode == M_FULL) {
2489 add_full(s, n, slab);
2490 spin_unlock_irqrestore(&n->list_lock, flags);
2491 stat(s, DEACTIVATE_FULL);
2492 } else if (mode == M_FULL_NOLIST) {
2493 stat(s, DEACTIVATE_FULL);
2497 #ifdef CONFIG_SLUB_CPU_PARTIAL
2498 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2500 struct kmem_cache_node *n = NULL, *n2 = NULL;
2501 struct slab *slab, *slab_to_discard = NULL;
2502 unsigned long flags = 0;
2504 while (partial_slab) {
2508 slab = partial_slab;
2509 partial_slab = slab->next;
2511 n2 = get_node(s, slab_nid(slab));
2514 spin_unlock_irqrestore(&n->list_lock, flags);
2517 spin_lock_irqsave(&n->list_lock, flags);
2522 old.freelist = slab->freelist;
2523 old.counters = slab->counters;
2524 VM_BUG_ON(!old.frozen);
2526 new.counters = old.counters;
2527 new.freelist = old.freelist;
2531 } while (!__cmpxchg_double_slab(s, slab,
2532 old.freelist, old.counters,
2533 new.freelist, new.counters,
2534 "unfreezing slab"));
2536 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2537 slab->next = slab_to_discard;
2538 slab_to_discard = slab;
2540 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2541 stat(s, FREE_ADD_PARTIAL);
2546 spin_unlock_irqrestore(&n->list_lock, flags);
2548 while (slab_to_discard) {
2549 slab = slab_to_discard;
2550 slab_to_discard = slab_to_discard->next;
2552 stat(s, DEACTIVATE_EMPTY);
2553 discard_slab(s, slab);
2559 * Unfreeze all the cpu partial slabs.
2561 static void unfreeze_partials(struct kmem_cache *s)
2563 struct slab *partial_slab;
2564 unsigned long flags;
2566 local_lock_irqsave(&s->cpu_slab->lock, flags);
2567 partial_slab = this_cpu_read(s->cpu_slab->partial);
2568 this_cpu_write(s->cpu_slab->partial, NULL);
2569 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2572 __unfreeze_partials(s, partial_slab);
2575 static void unfreeze_partials_cpu(struct kmem_cache *s,
2576 struct kmem_cache_cpu *c)
2578 struct slab *partial_slab;
2580 partial_slab = slub_percpu_partial(c);
2584 __unfreeze_partials(s, partial_slab);
2588 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2589 * partial slab slot if available.
2591 * If we did not find a slot then simply move all the partials to the
2592 * per node partial list.
2594 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2596 struct slab *oldslab;
2597 struct slab *slab_to_unfreeze = NULL;
2598 unsigned long flags;
2601 local_lock_irqsave(&s->cpu_slab->lock, flags);
2603 oldslab = this_cpu_read(s->cpu_slab->partial);
2606 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2608 * Partial array is full. Move the existing set to the
2609 * per node partial list. Postpone the actual unfreezing
2610 * outside of the critical section.
2612 slab_to_unfreeze = oldslab;
2615 slabs = oldslab->slabs;
2621 slab->slabs = slabs;
2622 slab->next = oldslab;
2624 this_cpu_write(s->cpu_slab->partial, slab);
2626 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2628 if (slab_to_unfreeze) {
2629 __unfreeze_partials(s, slab_to_unfreeze);
2630 stat(s, CPU_PARTIAL_DRAIN);
2634 #else /* CONFIG_SLUB_CPU_PARTIAL */
2636 static inline void unfreeze_partials(struct kmem_cache *s) { }
2637 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2638 struct kmem_cache_cpu *c) { }
2640 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2642 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2644 unsigned long flags;
2648 local_lock_irqsave(&s->cpu_slab->lock, flags);
2651 freelist = c->freelist;
2655 c->tid = next_tid(c->tid);
2657 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2660 deactivate_slab(s, slab, freelist);
2661 stat(s, CPUSLAB_FLUSH);
2665 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2667 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2668 void *freelist = c->freelist;
2669 struct slab *slab = c->slab;
2673 c->tid = next_tid(c->tid);
2676 deactivate_slab(s, slab, freelist);
2677 stat(s, CPUSLAB_FLUSH);
2680 unfreeze_partials_cpu(s, c);
2683 struct slub_flush_work {
2684 struct work_struct work;
2685 struct kmem_cache *s;
2692 * Called from CPU work handler with migration disabled.
2694 static void flush_cpu_slab(struct work_struct *w)
2696 struct kmem_cache *s;
2697 struct kmem_cache_cpu *c;
2698 struct slub_flush_work *sfw;
2700 sfw = container_of(w, struct slub_flush_work, work);
2703 c = this_cpu_ptr(s->cpu_slab);
2708 unfreeze_partials(s);
2711 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2713 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2715 return c->slab || slub_percpu_partial(c);
2718 static DEFINE_MUTEX(flush_lock);
2719 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2721 static void flush_all_cpus_locked(struct kmem_cache *s)
2723 struct slub_flush_work *sfw;
2726 lockdep_assert_cpus_held();
2727 mutex_lock(&flush_lock);
2729 for_each_online_cpu(cpu) {
2730 sfw = &per_cpu(slub_flush, cpu);
2731 if (!has_cpu_slab(cpu, s)) {
2735 INIT_WORK(&sfw->work, flush_cpu_slab);
2738 queue_work_on(cpu, flushwq, &sfw->work);
2741 for_each_online_cpu(cpu) {
2742 sfw = &per_cpu(slub_flush, cpu);
2745 flush_work(&sfw->work);
2748 mutex_unlock(&flush_lock);
2751 static void flush_all(struct kmem_cache *s)
2754 flush_all_cpus_locked(s);
2759 * Use the cpu notifier to insure that the cpu slabs are flushed when
2762 static int slub_cpu_dead(unsigned int cpu)
2764 struct kmem_cache *s;
2766 mutex_lock(&slab_mutex);
2767 list_for_each_entry(s, &slab_caches, list)
2768 __flush_cpu_slab(s, cpu);
2769 mutex_unlock(&slab_mutex);
2774 * Check if the objects in a per cpu structure fit numa
2775 * locality expectations.
2777 static inline int node_match(struct slab *slab, int node)
2780 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2786 #ifdef CONFIG_SLUB_DEBUG
2787 static int count_free(struct slab *slab)
2789 return slab->objects - slab->inuse;
2792 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2794 return atomic_long_read(&n->total_objects);
2796 #endif /* CONFIG_SLUB_DEBUG */
2798 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2799 static unsigned long count_partial(struct kmem_cache_node *n,
2800 int (*get_count)(struct slab *))
2802 unsigned long flags;
2803 unsigned long x = 0;
2806 spin_lock_irqsave(&n->list_lock, flags);
2807 list_for_each_entry(slab, &n->partial, slab_list)
2808 x += get_count(slab);
2809 spin_unlock_irqrestore(&n->list_lock, flags);
2812 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2814 static noinline void
2815 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2817 #ifdef CONFIG_SLUB_DEBUG
2818 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2819 DEFAULT_RATELIMIT_BURST);
2821 struct kmem_cache_node *n;
2823 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2826 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2827 nid, gfpflags, &gfpflags);
2828 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2829 s->name, s->object_size, s->size, oo_order(s->oo),
2832 if (oo_order(s->min) > get_order(s->object_size))
2833 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2836 for_each_kmem_cache_node(s, node, n) {
2837 unsigned long nr_slabs;
2838 unsigned long nr_objs;
2839 unsigned long nr_free;
2841 nr_free = count_partial(n, count_free);
2842 nr_slabs = node_nr_slabs(n);
2843 nr_objs = node_nr_objs(n);
2845 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2846 node, nr_slabs, nr_objs, nr_free);
2851 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2853 if (unlikely(slab_test_pfmemalloc(slab)))
2854 return gfp_pfmemalloc_allowed(gfpflags);
2860 * Check the slab->freelist and either transfer the freelist to the
2861 * per cpu freelist or deactivate the slab.
2863 * The slab is still frozen if the return value is not NULL.
2865 * If this function returns NULL then the slab has been unfrozen.
2867 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2870 unsigned long counters;
2873 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2876 freelist = slab->freelist;
2877 counters = slab->counters;
2879 new.counters = counters;
2880 VM_BUG_ON(!new.frozen);
2882 new.inuse = slab->objects;
2883 new.frozen = freelist != NULL;
2885 } while (!__cmpxchg_double_slab(s, slab,
2894 * Slow path. The lockless freelist is empty or we need to perform
2897 * Processing is still very fast if new objects have been freed to the
2898 * regular freelist. In that case we simply take over the regular freelist
2899 * as the lockless freelist and zap the regular freelist.
2901 * If that is not working then we fall back to the partial lists. We take the
2902 * first element of the freelist as the object to allocate now and move the
2903 * rest of the freelist to the lockless freelist.
2905 * And if we were unable to get a new slab from the partial slab lists then
2906 * we need to allocate a new slab. This is the slowest path since it involves
2907 * a call to the page allocator and the setup of a new slab.
2909 * Version of __slab_alloc to use when we know that preemption is
2910 * already disabled (which is the case for bulk allocation).
2912 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2913 unsigned long addr, struct kmem_cache_cpu *c)
2917 unsigned long flags;
2919 stat(s, ALLOC_SLOWPATH);
2923 slab = READ_ONCE(c->slab);
2926 * if the node is not online or has no normal memory, just
2927 * ignore the node constraint
2929 if (unlikely(node != NUMA_NO_NODE &&
2930 !node_isset(node, slab_nodes)))
2931 node = NUMA_NO_NODE;
2936 if (unlikely(!node_match(slab, node))) {
2938 * same as above but node_match() being false already
2939 * implies node != NUMA_NO_NODE
2941 if (!node_isset(node, slab_nodes)) {
2942 node = NUMA_NO_NODE;
2944 stat(s, ALLOC_NODE_MISMATCH);
2945 goto deactivate_slab;
2950 * By rights, we should be searching for a slab page that was
2951 * PFMEMALLOC but right now, we are losing the pfmemalloc
2952 * information when the page leaves the per-cpu allocator
2954 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2955 goto deactivate_slab;
2957 /* must check again c->slab in case we got preempted and it changed */
2958 local_lock_irqsave(&s->cpu_slab->lock, flags);
2959 if (unlikely(slab != c->slab)) {
2960 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2963 freelist = c->freelist;
2967 freelist = get_freelist(s, slab);
2971 c->tid = next_tid(c->tid);
2972 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2973 stat(s, DEACTIVATE_BYPASS);
2977 stat(s, ALLOC_REFILL);
2981 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2984 * freelist is pointing to the list of objects to be used.
