2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemtrace.h>
21 #include <linux/kmemcheck.h>
22 #include <linux/cpu.h>
23 #include <linux/cpuset.h>
24 #include <linux/mempolicy.h>
25 #include <linux/ctype.h>
26 #include <linux/debugobjects.h>
27 #include <linux/kallsyms.h>
28 #include <linux/memory.h>
29 #include <linux/math64.h>
30 #include <linux/fault-inject.h>
37 * The slab_lock protects operations on the object of a particular
38 * slab and its metadata in the page struct. If the slab lock
39 * has been taken then no allocations nor frees can be performed
40 * on the objects in the slab nor can the slab be added or removed
41 * from the partial or full lists since this would mean modifying
42 * the page_struct of the slab.
44 * The list_lock protects the partial and full list on each node and
45 * the partial slab counter. If taken then no new slabs may be added or
46 * removed from the lists nor make the number of partial slabs be modified.
47 * (Note that the total number of slabs is an atomic value that may be
48 * modified without taking the list lock).
50 * The list_lock is a centralized lock and thus we avoid taking it as
51 * much as possible. As long as SLUB does not have to handle partial
52 * slabs, operations can continue without any centralized lock. F.e.
53 * allocating a long series of objects that fill up slabs does not require
56 * The lock order is sometimes inverted when we are trying to get a slab
57 * off a list. We take the list_lock and then look for a page on the list
58 * to use. While we do that objects in the slabs may be freed. We can
59 * only operate on the slab if we have also taken the slab_lock. So we use
60 * a slab_trylock() on the slab. If trylock was successful then no frees
61 * can occur anymore and we can use the slab for allocations etc. If the
62 * slab_trylock() does not succeed then frees are in progress in the slab and
63 * we must stay away from it for a while since we may cause a bouncing
64 * cacheline if we try to acquire the lock. So go onto the next slab.
65 * If all pages are busy then we may allocate a new slab instead of reusing
66 * a partial slab. A new slab has noone operating on it and thus there is
67 * no danger of cacheline contention.
69 * Interrupts are disabled during allocation and deallocation in order to
70 * make the slab allocator safe to use in the context of an irq. In addition
71 * interrupts are disabled to ensure that the processor does not change
72 * while handling per_cpu slabs, due to kernel preemption.
74 * SLUB assigns one slab for allocation to each processor.
75 * Allocations only occur from these slabs called cpu slabs.
77 * Slabs with free elements are kept on a partial list and during regular
78 * operations no list for full slabs is used. If an object in a full slab is
79 * freed then the slab will show up again on the partial lists.
80 * We track full slabs for debugging purposes though because otherwise we
81 * cannot scan all objects.
83 * Slabs are freed when they become empty. Teardown and setup is
84 * minimal so we rely on the page allocators per cpu caches for
85 * fast frees and allocs.
87 * Overloading of page flags that are otherwise used for LRU management.
89 * PageActive The slab is frozen and exempt from list processing.
90 * This means that the slab is dedicated to a purpose
91 * such as satisfying allocations for a specific
92 * processor. Objects may be freed in the slab while
93 * it is frozen but slab_free will then skip the usual
94 * list operations. It is up to the processor holding
95 * the slab to integrate the slab into the slab lists
96 * when the slab is no longer needed.
98 * One use of this flag is to mark slabs that are
99 * used for allocations. Then such a slab becomes a cpu
100 * slab. The cpu slab may be equipped with an additional
101 * freelist that allows lockless access to
102 * free objects in addition to the regular freelist
103 * that requires the slab lock.
105 * PageError Slab requires special handling due to debug
106 * options set. This moves slab handling out of
107 * the fast path and disables lockless freelists.
110 #ifdef CONFIG_SLUB_DEBUG
117 * Issues still to be resolved:
119 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 * - Variable sizing of the per node arrays
124 /* Enable to test recovery from slab corruption on boot */
125 #undef SLUB_RESILIENCY_TEST
128 * Mininum number of partial slabs. These will be left on the partial
129 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 #define MIN_PARTIAL 5
134 * Maximum number of desirable partial slabs.
135 * The existence of more partial slabs makes kmem_cache_shrink
136 * sort the partial list by the number of objects in the.
138 #define MAX_PARTIAL 10
140 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
141 SLAB_POISON | SLAB_STORE_USER)
144 * Debugging flags that require metadata to be stored in the slab. These get
145 * disabled when slub_debug=O is used and a cache's min order increases with
148 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
151 * Set of flags that will prevent slab merging
153 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
154 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
157 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
158 SLAB_CACHE_DMA | SLAB_NOTRACK)
161 #define OO_MASK ((1 << OO_SHIFT) - 1)
162 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
164 /* Internal SLUB flags */
165 #define __OBJECT_POISON 0x80000000 /* Poison object */
166 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
168 static int kmem_size = sizeof(struct kmem_cache);
171 static struct notifier_block slab_notifier;
175 DOWN, /* No slab functionality available */
176 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
177 UP, /* Everything works but does not show up in sysfs */
181 /* A list of all slab caches on the system */
182 static DECLARE_RWSEM(slub_lock);
183 static LIST_HEAD(slab_caches);
186 * Tracking user of a slab.
189 unsigned long addr; /* Called from address */
190 int cpu; /* Was running on cpu */
191 int pid; /* Pid context */
192 unsigned long when; /* When did the operation occur */
195 enum track_item { TRACK_ALLOC, TRACK_FREE };
197 #ifdef CONFIG_SLUB_DEBUG
198 static int sysfs_slab_add(struct kmem_cache *);
199 static int sysfs_slab_alias(struct kmem_cache *, const char *);
200 static void sysfs_slab_remove(struct kmem_cache *);
203 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
204 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
206 static inline void sysfs_slab_remove(struct kmem_cache *s)
213 static inline void stat(struct kmem_cache *s, enum stat_item si)
215 #ifdef CONFIG_SLUB_STATS
216 __this_cpu_inc(s->cpu_slab->stat[si]);
220 /********************************************************************
221 * Core slab cache functions
222 *******************************************************************/
224 int slab_is_available(void)
226 return slab_state >= UP;
229 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
232 return s->node[node];
234 return &s->local_node;
238 /* Verify that a pointer has an address that is valid within a slab page */
239 static inline int check_valid_pointer(struct kmem_cache *s,
240 struct page *page, const void *object)
247 base = page_address(page);
248 if (object < base || object >= base + page->objects * s->size ||
249 (object - base) % s->size) {
256 static inline void *get_freepointer(struct kmem_cache *s, void *object)
258 return *(void **)(object + s->offset);
261 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263 *(void **)(object + s->offset) = fp;
266 /* Loop over all objects in a slab */
267 #define for_each_object(__p, __s, __addr, __objects) \
268 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
272 #define for_each_free_object(__p, __s, __free) \
273 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
275 /* Determine object index from a given position */
276 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
278 return (p - addr) / s->size;
281 static inline struct kmem_cache_order_objects oo_make(int order,
284 struct kmem_cache_order_objects x = {
285 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
291 static inline int oo_order(struct kmem_cache_order_objects x)
293 return x.x >> OO_SHIFT;
296 static inline int oo_objects(struct kmem_cache_order_objects x)
298 return x.x & OO_MASK;
301 #ifdef CONFIG_SLUB_DEBUG
305 #ifdef CONFIG_SLUB_DEBUG_ON
306 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 static int slub_debug;
311 static char *slub_debug_slabs;
312 static int disable_higher_order_debug;
317 static void print_section(char *text, u8 *addr, unsigned int length)
325 for (i = 0; i < length; i++) {
327 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
330 printk(KERN_CONT " %02x", addr[i]);
332 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 printk(KERN_CONT " %s\n", ascii);
341 printk(KERN_CONT " ");
345 printk(KERN_CONT " %s\n", ascii);
349 static struct track *get_track(struct kmem_cache *s, void *object,
350 enum track_item alloc)
355 p = object + s->offset + sizeof(void *);
357 p = object + s->inuse;
362 static void set_track(struct kmem_cache *s, void *object,
363 enum track_item alloc, unsigned long addr)
365 struct track *p = get_track(s, object, alloc);
369 p->cpu = smp_processor_id();
370 p->pid = current->pid;
373 memset(p, 0, sizeof(struct track));
376 static void init_tracking(struct kmem_cache *s, void *object)
378 if (!(s->flags & SLAB_STORE_USER))
381 set_track(s, object, TRACK_FREE, 0UL);
382 set_track(s, object, TRACK_ALLOC, 0UL);
385 static void print_track(const char *s, struct track *t)
390 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
391 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
394 static void print_tracking(struct kmem_cache *s, void *object)
396 if (!(s->flags & SLAB_STORE_USER))
399 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
400 print_track("Freed", get_track(s, object, TRACK_FREE));
403 static void print_page_info(struct page *page)
405 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
406 page, page->objects, page->inuse, page->freelist, page->flags);
410 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
416 vsnprintf(buf, sizeof(buf), fmt, args);
418 printk(KERN_ERR "========================================"
419 "=====================================\n");
420 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
421 printk(KERN_ERR "----------------------------------------"
422 "-------------------------------------\n\n");
425 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
431 vsnprintf(buf, sizeof(buf), fmt, args);
433 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
436 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
438 unsigned int off; /* Offset of last byte */
439 u8 *addr = page_address(page);
441 print_tracking(s, p);
443 print_page_info(page);
445 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
446 p, p - addr, get_freepointer(s, p));
449 print_section("Bytes b4", p - 16, 16);
451 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
453 if (s->flags & SLAB_RED_ZONE)
454 print_section("Redzone", p + s->objsize,
455 s->inuse - s->objsize);
458 off = s->offset + sizeof(void *);
462 if (s->flags & SLAB_STORE_USER)
463 off += 2 * sizeof(struct track);
466 /* Beginning of the filler is the free pointer */
467 print_section("Padding", p + off, s->size - off);
472 static void object_err(struct kmem_cache *s, struct page *page,
473 u8 *object, char *reason)
475 slab_bug(s, "%s", reason);
476 print_trailer(s, page, object);
479 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
485 vsnprintf(buf, sizeof(buf), fmt, args);
487 slab_bug(s, "%s", buf);
488 print_page_info(page);
492 static void init_object(struct kmem_cache *s, void *object, int active)
496 if (s->flags & __OBJECT_POISON) {
497 memset(p, POISON_FREE, s->objsize - 1);
498 p[s->objsize - 1] = POISON_END;
501 if (s->flags & SLAB_RED_ZONE)
502 memset(p + s->objsize,
503 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
504 s->inuse - s->objsize);
507 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
510 if (*start != (u8)value)
518 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
519 void *from, void *to)
521 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
522 memset(from, data, to - from);
525 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
526 u8 *object, char *what,
527 u8 *start, unsigned int value, unsigned int bytes)
532 fault = check_bytes(start, value, bytes);
537 while (end > fault && end[-1] == value)
540 slab_bug(s, "%s overwritten", what);
541 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
542 fault, end - 1, fault[0], value);
543 print_trailer(s, page, object);
545 restore_bytes(s, what, value, fault, end);
553 * Bytes of the object to be managed.
554 * If the freepointer may overlay the object then the free
555 * pointer is the first word of the object.
557 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
560 * object + s->objsize
561 * Padding to reach word boundary. This is also used for Redzoning.
562 * Padding is extended by another word if Redzoning is enabled and
565 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
566 * 0xcc (RED_ACTIVE) for objects in use.
569 * Meta data starts here.
571 * A. Free pointer (if we cannot overwrite object on free)
572 * B. Tracking data for SLAB_STORE_USER
573 * C. Padding to reach required alignment boundary or at mininum
574 * one word if debugging is on to be able to detect writes
575 * before the word boundary.
577 * Padding is done using 0x5a (POISON_INUSE)
580 * Nothing is used beyond s->size.
582 * If slabcaches are merged then the objsize and inuse boundaries are mostly
583 * ignored. And therefore no slab options that rely on these boundaries
584 * may be used with merged slabcaches.
