1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
50 * 1. slab_mutex (Global Mutex)
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
53 * 4. slab_lock(slab) (Only on some arches)
54 * 5. object_map_lock (Only for debugging)
58 * The role of the slab_mutex is to protect the list of all the slabs
59 * and to synchronize major metadata changes to slab cache structures.
60 * Also synchronizes memory hotplug callbacks.
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * The slab_lock is only used on arches that do not have the ability
68 * to do a cmpxchg_double. It only protects:
70 * A. slab->freelist -> List of free objects in a slab
71 * B. slab->inuse -> Number of objects in use
72 * C. slab->objects -> Number of objects in slab
73 * D. slab->frozen -> frozen state
77 * If a slab is frozen then it is exempt from list management. It is not
78 * on any list except per cpu partial list. The processor that froze the
79 * slab is the one who can perform list operations on the slab. Other
80 * processors may put objects onto the freelist but the processor that
81 * froze the slab is the only one that can retrieve the objects from the
86 * The list_lock protects the partial and full list on each node and
87 * the partial slab counter. If taken then no new slabs may be added or
88 * removed from the lists nor make the number of partial slabs be modified.
89 * (Note that the total number of slabs is an atomic value that may be
90 * modified without taking the list lock).
92 * The list_lock is a centralized lock and thus we avoid taking it as
93 * much as possible. As long as SLUB does not have to handle partial
94 * slabs, operations can continue without any centralized lock. F.e.
95 * allocating a long series of objects that fill up slabs does not require
98 * For debug caches, all allocations are forced to go through a list_lock
99 * protected region to serialize against concurrent validation.
101 * cpu_slab->lock local lock
103 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
104 * except the stat counters. This is a percpu structure manipulated only by
105 * the local cpu, so the lock protects against being preempted or interrupted
106 * by an irq. Fast path operations rely on lockless operations instead.
108 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
109 * which means the lockless fastpath cannot be used as it might interfere with
110 * an in-progress slow path operations. In this case the local lock is always
111 * taken but it still utilizes the freelist for the common operations.
115 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
116 * are fully lockless when satisfied from the percpu slab (and when
117 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
118 * They also don't disable preemption or migration or irqs. They rely on
119 * the transaction id (tid) field to detect being preempted or moved to
122 * irq, preemption, migration considerations
124 * Interrupts are disabled as part of list_lock or local_lock operations, or
125 * around the slab_lock operation, in order to make the slab allocator safe
126 * to use in the context of an irq.
128 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
129 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
130 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
131 * doesn't have to be revalidated in each section protected by the local lock.
133 * SLUB assigns one slab for allocation to each processor.
134 * Allocations only occur from these slabs called cpu slabs.
136 * Slabs with free elements are kept on a partial list and during regular
137 * operations no list for full slabs is used. If an object in a full slab is
138 * freed then the slab will show up again on the partial lists.
139 * We track full slabs for debugging purposes though because otherwise we
140 * cannot scan all objects.
142 * Slabs are freed when they become empty. Teardown and setup is
143 * minimal so we rely on the page allocators per cpu caches for
144 * fast frees and allocs.
146 * slab->frozen The slab is frozen and exempt from list processing.
147 * This means that the slab is dedicated to a purpose
148 * such as satisfying allocations for a specific
149 * processor. Objects may be freed in the slab while
150 * it is frozen but slab_free will then skip the usual
151 * list operations. It is up to the processor holding
152 * the slab to integrate the slab into the slab lists
153 * when the slab is no longer needed.
155 * One use of this flag is to mark slabs that are
156 * used for allocations. Then such a slab becomes a cpu
157 * slab. The cpu slab may be equipped with an additional
158 * freelist that allows lockless access to
159 * free objects in addition to the regular freelist
160 * that requires the slab lock.
162 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
163 * options set. This moves slab handling out of
164 * the fast path and disables lockless freelists.
168 * We could simply use migrate_disable()/enable() but as long as it's a
169 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
171 #ifndef CONFIG_PREEMPT_RT
172 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
173 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
174 #define USE_LOCKLESS_FAST_PATH() (true)
176 #define slub_get_cpu_ptr(var) \
181 #define slub_put_cpu_ptr(var) \
186 #define USE_LOCKLESS_FAST_PATH() (false)
189 #ifdef CONFIG_SLUB_DEBUG
190 #ifdef CONFIG_SLUB_DEBUG_ON
191 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
193 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
195 #endif /* CONFIG_SLUB_DEBUG */
197 /* Structure holding parameters for get_partial() call chain */
198 struct partial_context {
201 unsigned int orig_size;
204 static inline bool kmem_cache_debug(struct kmem_cache *s)
206 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
209 static inline bool slub_debug_orig_size(struct kmem_cache *s)
211 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
212 (s->flags & SLAB_KMALLOC));
215 void *fixup_red_left(struct kmem_cache *s, void *p)
217 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
218 p += s->red_left_pad;
223 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
225 #ifdef CONFIG_SLUB_CPU_PARTIAL
226 return !kmem_cache_debug(s);
233 * Issues still to be resolved:
235 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
237 * - Variable sizing of the per node arrays
240 /* Enable to log cmpxchg failures */
241 #undef SLUB_DEBUG_CMPXCHG
244 * Minimum number of partial slabs. These will be left on the partial
245 * lists even if they are empty. kmem_cache_shrink may reclaim them.
247 #define MIN_PARTIAL 5
250 * Maximum number of desirable partial slabs.