2985 * slab is pointing to the slab from which the objects are obtained.
2986 * That slab must be frozen for per cpu allocations to work.
2988 VM_BUG_ON(!c->slab->frozen);
2989 c->freelist = get_freepointer(s, freelist);
2990 c->tid = next_tid(c->tid);
2991 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2996 local_lock_irqsave(&s->cpu_slab->lock, flags);
2997 if (slab != c->slab) {
2998 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3001 freelist = c->freelist;
3004 c->tid = next_tid(c->tid);
3005 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3006 deactivate_slab(s, slab, freelist);
3010 if (slub_percpu_partial(c)) {
3011 local_lock_irqsave(&s->cpu_slab->lock, flags);
3012 if (unlikely(c->slab)) {
3013 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3016 if (unlikely(!slub_percpu_partial(c))) {
3017 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3018 /* we were preempted and partial list got empty */
3022 slab = c->slab = slub_percpu_partial(c);
3023 slub_set_percpu_partial(c, slab);
3024 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3025 stat(s, CPU_PARTIAL_ALLOC);
3031 freelist = get_partial(s, gfpflags, node, &slab);
3033 goto check_new_slab;
3035 slub_put_cpu_ptr(s->cpu_slab);
3036 slab = new_slab(s, gfpflags, node);
3037 c = slub_get_cpu_ptr(s->cpu_slab);
3039 if (unlikely(!slab)) {
3040 slab_out_of_memory(s, gfpflags, node);
3045 * No other reference to the slab yet so we can
3046 * muck around with it freely without cmpxchg
3048 freelist = slab->freelist;
3049 slab->freelist = NULL;
3051 stat(s, ALLOC_SLAB);
3055 if (kmem_cache_debug(s)) {
3056 if (!alloc_debug_processing(s, slab, freelist, addr)) {
3057 /* Slab failed checks. Next slab needed */
3061 * For debug case, we don't load freelist so that all
3062 * allocations go through alloc_debug_processing()
3068 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3070 * For !pfmemalloc_match() case we don't load freelist so that
3071 * we don't make further mismatched allocations easier.
3077 local_lock_irqsave(&s->cpu_slab->lock, flags);
3078 if (unlikely(c->slab)) {
3079 void *flush_freelist = c->freelist;
3080 struct slab *flush_slab = c->slab;
3084 c->tid = next_tid(c->tid);
3086 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3088 deactivate_slab(s, flush_slab, flush_freelist);
3090 stat(s, CPUSLAB_FLUSH);
3092 goto retry_load_slab;
3100 deactivate_slab(s, slab, get_freepointer(s, freelist));
3105 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3106 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3109 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3110 unsigned long addr, struct kmem_cache_cpu *c)
3114 #ifdef CONFIG_PREEMPT_COUNT
3116 * We may have been preempted and rescheduled on a different
3117 * cpu before disabling preemption. Need to reload cpu area
3120 c = slub_get_cpu_ptr(s->cpu_slab);
3123 p = ___slab_alloc(s, gfpflags, node, addr, c);
3124 #ifdef CONFIG_PREEMPT_COUNT
3125 slub_put_cpu_ptr(s->cpu_slab);
3131 * If the object has been wiped upon free, make sure it's fully initialized by
3132 * zeroing out freelist pointer.
3134 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3137 if (unlikely(slab_want_init_on_free(s)) && obj)
3138 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3143 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3144 * have the fastpath folded into their functions. So no function call
3145 * overhead for requests that can be satisfied on the fastpath.
3147 * The fastpath works by first checking if the lockless freelist can be used.
3148 * If not then __slab_alloc is called for slow processing.
3150 * Otherwise we can simply pick the next object from the lockless free list.
3152 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3153 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3156 struct kmem_cache_cpu *c;
3159 struct obj_cgroup *objcg = NULL;
3162 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3166 object = kfence_alloc(s, orig_size, gfpflags);
3167 if (unlikely(object))
3172 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3173 * enabled. We may switch back and forth between cpus while
3174 * reading from one cpu area. That does not matter as long
3175 * as we end up on the original cpu again when doing the cmpxchg.
3177 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3178 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3179 * the tid. If we are preempted and switched to another cpu between the
3180 * two reads, it's OK as the two are still associated with the same cpu
3181 * and cmpxchg later will validate the cpu.
3183 c = raw_cpu_ptr(s->cpu_slab);
3184 tid = READ_ONCE(c->tid);
3187 * Irqless object alloc/free algorithm used here depends on sequence
3188 * of fetching cpu_slab's data. tid should be fetched before anything
3189 * on c to guarantee that object and slab associated with previous tid
3190 * won't be used with current tid. If we fetch tid first, object and
3191 * slab could be one associated with next tid and our alloc/free
3192 * request will be failed. In this case, we will retry. So, no problem.
3197 * The transaction ids are globally unique per cpu and per operation on
3198 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3199 * occurs on the right processor and that there was no operation on the
3200 * linked list in between.
3203 object = c->freelist;
3206 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3207 * slowpath has taken the local_lock_irqsave(), it is not protected
3208 * against a fast path operation in an irq handler. So we need to take
3209 * the slow path which uses local_lock. It is still relatively fast if
3210 * there is a suitable cpu freelist.
3212 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3213 unlikely(!object || !slab || !node_match(slab, node))) {
3214 object = __slab_alloc(s, gfpflags, node, addr, c);
3216 void *next_object = get_freepointer_safe(s, object);
3219 * The cmpxchg will only match if there was no additional
3220 * operation and if we are on the right processor.
3222 * The cmpxchg does the following atomically (without lock
3224 * 1. Relocate first pointer to the current per cpu area.
3225 * 2. Verify that tid and freelist have not been changed
3226 * 3. If they were not changed replace tid and freelist
3228 * Since this is without lock semantics the protection is only
3229 * against code executing on this cpu *not* from access by
3232 if (unlikely(!this_cpu_cmpxchg_double(
3233 s->cpu_slab->freelist, s->cpu_slab->tid,
3235 next_object, next_tid(tid)))) {
3237 note_cmpxchg_failure("slab_alloc", s, tid);
3240 prefetch_freepointer(s, next_object);
3241 stat(s, ALLOC_FASTPATH);
3244 maybe_wipe_obj_freeptr(s, object);
3245 init = slab_want_init_on_alloc(gfpflags, s);
3248 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3253 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3254 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3256 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3259 static __always_inline
3260 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3263 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3265 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
3271 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3273 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3275 EXPORT_SYMBOL(kmem_cache_alloc);
3277 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3280 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3282 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3284 #ifdef CONFIG_TRACING
3285 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3287 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3288 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
3289 ret = kasan_kmalloc(s, ret, size, gfpflags);
3292 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3296 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3298 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3300 trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3301 s->object_size, s->size, gfpflags, node);
3305 EXPORT_SYMBOL(kmem_cache_alloc_node);
3307 #ifdef CONFIG_TRACING
3308 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3310 int node, size_t size)
3312 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3314 trace_kmalloc_node(_RET_IP_, ret, s,
3315 size, s->size, gfpflags, node);
3317 ret = kasan_kmalloc(s, ret, size, gfpflags);
3320 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3322 #endif /* CONFIG_NUMA */
3325 * Slow path handling. This may still be called frequently since objects
3326 * have a longer lifetime than the cpu slabs in most processing loads.
3328 * So we still attempt to reduce cache line usage. Just take the slab
3329 * lock and free the item. If there is no additional partial slab
3330 * handling required then we can return immediately.
3332 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3333 void *head, void *tail, int cnt,
3340 unsigned long counters;
3341 struct kmem_cache_node *n = NULL;
3342 unsigned long flags;
3344 stat(s, FREE_SLOWPATH);
3346 if (kfence_free(head))
3349 if (kmem_cache_debug(s) &&
3350 !free_debug_processing(s, slab, head, tail, cnt, addr))
3355 spin_unlock_irqrestore(&n->list_lock, flags);
3358 prior = slab->freelist;
3359 counters = slab->counters;
3360 set_freepointer(s, tail, prior);
3361 new.counters = counters;
3362 was_frozen = new.frozen;
3364 if ((!new.inuse || !prior) && !was_frozen) {
3366 if (kmem_cache_has_cpu_partial(s) && !prior) {
3369 * Slab was on no list before and will be
3371 * We can defer the list move and instead
3376 } else { /* Needs to be taken off a list */
3378 n = get_node(s, slab_nid(slab));
3380 * Speculatively acquire the list_lock.
3381 * If the cmpxchg does not succeed then we may
3382 * drop the list_lock without any processing.
3384 * Otherwise the list_lock will synchronize with
3385 * other processors updating the list of slabs.
3387 spin_lock_irqsave(&n->list_lock, flags);
3392 } while (!cmpxchg_double_slab(s, slab,
3399 if (likely(was_frozen)) {
3401 * The list lock was not taken therefore no list
3402 * activity can be necessary.
3404 stat(s, FREE_FROZEN);
3405 } else if (new.frozen) {
3407 * If we just froze the slab then put it onto the
3408 * per cpu partial list.
3410 put_cpu_partial(s, slab, 1);
3411 stat(s, CPU_PARTIAL_FREE);
3417 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3421 * Objects left in the slab. If it was not on the partial list before
3424 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3425 remove_full(s, n, slab);
3426 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3427 stat(s, FREE_ADD_PARTIAL);
3429 spin_unlock_irqrestore(&n->list_lock, flags);
3435 * Slab on the partial list.
3437 remove_partial(n, slab);
3438 stat(s, FREE_REMOVE_PARTIAL);
3440 /* Slab must be on the full list */
3441 remove_full(s, n, slab);
3444 spin_unlock_irqrestore(&n->list_lock, flags);
3446 discard_slab(s, slab);
3450 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3451 * can perform fastpath freeing without additional function calls.