587 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
589 unsigned long off = s->inuse; /* The end of info */
592 /* Freepointer is placed after the object. */
593 off += sizeof(void *);
595 if (s->flags & SLAB_STORE_USER)
596 /* We also have user information there */
597 off += 2 * sizeof(struct track);
602 return check_bytes_and_report(s, page, p, "Object padding",
603 p + off, POISON_INUSE, s->size - off);
606 /* Check the pad bytes at the end of a slab page */
607 static int slab_pad_check(struct kmem_cache *s, struct page *page)
615 if (!(s->flags & SLAB_POISON))
618 start = page_address(page);
619 length = (PAGE_SIZE << compound_order(page));
620 end = start + length;
621 remainder = length % s->size;
625 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
628 while (end > fault && end[-1] == POISON_INUSE)
631 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
632 print_section("Padding", end - remainder, remainder);
634 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
638 static int check_object(struct kmem_cache *s, struct page *page,
639 void *object, int active)
642 u8 *endobject = object + s->objsize;
644 if (s->flags & SLAB_RED_ZONE) {
646 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
648 if (!check_bytes_and_report(s, page, object, "Redzone",
649 endobject, red, s->inuse - s->objsize))
652 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
653 check_bytes_and_report(s, page, p, "Alignment padding",
654 endobject, POISON_INUSE, s->inuse - s->objsize);
658 if (s->flags & SLAB_POISON) {
659 if (!active && (s->flags & __OBJECT_POISON) &&
660 (!check_bytes_and_report(s, page, p, "Poison", p,
661 POISON_FREE, s->objsize - 1) ||
662 !check_bytes_and_report(s, page, p, "Poison",
663 p + s->objsize - 1, POISON_END, 1)))
666 * check_pad_bytes cleans up on its own.
668 check_pad_bytes(s, page, p);
671 if (!s->offset && active)
673 * Object and freepointer overlap. Cannot check
674 * freepointer while object is allocated.
678 /* Check free pointer validity */
679 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
680 object_err(s, page, p, "Freepointer corrupt");
682 * No choice but to zap it and thus lose the remainder
683 * of the free objects in this slab. May cause
684 * another error because the object count is now wrong.
686 set_freepointer(s, p, NULL);
692 static int check_slab(struct kmem_cache *s, struct page *page)
696 VM_BUG_ON(!irqs_disabled());
698 if (!PageSlab(page)) {
699 slab_err(s, page, "Not a valid slab page");
703 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
704 if (page->objects > maxobj) {
705 slab_err(s, page, "objects %u > max %u",
706 s->name, page->objects, maxobj);
709 if (page->inuse > page->objects) {
710 slab_err(s, page, "inuse %u > max %u",
711 s->name, page->inuse, page->objects);
714 /* Slab_pad_check fixes things up after itself */
715 slab_pad_check(s, page);
720 * Determine if a certain object on a page is on the freelist. Must hold the
721 * slab lock to guarantee that the chains are in a consistent state.
723 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
726 void *fp = page->freelist;
728 unsigned long max_objects;
730 while (fp && nr <= page->objects) {
733 if (!check_valid_pointer(s, page, fp)) {
735 object_err(s, page, object,
736 "Freechain corrupt");
737 set_freepointer(s, object, NULL);
740 slab_err(s, page, "Freepointer corrupt");
741 page->freelist = NULL;
742 page->inuse = page->objects;
743 slab_fix(s, "Freelist cleared");
749 fp = get_freepointer(s, object);
753 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
754 if (max_objects > MAX_OBJS_PER_PAGE)
755 max_objects = MAX_OBJS_PER_PAGE;
757 if (page->objects != max_objects) {
758 slab_err(s, page, "Wrong number of objects. Found %d but "
759 "should be %d", page->objects, max_objects);
760 page->objects = max_objects;
761 slab_fix(s, "Number of objects adjusted.");
763 if (page->inuse != page->objects - nr) {
764 slab_err(s, page, "Wrong object count. Counter is %d but "
765 "counted were %d", page->inuse, page->objects - nr);
766 page->inuse = page->objects - nr;
767 slab_fix(s, "Object count adjusted.");
769 return search == NULL;
772 static void trace(struct kmem_cache *s, struct page *page, void *object,
775 if (s->flags & SLAB_TRACE) {
776 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
778 alloc ? "alloc" : "free",
783 print_section("Object", (void *)object, s->objsize);
790 * Tracking of fully allocated slabs for debugging purposes.
792 static void add_full(struct kmem_cache_node *n, struct page *page)
794 spin_lock(&n->list_lock);
795 list_add(&page->lru, &n->full);
796 spin_unlock(&n->list_lock);
799 static void remove_full(struct kmem_cache *s, struct page *page)
801 struct kmem_cache_node *n;
803 if (!(s->flags & SLAB_STORE_USER))
806 n = get_node(s, page_to_nid(page));
808 spin_lock(&n->list_lock);
809 list_del(&page->lru);
810 spin_unlock(&n->list_lock);
813 /* Tracking of the number of slabs for debugging purposes */
814 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
816 struct kmem_cache_node *n = get_node(s, node);
818 return atomic_long_read(&n->nr_slabs);
821 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
823 return atomic_long_read(&n->nr_slabs);
826 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
828 struct kmem_cache_node *n = get_node(s, node);
831 * May be called early in order to allocate a slab for the
832 * kmem_cache_node structure. Solve the chicken-egg
833 * dilemma by deferring the increment of the count during
834 * bootstrap (see early_kmem_cache_node_alloc).
836 if (!NUMA_BUILD || n) {
837 atomic_long_inc(&n->nr_slabs);
838 atomic_long_add(objects, &n->total_objects);
841 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
843 struct kmem_cache_node *n = get_node(s, node);
845 atomic_long_dec(&n->nr_slabs);
846 atomic_long_sub(objects, &n->total_objects);
849 /* Object debug checks for alloc/free paths */
850 static void setup_object_debug(struct kmem_cache *s, struct page *page,
853 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
856 init_object(s, object, 0);
857 init_tracking(s, object);
860 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
861 void *object, unsigned long addr)
863 if (!check_slab(s, page))
866 if (!on_freelist(s, page, object)) {
867 object_err(s, page, object, "Object already allocated");
871 if (!check_valid_pointer(s, page, object)) {
872 object_err(s, page, object, "Freelist Pointer check fails");
876 if (!check_object(s, page, object, 0))
879 /* Success perform special debug activities for allocs */
880 if (s->flags & SLAB_STORE_USER)
881 set_track(s, object, TRACK_ALLOC, addr);
882 trace(s, page, object, 1);
883 init_object(s, object, 1);
887 if (PageSlab(page)) {
889 * If this is a slab page then lets do the best we can
890 * to avoid issues in the future. Marking all objects
891 * as used avoids touching the remaining objects.
893 slab_fix(s, "Marking all objects used");
894 page->inuse = page->objects;
895 page->freelist = NULL;
900 static int free_debug_processing(struct kmem_cache *s, struct page *page,
901 void *object, unsigned long addr)
903 if (!check_slab(s, page))
906 if (!check_valid_pointer(s, page, object)) {
907 slab_err(s, page, "Invalid object pointer 0x%p", object);
911 if (on_freelist(s, page, object)) {
912 object_err(s, page, object, "Object already free");
916 if (!check_object(s, page, object, 1))
919 if (unlikely(s != page->slab)) {
920 if (!PageSlab(page)) {
921 slab_err(s, page, "Attempt to free object(0x%p) "
922 "outside of slab", object);
923 } else if (!page->slab) {
925 "SLUB <none>: no slab for object 0x%p.\n",
929 object_err(s, page, object,
930 "page slab pointer corrupt.");
934 /* Special debug activities for freeing objects */
935 if (!PageSlubFrozen(page) && !page->freelist)
936 remove_full(s, page);
937 if (s->flags & SLAB_STORE_USER)
938 set_track(s, object, TRACK_FREE, addr);
939 trace(s, page, object, 0);
940 init_object(s, object, 0);
944 slab_fix(s, "Object at 0x%p not freed", object);
948 static int __init setup_slub_debug(char *str)
950 slub_debug = DEBUG_DEFAULT_FLAGS;
951 if (*str++ != '=' || !*str)
953 * No options specified. Switch on full debugging.
959 * No options but restriction on slabs. This means full
960 * debugging for slabs matching a pattern.
964 if (tolower(*str) == 'o') {
966 * Avoid enabling debugging on caches if its minimum order
967 * would increase as a result.
969 disable_higher_order_debug = 1;
976 * Switch off all debugging measures.
981 * Determine which debug features should be switched on
983 for (; *str && *str != ','; str++) {
984 switch (tolower(*str)) {
986 slub_debug |= SLAB_DEBUG_FREE;
989 slub_debug |= SLAB_RED_ZONE;
992 slub_debug |= SLAB_POISON;
995 slub_debug |= SLAB_STORE_USER;
998 slub_debug |= SLAB_TRACE;
1001 slub_debug |= SLAB_FAILSLAB;
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1011 slub_debug_slabs = str + 1;
1016 __setup("slub_debug", setup_slub_debug);
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1023 * Enable debugging if selected on the kernel commandline.
1025 if (slub_debug && (!slub_debug_slabs ||
1026 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1027 flags |= slub_debug;
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1052 #define slub_debug 0
1054 #define disable_higher_order_debug 0
1056 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1058 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1062 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1067 * Slab allocation and freeing
1069 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1070 struct kmem_cache_order_objects oo)
1072 int order = oo_order(oo);
1074 flags |= __GFP_NOTRACK;
1077 return alloc_pages(flags, order);
1079 return alloc_pages_exact_node(node, flags, order);
1082 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1085 struct kmem_cache_order_objects oo = s->oo;
1088 flags |= s->allocflags;
1091 * Let the initial higher-order allocation fail under memory pressure
1092 * so we fall-back to the minimum order allocation.
1094 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1096 page = alloc_slab_page(alloc_gfp, node, oo);
1097 if (unlikely(!page)) {
1100 * Allocation may have failed due to fragmentation.
1101 * Try a lower order alloc if possible
1103 page = alloc_slab_page(flags, node, oo);
1107 stat(s, ORDER_FALLBACK);
1110 if (kmemcheck_enabled
1111 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1112 int pages = 1 << oo_order(oo);
1114 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1117 * Objects from caches that have a constructor don't get
1118 * cleared when they're allocated, so we need to do it here.