3453 * The fastpath is only possible if we are freeing to the current cpu slab
3454 * of this processor. This typically the case if we have just allocated
3457 * If fastpath is not possible then fall back to __slab_free where we deal
3458 * with all sorts of special processing.
3460 * Bulk free of a freelist with several objects (all pointing to the
3461 * same slab) possible by specifying head and tail ptr, plus objects
3462 * count (cnt). Bulk free indicated by tail pointer being set.
3464 static __always_inline void do_slab_free(struct kmem_cache *s,
3465 struct slab *slab, void *head, void *tail,
3466 int cnt, unsigned long addr)
3468 void *tail_obj = tail ? : head;
3469 struct kmem_cache_cpu *c;
3474 * Determine the currently cpus per cpu slab.
3475 * The cpu may change afterward. However that does not matter since
3476 * data is retrieved via this pointer. If we are on the same cpu
3477 * during the cmpxchg then the free will succeed.
3479 c = raw_cpu_ptr(s->cpu_slab);
3480 tid = READ_ONCE(c->tid);
3482 /* Same with comment on barrier() in slab_alloc_node() */
3485 if (likely(slab == c->slab)) {
3486 #ifndef CONFIG_PREEMPT_RT
3487 void **freelist = READ_ONCE(c->freelist);
3489 set_freepointer(s, tail_obj, freelist);
3491 if (unlikely(!this_cpu_cmpxchg_double(
3492 s->cpu_slab->freelist, s->cpu_slab->tid,
3494 head, next_tid(tid)))) {
3496 note_cmpxchg_failure("slab_free", s, tid);
3499 #else /* CONFIG_PREEMPT_RT */
3501 * We cannot use the lockless fastpath on PREEMPT_RT because if
3502 * a slowpath has taken the local_lock_irqsave(), it is not
3503 * protected against a fast path operation in an irq handler. So
3504 * we need to take the local_lock. We shouldn't simply defer to
3505 * __slab_free() as that wouldn't use the cpu freelist at all.
3509 local_lock(&s->cpu_slab->lock);
3510 c = this_cpu_ptr(s->cpu_slab);
3511 if (unlikely(slab != c->slab)) {
3512 local_unlock(&s->cpu_slab->lock);
3516 freelist = c->freelist;
3518 set_freepointer(s, tail_obj, freelist);
3520 c->tid = next_tid(tid);
3522 local_unlock(&s->cpu_slab->lock);
3524 stat(s, FREE_FASTPATH);
3526 __slab_free(s, slab, head, tail_obj, cnt, addr);
3530 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3531 void *head, void *tail, void **p, int cnt,
3534 memcg_slab_free_hook(s, slab, p, cnt);
3536 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3537 * to remove objects, whose reuse must be delayed.
3539 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3540 do_slab_free(s, slab, head, tail, cnt, addr);
3543 #ifdef CONFIG_KASAN_GENERIC
3544 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3546 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3550 void kmem_cache_free(struct kmem_cache *s, void *x)
3552 s = cache_from_obj(s, x);
3555 trace_kmem_cache_free(_RET_IP_, x, s->name);
3556 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3558 EXPORT_SYMBOL(kmem_cache_free);
3560 struct detached_freelist {
3565 struct kmem_cache *s;
3568 static inline void free_large_kmalloc(struct folio *folio, void *object)
3570 unsigned int order = folio_order(folio);
3572 if (WARN_ON_ONCE(order == 0))
3573 pr_warn_once("object pointer: 0x%p\n", object);
3576 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3577 -(PAGE_SIZE << order));
3578 __free_pages(folio_page(folio, 0), order);
3582 * This function progressively scans the array with free objects (with
3583 * a limited look ahead) and extract objects belonging to the same
3584 * slab. It builds a detached freelist directly within the given
3585 * slab/objects. This can happen without any need for
3586 * synchronization, because the objects are owned by running process.
3587 * The freelist is build up as a single linked list in the objects.
3588 * The idea is, that this detached freelist can then be bulk
3589 * transferred to the real freelist(s), but only requiring a single
3590 * synchronization primitive. Look ahead in the array is limited due
3591 * to performance reasons.
3594 int build_detached_freelist(struct kmem_cache *s, size_t size,
3595 void **p, struct detached_freelist *df)
3599 struct folio *folio;
3603 folio = virt_to_folio(object);
3605 /* Handle kalloc'ed objects */
3606 if (unlikely(!folio_test_slab(folio))) {
3607 free_large_kmalloc(folio, object);
3611 /* Derive kmem_cache from object */
3612 df->slab = folio_slab(folio);
3613 df->s = df->slab->slab_cache;
3615 df->slab = folio_slab(folio);
3616 df->s = cache_from_obj(s, object); /* Support for memcg */
3619 /* Start new detached freelist */
3621 df->freelist = object;
3624 if (is_kfence_address(object))
3627 set_freepointer(df->s, object, NULL);
3632 /* df->slab is always set at this point */
3633 if (df->slab == virt_to_slab(object)) {
3634 /* Opportunity build freelist */
3635 set_freepointer(df->s, object, df->freelist);
3636 df->freelist = object;
3640 swap(p[size], p[same]);
3644 /* Limit look ahead search */
3652 /* Note that interrupts must be enabled when calling this function. */
3653 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3659 struct detached_freelist df;
3661 size = build_detached_freelist(s, size, p, &df);
3665 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3667 } while (likely(size));
3669 EXPORT_SYMBOL(kmem_cache_free_bulk);
3671 /* Note that interrupts must be enabled when calling this function. */
3672 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3675 struct kmem_cache_cpu *c;
3677 struct obj_cgroup *objcg = NULL;
3679 /* memcg and kmem_cache debug support */
3680 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3684 * Drain objects in the per cpu slab, while disabling local
3685 * IRQs, which protects against PREEMPT and interrupts
3686 * handlers invoking normal fastpath.
3688 c = slub_get_cpu_ptr(s->cpu_slab);
3689 local_lock_irq(&s->cpu_slab->lock);
3691 for (i = 0; i < size; i++) {
3692 void *object = kfence_alloc(s, s->object_size, flags);
3694 if (unlikely(object)) {
3699 object = c->freelist;
3700 if (unlikely(!object)) {
3702 * We may have removed an object from c->freelist using
3703 * the fastpath in the previous iteration; in that case,
3704 * c->tid has not been bumped yet.
3705 * Since ___slab_alloc() may reenable interrupts while
3706 * allocating memory, we should bump c->tid now.
3708 c->tid = next_tid(c->tid);
3710 local_unlock_irq(&s->cpu_slab->lock);
3713 * Invoking slow path likely have side-effect
3714 * of re-populating per CPU c->freelist
3716 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3718 if (unlikely(!p[i]))
3721 c = this_cpu_ptr(s->cpu_slab);
3722 maybe_wipe_obj_freeptr(s, p[i]);
3724 local_lock_irq(&s->cpu_slab->lock);
3726 continue; /* goto for-loop */
3728 c->freelist = get_freepointer(s, object);
3730 maybe_wipe_obj_freeptr(s, p[i]);
3732 c->tid = next_tid(c->tid);
3733 local_unlock_irq(&s->cpu_slab->lock);
3734 slub_put_cpu_ptr(s->cpu_slab);
3737 * memcg and kmem_cache debug support and memory initialization.
3738 * Done outside of the IRQ disabled fastpath loop.
3740 slab_post_alloc_hook(s, objcg, flags, size, p,
3741 slab_want_init_on_alloc(flags, s));
3744 slub_put_cpu_ptr(s->cpu_slab);
3745 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3746 kmem_cache_free_bulk(s, i, p);
3749 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3753 * Object placement in a slab is made very easy because we always start at
3754 * offset 0. If we tune the size of the object to the alignment then we can
3755 * get the required alignment by putting one properly sized object after
3758 * Notice that the allocation order determines the sizes of the per cpu
3759 * caches. Each processor has always one slab available for allocations.
3760 * Increasing the allocation order reduces the number of times that slabs
3761 * must be moved on and off the partial lists and is therefore a factor in
3766 * Minimum / Maximum order of slab pages. This influences locking overhead
3767 * and slab fragmentation. A higher order reduces the number of partial slabs
3768 * and increases the number of allocations possible without having to
3769 * take the list_lock.
3771 static unsigned int slub_min_order;
3772 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3773 static unsigned int slub_min_objects;
3776 * Calculate the order of allocation given an slab object size.
3778 * The order of allocation has significant impact on performance and other
3779 * system components. Generally order 0 allocations should be preferred since
3780 * order 0 does not cause fragmentation in the page allocator. Larger objects
3781 * be problematic to put into order 0 slabs because there may be too much
3782 * unused space left. We go to a higher order if more than 1/16th of the slab
3785 * In order to reach satisfactory performance we must ensure that a minimum
3786 * number of objects is in one slab. Otherwise we may generate too much
3787 * activity on the partial lists which requires taking the list_lock. This is
3788 * less a concern for large slabs though which are rarely used.
3790 * slub_max_order specifies the order where we begin to stop considering the
3791 * number of objects in a slab as critical. If we reach slub_max_order then
3792 * we try to keep the page order as low as possible. So we accept more waste
3793 * of space in favor of a small page order.
3795 * Higher order allocations also allow the placement of more objects in a
3796 * slab and thereby reduce object handling overhead. If the user has
3797 * requested a higher minimum order then we start with that one instead of
3798 * the smallest order which will fit the object.
3800 static inline unsigned int calc_slab_order(unsigned int size,
3801 unsigned int min_objects, unsigned int max_order,
3802 unsigned int fract_leftover)
3804 unsigned int min_order = slub_min_order;
3807 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3808 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3810 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3811 order <= max_order; order++) {
3813 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3816 rem = slab_size % size;
3818 if (rem <= slab_size / fract_leftover)
3825 static inline int calculate_order(unsigned int size)
3828 unsigned int min_objects;
3829 unsigned int max_objects;
3830 unsigned int nr_cpus;
3833 * Attempt to find best configuration for a slab. This
3834 * works by first attempting to generate a layout with
3835 * the best configuration and backing off gradually.
3837 * First we increase the acceptable waste in a slab. Then
3838 * we reduce the minimum objects required in a slab.
3840 min_objects = slub_min_objects;
3843 * Some architectures will only update present cpus when
3844 * onlining them, so don't trust the number if it's just 1. But
3845 * we also don't want to use nr_cpu_ids always, as on some other
3846 * architectures, there can be many possible cpus, but never
3847 * onlined. Here we compromise between trying to avoid too high
3848 * order on systems that appear larger than they are, and too
3849 * low order on systems that appear smaller than they are.
3851 nr_cpus = num_present_cpus();
3853 nr_cpus = nr_cpu_ids;
3854 min_objects = 4 * (fls(nr_cpus) + 1);
3856 max_objects = order_objects(slub_max_order, size);
3857 min_objects = min(min_objects, max_objects);
3859 while (min_objects > 1) {
3860 unsigned int fraction;
3863 while (fraction >= 4) {
3864 order = calc_slab_order(size, min_objects,
3865 slub_max_order, fraction);
3866 if (order <= slub_max_order)
3874 * We were unable to place multiple objects in a slab. Now
3875 * lets see if we can place a single object there.
3877 order = calc_slab_order(size, 1, slub_max_order, 1);
3878 if (order <= slub_max_order)
3882 * Doh this slab cannot be placed using slub_max_order.
3884 order = calc_slab_order(size, 1, MAX_ORDER, 1);
3885 if (order < MAX_ORDER)
3891 init_kmem_cache_node(struct kmem_cache_node *n)
3894 spin_lock_init(&n->list_lock);
3895 INIT_LIST_HEAD(&n->partial);
3896 #ifdef CONFIG_SLUB_DEBUG
3897 atomic_long_set(&n->nr_slabs, 0);
3898 atomic_long_set(&n->total_objects, 0);
3899 INIT_LIST_HEAD(&n->full);
3903 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3905 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3906 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3909 * Must align to double word boundary for the double cmpxchg
3910 * instructions to work; see __pcpu_double_call_return_bool().
3912 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3913 2 * sizeof(void *));
3918 init_kmem_cache_cpus(s);
3923 static struct kmem_cache *kmem_cache_node;
3926 * No kmalloc_node yet so do it by hand. We know that this is the first
3927 * slab on the node for this slabcache. There are no concurrent accesses
3930 * Note that this function only works on the kmem_cache_node
3931 * when allocating for the kmem_cache_node. This is used for bootstrapping
3932 * memory on a fresh node that has no slab structures yet.
3934 static void early_kmem_cache_node_alloc(int node)
3937 struct kmem_cache_node *n;
3939 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3941 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3944 if (slab_nid(slab) != node) {
3945 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3946 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3951 #ifdef CONFIG_SLUB_DEBUG
3952 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3953 init_tracking(kmem_cache_node, n);
3955 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3956 slab->freelist = get_freepointer(kmem_cache_node, n);
3959 kmem_cache_node->node[node] = n;
3960 init_kmem_cache_node(n);
3961 inc_slabs_node(kmem_cache_node, node, slab->objects);
3964 * No locks need to be taken here as it has just been
3965 * initialized and there is no concurrent access.
3967 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
3970 static void free_kmem_cache_nodes(struct kmem_cache *s)
3973 struct kmem_cache_node *n;
3975 for_each_kmem_cache_node(s, node, n) {
3976 s->node[node] = NULL;
3977 kmem_cache_free(kmem_cache_node, n);
3981 void __kmem_cache_release(struct kmem_cache *s)
3983 cache_random_seq_destroy(s);
3984 free_percpu(s->cpu_slab);
3985 free_kmem_cache_nodes(s);
3988 static int init_kmem_cache_nodes(struct kmem_cache *s)
3992 for_each_node_mask(node, slab_nodes) {
3993 struct kmem_cache_node *n;
3995 if (slab_state == DOWN) {
3996 early_kmem_cache_node_alloc(node);
3999 n = kmem_cache_alloc_node(kmem_cache_node,
4003 free_kmem_cache_nodes(s);
4007 init_kmem_cache_node(n);
4013 static void set_cpu_partial(struct kmem_cache *s)
4015 #ifdef CONFIG_SLUB_CPU_PARTIAL
4016 unsigned int nr_objects;
4019 * cpu_partial determined the maximum number of objects kept in the
4020 * per cpu partial lists of a processor.
4022 * Per cpu partial lists mainly contain slabs that just have one
4023 * object freed. If they are used for allocation then they can be
4024 * filled up again with minimal effort. The slab will never hit the
4025 * per node partial lists and therefore no locking will be required.
4027 * For backwards compatibility reasons, this is determined as number
4028 * of objects, even though we now limit maximum number of pages, see
4029 * slub_set_cpu_partial()
4031 if (!kmem_cache_has_cpu_partial(s))
4033 else if (s->size >= PAGE_SIZE)
4035 else if (s->size >= 1024)
4037 else if (s->size >= 256)
4042 slub_set_cpu_partial(s, nr_objects);
4047 * calculate_sizes() determines the order and the distribution of data within
4050 static int calculate_sizes(struct kmem_cache *s)
4052 slab_flags_t flags = s->flags;
4053 unsigned int size = s->object_size;
4057 * Round up object size to the next word boundary. We can only
4058 * place the free pointer at word boundaries and this determines
4059 * the possible location of the free pointer.
4061 size = ALIGN(size, sizeof(void *));
4063 #ifdef CONFIG_SLUB_DEBUG
4065 * Determine if we can poison the object itself. If the user of
4066 * the slab may touch the object after free or before allocation
4067 * then we should never poison the object itself.
4069 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4071 s->flags |= __OBJECT_POISON;
4073 s->flags &= ~__OBJECT_POISON;
4077 * If we are Redzoning then check if there is some space between the
4078 * end of the object and the free pointer. If not then add an
4079 * additional word to have some bytes to store Redzone information.
4081 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4082 size += sizeof(void *);
4086 * With that we have determined the number of bytes in actual use
4087 * by the object and redzoning.
4091 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4092 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4095 * Relocate free pointer after the object if it is not
4096 * permitted to overwrite the first word of the object on
4099 * This is the case if we do RCU, have a constructor or
4100 * destructor, are poisoning the objects, or are
4101 * redzoning an object smaller than sizeof(void *).
4103 * The assumption that s->offset >= s->inuse means free
4104 * pointer is outside of the object is used in the
4105 * freeptr_outside_object() function. If that is no
4106 * longer true, the function needs to be modified.
4109 size += sizeof(void *);
4112 * Store freelist pointer near middle of object to keep
4113 * it away from the edges of the object to avoid small
4114 * sized over/underflows from neighboring allocations.
4116 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4119 #ifdef CONFIG_SLUB_DEBUG
4120 if (flags & SLAB_STORE_USER)
4122 * Need to store information about allocs and frees after
4125 size += 2 * sizeof(struct track);
4128 kasan_cache_create(s, &size, &s->flags);
4129 #ifdef CONFIG_SLUB_DEBUG
4130 if (flags & SLAB_RED_ZONE) {
4132 * Add some empty padding so that we can catch
4133 * overwrites from earlier objects rather than let
4134 * tracking information or the free pointer be
4135 * corrupted if a user writes before the start
4138 size += sizeof(void *);
4140 s->red_left_pad = sizeof(void *);
4141 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4142 size += s->red_left_pad;
4147 * SLUB stores one object immediately after another beginning from
4148 * offset 0. In order to align the objects we have to simply size
4149 * each object to conform to the alignment.
4151 size = ALIGN(size, s->align);
4153 s->reciprocal_size = reciprocal_value(size);
4154 order = calculate_order(size);
4161 s->allocflags |= __GFP_COMP;
4163 if (s->flags & SLAB_CACHE_DMA)
4164 s->allocflags |= GFP_DMA;
4166 if (s->flags & SLAB_CACHE_DMA32)
4167 s->allocflags |= GFP_DMA32;
4169 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4170 s->allocflags |= __GFP_RECLAIMABLE;
4173 * Determine the number of objects per slab
4175 s->oo = oo_make(order, size);
4176 s->min = oo_make(get_order(size), size);
4178 return !!oo_objects(s->oo);
4181 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4183 s->flags = kmem_cache_flags(s->size, flags, s->name);
4184 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4185 s->random = get_random_long();
4188 if (!calculate_sizes(s))
4190 if (disable_higher_order_debug) {
4192 * Disable debugging flags that store metadata if the min slab
4195 if (get_order(s->size) > get_order(s->object_size)) {
4196 s->flags &= ~DEBUG_METADATA_FLAGS;
4198 if (!calculate_sizes(s))
4203 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4204 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4205 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4206 /* Enable fast mode */
4207 s->flags |= __CMPXCHG_DOUBLE;
4211 * The larger the object size is, the more slabs we want on the partial
4212 * list to avoid pounding the page allocator excessively.
4214 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4215 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4220 s->remote_node_defrag_ratio = 1000;
4223 /* Initialize the pre-computed randomized freelist if slab is up */
4224 if (slab_state >= UP) {
4225 if (init_cache_random_seq(s))
4229 if (!init_kmem_cache_nodes(s))
4232 if (alloc_kmem_cache_cpus(s))
4236 __kmem_cache_release(s);
4240 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4243 #ifdef CONFIG_SLUB_DEBUG
4244 void *addr = slab_address(slab);
4245 unsigned long flags;
4249 slab_err(s, slab, text, s->name);
4250 slab_lock(slab, &flags);
4252 map = get_map(s, slab);
4253 for_each_object(p, s, addr, slab->objects) {
4255 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4256 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4257 print_tracking(s, p);
4261 slab_unlock(slab, &flags);
4266 * Attempt to free all partial slabs on a node.
4267 * This is called from __kmem_cache_shutdown(). We must take list_lock
4268 * because sysfs file might still access partial list after the shutdowning.
4270 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4273 struct slab *slab, *h;
4275 BUG_ON(irqs_disabled());
4276 spin_lock_irq(&n->list_lock);
4277 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4279 remove_partial(n, slab);
4280 list_add(&slab->slab_list, &discard);
4282 list_slab_objects(s, slab,
4283 "Objects remaining in %s on __kmem_cache_shutdown()");
4286 spin_unlock_irq(&n->list_lock);
4288 list_for_each_entry_safe(slab, h, &discard, slab_list)
4289 discard_slab(s, slab);
4292 bool __kmem_cache_empty(struct kmem_cache *s)
4295 struct kmem_cache_node *n;
4297 for_each_kmem_cache_node(s, node, n)
4298 if (n->nr_partial || slabs_node(s, node))
4304 * Release all resources used by a slab cache.