1121 kmemcheck_mark_uninitialized_pages(page, pages);
1123 kmemcheck_mark_unallocated_pages(page, pages);
1126 page->objects = oo_objects(oo);
1127 mod_zone_page_state(page_zone(page),
1128 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1129 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1135 static void setup_object(struct kmem_cache *s, struct page *page,
1138 setup_object_debug(s, page, object);
1139 if (unlikely(s->ctor))
1143 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1150 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1152 page = allocate_slab(s,
1153 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1157 inc_slabs_node(s, page_to_nid(page), page->objects);
1159 page->flags |= 1 << PG_slab;
1160 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1161 SLAB_STORE_USER | SLAB_TRACE))
1162 __SetPageSlubDebug(page);
1164 start = page_address(page);
1166 if (unlikely(s->flags & SLAB_POISON))
1167 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1170 for_each_object(p, s, start, page->objects) {
1171 setup_object(s, page, last);
1172 set_freepointer(s, last, p);
1175 setup_object(s, page, last);
1176 set_freepointer(s, last, NULL);
1178 page->freelist = start;
1184 static void __free_slab(struct kmem_cache *s, struct page *page)
1186 int order = compound_order(page);
1187 int pages = 1 << order;
1189 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1192 slab_pad_check(s, page);
1193 for_each_object(p, s, page_address(page),
1195 check_object(s, page, p, 0);
1196 __ClearPageSlubDebug(page);
1199 kmemcheck_free_shadow(page, compound_order(page));
1201 mod_zone_page_state(page_zone(page),
1202 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1203 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1206 __ClearPageSlab(page);
1207 reset_page_mapcount(page);
1208 if (current->reclaim_state)
1209 current->reclaim_state->reclaimed_slab += pages;
1210 __free_pages(page, order);
1213 static void rcu_free_slab(struct rcu_head *h)
1217 page = container_of((struct list_head *)h, struct page, lru);
1218 __free_slab(page->slab, page);
1221 static void free_slab(struct kmem_cache *s, struct page *page)
1223 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1225 * RCU free overloads the RCU head over the LRU
1227 struct rcu_head *head = (void *)&page->lru;
1229 call_rcu(head, rcu_free_slab);
1231 __free_slab(s, page);
1234 static void discard_slab(struct kmem_cache *s, struct page *page)
1236 dec_slabs_node(s, page_to_nid(page), page->objects);
1241 * Per slab locking using the pagelock
1243 static __always_inline void slab_lock(struct page *page)
1245 bit_spin_lock(PG_locked, &page->flags);
1248 static __always_inline void slab_unlock(struct page *page)
1250 __bit_spin_unlock(PG_locked, &page->flags);
1253 static __always_inline int slab_trylock(struct page *page)
1257 rc = bit_spin_trylock(PG_locked, &page->flags);
1262 * Management of partially allocated slabs
1264 static void add_partial(struct kmem_cache_node *n,
1265 struct page *page, int tail)
1267 spin_lock(&n->list_lock);
1270 list_add_tail(&page->lru, &n->partial);
1272 list_add(&page->lru, &n->partial);
1273 spin_unlock(&n->list_lock);
1276 static void remove_partial(struct kmem_cache *s, struct page *page)
1278 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1280 spin_lock(&n->list_lock);
1281 list_del(&page->lru);
1283 spin_unlock(&n->list_lock);
1287 * Lock slab and remove from the partial list.
1289 * Must hold list_lock.
1291 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1294 if (slab_trylock(page)) {
1295 list_del(&page->lru);
1297 __SetPageSlubFrozen(page);
1304 * Try to allocate a partial slab from a specific node.
1306 static struct page *get_partial_node(struct kmem_cache_node *n)
1311 * Racy check. If we mistakenly see no partial slabs then we
1312 * just allocate an empty slab. If we mistakenly try to get a
1313 * partial slab and there is none available then get_partials()
1316 if (!n || !n->nr_partial)
1319 spin_lock(&n->list_lock);
1320 list_for_each_entry(page, &n->partial, lru)
1321 if (lock_and_freeze_slab(n, page))
1325 spin_unlock(&n->list_lock);
1330 * Get a page from somewhere. Search in increasing NUMA distances.
1332 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1335 struct zonelist *zonelist;
1338 enum zone_type high_zoneidx = gfp_zone(flags);
1342 * The defrag ratio allows a configuration of the tradeoffs between
1343 * inter node defragmentation and node local allocations. A lower
1344 * defrag_ratio increases the tendency to do local allocations
1345 * instead of attempting to obtain partial slabs from other nodes.
1347 * If the defrag_ratio is set to 0 then kmalloc() always
1348 * returns node local objects. If the ratio is higher then kmalloc()
1349 * may return off node objects because partial slabs are obtained
1350 * from other nodes and filled up.
1352 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1353 * defrag_ratio = 1000) then every (well almost) allocation will
1354 * first attempt to defrag slab caches on other nodes. This means
1355 * scanning over all nodes to look for partial slabs which may be
1356 * expensive if we do it every time we are trying to find a slab
1357 * with available objects.
1359 if (!s->remote_node_defrag_ratio ||
1360 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1363 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1364 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1365 struct kmem_cache_node *n;
1367 n = get_node(s, zone_to_nid(zone));
1369 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1370 n->nr_partial > s->min_partial) {
1371 page = get_partial_node(n);
1381 * Get a partial page, lock it and return it.
1383 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1386 int searchnode = (node == -1) ? numa_node_id() : node;
1388 page = get_partial_node(get_node(s, searchnode));
1389 if (page || (flags & __GFP_THISNODE))
1392 return get_any_partial(s, flags);
1396 * Move a page back to the lists.
1398 * Must be called with the slab lock held.
1400 * On exit the slab lock will have been dropped.
1402 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1404 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1406 __ClearPageSlubFrozen(page);
1409 if (page->freelist) {
1410 add_partial(n, page, tail);
1411 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1413 stat(s, DEACTIVATE_FULL);
1414 if (SLABDEBUG && PageSlubDebug(page) &&
1415 (s->flags & SLAB_STORE_USER))
1420 stat(s, DEACTIVATE_EMPTY);
1421 if (n->nr_partial < s->min_partial) {
1423 * Adding an empty slab to the partial slabs in order
1424 * to avoid page allocator overhead. This slab needs
1425 * to come after the other slabs with objects in
1426 * so that the others get filled first. That way the
1427 * size of the partial list stays small.
1429 * kmem_cache_shrink can reclaim any empty slabs from
1432 add_partial(n, page, 1);
1437 discard_slab(s, page);
1443 * Remove the cpu slab
1445 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1447 struct page *page = c->page;
1451 stat(s, DEACTIVATE_REMOTE_FREES);
1453 * Merge cpu freelist into slab freelist. Typically we get here
1454 * because both freelists are empty. So this is unlikely
1457 while (unlikely(c->freelist)) {
1460 tail = 0; /* Hot objects. Put the slab first */
1462 /* Retrieve object from cpu_freelist */
1463 object = c->freelist;
1464 c->freelist = get_freepointer(s, c->freelist);
1466 /* And put onto the regular freelist */
1467 set_freepointer(s, object, page->freelist);
1468 page->freelist = object;
1472 unfreeze_slab(s, page, tail);
1475 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1477 stat(s, CPUSLAB_FLUSH);
1479 deactivate_slab(s, c);
1485 * Called from IPI handler with interrupts disabled.
1487 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1489 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1491 if (likely(c && c->page))
1495 static void flush_cpu_slab(void *d)
1497 struct kmem_cache *s = d;
1499 __flush_cpu_slab(s, smp_processor_id());
1502 static void flush_all(struct kmem_cache *s)
1504 on_each_cpu(flush_cpu_slab, s, 1);
1508 * Check if the objects in a per cpu structure fit numa
1509 * locality expectations.
1511 static inline int node_match(struct kmem_cache_cpu *c, int node)
1514 if (node != -1 && c->node != node)
1520 static int count_free(struct page *page)
1522 return page->objects - page->inuse;
1525 static unsigned long count_partial(struct kmem_cache_node *n,
1526 int (*get_count)(struct page *))
1528 unsigned long flags;
1529 unsigned long x = 0;
1532 spin_lock_irqsave(&n->list_lock, flags);
1533 list_for_each_entry(page, &n->partial, lru)
1534 x += get_count(page);
1535 spin_unlock_irqrestore(&n->list_lock, flags);
1539 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1541 #ifdef CONFIG_SLUB_DEBUG
1542 return atomic_long_read(&n->total_objects);
1548 static noinline void
1549 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1554 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1556 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1557 "default order: %d, min order: %d\n", s->name, s->objsize,
1558 s->size, oo_order(s->oo), oo_order(s->min));
1560 if (oo_order(s->min) > get_order(s->objsize))
1561 printk(KERN_WARNING " %s debugging increased min order, use "
1562 "slub_debug=O to disable.\n", s->name);
1564 for_each_online_node(node) {
1565 struct kmem_cache_node *n = get_node(s, node);
1566 unsigned long nr_slabs;
1567 unsigned long nr_objs;
1568 unsigned long nr_free;
1573 nr_free = count_partial(n, count_free);
1574 nr_slabs = node_nr_slabs(n);
1575 nr_objs = node_nr_objs(n);
1578 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1579 node, nr_slabs, nr_objs, nr_free);
1584 * Slow path. The lockless freelist is empty or we need to perform
1587 * Interrupts are disabled.
1589 * Processing is still very fast if new objects have been freed to the
1590 * regular freelist. In that case we simply take over the regular freelist
1591 * as the lockless freelist and zap the regular freelist.
1593 * If that is not working then we fall back to the partial lists. We take the
1594 * first element of the freelist as the object to allocate now and move the
1595 * rest of the freelist to the lockless freelist.
1597 * And if we were unable to get a new slab from the partial slab lists then
1598 * we need to allocate a new slab. This is the slowest path since it involves
1599 * a call to the page allocator and the setup of a new slab.
1601 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1602 unsigned long addr, struct kmem_cache_cpu *c)
1607 /* We handle __GFP_ZERO in the caller */
1608 gfpflags &= ~__GFP_ZERO;
1614 if (unlikely(!node_match(c, node)))
1617 stat(s, ALLOC_REFILL);
1620 object = c->page->freelist;
1621 if (unlikely(!object))
1623 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1626 c->freelist = get_freepointer(s, object);
1627 c->page->inuse = c->page->objects;
1628 c->page->freelist = NULL;
1629 c->node = page_to_nid(c->page);
1631 slab_unlock(c->page);
1632 stat(s, ALLOC_SLOWPATH);
1636 deactivate_slab(s, c);
1639 new = get_partial(s, gfpflags, node);
1642 stat(s, ALLOC_FROM_PARTIAL);
1646 if (gfpflags & __GFP_WAIT)
1649 new = new_slab(s, gfpflags, node);
1651 if (gfpflags & __GFP_WAIT)
1652 local_irq_disable();
1655 c = __this_cpu_ptr(s->cpu_slab);
1656 stat(s, ALLOC_SLAB);
1660 __SetPageSlubFrozen(new);
1664 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1665 slab_out_of_memory(s, gfpflags, node);
1668 if (!alloc_debug_processing(s, c->page, object, addr))
1672 c->page->freelist = get_freepointer(s, object);
1678 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1679 * have the fastpath folded into their functions. So no function call
1680 * overhead for requests that can be satisfied on the fastpath.
1682 * The fastpath works by first checking if the lockless freelist can be used.
1683 * If not then __slab_alloc is called for slow processing.
1685 * Otherwise we can simply pick the next object from the lockless free list.
1687 static __always_inline void *slab_alloc(struct kmem_cache *s,
1688 gfp_t gfpflags, int node, unsigned long addr)
1691 struct kmem_cache_cpu *c;
1692 unsigned long flags;
1694 gfpflags &= gfp_allowed_mask;
1696 lockdep_trace_alloc(gfpflags);
1697 might_sleep_if(gfpflags & __GFP_WAIT);
1699 if (should_failslab(s->objsize, gfpflags, s->flags))
1702 local_irq_save(flags);
1703 c = __this_cpu_ptr(s->cpu_slab);
1704 object = c->freelist;
1705 if (unlikely(!object || !node_match(c, node)))
1707 object = __slab_alloc(s, gfpflags, node, addr, c);
1710 c->freelist = get_freepointer(s, object);
1711 stat(s, ALLOC_FASTPATH);
1713 local_irq_restore(flags);
1715 if (unlikely(gfpflags & __GFP_ZERO) && object)
1716 memset(object, 0, s->objsize);
1718 kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
1719 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
1724 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1726 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1728 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1732 EXPORT_SYMBOL(kmem_cache_alloc);
1734 #ifdef CONFIG_TRACING
1735 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1737 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1739 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1743 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1745 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1747 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1748 s->objsize, s->size, gfpflags, node);
1752 EXPORT_SYMBOL(kmem_cache_alloc_node);
1755 #ifdef CONFIG_TRACING
1756 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1760 return slab_alloc(s, gfpflags, node, _RET_IP_);
1762 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1766 * Slow patch handling. This may still be called frequently since objects
1767 * have a longer lifetime than the cpu slabs in most processing loads.
1769 * So we still attempt to reduce cache line usage. Just take the slab
1770 * lock and free the item. If there is no additional partial page
1771 * handling required then we can return immediately.