4306 int __kmem_cache_shutdown(struct kmem_cache *s)
4309 struct kmem_cache_node *n;
4311 flush_all_cpus_locked(s);
4312 /* Attempt to free all objects */
4313 for_each_kmem_cache_node(s, node, n) {
4315 if (n->nr_partial || slabs_node(s, node))
4321 #ifdef CONFIG_PRINTK
4322 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4325 int __maybe_unused i;
4329 struct kmem_cache *s = slab->slab_cache;
4330 struct track __maybe_unused *trackp;
4332 kpp->kp_ptr = object;
4333 kpp->kp_slab = slab;
4334 kpp->kp_slab_cache = s;
4335 base = slab_address(slab);
4336 objp0 = kasan_reset_tag(object);
4337 #ifdef CONFIG_SLUB_DEBUG
4338 objp = restore_red_left(s, objp0);
4342 objnr = obj_to_index(s, slab, objp);
4343 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4344 objp = base + s->size * objnr;
4345 kpp->kp_objp = objp;
4346 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4347 || (objp - base) % s->size) ||
4348 !(s->flags & SLAB_STORE_USER))
4350 #ifdef CONFIG_SLUB_DEBUG
4351 objp = fixup_red_left(s, objp);
4352 trackp = get_track(s, objp, TRACK_ALLOC);
4353 kpp->kp_ret = (void *)trackp->addr;
4354 #ifdef CONFIG_STACKDEPOT
4356 depot_stack_handle_t handle;
4357 unsigned long *entries;
4358 unsigned int nr_entries;
4360 handle = READ_ONCE(trackp->handle);
4362 nr_entries = stack_depot_fetch(handle, &entries);
4363 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4364 kpp->kp_stack[i] = (void *)entries[i];
4367 trackp = get_track(s, objp, TRACK_FREE);
4368 handle = READ_ONCE(trackp->handle);
4370 nr_entries = stack_depot_fetch(handle, &entries);
4371 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4372 kpp->kp_free_stack[i] = (void *)entries[i];
4380 /********************************************************************
4382 *******************************************************************/
4384 static int __init setup_slub_min_order(char *str)
4386 get_option(&str, (int *)&slub_min_order);
4391 __setup("slub_min_order=", setup_slub_min_order);
4393 static int __init setup_slub_max_order(char *str)
4395 get_option(&str, (int *)&slub_max_order);
4396 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4401 __setup("slub_max_order=", setup_slub_max_order);
4403 static int __init setup_slub_min_objects(char *str)
4405 get_option(&str, (int *)&slub_min_objects);
4410 __setup("slub_min_objects=", setup_slub_min_objects);
4412 void *__kmalloc(size_t size, gfp_t flags)
4414 struct kmem_cache *s;
4417 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4418 return kmalloc_large(size, flags);
4420 s = kmalloc_slab(size, flags);
4422 if (unlikely(ZERO_OR_NULL_PTR(s)))
4425 ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
4427 trace_kmalloc(_RET_IP_, ret, s, size, s->size, flags);
4429 ret = kasan_kmalloc(s, ret, size, flags);
4433 EXPORT_SYMBOL(__kmalloc);
4436 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4440 unsigned int order = get_order(size);
4442 flags |= __GFP_COMP;
4443 page = alloc_pages_node(node, flags, order);
4445 ptr = page_address(page);
4446 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4447 PAGE_SIZE << order);
4450 return kmalloc_large_node_hook(ptr, size, flags);
4453 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4455 struct kmem_cache *s;
4458 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4459 ret = kmalloc_large_node(size, flags, node);
4461 trace_kmalloc_node(_RET_IP_, ret, NULL,
4462 size, PAGE_SIZE << get_order(size),
4468 s = kmalloc_slab(size, flags);
4470 if (unlikely(ZERO_OR_NULL_PTR(s)))
4473 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
4475 trace_kmalloc_node(_RET_IP_, ret, s, size, s->size, flags, node);
4477 ret = kasan_kmalloc(s, ret, size, flags);
4481 EXPORT_SYMBOL(__kmalloc_node);
4482 #endif /* CONFIG_NUMA */
4484 #ifdef CONFIG_HARDENED_USERCOPY
4486 * Rejects incorrectly sized objects and objects that are to be copied
4487 * to/from userspace but do not fall entirely within the containing slab
4488 * cache's usercopy region.
4490 * Returns NULL if check passes, otherwise const char * to name of cache
4491 * to indicate an error.
4493 void __check_heap_object(const void *ptr, unsigned long n,
4494 const struct slab *slab, bool to_user)
4496 struct kmem_cache *s;
4497 unsigned int offset;
4498 bool is_kfence = is_kfence_address(ptr);
4500 ptr = kasan_reset_tag(ptr);
4502 /* Find object and usable object size. */
4503 s = slab->slab_cache;
4505 /* Reject impossible pointers. */
4506 if (ptr < slab_address(slab))
4507 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4510 /* Find offset within object. */
4512 offset = ptr - kfence_object_start(ptr);
4514 offset = (ptr - slab_address(slab)) % s->size;
4516 /* Adjust for redzone and reject if within the redzone. */
4517 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4518 if (offset < s->red_left_pad)
4519 usercopy_abort("SLUB object in left red zone",
4520 s->name, to_user, offset, n);
4521 offset -= s->red_left_pad;
4524 /* Allow address range falling entirely within usercopy region. */
4525 if (offset >= s->useroffset &&
4526 offset - s->useroffset <= s->usersize &&
4527 n <= s->useroffset - offset + s->usersize)
4530 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4532 #endif /* CONFIG_HARDENED_USERCOPY */
4534 size_t __ksize(const void *object)
4536 struct folio *folio;
4538 if (unlikely(object == ZERO_SIZE_PTR))
4541 folio = virt_to_folio(object);
4543 if (unlikely(!folio_test_slab(folio)))
4544 return folio_size(folio);
4546 return slab_ksize(folio_slab(folio)->slab_cache);
4548 EXPORT_SYMBOL(__ksize);
4550 void kfree(const void *x)
4552 struct folio *folio;
4554 void *object = (void *)x;
4556 trace_kfree(_RET_IP_, x);
4558 if (unlikely(ZERO_OR_NULL_PTR(x)))
4561 folio = virt_to_folio(x);
4562 if (unlikely(!folio_test_slab(folio))) {
4563 free_large_kmalloc(folio, object);
4566 slab = folio_slab(folio);
4567 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_);
4569 EXPORT_SYMBOL(kfree);
4571 #define SHRINK_PROMOTE_MAX 32
4574 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4575 * up most to the head of the partial lists. New allocations will then
4576 * fill those up and thus they can be removed from the partial lists.
4578 * The slabs with the least items are placed last. This results in them
4579 * being allocated from last increasing the chance that the last objects
4580 * are freed in them.
4582 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4586 struct kmem_cache_node *n;
4589 struct list_head discard;
4590 struct list_head promote[SHRINK_PROMOTE_MAX];
4591 unsigned long flags;
4594 for_each_kmem_cache_node(s, node, n) {
4595 INIT_LIST_HEAD(&discard);
4596 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4597 INIT_LIST_HEAD(promote + i);
4599 spin_lock_irqsave(&n->list_lock, flags);
4602 * Build lists of slabs to discard or promote.
4604 * Note that concurrent frees may occur while we hold the
4605 * list_lock. slab->inuse here is the upper limit.
4607 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4608 int free = slab->objects - slab->inuse;
4610 /* Do not reread slab->inuse */
4613 /* We do not keep full slabs on the list */
4616 if (free == slab->objects) {
4617 list_move(&slab->slab_list, &discard);
4619 } else if (free <= SHRINK_PROMOTE_MAX)
4620 list_move(&slab->slab_list, promote + free - 1);
4624 * Promote the slabs filled up most to the head of the
4627 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4628 list_splice(promote + i, &n->partial);
4630 spin_unlock_irqrestore(&n->list_lock, flags);
4632 /* Release empty slabs */
4633 list_for_each_entry_safe(slab, t, &discard, slab_list)
4634 discard_slab(s, slab);
4636 if (slabs_node(s, node))
4643 int __kmem_cache_shrink(struct kmem_cache *s)
4646 return __kmem_cache_do_shrink(s);
4649 static int slab_mem_going_offline_callback(void *arg)
4651 struct kmem_cache *s;
4653 mutex_lock(&slab_mutex);
4654 list_for_each_entry(s, &slab_caches, list) {
4655 flush_all_cpus_locked(s);
4656 __kmem_cache_do_shrink(s);
4658 mutex_unlock(&slab_mutex);
4663 static void slab_mem_offline_callback(void *arg)
4665 struct memory_notify *marg = arg;
4668 offline_node = marg->status_change_nid_normal;
4671 * If the node still has available memory. we need kmem_cache_node
4674 if (offline_node < 0)
4677 mutex_lock(&slab_mutex);
4678 node_clear(offline_node, slab_nodes);
4680 * We no longer free kmem_cache_node structures here, as it would be
4681 * racy with all get_node() users, and infeasible to protect them with
4684 mutex_unlock(&slab_mutex);
4687 static int slab_mem_going_online_callback(void *arg)
4689 struct kmem_cache_node *n;
4690 struct kmem_cache *s;
4691 struct memory_notify *marg = arg;
4692 int nid = marg->status_change_nid_normal;
4696 * If the node's memory is already available, then kmem_cache_node is
4697 * already created. Nothing to do.
4703 * We are bringing a node online. No memory is available yet. We must
4704 * allocate a kmem_cache_node structure in order to bring the node
4707 mutex_lock(&slab_mutex);
4708 list_for_each_entry(s, &slab_caches, list) {
4710 * The structure may already exist if the node was previously
4711 * onlined and offlined.
4713 if (get_node(s, nid))
4716 * XXX: kmem_cache_alloc_node will fallback to other nodes
4717 * since memory is not yet available from the node that
4720 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4725 init_kmem_cache_node(n);
4729 * Any cache created after this point will also have kmem_cache_node
4730 * initialized for the new node.