1773 static void __slab_free(struct kmem_cache *s, struct page *page,
1774 void *x, unsigned long addr)
1777 void **object = (void *)x;
1779 stat(s, FREE_SLOWPATH);
1782 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1786 prior = page->freelist;
1787 set_freepointer(s, object, prior);
1788 page->freelist = object;
1791 if (unlikely(PageSlubFrozen(page))) {
1792 stat(s, FREE_FROZEN);
1796 if (unlikely(!page->inuse))
1800 * Objects left in the slab. If it was not on the partial list before
1803 if (unlikely(!prior)) {
1804 add_partial(get_node(s, page_to_nid(page)), page, 1);
1805 stat(s, FREE_ADD_PARTIAL);
1815 * Slab still on the partial list.
1817 remove_partial(s, page);
1818 stat(s, FREE_REMOVE_PARTIAL);
1822 discard_slab(s, page);
1826 if (!free_debug_processing(s, page, x, addr))
1832 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1833 * can perform fastpath freeing without additional function calls.
1835 * The fastpath is only possible if we are freeing to the current cpu slab
1836 * of this processor. This typically the case if we have just allocated
1839 * If fastpath is not possible then fall back to __slab_free where we deal
1840 * with all sorts of special processing.
1842 static __always_inline void slab_free(struct kmem_cache *s,
1843 struct page *page, void *x, unsigned long addr)
1845 void **object = (void *)x;
1846 struct kmem_cache_cpu *c;
1847 unsigned long flags;
1849 kmemleak_free_recursive(x, s->flags);
1850 local_irq_save(flags);
1851 c = __this_cpu_ptr(s->cpu_slab);
1852 kmemcheck_slab_free(s, object, s->objsize);
1853 debug_check_no_locks_freed(object, s->objsize);
1854 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1855 debug_check_no_obj_freed(object, s->objsize);
1856 if (likely(page == c->page && c->node >= 0)) {
1857 set_freepointer(s, object, c->freelist);
1858 c->freelist = object;
1859 stat(s, FREE_FASTPATH);
1861 __slab_free(s, page, x, addr);
1863 local_irq_restore(flags);
1866 void kmem_cache_free(struct kmem_cache *s, void *x)
1870 page = virt_to_head_page(x);
1872 slab_free(s, page, x, _RET_IP_);
1874 trace_kmem_cache_free(_RET_IP_, x);
1876 EXPORT_SYMBOL(kmem_cache_free);
1878 /* Figure out on which slab page the object resides */
1879 static struct page *get_object_page(const void *x)
1881 struct page *page = virt_to_head_page(x);
1883 if (!PageSlab(page))
1890 * Object placement in a slab is made very easy because we always start at
1891 * offset 0. If we tune the size of the object to the alignment then we can
1892 * get the required alignment by putting one properly sized object after
1895 * Notice that the allocation order determines the sizes of the per cpu
1896 * caches. Each processor has always one slab available for allocations.
1897 * Increasing the allocation order reduces the number of times that slabs
1898 * must be moved on and off the partial lists and is therefore a factor in
1903 * Mininum / Maximum order of slab pages. This influences locking overhead
1904 * and slab fragmentation. A higher order reduces the number of partial slabs
1905 * and increases the number of allocations possible without having to
1906 * take the list_lock.
1908 static int slub_min_order;
1909 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1910 static int slub_min_objects;
1913 * Merge control. If this is set then no merging of slab caches will occur.
1914 * (Could be removed. This was introduced to pacify the merge skeptics.)
1916 static int slub_nomerge;
1919 * Calculate the order of allocation given an slab object size.
1921 * The order of allocation has significant impact on performance and other
1922 * system components. Generally order 0 allocations should be preferred since
1923 * order 0 does not cause fragmentation in the page allocator. Larger objects
1924 * be problematic to put into order 0 slabs because there may be too much
1925 * unused space left. We go to a higher order if more than 1/16th of the slab
1928 * In order to reach satisfactory performance we must ensure that a minimum
1929 * number of objects is in one slab. Otherwise we may generate too much
1930 * activity on the partial lists which requires taking the list_lock. This is
1931 * less a concern for large slabs though which are rarely used.
1933 * slub_max_order specifies the order where we begin to stop considering the
1934 * number of objects in a slab as critical. If we reach slub_max_order then
1935 * we try to keep the page order as low as possible. So we accept more waste
1936 * of space in favor of a small page order.
1938 * Higher order allocations also allow the placement of more objects in a
1939 * slab and thereby reduce object handling overhead. If the user has
1940 * requested a higher mininum order then we start with that one instead of
1941 * the smallest order which will fit the object.
1943 static inline int slab_order(int size, int min_objects,
1944 int max_order, int fract_leftover)
1948 int min_order = slub_min_order;
1950 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1951 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1953 for (order = max(min_order,
1954 fls(min_objects * size - 1) - PAGE_SHIFT);
1955 order <= max_order; order++) {
1957 unsigned long slab_size = PAGE_SIZE << order;
1959 if (slab_size < min_objects * size)
1962 rem = slab_size % size;
1964 if (rem <= slab_size / fract_leftover)
1972 static inline int calculate_order(int size)
1980 * Attempt to find best configuration for a slab. This
1981 * works by first attempting to generate a layout with
1982 * the best configuration and backing off gradually.
1984 * First we reduce the acceptable waste in a slab. Then
1985 * we reduce the minimum objects required in a slab.
1987 min_objects = slub_min_objects;
1989 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1990 max_objects = (PAGE_SIZE << slub_max_order)/size;
1991 min_objects = min(min_objects, max_objects);
1993 while (min_objects > 1) {
1995 while (fraction >= 4) {
1996 order = slab_order(size, min_objects,
1997 slub_max_order, fraction);
1998 if (order <= slub_max_order)
2006 * We were unable to place multiple objects in a slab. Now
2007 * lets see if we can place a single object there.
2009 order = slab_order(size, 1, slub_max_order, 1);
2010 if (order <= slub_max_order)
2014 * Doh this slab cannot be placed using slub_max_order.
2016 order = slab_order(size, 1, MAX_ORDER, 1);
2017 if (order < MAX_ORDER)
2023 * Figure out what the alignment of the objects will be.
2025 static unsigned long calculate_alignment(unsigned long flags,
2026 unsigned long align, unsigned long size)
2029 * If the user wants hardware cache aligned objects then follow that
2030 * suggestion if the object is sufficiently large.
2032 * The hardware cache alignment cannot override the specified
2033 * alignment though. If that is greater then use it.
2035 if (flags & SLAB_HWCACHE_ALIGN) {
2036 unsigned long ralign = cache_line_size();
2037 while (size <= ralign / 2)
2039 align = max(align, ralign);
2042 if (align < ARCH_SLAB_MINALIGN)
2043 align = ARCH_SLAB_MINALIGN;
2045 return ALIGN(align, sizeof(void *));
2049 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2052 spin_lock_init(&n->list_lock);
2053 INIT_LIST_HEAD(&n->partial);
2054 #ifdef CONFIG_SLUB_DEBUG
2055 atomic_long_set(&n->nr_slabs, 0);
2056 atomic_long_set(&n->total_objects, 0);
2057 INIT_LIST_HEAD(&n->full);
2061 static DEFINE_PER_CPU(struct kmem_cache_cpu, kmalloc_percpu[KMALLOC_CACHES]);
2063 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2065 if (s < kmalloc_caches + KMALLOC_CACHES && s >= kmalloc_caches)
2067 * Boot time creation of the kmalloc array. Use static per cpu data
2068 * since the per cpu allocator is not available yet.
2070 s->cpu_slab = kmalloc_percpu + (s - kmalloc_caches);
2072 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2082 * No kmalloc_node yet so do it by hand. We know that this is the first
2083 * slab on the node for this slabcache. There are no concurrent accesses
2086 * Note that this function only works on the kmalloc_node_cache
2087 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2088 * memory on a fresh node that has no slab structures yet.
2090 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2093 struct kmem_cache_node *n;
2094 unsigned long flags;
2096 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2098 page = new_slab(kmalloc_caches, gfpflags, node);
2101 if (page_to_nid(page) != node) {
2102 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2104 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2105 "in order to be able to continue\n");
2110 page->freelist = get_freepointer(kmalloc_caches, n);
2112 kmalloc_caches->node[node] = n;
2113 #ifdef CONFIG_SLUB_DEBUG
2114 init_object(kmalloc_caches, n, 1);
2115 init_tracking(kmalloc_caches, n);
2117 init_kmem_cache_node(n, kmalloc_caches);
2118 inc_slabs_node(kmalloc_caches, node, page->objects);
2121 * lockdep requires consistent irq usage for each lock
2122 * so even though there cannot be a race this early in
2123 * the boot sequence, we still disable irqs.
2125 local_irq_save(flags);
2126 add_partial(n, page, 0);
2127 local_irq_restore(flags);
2130 static void free_kmem_cache_nodes(struct kmem_cache *s)
2134 for_each_node_state(node, N_NORMAL_MEMORY) {
2135 struct kmem_cache_node *n = s->node[node];
2136 if (n && n != &s->local_node)
2137 kmem_cache_free(kmalloc_caches, n);
2138 s->node[node] = NULL;
2142 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2147 if (slab_state >= UP && (s < kmalloc_caches ||
2148 s >= kmalloc_caches + KMALLOC_CACHES))
2149 local_node = page_to_nid(virt_to_page(s));
2153 for_each_node_state(node, N_NORMAL_MEMORY) {
2154 struct kmem_cache_node *n;
2156 if (local_node == node)
2159 if (slab_state == DOWN) {
2160 early_kmem_cache_node_alloc(gfpflags, node);
2163 n = kmem_cache_alloc_node(kmalloc_caches,
2167 free_kmem_cache_nodes(s);
2173 init_kmem_cache_node(n, s);
2178 static void free_kmem_cache_nodes(struct kmem_cache *s)
2182 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2184 init_kmem_cache_node(&s->local_node, s);
2189 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2191 if (min < MIN_PARTIAL)
2193 else if (min > MAX_PARTIAL)
2195 s->min_partial = min;
2199 * calculate_sizes() determines the order and the distribution of data within
2202 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2204 unsigned long flags = s->flags;
2205 unsigned long size = s->objsize;
2206 unsigned long align = s->align;
2210 * Round up object size to the next word boundary. We can only
2211 * place the free pointer at word boundaries and this determines
2212 * the possible location of the free pointer.
2214 size = ALIGN(size, sizeof(void *));
2216 #ifdef CONFIG_SLUB_DEBUG
2218 * Determine if we can poison the object itself. If the user of
2219 * the slab may touch the object after free or before allocation
2220 * then we should never poison the object itself.
2222 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2224 s->flags |= __OBJECT_POISON;
2226 s->flags &= ~__OBJECT_POISON;
2230 * If we are Redzoning then check if there is some space between the
2231 * end of the object and the free pointer. If not then add an
2232 * additional word to have some bytes to store Redzone information.
2234 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2235 size += sizeof(void *);
2239 * With that we have determined the number of bytes in actual use
2240 * by the object. This is the potential offset to the free pointer.
2244 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2247 * Relocate free pointer after the object if it is not
2248 * permitted to overwrite the first word of the object on
2251 * This is the case if we do RCU, have a constructor or
2252 * destructor or are poisoning the objects.
2255 size += sizeof(void *);
2258 #ifdef CONFIG_SLUB_DEBUG
2259 if (flags & SLAB_STORE_USER)
2261 * Need to store information about allocs and frees after
2264 size += 2 * sizeof(struct track);
2266 if (flags & SLAB_RED_ZONE)
2268 * Add some empty padding so that we can catch
2269 * overwrites from earlier objects rather than let
2270 * tracking information or the free pointer be
2271 * corrupted if a user writes before the start
2274 size += sizeof(void *);
2278 * Determine the alignment based on various parameters that the
2279 * user specified and the dynamic determination of cache line size
2282 align = calculate_alignment(flags, align, s->objsize);
2286 * SLUB stores one object immediately after another beginning from
2287 * offset 0. In order to align the objects we have to simply size
2288 * each object to conform to the alignment.