4732 node_set(nid, slab_nodes);
4734 mutex_unlock(&slab_mutex);
4738 static int slab_memory_callback(struct notifier_block *self,
4739 unsigned long action, void *arg)
4744 case MEM_GOING_ONLINE:
4745 ret = slab_mem_going_online_callback(arg);
4747 case MEM_GOING_OFFLINE:
4748 ret = slab_mem_going_offline_callback(arg);
4751 case MEM_CANCEL_ONLINE:
4752 slab_mem_offline_callback(arg);
4755 case MEM_CANCEL_OFFLINE:
4759 ret = notifier_from_errno(ret);
4765 static struct notifier_block slab_memory_callback_nb = {
4766 .notifier_call = slab_memory_callback,
4767 .priority = SLAB_CALLBACK_PRI,
4770 /********************************************************************
4771 * Basic setup of slabs
4772 *******************************************************************/
4775 * Used for early kmem_cache structures that were allocated using
4776 * the page allocator. Allocate them properly then fix up the pointers
4777 * that may be pointing to the wrong kmem_cache structure.
4780 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4783 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4784 struct kmem_cache_node *n;
4786 memcpy(s, static_cache, kmem_cache->object_size);
4789 * This runs very early, and only the boot processor is supposed to be
4790 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4793 __flush_cpu_slab(s, smp_processor_id());
4794 for_each_kmem_cache_node(s, node, n) {
4797 list_for_each_entry(p, &n->partial, slab_list)
4800 #ifdef CONFIG_SLUB_DEBUG
4801 list_for_each_entry(p, &n->full, slab_list)
4805 list_add(&s->list, &slab_caches);
4809 void __init kmem_cache_init(void)
4811 static __initdata struct kmem_cache boot_kmem_cache,
4812 boot_kmem_cache_node;
4815 if (debug_guardpage_minorder())
4818 /* Print slub debugging pointers without hashing */
4819 if (__slub_debug_enabled())
4820 no_hash_pointers_enable(NULL);
4822 kmem_cache_node = &boot_kmem_cache_node;
4823 kmem_cache = &boot_kmem_cache;
4826 * Initialize the nodemask for which we will allocate per node
4827 * structures. Here we don't need taking slab_mutex yet.
4829 for_each_node_state(node, N_NORMAL_MEMORY)
4830 node_set(node, slab_nodes);
4832 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4833 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4835 register_hotmemory_notifier(&slab_memory_callback_nb);
4837 /* Able to allocate the per node structures */
4838 slab_state = PARTIAL;
4840 create_boot_cache(kmem_cache, "kmem_cache",
4841 offsetof(struct kmem_cache, node) +
4842 nr_node_ids * sizeof(struct kmem_cache_node *),
4843 SLAB_HWCACHE_ALIGN, 0, 0);
4845 kmem_cache = bootstrap(&boot_kmem_cache);
4846 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4848 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4849 setup_kmalloc_cache_index_table();
4850 create_kmalloc_caches(0);
4852 /* Setup random freelists for each cache */
4853 init_freelist_randomization();
4855 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4858 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4860 slub_min_order, slub_max_order, slub_min_objects,
4861 nr_cpu_ids, nr_node_ids);
4864 void __init kmem_cache_init_late(void)
4866 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4871 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4872 slab_flags_t flags, void (*ctor)(void *))
4874 struct kmem_cache *s;
4876 s = find_mergeable(size, align, flags, name, ctor);
4878 if (sysfs_slab_alias(s, name))
4884 * Adjust the object sizes so that we clear
4885 * the complete object on kzalloc.
4887 s->object_size = max(s->object_size, size);
4888 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4894 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4898 err = kmem_cache_open(s, flags);
4902 /* Mutex is not taken during early boot */
4903 if (slab_state <= UP)
4906 err = sysfs_slab_add(s);
4908 __kmem_cache_release(s);
4912 if (s->flags & SLAB_STORE_USER)
4913 debugfs_slab_add(s);
4918 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4920 struct kmem_cache *s;
4923 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4924 return kmalloc_large(size, gfpflags);
4926 s = kmalloc_slab(size, gfpflags);
4928 if (unlikely(ZERO_OR_NULL_PTR(s)))
4931 ret = slab_alloc(s, NULL, gfpflags, caller, size);
4933 /* Honor the call site pointer we received. */
4934 trace_kmalloc(caller, ret, s, size, s->size, gfpflags);
4936 ret = kasan_kmalloc(s, ret, size, gfpflags);
4940 EXPORT_SYMBOL(__kmalloc_track_caller);
4943 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4944 int node, unsigned long caller)
4946 struct kmem_cache *s;
4949 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4950 ret = kmalloc_large_node(size, gfpflags, node);
4952 trace_kmalloc_node(caller, ret, NULL,
4953 size, PAGE_SIZE << get_order(size),
4959 s = kmalloc_slab(size, gfpflags);
4961 if (unlikely(ZERO_OR_NULL_PTR(s)))
4964 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
4966 /* Honor the call site pointer we received. */
4967 trace_kmalloc_node(caller, ret, s, size, s->size, gfpflags, node);
4969 ret = kasan_kmalloc(s, ret, size, gfpflags);
4973 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4977 static int count_inuse(struct slab *slab)
4982 static int count_total(struct slab *slab)
4984 return slab->objects;
4988 #ifdef CONFIG_SLUB_DEBUG
4989 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4990 unsigned long *obj_map)
4993 void *addr = slab_address(slab);
4994 unsigned long flags;
4996 slab_lock(slab, &flags);
4998 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5001 /* Now we know that a valid freelist exists */
5002 __fill_map(obj_map, s, slab);
5003 for_each_object(p, s, addr, slab->objects) {
5004 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5005 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5007 if (!check_object(s, slab, p, val))
5011 slab_unlock(slab, &flags);
5014 static int validate_slab_node(struct kmem_cache *s,
5015 struct kmem_cache_node *n, unsigned long *obj_map)
5017 unsigned long count = 0;
5019 unsigned long flags;
5021 spin_lock_irqsave(&n->list_lock, flags);
5023 list_for_each_entry(slab, &n->partial, slab_list) {
5024 validate_slab(s, slab, obj_map);
5027 if (count != n->nr_partial) {
5028 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5029 s->name, count, n->nr_partial);
5030 slab_add_kunit_errors();
5033 if (!(s->flags & SLAB_STORE_USER))
5036 list_for_each_entry(slab, &n->full, slab_list) {
5037 validate_slab(s, slab, obj_map);
5040 if (count != atomic_long_read(&n->nr_slabs)) {
5041 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5042 s->name, count, atomic_long_read(&n->nr_slabs));
5043 slab_add_kunit_errors();
5047 spin_unlock_irqrestore(&n->list_lock, flags);
5051 long validate_slab_cache(struct kmem_cache *s)
5054 unsigned long count = 0;
5055 struct kmem_cache_node *n;
5056 unsigned long *obj_map;
5058 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5063 for_each_kmem_cache_node(s, node, n)
5064 count += validate_slab_node(s, n, obj_map);
5066 bitmap_free(obj_map);
5070 EXPORT_SYMBOL(validate_slab_cache);
5072 #ifdef CONFIG_DEBUG_FS
5074 * Generate lists of code addresses where slabcache objects are allocated
5079 depot_stack_handle_t handle;
5080 unsigned long count;
5087 DECLARE_BITMAP(cpus, NR_CPUS);
5093 unsigned long count;
5094 struct location *loc;
5098 static struct dentry *slab_debugfs_root;
5100 static void free_loc_track(struct loc_track *t)
5103 free_pages((unsigned long)t->loc,
5104 get_order(sizeof(struct location) * t->max));
5107 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5112 order = get_order(sizeof(struct location) * max);
5114 l = (void *)__get_free_pages(flags, order);
5119 memcpy(l, t->loc, sizeof(struct location) * t->count);
5127 static int add_location(struct loc_track *t, struct kmem_cache *s,
5128 const struct track *track)
5130 long start, end, pos;
5132 unsigned long caddr, chandle;
5133 unsigned long age = jiffies - track->when;
5134 depot_stack_handle_t handle = 0;
5136 #ifdef CONFIG_STACKDEPOT
5137 handle = READ_ONCE(track->handle);
5143 pos = start + (end - start + 1) / 2;
5146 * There is nothing at "end". If we end up there
5147 * we need to add something to before end.
5152 caddr = t->loc[pos].addr;
5153 chandle = t->loc[pos].handle;
5154 if ((track->addr == caddr) && (handle == chandle)) {
5160 if (age < l->min_time)
5162 if (age > l->max_time)
5165 if (track->pid < l->min_pid)
5166 l->min_pid = track->pid;
5167 if (track->pid > l->max_pid)
5168 l->max_pid = track->pid;
5170 cpumask_set_cpu(track->cpu,
5171 to_cpumask(l->cpus));
5173 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5177 if (track->addr < caddr)
5179 else if (track->addr == caddr && handle < chandle)
5186 * Not found. Insert new tracking element.
5188 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5194 (t->count - pos) * sizeof(struct location));
5197 l->addr = track->addr;
5201 l->min_pid = track->pid;
5202 l->max_pid = track->pid;
5204 cpumask_clear(to_cpumask(l->cpus));
5205 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5206 nodes_clear(l->nodes);
5207 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5211 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5212 struct slab *slab, enum track_item alloc,
5213 unsigned long *obj_map)
5215 void *addr = slab_address(slab);
5218 __fill_map(obj_map, s, slab);
5220 for_each_object(p, s, addr, slab->objects)
5221 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5222 add_location(t, s, get_track(s, p, alloc));
5224 #endif /* CONFIG_DEBUG_FS */
5225 #endif /* CONFIG_SLUB_DEBUG */
5228 enum slab_stat_type {
5229 SL_ALL, /* All slabs */
5230 SL_PARTIAL, /* Only partially allocated slabs */
5231 SL_CPU, /* Only slabs used for cpu caches */
5232 SL_OBJECTS, /* Determine allocated objects not slabs */
5233 SL_TOTAL /* Determine object capacity not slabs */
5236 #define SO_ALL (1 << SL_ALL)
5237 #define SO_PARTIAL (1 << SL_PARTIAL)
5238 #define SO_CPU (1 << SL_CPU)
5239 #define SO_OBJECTS (1 << SL_OBJECTS)
5240 #define SO_TOTAL (1 << SL_TOTAL)
5242 static ssize_t show_slab_objects(struct kmem_cache *s,
5243 char *buf, unsigned long flags)
5245 unsigned long total = 0;
5248 unsigned long *nodes;
5251 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5255 if (flags & SO_CPU) {
5258 for_each_possible_cpu(cpu) {
5259 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5264 slab = READ_ONCE(c->slab);
5268 node = slab_nid(slab);
5269 if (flags & SO_TOTAL)
5271 else if (flags & SO_OBJECTS)
5279 #ifdef CONFIG_SLUB_CPU_PARTIAL
5280 slab = slub_percpu_partial_read_once(c);
5282 node = slab_nid(slab);
5283 if (flags & SO_TOTAL)
5285 else if (flags & SO_OBJECTS)
5297 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5298 * already held which will conflict with an existing lock order:
5300 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5302 * We don't really need mem_hotplug_lock (to hold off
5303 * slab_mem_going_offline_callback) here because slab's memory hot
5304 * unplug code doesn't destroy the kmem_cache->node[] data.