2290 size = ALIGN(size, align);
2292 if (forced_order >= 0)
2293 order = forced_order;
2295 order = calculate_order(size);
2302 s->allocflags |= __GFP_COMP;
2304 if (s->flags & SLAB_CACHE_DMA)
2305 s->allocflags |= SLUB_DMA;
2307 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2308 s->allocflags |= __GFP_RECLAIMABLE;
2311 * Determine the number of objects per slab
2313 s->oo = oo_make(order, size);
2314 s->min = oo_make(get_order(size), size);
2315 if (oo_objects(s->oo) > oo_objects(s->max))
2318 return !!oo_objects(s->oo);
2322 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2323 const char *name, size_t size,
2324 size_t align, unsigned long flags,
2325 void (*ctor)(void *))
2327 memset(s, 0, kmem_size);
2332 s->flags = kmem_cache_flags(size, flags, name, ctor);
2334 if (!calculate_sizes(s, -1))
2336 if (disable_higher_order_debug) {
2338 * Disable debugging flags that store metadata if the min slab
2341 if (get_order(s->size) > get_order(s->objsize)) {
2342 s->flags &= ~DEBUG_METADATA_FLAGS;
2344 if (!calculate_sizes(s, -1))
2350 * The larger the object size is, the more pages we want on the partial
2351 * list to avoid pounding the page allocator excessively.
2353 set_min_partial(s, ilog2(s->size));
2356 s->remote_node_defrag_ratio = 1000;
2358 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2361 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2364 free_kmem_cache_nodes(s);
2366 if (flags & SLAB_PANIC)
2367 panic("Cannot create slab %s size=%lu realsize=%u "
2368 "order=%u offset=%u flags=%lx\n",
2369 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2375 * Check if a given pointer is valid
2377 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2381 if (!kern_ptr_validate(object, s->size))
2384 page = get_object_page(object);
2386 if (!page || s != page->slab)
2387 /* No slab or wrong slab */
2390 if (!check_valid_pointer(s, page, object))
2394 * We could also check if the object is on the slabs freelist.
2395 * But this would be too expensive and it seems that the main
2396 * purpose of kmem_ptr_valid() is to check if the object belongs
2397 * to a certain slab.
2401 EXPORT_SYMBOL(kmem_ptr_validate);
2404 * Determine the size of a slab object
2406 unsigned int kmem_cache_size(struct kmem_cache *s)
2410 EXPORT_SYMBOL(kmem_cache_size);
2412 const char *kmem_cache_name(struct kmem_cache *s)
2416 EXPORT_SYMBOL(kmem_cache_name);
2418 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2421 #ifdef CONFIG_SLUB_DEBUG
2422 void *addr = page_address(page);
2424 long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
2429 slab_err(s, page, "%s", text);
2431 for_each_free_object(p, s, page->freelist)
2432 set_bit(slab_index(p, s, addr), map);
2434 for_each_object(p, s, addr, page->objects) {
2436 if (!test_bit(slab_index(p, s, addr), map)) {
2437 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2439 print_tracking(s, p);
2448 * Attempt to free all partial slabs on a node.
2450 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2452 unsigned long flags;
2453 struct page *page, *h;
2455 spin_lock_irqsave(&n->list_lock, flags);
2456 list_for_each_entry_safe(page, h, &n->partial, lru) {
2458 list_del(&page->lru);
2459 discard_slab(s, page);
2462 list_slab_objects(s, page,
2463 "Objects remaining on kmem_cache_close()");
2466 spin_unlock_irqrestore(&n->list_lock, flags);
2470 * Release all resources used by a slab cache.
2472 static inline int kmem_cache_close(struct kmem_cache *s)
2477 free_percpu(s->cpu_slab);
2478 /* Attempt to free all objects */
2479 for_each_node_state(node, N_NORMAL_MEMORY) {
2480 struct kmem_cache_node *n = get_node(s, node);
2483 if (n->nr_partial || slabs_node(s, node))
2486 free_kmem_cache_nodes(s);
2491 * Close a cache and release the kmem_cache structure
2492 * (must be used for caches created using kmem_cache_create)
2494 void kmem_cache_destroy(struct kmem_cache *s)
2496 down_write(&slub_lock);
2500 up_write(&slub_lock);
2501 if (kmem_cache_close(s)) {
2502 printk(KERN_ERR "SLUB %s: %s called for cache that "
2503 "still has objects.\n", s->name, __func__);
2506 if (s->flags & SLAB_DESTROY_BY_RCU)
2508 sysfs_slab_remove(s);
2510 up_write(&slub_lock);
2512 EXPORT_SYMBOL(kmem_cache_destroy);
2514 /********************************************************************
2516 *******************************************************************/
2518 struct kmem_cache kmalloc_caches[KMALLOC_CACHES] __cacheline_aligned;
2519 EXPORT_SYMBOL(kmalloc_caches);
2521 static int __init setup_slub_min_order(char *str)
2523 get_option(&str, &slub_min_order);
2528 __setup("slub_min_order=", setup_slub_min_order);
2530 static int __init setup_slub_max_order(char *str)
2532 get_option(&str, &slub_max_order);
2533 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2538 __setup("slub_max_order=", setup_slub_max_order);
2540 static int __init setup_slub_min_objects(char *str)
2542 get_option(&str, &slub_min_objects);
2547 __setup("slub_min_objects=", setup_slub_min_objects);
2549 static int __init setup_slub_nomerge(char *str)
2555 __setup("slub_nomerge", setup_slub_nomerge);
2557 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2558 const char *name, int size, gfp_t gfp_flags)
2560 unsigned int flags = 0;
2562 if (gfp_flags & SLUB_DMA)
2563 flags = SLAB_CACHE_DMA;
2566 * This function is called with IRQs disabled during early-boot on
2567 * single CPU so there's no need to take slub_lock here.
2569 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2573 list_add(&s->list, &slab_caches);
2575 if (sysfs_slab_add(s))
2580 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2583 #ifdef CONFIG_ZONE_DMA
2584 static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
2586 static void sysfs_add_func(struct work_struct *w)
2588 struct kmem_cache *s;
2590 down_write(&slub_lock);
2591 list_for_each_entry(s, &slab_caches, list) {
2592 if (s->flags & __SYSFS_ADD_DEFERRED) {
2593 s->flags &= ~__SYSFS_ADD_DEFERRED;
2597 up_write(&slub_lock);
2600 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2602 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2604 struct kmem_cache *s;
2607 unsigned long slabflags;
2610 s = kmalloc_caches_dma[index];
2614 /* Dynamically create dma cache */
2615 if (flags & __GFP_WAIT)
2616 down_write(&slub_lock);
2618 if (!down_write_trylock(&slub_lock))
2622 if (kmalloc_caches_dma[index])
2625 realsize = kmalloc_caches[index].objsize;
2626 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2627 (unsigned int)realsize);
2630 for (i = 0; i < KMALLOC_CACHES; i++)
2631 if (!kmalloc_caches[i].size)
2634 BUG_ON(i >= KMALLOC_CACHES);
2635 s = kmalloc_caches + i;
2638 * Must defer sysfs creation to a workqueue because we don't know
2639 * what context we are called from. Before sysfs comes up, we don't
2640 * need to do anything because our sysfs initcall will start by
2641 * adding all existing slabs to sysfs.
2643 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
2644 if (slab_state >= SYSFS)
2645 slabflags |= __SYSFS_ADD_DEFERRED;
2647 if (!text || !kmem_cache_open(s, flags, text,
2648 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
2654 list_add(&s->list, &slab_caches);
2655 kmalloc_caches_dma[index] = s;
2657 if (slab_state >= SYSFS)
2658 schedule_work(&sysfs_add_work);
2661 up_write(&slub_lock);
2663 return kmalloc_caches_dma[index];
2668 * Conversion table for small slabs sizes / 8 to the index in the
2669 * kmalloc array. This is necessary for slabs < 192 since we have non power
2670 * of two cache sizes there. The size of larger slabs can be determined using
2673 static s8 size_index[24] = {
2700 static inline int size_index_elem(size_t bytes)
2702 return (bytes - 1) / 8;
2705 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2711 return ZERO_SIZE_PTR;
2713 index = size_index[size_index_elem(size)];
2715 index = fls(size - 1);
2717 #ifdef CONFIG_ZONE_DMA
2718 if (unlikely((flags & SLUB_DMA)))
2719 return dma_kmalloc_cache(index, flags);
2722 return &kmalloc_caches[index];
2725 void *__kmalloc(size_t size, gfp_t flags)
2727 struct kmem_cache *s;
2730 if (unlikely(size > SLUB_MAX_SIZE))
2731 return kmalloc_large(size, flags);
2733 s = get_slab(size, flags);
2735 if (unlikely(ZERO_OR_NULL_PTR(s)))
2738 ret = slab_alloc(s, flags, -1, _RET_IP_);
2740 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2744 EXPORT_SYMBOL(__kmalloc);
2746 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2751 flags |= __GFP_COMP | __GFP_NOTRACK;
2752 page = alloc_pages_node(node, flags, get_order(size));
2754 ptr = page_address(page);
2756 kmemleak_alloc(ptr, size, 1, flags);
2761 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2763 struct kmem_cache *s;
2766 if (unlikely(size > SLUB_MAX_SIZE)) {
2767 ret = kmalloc_large_node(size, flags, node);
2769 trace_kmalloc_node(_RET_IP_, ret,
2770 size, PAGE_SIZE << get_order(size),
2776 s = get_slab(size, flags);
2778 if (unlikely(ZERO_OR_NULL_PTR(s)))
2781 ret = slab_alloc(s, flags, node, _RET_IP_);
2783 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2787 EXPORT_SYMBOL(__kmalloc_node);
2790 size_t ksize(const void *object)
2793 struct kmem_cache *s;
2795 if (unlikely(object == ZERO_SIZE_PTR))
2798 page = virt_to_head_page(object);
2800 if (unlikely(!PageSlab(page))) {
2801 WARN_ON(!PageCompound(page));
2802 return PAGE_SIZE << compound_order(page);
2806 #ifdef CONFIG_SLUB_DEBUG
2808 * Debugging requires use of the padding between object
2809 * and whatever may come after it.
2811 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2816 * If we have the need to store the freelist pointer
2817 * back there or track user information then we can
2818 * only use the space before that information.
2820 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2823 * Else we can use all the padding etc for the allocation
2827 EXPORT_SYMBOL(ksize);
2829 void kfree(const void *x)
2832 void *object = (void *)x;
2834 trace_kfree(_RET_IP_, x);
2836 if (unlikely(ZERO_OR_NULL_PTR(x)))
2839 page = virt_to_head_page(x);
2840 if (unlikely(!PageSlab(page))) {
2841 BUG_ON(!PageCompound(page));
2846 slab_free(page->slab, page, object, _RET_IP_);
2848 EXPORT_SYMBOL(kfree);
2851 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2852 * the remaining slabs by the number of items in use. The slabs with the
2853 * most items in use come first. New allocations will then fill those up
2854 * and thus they can be removed from the partial lists.
2856 * The slabs with the least items are placed last. This results in them
2857 * being allocated from last increasing the chance that the last objects
2858 * are freed in them.
2860 int kmem_cache_shrink(struct kmem_cache *s)
2864 struct kmem_cache_node *n;
2867 int objects = oo_objects(s->max);
2868 struct list_head *slabs_by_inuse =
2869 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2870 unsigned long flags;
2872 if (!slabs_by_inuse)
2876 for_each_node_state(node, N_NORMAL_MEMORY) {
2877 n = get_node(s, node);
2882 for (i = 0; i < objects; i++)
2883 INIT_LIST_HEAD(slabs_by_inuse + i);
2885 spin_lock_irqsave(&n->list_lock, flags);
2888 * Build lists indexed by the items in use in each slab.
2890 * Note that concurrent frees may occur while we hold the
2891 * list_lock. page->inuse here is the upper limit.
2893 list_for_each_entry_safe(page, t, &n->partial, lru) {
2894 if (!page->inuse && slab_trylock(page)) {
2896 * Must hold slab lock here because slab_free
2897 * may have freed the last object and be
2898 * waiting to release the slab.
2900 list_del(&page->lru);
2903 discard_slab(s, page);
2905 list_move(&page->lru,
2906 slabs_by_inuse + page->inuse);
2911 * Rebuild the partial list with the slabs filled up most
2912 * first and the least used slabs at the end.
2914 for (i = objects - 1; i >= 0; i--)
2915 list_splice(slabs_by_inuse + i, n->partial.prev);
2917 spin_unlock_irqrestore(&n->list_lock, flags);
2920 kfree(slabs_by_inuse);
2923 EXPORT_SYMBOL(kmem_cache_shrink);
2925 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2926 static int slab_mem_going_offline_callback(void *arg)
2928 struct kmem_cache *s;
2930 down_read(&slub_lock);
2931 list_for_each_entry(s, &slab_caches, list)
2932 kmem_cache_shrink(s);
2933 up_read(&slub_lock);
2938 static void slab_mem_offline_callback(void *arg)
2940 struct kmem_cache_node *n;
2941 struct kmem_cache *s;
2942 struct memory_notify *marg = arg;
2945 offline_node = marg->status_change_nid;
2948 * If the node still has available memory. we need kmem_cache_node
2951 if (offline_node < 0)
2954 down_read(&slub_lock);
2955 list_for_each_entry(s, &slab_caches, list) {
2956 n = get_node(s, offline_node);
2959 * if n->nr_slabs > 0, slabs still exist on the node
2960 * that is going down. We were unable to free them,
2961 * and offline_pages() function shouldn't call this
2962 * callback. So, we must fail.
2964 BUG_ON(slabs_node(s, offline_node));
2966 s->node[offline_node] = NULL;
2967 kmem_cache_free(kmalloc_caches, n);
2970 up_read(&slub_lock);
2973 static int slab_mem_going_online_callback(void *arg)
2975 struct kmem_cache_node *n;
2976 struct kmem_cache *s;
2977 struct memory_notify *marg = arg;
2978 int nid = marg->status_change_nid;
2982 * If the node's memory is already available, then kmem_cache_node is
2983 * already created. Nothing to do.
2989 * We are bringing a node online. No memory is available yet. We must
2990 * allocate a kmem_cache_node structure in order to bring the node
2993 down_read(&slub_lock);
2994 list_for_each_entry(s, &slab_caches, list) {
2996 * XXX: kmem_cache_alloc_node will fallback to other nodes
2997 * since memory is not yet available from the node that
3000 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3005 init_kmem_cache_node(n, s);
3009 up_read(&slub_lock);
3013 static int slab_memory_callback(struct notifier_block *self,
3014 unsigned long action, void *arg)
3019 case MEM_GOING_ONLINE:
3020 ret = slab_mem_going_online_callback(arg);
3022 case MEM_GOING_OFFLINE:
3023 ret = slab_mem_going_offline_callback(arg);
3026 case MEM_CANCEL_ONLINE:
3027 slab_mem_offline_callback(arg);
3030 case MEM_CANCEL_OFFLINE:
3034 ret = notifier_from_errno(ret);
3040 #endif /* CONFIG_MEMORY_HOTPLUG */
3042 /********************************************************************
3043 * Basic setup of slabs
3044 *******************************************************************/
3046 void __init kmem_cache_init(void)
3053 * Must first have the slab cache available for the allocations of the
3054 * struct kmem_cache_node's. There is special bootstrap code in
3055 * kmem_cache_open for slab_state == DOWN.
3057 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
3058 sizeof(struct kmem_cache_node), GFP_NOWAIT);
3059 kmalloc_caches[0].refcount = -1;
3062 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3065 /* Able to allocate the per node structures */
3066 slab_state = PARTIAL;
3068 /* Caches that are not of the two-to-the-power-of size */
3069 if (KMALLOC_MIN_SIZE <= 32) {
3070 create_kmalloc_cache(&kmalloc_caches[1],
3071 "kmalloc-96", 96, GFP_NOWAIT);
3074 if (KMALLOC_MIN_SIZE <= 64) {
3075 create_kmalloc_cache(&kmalloc_caches[2],
3076 "kmalloc-192", 192, GFP_NOWAIT);
3080 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3081 create_kmalloc_cache(&kmalloc_caches[i],
3082 "kmalloc", 1 << i, GFP_NOWAIT);
3088 * Patch up the size_index table if we have strange large alignment
3089 * requirements for the kmalloc array. This is only the case for
3090 * MIPS it seems. The standard arches will not generate any code here.
3092 * Largest permitted alignment is 256 bytes due to the way we
3093 * handle the index determination for the smaller caches.
3095 * Make sure that nothing crazy happens if someone starts tinkering
3096 * around with ARCH_KMALLOC_MINALIGN
3098 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3099 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3101 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3102 int elem = size_index_elem(i);
3103 if (elem >= ARRAY_SIZE(size_index))
3105 size_index[elem] = KMALLOC_SHIFT_LOW;
3108 if (KMALLOC_MIN_SIZE == 64) {
3110 * The 96 byte size cache is not used if the alignment
3113 for (i = 64 + 8; i <= 96; i += 8)
3114 size_index[size_index_elem(i)] = 7;
3115 } else if (KMALLOC_MIN_SIZE == 128) {
3117 * The 192 byte sized cache is not used if the alignment
3118 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3121 for (i = 128 + 8; i <= 192; i += 8)
3122 size_index[size_index_elem(i)] = 8;
3127 /* Provide the correct kmalloc names now that the caches are up */
3128 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
3129 kmalloc_caches[i]. name =
3130 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3133 register_cpu_notifier(&slab_notifier);
3136 kmem_size = offsetof(struct kmem_cache, node) +
3137 nr_node_ids * sizeof(struct kmem_cache_node *);
3139 kmem_size = sizeof(struct kmem_cache);
3143 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3144 " CPUs=%d, Nodes=%d\n",
3145 caches, cache_line_size(),
3146 slub_min_order, slub_max_order, slub_min_objects,
3147 nr_cpu_ids, nr_node_ids);
3150 void __init kmem_cache_init_late(void)
3155 * Find a mergeable slab cache
3157 static int slab_unmergeable(struct kmem_cache *s)
3159 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3166 * We may have set a slab to be unmergeable during bootstrap.
3168 if (s->refcount < 0)
3174 static struct kmem_cache *find_mergeable(size_t size,
3175 size_t align, unsigned long flags, const char *name,
3176 void (*ctor)(void *))
3178 struct kmem_cache *s;
3180 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3186 size = ALIGN(size, sizeof(void *));
3187 align = calculate_alignment(flags, align, size);
3188 size = ALIGN(size, align);
3189 flags = kmem_cache_flags(size, flags, name, NULL);
3191 list_for_each_entry(s, &slab_caches, list) {
3192 if (slab_unmergeable(s))
3198 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3201 * Check if alignment is compatible.
3202 * Courtesy of Adrian Drzewiecki
3204 if ((s->size & ~(align - 1)) != s->size)
3207 if (s->size - size >= sizeof(void *))
3215 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3216 size_t align, unsigned long flags, void (*ctor)(void *))
3218 struct kmem_cache *s;
3223 down_write(&slub_lock);
3224 s = find_mergeable(size, align, flags, name, ctor);
3228 * Adjust the object sizes so that we clear
3229 * the complete object on kzalloc.
3231 s->objsize = max(s->objsize, (int)size);
3232 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3233 up_write(&slub_lock);
3235 if (sysfs_slab_alias(s, name)) {
3236 down_write(&slub_lock);
3238 up_write(&slub_lock);
3244 s = kmalloc(kmem_size, GFP_KERNEL);
3246 if (kmem_cache_open(s, GFP_KERNEL, name,
3247 size, align, flags, ctor)) {
3248 list_add(&s->list, &slab_caches);
3249 up_write(&slub_lock);
3250 if (sysfs_slab_add(s)) {
3251 down_write(&slub_lock);
3253 up_write(&slub_lock);
3261 up_write(&slub_lock);
3264 if (flags & SLAB_PANIC)
3265 panic("Cannot create slabcache %s\n", name);
3270 EXPORT_SYMBOL(kmem_cache_create);
3274 * Use the cpu notifier to insure that the cpu slabs are flushed when
3277 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3278 unsigned long action, void *hcpu)
3280 long cpu = (long)hcpu;
3281 struct kmem_cache *s;
3282 unsigned long flags;
3285 case CPU_UP_CANCELED:
3286 case CPU_UP_CANCELED_FROZEN:
3288 case CPU_DEAD_FROZEN:
3289 down_read(&slub_lock);
3290 list_for_each_entry(s, &slab_caches, list) {
3291 local_irq_save(flags);
3292 __flush_cpu_slab(s, cpu);
3293 local_irq_restore(flags);
3295 up_read(&slub_lock);
3303 static struct notifier_block __cpuinitdata slab_notifier = {
3304 .notifier_call = slab_cpuup_callback
3309 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3311 struct kmem_cache *s;
3314 if (unlikely(size > SLUB_MAX_SIZE))
3315 return kmalloc_large(size, gfpflags);
3317 s = get_slab(size, gfpflags);
3319 if (unlikely(ZERO_OR_NULL_PTR(s)))
3322 ret = slab_alloc(s, gfpflags, -1, caller);
3324 /* Honor the call site pointer we recieved. */
3325 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3330 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3331 int node, unsigned long caller)
3333 struct kmem_cache *s;
3336 if (unlikely(size > SLUB_MAX_SIZE)) {
3337 ret = kmalloc_large_node(size, gfpflags, node);
3339 trace_kmalloc_node(caller, ret,
3340 size, PAGE_SIZE << get_order(size),
3346 s = get_slab(size, gfpflags);
3348 if (unlikely(ZERO_OR_NULL_PTR(s)))
3351 ret = slab_alloc(s, gfpflags, node, caller);
3353 /* Honor the call site pointer we recieved. */
3354 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3359 #ifdef CONFIG_SLUB_DEBUG
3360 static int count_inuse(struct page *page)
3365 static int count_total(struct page *page)
3367 return page->objects;
3370 static int validate_slab(struct kmem_cache *s, struct page *page,
3374 void *addr = page_address(page);
3376 if (!check_slab(s, page) ||
3377 !on_freelist(s, page, NULL))
3380 /* Now we know that a valid freelist exists */
3381 bitmap_zero(map, page->objects);
3383 for_each_free_object(p, s, page->freelist) {
3384 set_bit(slab_index(p, s, addr), map);
3385 if (!check_object(s, page, p, 0))
3389 for_each_object(p, s, addr, page->objects)
3390 if (!test_bit(slab_index(p, s, addr), map))
3391 if (!check_object(s, page, p, 1))
3396 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3399 if (slab_trylock(page)) {
3400 validate_slab(s, page, map);
3403 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3406 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3407 if (!PageSlubDebug(page))
3408 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3409 "on slab 0x%p\n", s->name, page);
3411 if (PageSlubDebug(page))
3412 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3413 "slab 0x%p\n", s->name, page);
3417 static int validate_slab_node(struct kmem_cache *s,
3418 struct kmem_cache_node *n, unsigned long *map)
3420 unsigned long count = 0;
3422 unsigned long flags;
3424 spin_lock_irqsave(&n->list_lock, flags);
3426 list_for_each_entry(page, &n->partial, lru) {
3427 validate_slab_slab(s, page, map);
3430 if (count != n->nr_partial)
3431 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3432 "counter=%ld\n", s->name, count, n->nr_partial);
3434 if (!(s->flags & SLAB_STORE_USER))
3437 list_for_each_entry(page, &n->full, lru) {
3438 validate_slab_slab(s, page, map);
3441 if (count != atomic_long_read(&n->nr_slabs))
3442 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3443 "counter=%ld\n", s->name, count,
3444 atomic_long_read(&n->nr_slabs));
3447 spin_unlock_irqrestore(&n->list_lock, flags);
3451 static long validate_slab_cache(struct kmem_cache *s)
3454 unsigned long count = 0;
3455 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3456 sizeof(unsigned long), GFP_KERNEL);
3462 for_each_node_state(node, N_NORMAL_MEMORY) {
3463 struct kmem_cache_node *n = get_node(s, node);
3465 count += validate_slab_node(s, n, map);
3471 #ifdef SLUB_RESILIENCY_TEST
3472 static void resiliency_test(void)
3476 printk(KERN_ERR "SLUB resiliency testing\n");
3477 printk(KERN_ERR "-----------------------\n");
3478 printk(KERN_ERR "A. Corruption after allocation\n");
3480 p = kzalloc(16, GFP_KERNEL);
3482 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3483 " 0x12->0x%p\n\n", p + 16);
3485 validate_slab_cache(kmalloc_caches + 4);
3487 /* Hmmm... The next two are dangerous */
3488 p = kzalloc(32, GFP_KERNEL);
3489 p[32 + sizeof(void *)] = 0x34;
3490 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3491 " 0x34 -> -0x%p\n", p);
3493 "If allocated object is overwritten then not detectable\n\n");
3495 validate_slab_cache(kmalloc_caches + 5);
3496 p = kzalloc(64, GFP_KERNEL);
3497 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3499 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3502 "If allocated object is overwritten then not detectable\n\n");
3503 validate_slab_cache(kmalloc_caches + 6);
3505 printk(KERN_ERR "\nB. Corruption after free\n");
3506 p = kzalloc(128, GFP_KERNEL);
3509 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3510 validate_slab_cache(kmalloc_caches + 7);
3512 p = kzalloc(256, GFP_KERNEL);
3515 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3517 validate_slab_cache(kmalloc_caches + 8);
3519 p = kzalloc(512, GFP_KERNEL);
3522 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3523 validate_slab_cache(kmalloc_caches + 9);
3526 static void resiliency_test(void) {};
3530 * Generate lists of code addresses where slabcache objects are allocated
3535 unsigned long count;
3542 DECLARE_BITMAP(cpus, NR_CPUS);
3548 unsigned long count;
3549 struct location *loc;
3552 static void free_loc_track(struct loc_track *t)
3555 free_pages((unsigned long)t->loc,
3556 get_order(sizeof(struct location) * t->max));
3559 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3564 order = get_order(sizeof(struct location) * max);
3566 l = (void *)__get_free_pages(flags, order);
3571 memcpy(l, t->loc, sizeof(struct location) * t->count);
3579 static int add_location(struct loc_track *t, struct kmem_cache *s,
3580 const struct track *track)
3582 long start, end, pos;
3584 unsigned long caddr;
3585 unsigned long age = jiffies - track->when;
3591 pos = start + (end - start + 1) / 2;
3594 * There is nothing at "end". If we end up there
3595 * we need to add something to before end.