5307 #ifdef CONFIG_SLUB_DEBUG
5308 if (flags & SO_ALL) {
5309 struct kmem_cache_node *n;
5311 for_each_kmem_cache_node(s, node, n) {
5313 if (flags & SO_TOTAL)
5314 x = atomic_long_read(&n->total_objects);
5315 else if (flags & SO_OBJECTS)
5316 x = atomic_long_read(&n->total_objects) -
5317 count_partial(n, count_free);
5319 x = atomic_long_read(&n->nr_slabs);
5326 if (flags & SO_PARTIAL) {
5327 struct kmem_cache_node *n;
5329 for_each_kmem_cache_node(s, node, n) {
5330 if (flags & SO_TOTAL)
5331 x = count_partial(n, count_total);
5332 else if (flags & SO_OBJECTS)
5333 x = count_partial(n, count_inuse);
5341 len += sysfs_emit_at(buf, len, "%lu", total);
5343 for (node = 0; node < nr_node_ids; node++) {
5345 len += sysfs_emit_at(buf, len, " N%d=%lu",
5349 len += sysfs_emit_at(buf, len, "\n");
5355 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5356 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5358 struct slab_attribute {
5359 struct attribute attr;
5360 ssize_t (*show)(struct kmem_cache *s, char *buf);
5361 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5364 #define SLAB_ATTR_RO(_name) \
5365 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5367 #define SLAB_ATTR(_name) \
5368 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5370 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5372 return sysfs_emit(buf, "%u\n", s->size);
5374 SLAB_ATTR_RO(slab_size);
5376 static ssize_t align_show(struct kmem_cache *s, char *buf)
5378 return sysfs_emit(buf, "%u\n", s->align);
5380 SLAB_ATTR_RO(align);
5382 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5384 return sysfs_emit(buf, "%u\n", s->object_size);
5386 SLAB_ATTR_RO(object_size);
5388 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5390 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5392 SLAB_ATTR_RO(objs_per_slab);
5394 static ssize_t order_show(struct kmem_cache *s, char *buf)
5396 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5398 SLAB_ATTR_RO(order);
5400 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5402 return sysfs_emit(buf, "%lu\n", s->min_partial);
5405 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5411 err = kstrtoul(buf, 10, &min);
5415 s->min_partial = min;
5418 SLAB_ATTR(min_partial);
5420 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5422 unsigned int nr_partial = 0;
5423 #ifdef CONFIG_SLUB_CPU_PARTIAL
5424 nr_partial = s->cpu_partial;
5427 return sysfs_emit(buf, "%u\n", nr_partial);
5430 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5433 unsigned int objects;
5436 err = kstrtouint(buf, 10, &objects);
5439 if (objects && !kmem_cache_has_cpu_partial(s))
5442 slub_set_cpu_partial(s, objects);
5446 SLAB_ATTR(cpu_partial);
5448 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5452 return sysfs_emit(buf, "%pS\n", s->ctor);
5456 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5458 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5460 SLAB_ATTR_RO(aliases);
5462 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5464 return show_slab_objects(s, buf, SO_PARTIAL);
5466 SLAB_ATTR_RO(partial);
5468 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5470 return show_slab_objects(s, buf, SO_CPU);
5472 SLAB_ATTR_RO(cpu_slabs);
5474 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5476 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5478 SLAB_ATTR_RO(objects);
5480 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5482 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5484 SLAB_ATTR_RO(objects_partial);
5486 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5490 int cpu __maybe_unused;
5493 #ifdef CONFIG_SLUB_CPU_PARTIAL
5494 for_each_online_cpu(cpu) {
5497 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5500 slabs += slab->slabs;
5504 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5505 objects = (slabs * oo_objects(s->oo)) / 2;
5506 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5508 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5509 for_each_online_cpu(cpu) {
5512 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5514 slabs = READ_ONCE(slab->slabs);
5515 objects = (slabs * oo_objects(s->oo)) / 2;
5516 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5517 cpu, objects, slabs);
5521 len += sysfs_emit_at(buf, len, "\n");
5525 SLAB_ATTR_RO(slabs_cpu_partial);
5527 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5529 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5531 SLAB_ATTR_RO(reclaim_account);
5533 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5535 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5537 SLAB_ATTR_RO(hwcache_align);
5539 #ifdef CONFIG_ZONE_DMA
5540 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5542 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5544 SLAB_ATTR_RO(cache_dma);
5547 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5549 return sysfs_emit(buf, "%u\n", s->usersize);
5551 SLAB_ATTR_RO(usersize);
5553 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5557 SLAB_ATTR_RO(destroy_by_rcu);
5559 #ifdef CONFIG_SLUB_DEBUG
5560 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5562 return show_slab_objects(s, buf, SO_ALL);
5564 SLAB_ATTR_RO(slabs);
5566 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5568 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5570 SLAB_ATTR_RO(total_objects);
5572 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5574 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5576 SLAB_ATTR_RO(sanity_checks);
5578 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5580 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5582 SLAB_ATTR_RO(trace);
5584 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5586 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5589 SLAB_ATTR_RO(red_zone);
5591 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5593 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5596 SLAB_ATTR_RO(poison);
5598 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5600 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5603 SLAB_ATTR_RO(store_user);
5605 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5610 static ssize_t validate_store(struct kmem_cache *s,
5611 const char *buf, size_t length)
5615 if (buf[0] == '1') {
5616 ret = validate_slab_cache(s);
5622 SLAB_ATTR(validate);
5624 #endif /* CONFIG_SLUB_DEBUG */
5626 #ifdef CONFIG_FAILSLAB
5627 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5629 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5631 SLAB_ATTR_RO(failslab);
5634 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5639 static ssize_t shrink_store(struct kmem_cache *s,
5640 const char *buf, size_t length)
5643 kmem_cache_shrink(s);
5651 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5653 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5656 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5657 const char *buf, size_t length)
5662 err = kstrtouint(buf, 10, &ratio);
5668 s->remote_node_defrag_ratio = ratio * 10;
5672 SLAB_ATTR(remote_node_defrag_ratio);
5675 #ifdef CONFIG_SLUB_STATS
5676 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5678 unsigned long sum = 0;
5681 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5686 for_each_online_cpu(cpu) {
5687 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5693 len += sysfs_emit_at(buf, len, "%lu", sum);
5696 for_each_online_cpu(cpu) {
5698 len += sysfs_emit_at(buf, len, " C%d=%u",
5703 len += sysfs_emit_at(buf, len, "\n");
5708 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5712 for_each_online_cpu(cpu)
5713 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5716 #define STAT_ATTR(si, text) \
5717 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5719 return show_stat(s, buf, si); \
5721 static ssize_t text##_store(struct kmem_cache *s, \
5722 const char *buf, size_t length) \
5724 if (buf[0] != '0') \
5726 clear_stat(s, si); \
5731 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5732 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5733 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5734 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5735 STAT_ATTR(FREE_FROZEN, free_frozen);
5736 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5737 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5738 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5739 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5740 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5741 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5742 STAT_ATTR(FREE_SLAB, free_slab);
5743 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5744 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5745 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5746 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5747 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5748 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5749 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5750 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5751 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5752 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5753 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5754 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5755 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5756 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5757 #endif /* CONFIG_SLUB_STATS */
5759 static struct attribute *slab_attrs[] = {
5760 &slab_size_attr.attr,
5761 &object_size_attr.attr,
5762 &objs_per_slab_attr.attr,
5764 &min_partial_attr.attr,
5765 &cpu_partial_attr.attr,
5767 &objects_partial_attr.attr,
5769 &cpu_slabs_attr.attr,
5773 &hwcache_align_attr.attr,
5774 &reclaim_account_attr.attr,
5775 &destroy_by_rcu_attr.attr,
5777 &slabs_cpu_partial_attr.attr,
5778 #ifdef CONFIG_SLUB_DEBUG
5779 &total_objects_attr.attr,
5781 &sanity_checks_attr.attr,
5783 &red_zone_attr.attr,
5785 &store_user_attr.attr,
5786 &validate_attr.attr,
5788 #ifdef CONFIG_ZONE_DMA
5789 &cache_dma_attr.attr,
5792 &remote_node_defrag_ratio_attr.attr,
5794 #ifdef CONFIG_SLUB_STATS
5795 &alloc_fastpath_attr.attr,
5796 &alloc_slowpath_attr.attr,
5797 &free_fastpath_attr.attr,
5798 &free_slowpath_attr.attr,
5799 &free_frozen_attr.attr,
5800 &free_add_partial_attr.attr,
5801 &free_remove_partial_attr.attr,
5802 &alloc_from_partial_attr.attr,
5803 &alloc_slab_attr.attr,
5804 &alloc_refill_attr.attr,
5805 &alloc_node_mismatch_attr.attr,
5806 &free_slab_attr.attr,
5807 &cpuslab_flush_attr.attr,
5808 &deactivate_full_attr.attr,
5809 &deactivate_empty_attr.attr,
5810 &deactivate_to_head_attr.attr,
5811 &deactivate_to_tail_attr.attr,
5812 &deactivate_remote_frees_attr.attr,
5813 &deactivate_bypass_attr.attr,
5814 &order_fallback_attr.attr,
5815 &cmpxchg_double_fail_attr.attr,
5816 &cmpxchg_double_cpu_fail_attr.attr,
5817 &cpu_partial_alloc_attr.attr,
5818 &cpu_partial_free_attr.attr,
5819 &cpu_partial_node_attr.attr,
5820 &cpu_partial_drain_attr.attr,
5822 #ifdef CONFIG_FAILSLAB
5823 &failslab_attr.attr,
5825 &usersize_attr.attr,
5830 static const struct attribute_group slab_attr_group = {
5831 .attrs = slab_attrs,
5834 static ssize_t slab_attr_show(struct kobject *kobj,
5835 struct attribute *attr,
5838 struct slab_attribute *attribute;
5839 struct kmem_cache *s;
5842 attribute = to_slab_attr(attr);
5845 if (!attribute->show)
5848 err = attribute->show(s, buf);
5853 static ssize_t slab_attr_store(struct kobject *kobj,
5854 struct attribute *attr,
5855 const char *buf, size_t len)
5857 struct slab_attribute *attribute;
5858 struct kmem_cache *s;
5861 attribute = to_slab_attr(attr);
5864 if (!attribute->store)
5867 err = attribute->store(s, buf, len);
5871 static void kmem_cache_release(struct kobject *k)
5873 slab_kmem_cache_release(to_slab(k));
5876 static const struct sysfs_ops slab_sysfs_ops = {
5877 .show = slab_attr_show,
5878 .store = slab_attr_store,
5881 static struct kobj_type slab_ktype = {
5882 .sysfs_ops = &slab_sysfs_ops,
5883 .release = kmem_cache_release,
5886 static struct kset *slab_kset;
5888 static inline struct kset *cache_kset(struct kmem_cache *s)
5893 #define ID_STR_LENGTH 64
5895 /* Create a unique string id for a slab cache:
5897 * Format :[flags-]size
5899 static char *create_unique_id(struct kmem_cache *s)
5901 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5905 return ERR_PTR(-ENOMEM);
5909 * First flags affecting slabcache operations. We will only
5910 * get here for aliasable slabs so we do not need to support
5911 * too many flags. The flags here must cover all flags that
5912 * are matched during merging to guarantee that the id is
5915 if (s->flags & SLAB_CACHE_DMA)
5917 if (s->flags & SLAB_CACHE_DMA32)
5919 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5921 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5923 if (s->flags & SLAB_ACCOUNT)
5927 p += sprintf(p, "%07u", s->size);
5929 BUG_ON(p > name + ID_STR_LENGTH - 1);
5933 static int sysfs_slab_add(struct kmem_cache *s)
5937 struct kset *kset = cache_kset(s);
5938 int unmergeable = slab_unmergeable(s);
5941 kobject_init(&s->kobj, &slab_ktype);
5945 if (!unmergeable && disable_higher_order_debug &&
5946 (slub_debug & DEBUG_METADATA_FLAGS))
5951 * Slabcache can never be merged so we can use the name proper.
5952 * This is typically the case for debug situations. In that
5953 * case we can catch duplicate names easily.
5955 sysfs_remove_link(&slab_kset->kobj, s->name);
5959 * Create a unique name for the slab as a target
5962 name = create_unique_id(s);
5964 return PTR_ERR(name);
5967 s->kobj.kset = kset;
5968 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5972 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5977 /* Setup first alias */
5978 sysfs_slab_alias(s, s->name);
5985 kobject_del(&s->kobj);
5989 void sysfs_slab_unlink(struct kmem_cache *s)
5991 if (slab_state >= FULL)
5992 kobject_del(&s->kobj);
5995 void sysfs_slab_release(struct kmem_cache *s)
5997 if (slab_state >= FULL)
5998 kobject_put(&s->kobj);
6002 * Need to buffer aliases during bootup until sysfs becomes
6003 * available lest we lose that information.
6005 struct saved_alias {
6006 struct kmem_cache *s;
6008 struct saved_alias *next;
6011 static struct saved_alias *alias_list;
6013 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6015 struct saved_alias *al;
6017 if (slab_state == FULL) {
6019 * If we have a leftover link then remove it.
6021 sysfs_remove_link(&slab_kset->kobj, name);
6022 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6025 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6031 al->next = alias_list;
6036 static int __init slab_sysfs_init(void)
6038 struct kmem_cache *s;
6041 mutex_lock(&slab_mutex);
6043 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6045 mutex_unlock(&slab_mutex);
6046 pr_err("Cannot register slab subsystem.\n");
6052 list_for_each_entry(s, &slab_caches, list) {
6053 err = sysfs_slab_add(s);
6055 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6059 while (alias_list) {
6060 struct saved_alias *al = alias_list;
6062 alias_list = alias_list->next;
6063 err = sysfs_slab_alias(al->s, al->name);
6065 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6070 mutex_unlock(&slab_mutex);
6074 __initcall(slab_sysfs_init);
6075 #endif /* CONFIG_SYSFS */
6077 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6078 static int slab_debugfs_show(struct seq_file *seq, void *v)
6080 struct loc_track *t = seq->private;
6084 idx = (unsigned long) t->idx;
6085 if (idx < t->count) {
6088 seq_printf(seq, "%7ld ", l->count);
6091 seq_printf(seq, "%pS", (void *)l->addr);
6093 seq_puts(seq, "<not-available>");
6095 if (l->sum_time != l->min_time) {
6096 seq_printf(seq, " age=%ld/%llu/%ld",
6097 l->min_time, div_u64(l->sum_time, l->count),
6100 seq_printf(seq, " age=%ld", l->min_time);
6102 if (l->min_pid != l->max_pid)
6103 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6105 seq_printf(seq, " pid=%ld",
6108 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6109 seq_printf(seq, " cpus=%*pbl",
6110 cpumask_pr_args(to_cpumask(l->cpus)));
6112 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6113 seq_printf(seq, " nodes=%*pbl",
6114 nodemask_pr_args(&l->nodes));
6116 #ifdef CONFIG_STACKDEPOT
6118 depot_stack_handle_t handle;
6119 unsigned long *entries;
6120 unsigned int nr_entries, j;
6122 handle = READ_ONCE(l->handle);
6124 nr_entries = stack_depot_fetch(handle, &entries);
6125 seq_puts(seq, "\n");
6126 for (j = 0; j < nr_entries; j++)
6127 seq_printf(seq, " %pS\n", (void *)entries[j]);
6131 seq_puts(seq, "\n");
6134 if (!idx && !t->count)
6135 seq_puts(seq, "No data\n");
6140 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6144 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6146 struct loc_track *t = seq->private;
6149 if (*ppos <= t->count)
6155 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6157 struct location *loc1 = (struct location *)a;
6158 struct location *loc2 = (struct location *)b;
6160 if (loc1->count > loc2->count)
6166 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6168 struct loc_track *t = seq->private;
6174 static const struct seq_operations slab_debugfs_sops = {
6175 .start = slab_debugfs_start,
6176 .next = slab_debugfs_next,
6177 .stop = slab_debugfs_stop,
6178 .show = slab_debugfs_show,
6181 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6184 struct kmem_cache_node *n;
6185 enum track_item alloc;
6187 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6188 sizeof(struct loc_track));
6189 struct kmem_cache *s = file_inode(filep)->i_private;
6190 unsigned long *obj_map;
6195 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6197 seq_release_private(inode, filep);
6201 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6202 alloc = TRACK_ALLOC;
6206 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6207 bitmap_free(obj_map);
6208 seq_release_private(inode, filep);
6212 for_each_kmem_cache_node(s, node, n) {
6213 unsigned long flags;
6216 if (!atomic_long_read(&n->nr_slabs))
6219 spin_lock_irqsave(&n->list_lock, flags);
6220 list_for_each_entry(slab, &n->partial, slab_list)
6221 process_slab(t, s, slab, alloc, obj_map);
6222 list_for_each_entry(slab, &n->full, slab_list)
6223 process_slab(t, s, slab, alloc, obj_map);
6224 spin_unlock_irqrestore(&n->list_lock, flags);
6227 /* Sort locations by count */
6228 sort_r(t->loc, t->count, sizeof(struct location),
6229 cmp_loc_by_count, NULL, NULL);
6231 bitmap_free(obj_map);
6235 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6237 struct seq_file *seq = file->private_data;
6238 struct loc_track *t = seq->private;
6241 return seq_release_private(inode, file);
6244 static const struct file_operations slab_debugfs_fops = {
6245 .open = slab_debug_trace_open,
6247 .llseek = seq_lseek,
6248 .release = slab_debug_trace_release,
6251 static void debugfs_slab_add(struct kmem_cache *s)
6253 struct dentry *slab_cache_dir;
6255 if (unlikely(!slab_debugfs_root))
6258 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6260 debugfs_create_file("alloc_traces", 0400,
6261 slab_cache_dir, s, &slab_debugfs_fops);
6263 debugfs_create_file("free_traces", 0400,
6264 slab_cache_dir, s, &slab_debugfs_fops);
6267 void debugfs_slab_release(struct kmem_cache *s)
6269 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6272 static int __init slab_debugfs_init(void)
6274 struct kmem_cache *s;
6276 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6278 list_for_each_entry(s, &slab_caches, list)
6279 if (s->flags & SLAB_STORE_USER)
6280 debugfs_slab_add(s);
6285 __initcall(slab_debugfs_init);
6288 * The /proc/slabinfo ABI
6290 #ifdef CONFIG_SLUB_DEBUG
6291 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6293 unsigned long nr_slabs = 0;
6294 unsigned long nr_objs = 0;
6295 unsigned long nr_free = 0;
6297 struct kmem_cache_node *n;
6299 for_each_kmem_cache_node(s, node, n) {
6300 nr_slabs += node_nr_slabs(n);
6301 nr_objs += node_nr_objs(n);
6302 nr_free += count_partial(n, count_free);
6305 sinfo->active_objs = nr_objs - nr_free;
6306 sinfo->num_objs = nr_objs;
6307 sinfo->active_slabs = nr_slabs;
6308 sinfo->num_slabs = nr_slabs;
6309 sinfo->objects_per_slab = oo_objects(s->oo);
6310 sinfo->cache_order = oo_order(s->oo);
6313 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6317 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6318 size_t count, loff_t *ppos)
6322 #endif /* CONFIG_SLUB_DEBUG */