3600 caddr = t->loc[pos].addr;
3601 if (track->addr == caddr) {
3607 if (age < l->min_time)
3609 if (age > l->max_time)
3612 if (track->pid < l->min_pid)
3613 l->min_pid = track->pid;
3614 if (track->pid > l->max_pid)
3615 l->max_pid = track->pid;
3617 cpumask_set_cpu(track->cpu,
3618 to_cpumask(l->cpus));
3620 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3624 if (track->addr < caddr)
3631 * Not found. Insert new tracking element.
3633 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3639 (t->count - pos) * sizeof(struct location));
3642 l->addr = track->addr;
3646 l->min_pid = track->pid;
3647 l->max_pid = track->pid;
3648 cpumask_clear(to_cpumask(l->cpus));
3649 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3650 nodes_clear(l->nodes);
3651 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3655 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3656 struct page *page, enum track_item alloc,
3659 void *addr = page_address(page);
3662 bitmap_zero(map, page->objects);
3663 for_each_free_object(p, s, page->freelist)
3664 set_bit(slab_index(p, s, addr), map);
3666 for_each_object(p, s, addr, page->objects)
3667 if (!test_bit(slab_index(p, s, addr), map))
3668 add_location(t, s, get_track(s, p, alloc));
3671 static int list_locations(struct kmem_cache *s, char *buf,
3672 enum track_item alloc)
3676 struct loc_track t = { 0, 0, NULL };
3678 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3679 sizeof(unsigned long), GFP_KERNEL);
3681 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3684 return sprintf(buf, "Out of memory\n");
3686 /* Push back cpu slabs */
3689 for_each_node_state(node, N_NORMAL_MEMORY) {
3690 struct kmem_cache_node *n = get_node(s, node);
3691 unsigned long flags;
3694 if (!atomic_long_read(&n->nr_slabs))
3697 spin_lock_irqsave(&n->list_lock, flags);
3698 list_for_each_entry(page, &n->partial, lru)
3699 process_slab(&t, s, page, alloc, map);
3700 list_for_each_entry(page, &n->full, lru)
3701 process_slab(&t, s, page, alloc, map);
3702 spin_unlock_irqrestore(&n->list_lock, flags);
3705 for (i = 0; i < t.count; i++) {
3706 struct location *l = &t.loc[i];
3708 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3710 len += sprintf(buf + len, "%7ld ", l->count);
3713 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3715 len += sprintf(buf + len, "<not-available>");
3717 if (l->sum_time != l->min_time) {
3718 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3720 (long)div_u64(l->sum_time, l->count),
3723 len += sprintf(buf + len, " age=%ld",
3726 if (l->min_pid != l->max_pid)
3727 len += sprintf(buf + len, " pid=%ld-%ld",
3728 l->min_pid, l->max_pid);
3730 len += sprintf(buf + len, " pid=%ld",
3733 if (num_online_cpus() > 1 &&
3734 !cpumask_empty(to_cpumask(l->cpus)) &&
3735 len < PAGE_SIZE - 60) {
3736 len += sprintf(buf + len, " cpus=");
3737 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3738 to_cpumask(l->cpus));
3741 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3742 len < PAGE_SIZE - 60) {
3743 len += sprintf(buf + len, " nodes=");
3744 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3748 len += sprintf(buf + len, "\n");
3754 len += sprintf(buf, "No data\n");
3758 enum slab_stat_type {
3759 SL_ALL, /* All slabs */
3760 SL_PARTIAL, /* Only partially allocated slabs */
3761 SL_CPU, /* Only slabs used for cpu caches */
3762 SL_OBJECTS, /* Determine allocated objects not slabs */
3763 SL_TOTAL /* Determine object capacity not slabs */
3766 #define SO_ALL (1 << SL_ALL)
3767 #define SO_PARTIAL (1 << SL_PARTIAL)
3768 #define SO_CPU (1 << SL_CPU)
3769 #define SO_OBJECTS (1 << SL_OBJECTS)
3770 #define SO_TOTAL (1 << SL_TOTAL)
3772 static ssize_t show_slab_objects(struct kmem_cache *s,
3773 char *buf, unsigned long flags)
3775 unsigned long total = 0;
3778 unsigned long *nodes;
3779 unsigned long *per_cpu;
3781 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3784 per_cpu = nodes + nr_node_ids;
3786 if (flags & SO_CPU) {
3789 for_each_possible_cpu(cpu) {
3790 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3792 if (!c || c->node < 0)
3796 if (flags & SO_TOTAL)
3797 x = c->page->objects;
3798 else if (flags & SO_OBJECTS)
3804 nodes[c->node] += x;
3810 if (flags & SO_ALL) {
3811 for_each_node_state(node, N_NORMAL_MEMORY) {
3812 struct kmem_cache_node *n = get_node(s, node);
3814 if (flags & SO_TOTAL)
3815 x = atomic_long_read(&n->total_objects);
3816 else if (flags & SO_OBJECTS)
3817 x = atomic_long_read(&n->total_objects) -
3818 count_partial(n, count_free);
3821 x = atomic_long_read(&n->nr_slabs);
3826 } else if (flags & SO_PARTIAL) {
3827 for_each_node_state(node, N_NORMAL_MEMORY) {
3828 struct kmem_cache_node *n = get_node(s, node);
3830 if (flags & SO_TOTAL)
3831 x = count_partial(n, count_total);
3832 else if (flags & SO_OBJECTS)
3833 x = count_partial(n, count_inuse);
3840 x = sprintf(buf, "%lu", total);
3842 for_each_node_state(node, N_NORMAL_MEMORY)
3844 x += sprintf(buf + x, " N%d=%lu",
3848 return x + sprintf(buf + x, "\n");
3851 static int any_slab_objects(struct kmem_cache *s)
3855 for_each_online_node(node) {
3856 struct kmem_cache_node *n = get_node(s, node);
3861 if (atomic_long_read(&n->total_objects))
3867 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3868 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3870 struct slab_attribute {
3871 struct attribute attr;
3872 ssize_t (*show)(struct kmem_cache *s, char *buf);
3873 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3876 #define SLAB_ATTR_RO(_name) \
3877 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3879 #define SLAB_ATTR(_name) \
3880 static struct slab_attribute _name##_attr = \
3881 __ATTR(_name, 0644, _name##_show, _name##_store)
3883 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3885 return sprintf(buf, "%d\n", s->size);
3887 SLAB_ATTR_RO(slab_size);
3889 static ssize_t align_show(struct kmem_cache *s, char *buf)
3891 return sprintf(buf, "%d\n", s->align);
3893 SLAB_ATTR_RO(align);
3895 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3897 return sprintf(buf, "%d\n", s->objsize);
3899 SLAB_ATTR_RO(object_size);
3901 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3903 return sprintf(buf, "%d\n", oo_objects(s->oo));
3905 SLAB_ATTR_RO(objs_per_slab);
3907 static ssize_t order_store(struct kmem_cache *s,
3908 const char *buf, size_t length)
3910 unsigned long order;
3913 err = strict_strtoul(buf, 10, &order);
3917 if (order > slub_max_order || order < slub_min_order)
3920 calculate_sizes(s, order);
3924 static ssize_t order_show(struct kmem_cache *s, char *buf)
3926 return sprintf(buf, "%d\n", oo_order(s->oo));
3930 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3932 return sprintf(buf, "%lu\n", s->min_partial);
3935 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3941 err = strict_strtoul(buf, 10, &min);
3945 set_min_partial(s, min);
3948 SLAB_ATTR(min_partial);
3950 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3953 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3955 return n + sprintf(buf + n, "\n");
3961 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3963 return sprintf(buf, "%d\n", s->refcount - 1);
3965 SLAB_ATTR_RO(aliases);
3967 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3969 return show_slab_objects(s, buf, SO_ALL);
3971 SLAB_ATTR_RO(slabs);
3973 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3975 return show_slab_objects(s, buf, SO_PARTIAL);
3977 SLAB_ATTR_RO(partial);
3979 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3981 return show_slab_objects(s, buf, SO_CPU);
3983 SLAB_ATTR_RO(cpu_slabs);
3985 static ssize_t objects_show(struct kmem_cache *s, char *buf)
3987 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
3989 SLAB_ATTR_RO(objects);
3991 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
3993 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
3995 SLAB_ATTR_RO(objects_partial);
3997 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
3999 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4001 SLAB_ATTR_RO(total_objects);
4003 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4005 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4008 static ssize_t sanity_checks_store(struct kmem_cache *s,
4009 const char *buf, size_t length)
4011 s->flags &= ~SLAB_DEBUG_FREE;
4013 s->flags |= SLAB_DEBUG_FREE;
4016 SLAB_ATTR(sanity_checks);
4018 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4020 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4023 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4026 s->flags &= ~SLAB_TRACE;
4028 s->flags |= SLAB_TRACE;
4033 #ifdef CONFIG_FAILSLAB
4034 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4039 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4042 s->flags &= ~SLAB_FAILSLAB;
4044 s->flags |= SLAB_FAILSLAB;
4047 SLAB_ATTR(failslab);
4050 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4052 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4055 static ssize_t reclaim_account_store(struct kmem_cache *s,
4056 const char *buf, size_t length)
4058 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4060 s->flags |= SLAB_RECLAIM_ACCOUNT;
4063 SLAB_ATTR(reclaim_account);
4065 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4067 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4069 SLAB_ATTR_RO(hwcache_align);
4071 #ifdef CONFIG_ZONE_DMA
4072 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4074 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4076 SLAB_ATTR_RO(cache_dma);
4079 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4081 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4083 SLAB_ATTR_RO(destroy_by_rcu);
4085 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4090 static ssize_t red_zone_store(struct kmem_cache *s,
4091 const char *buf, size_t length)
4093 if (any_slab_objects(s))
4096 s->flags &= ~SLAB_RED_ZONE;
4098 s->flags |= SLAB_RED_ZONE;
4099 calculate_sizes(s, -1);
4102 SLAB_ATTR(red_zone);
4104 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4106 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4109 static ssize_t poison_store(struct kmem_cache *s,
4110 const char *buf, size_t length)
4112 if (any_slab_objects(s))
4115 s->flags &= ~SLAB_POISON;
4117 s->flags |= SLAB_POISON;
4118 calculate_sizes(s, -1);
4123 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4125 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4128 static ssize_t store_user_store(struct kmem_cache *s,
4129 const char *buf, size_t length)
4131 if (any_slab_objects(s))
4134 s->flags &= ~SLAB_STORE_USER;
4136 s->flags |= SLAB_STORE_USER;
4137 calculate_sizes(s, -1);
4140 SLAB_ATTR(store_user);
4142 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4147 static ssize_t validate_store(struct kmem_cache *s,
4148 const char *buf, size_t length)
4152 if (buf[0] == '1') {
4153 ret = validate_slab_cache(s);
4159 SLAB_ATTR(validate);
4161 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4166 static ssize_t shrink_store(struct kmem_cache *s,
4167 const char *buf, size_t length)
4169 if (buf[0] == '1') {
4170 int rc = kmem_cache_shrink(s);
4180 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4182 if (!(s->flags & SLAB_STORE_USER))
4184 return list_locations(s, buf, TRACK_ALLOC);
4186 SLAB_ATTR_RO(alloc_calls);
4188 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4190 if (!(s->flags & SLAB_STORE_USER))
4192 return list_locations(s, buf, TRACK_FREE);
4194 SLAB_ATTR_RO(free_calls);
4197 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4199 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4202 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4203 const char *buf, size_t length)
4205 unsigned long ratio;
4208 err = strict_strtoul(buf, 10, &ratio);
4213 s->remote_node_defrag_ratio = ratio * 10;
4217 SLAB_ATTR(remote_node_defrag_ratio);
4220 #ifdef CONFIG_SLUB_STATS
4221 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4223 unsigned long sum = 0;
4226 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4231 for_each_online_cpu(cpu) {
4232 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4238 len = sprintf(buf, "%lu", sum);
4241 for_each_online_cpu(cpu) {
4242 if (data[cpu] && len < PAGE_SIZE - 20)
4243 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4247 return len + sprintf(buf + len, "\n");
4250 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4254 for_each_online_cpu(cpu)
4255 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4258 #define STAT_ATTR(si, text) \
4259 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4261 return show_stat(s, buf, si); \
4263 static ssize_t text##_store(struct kmem_cache *s, \
4264 const char *buf, size_t length) \
4266 if (buf[0] != '0') \
4268 clear_stat(s, si); \
4273 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4274 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4275 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4276 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4277 STAT_ATTR(FREE_FROZEN, free_frozen);
4278 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4279 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4280 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4281 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4282 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4283 STAT_ATTR(FREE_SLAB, free_slab);
4284 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4285 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4286 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4287 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4288 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4289 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4290 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4293 static struct attribute *slab_attrs[] = {
4294 &slab_size_attr.attr,
4295 &object_size_attr.attr,
4296 &objs_per_slab_attr.attr,
4298 &min_partial_attr.attr,
4300 &objects_partial_attr.attr,
4301 &total_objects_attr.attr,
4304 &cpu_slabs_attr.attr,
4308 &sanity_checks_attr.attr,
4310 &hwcache_align_attr.attr,
4311 &reclaim_account_attr.attr,
4312 &destroy_by_rcu_attr.attr,
4313 &red_zone_attr.attr,
4315 &store_user_attr.attr,
4316 &validate_attr.attr,
4318 &alloc_calls_attr.attr,
4319 &free_calls_attr.attr,
4320 #ifdef CONFIG_ZONE_DMA
4321 &cache_dma_attr.attr,
4324 &remote_node_defrag_ratio_attr.attr,
4326 #ifdef CONFIG_SLUB_STATS
4327 &alloc_fastpath_attr.attr,
4328 &alloc_slowpath_attr.attr,
4329 &free_fastpath_attr.attr,
4330 &free_slowpath_attr.attr,
4331 &free_frozen_attr.attr,
4332 &free_add_partial_attr.attr,
4333 &free_remove_partial_attr.attr,
4334 &alloc_from_partial_attr.attr,
4335 &alloc_slab_attr.attr,
4336 &alloc_refill_attr.attr,
4337 &free_slab_attr.attr,
4338 &cpuslab_flush_attr.attr,
4339 &deactivate_full_attr.attr,
4340 &deactivate_empty_attr.attr,
4341 &deactivate_to_head_attr.attr,
4342 &deactivate_to_tail_attr.attr,
4343 &deactivate_remote_frees_attr.attr,
4344 &order_fallback_attr.attr,
4346 #ifdef CONFIG_FAILSLAB
4347 &failslab_attr.attr,
4353 static struct attribute_group slab_attr_group = {
4354 .attrs = slab_attrs,
4357 static ssize_t slab_attr_show(struct kobject *kobj,
4358 struct attribute *attr,
4361 struct slab_attribute *attribute;
4362 struct kmem_cache *s;
4365 attribute = to_slab_attr(attr);
4368 if (!attribute->show)
4371 err = attribute->show(s, buf);
4376 static ssize_t slab_attr_store(struct kobject *kobj,
4377 struct attribute *attr,
4378 const char *buf, size_t len)
4380 struct slab_attribute *attribute;
4381 struct kmem_cache *s;
4384 attribute = to_slab_attr(attr);
4387 if (!attribute->store)
4390 err = attribute->store(s, buf, len);
4395 static void kmem_cache_release(struct kobject *kobj)
4397 struct kmem_cache *s = to_slab(kobj);
4402 static const struct sysfs_ops slab_sysfs_ops = {
4403 .show = slab_attr_show,
4404 .store = slab_attr_store,
4407 static struct kobj_type slab_ktype = {
4408 .sysfs_ops = &slab_sysfs_ops,
4409 .release = kmem_cache_release
4412 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4414 struct kobj_type *ktype = get_ktype(kobj);
4416 if (ktype == &slab_ktype)
4421 static const struct kset_uevent_ops slab_uevent_ops = {
4422 .filter = uevent_filter,
4425 static struct kset *slab_kset;
4427 #define ID_STR_LENGTH 64
4429 /* Create a unique string id for a slab cache:
4431 * Format :[flags-]size
4433 static char *create_unique_id(struct kmem_cache *s)
4435 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4442 * First flags affecting slabcache operations. We will only
4443 * get here for aliasable slabs so we do not need to support
4444 * too many flags. The flags here must cover all flags that
4445 * are matched during merging to guarantee that the id is
4448 if (s->flags & SLAB_CACHE_DMA)
4450 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4452 if (s->flags & SLAB_DEBUG_FREE)
4454 if (!(s->flags & SLAB_NOTRACK))
4458 p += sprintf(p, "%07d", s->size);
4459 BUG_ON(p > name + ID_STR_LENGTH - 1);
4463 static int sysfs_slab_add(struct kmem_cache *s)
4469 if (slab_state < SYSFS)
4470 /* Defer until later */
4473 unmergeable = slab_unmergeable(s);
4476 * Slabcache can never be merged so we can use the name proper.
4477 * This is typically the case for debug situations. In that
4478 * case we can catch duplicate names easily.
4480 sysfs_remove_link(&slab_kset->kobj, s->name);
4484 * Create a unique name for the slab as a target
4487 name = create_unique_id(s);
4490 s->kobj.kset = slab_kset;
4491 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4493 kobject_put(&s->kobj);
4497 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4499 kobject_del(&s->kobj);
4500 kobject_put(&s->kobj);
4503 kobject_uevent(&s->kobj, KOBJ_ADD);
4505 /* Setup first alias */
4506 sysfs_slab_alias(s, s->name);
4512 static void sysfs_slab_remove(struct kmem_cache *s)
4514 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4515 kobject_del(&s->kobj);
4516 kobject_put(&s->kobj);
4520 * Need to buffer aliases during bootup until sysfs becomes
4521 * available lest we lose that information.
4523 struct saved_alias {
4524 struct kmem_cache *s;
4526 struct saved_alias *next;
4529 static struct saved_alias *alias_list;
4531 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4533 struct saved_alias *al;
4535 if (slab_state == SYSFS) {
4537 * If we have a leftover link then remove it.
4539 sysfs_remove_link(&slab_kset->kobj, name);
4540 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4543 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4549 al->next = alias_list;
4554 static int __init slab_sysfs_init(void)
4556 struct kmem_cache *s;
4559 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4561 printk(KERN_ERR "Cannot register slab subsystem.\n");
4567 list_for_each_entry(s, &slab_caches, list) {
4568 err = sysfs_slab_add(s);
4570 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4571 " to sysfs\n", s->name);
4574 while (alias_list) {
4575 struct saved_alias *al = alias_list;
4577 alias_list = alias_list->next;
4578 err = sysfs_slab_alias(al->s, al->name);
4580 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4581 " %s to sysfs\n", s->name);
4589 __initcall(slab_sysfs_init);
4593 * The /proc/slabinfo ABI
4595 #ifdef CONFIG_SLABINFO
4596 static void print_slabinfo_header(struct seq_file *m)
4598 seq_puts(m, "slabinfo - version: 2.1\n");
4599 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4600 "<objperslab> <pagesperslab>");
4601 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4602 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4606 static void *s_start(struct seq_file *m, loff_t *pos)
4610 down_read(&slub_lock);
4612 print_slabinfo_header(m);
4614 return seq_list_start(&slab_caches, *pos);
4617 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4619 return seq_list_next(p, &slab_caches, pos);
4622 static void s_stop(struct seq_file *m, void *p)
4624 up_read(&slub_lock);
4627 static int s_show(struct seq_file *m, void *p)
4629 unsigned long nr_partials = 0;
4630 unsigned long nr_slabs = 0;
4631 unsigned long nr_inuse = 0;
4632 unsigned long nr_objs = 0;
4633 unsigned long nr_free = 0;
4634 struct kmem_cache *s;
4637 s = list_entry(p, struct kmem_cache, list);
4639 for_each_online_node(node) {
4640 struct kmem_cache_node *n = get_node(s, node);
4645 nr_partials += n->nr_partial;
4646 nr_slabs += atomic_long_read(&n->nr_slabs);
4647 nr_objs += atomic_long_read(&n->total_objects);
4648 nr_free += count_partial(n, count_free);
4651 nr_inuse = nr_objs - nr_free;
4653 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4654 nr_objs, s->size, oo_objects(s->oo),
4655 (1 << oo_order(s->oo)));
4656 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4657 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4663 static const struct seq_operations slabinfo_op = {
4670 static int slabinfo_open(struct inode *inode, struct file *file)
4672 return seq_open(file, &slabinfo_op);
4675 static const struct file_operations proc_slabinfo_operations = {
4676 .open = slabinfo_open,
4678 .llseek = seq_lseek,
4679 .release = seq_release,
4682 static int __init slab_proc_init(void)
4684 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4687 module_init(slab_proc_init);
4688 #endif /* CONFIG_SLABINFO */