251 * The existence of more partial slabs makes kmem_cache_shrink
252 * sort the partial list by the number of objects in use.
254 #define MAX_PARTIAL 10
256 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
257 SLAB_POISON | SLAB_STORE_USER)
260 * These debug flags cannot use CMPXCHG because there might be consistency
261 * issues when checking or reading debug information
263 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
268 * Debugging flags that require metadata to be stored in the slab. These get
269 * disabled when slub_debug=O is used and a cache's min order increases with
272 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
275 #define OO_MASK ((1 << OO_SHIFT) - 1)
276 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
278 /* Internal SLUB flags */
280 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
281 /* Use cmpxchg_double */
282 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
285 * Tracking user of a slab.
287 #define TRACK_ADDRS_COUNT 16
289 unsigned long addr; /* Called from address */
290 #ifdef CONFIG_STACKDEPOT
291 depot_stack_handle_t handle;
293 int cpu; /* Was running on cpu */
294 int pid; /* Pid context */
295 unsigned long when; /* When did the operation occur */
298 enum track_item { TRACK_ALLOC, TRACK_FREE };
301 static int sysfs_slab_add(struct kmem_cache *);
302 static int sysfs_slab_alias(struct kmem_cache *, const char *);
304 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
305 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
309 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
310 static void debugfs_slab_add(struct kmem_cache *);
312 static inline void debugfs_slab_add(struct kmem_cache *s) { }
315 static inline void stat(const struct kmem_cache *s, enum stat_item si)
317 #ifdef CONFIG_SLUB_STATS
319 * The rmw is racy on a preemptible kernel but this is acceptable, so
320 * avoid this_cpu_add()'s irq-disable overhead.
322 raw_cpu_inc(s->cpu_slab->stat[si]);
327 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
328 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
329 * differ during memory hotplug/hotremove operations.
330 * Protected by slab_mutex.
332 static nodemask_t slab_nodes;
335 * Workqueue used for flush_cpu_slab().
337 static struct workqueue_struct *flushwq;
339 /********************************************************************
340 * Core slab cache functions
341 *******************************************************************/
344 * Returns freelist pointer (ptr). With hardening, this is obfuscated
345 * with an XOR of the address where the pointer is held and a per-cache
348 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
349 unsigned long ptr_addr)
351 #ifdef CONFIG_SLAB_FREELIST_HARDENED
353 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
354 * Normally, this doesn't cause any issues, as both set_freepointer()
355 * and get_freepointer() are called with a pointer with the same tag.
356 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
357 * example, when __free_slub() iterates over objects in a cache, it
358 * passes untagged pointers to check_object(). check_object() in turns
359 * calls get_freepointer() with an untagged pointer, which causes the
360 * freepointer to be restored incorrectly.
362 return (void *)((unsigned long)ptr ^ s->random ^
363 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
369 /* Returns the freelist pointer recorded at location ptr_addr. */
370 static inline void *freelist_dereference(const struct kmem_cache *s,
373 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
374 (unsigned long)ptr_addr);
377 static inline void *get_freepointer(struct kmem_cache *s, void *object)
379 object = kasan_reset_tag(object);
380 return freelist_dereference(s, object + s->offset);
383 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
385 prefetchw(object + s->offset);
388 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
390 unsigned long freepointer_addr;
393 if (!debug_pagealloc_enabled_static())
394 return get_freepointer(s, object);
396 object = kasan_reset_tag(object);
397 freepointer_addr = (unsigned long)object + s->offset;
398 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
399 return freelist_ptr(s, p, freepointer_addr);
402 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
404 unsigned long freeptr_addr = (unsigned long)object + s->offset;
406 #ifdef CONFIG_SLAB_FREELIST_HARDENED
407 BUG_ON(object == fp); /* naive detection of double free or corruption */
410 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
411 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
414 /* Loop over all objects in a slab */
415 #define for_each_object(__p, __s, __addr, __objects) \
416 for (__p = fixup_red_left(__s, __addr); \
417 __p < (__addr) + (__objects) * (__s)->size; \
420 static inline unsigned int order_objects(unsigned int order, unsigned int size)
422 return ((unsigned int)PAGE_SIZE << order) / size;
425 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
428 struct kmem_cache_order_objects x = {
429 (order << OO_SHIFT) + order_objects(order, size)
435 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
437 return x.x >> OO_SHIFT;
440 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
442 return x.x & OO_MASK;
445 #ifdef CONFIG_SLUB_CPU_PARTIAL
446 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
448 unsigned int nr_slabs;
450 s->cpu_partial = nr_objects;
453 * We take the number of objects but actually limit the number of
454 * slabs on the per cpu partial list, in order to limit excessive
455 * growth of the list. For simplicity we assume that the slabs will
458 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
459 s->cpu_partial_slabs = nr_slabs;
463 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
466 #endif /* CONFIG_SLUB_CPU_PARTIAL */
469 * Per slab locking using the pagelock
471 static __always_inline void slab_lock(struct slab *slab)
473 struct page *page = slab_page(slab);
475 VM_BUG_ON_PAGE(PageTail(page), page);
476 bit_spin_lock(PG_locked, &page->flags);
479 static __always_inline void slab_unlock(struct slab *slab)
481 struct page *page = slab_page(slab);
483 VM_BUG_ON_PAGE(PageTail(page), page);
484 __bit_spin_unlock(PG_locked, &page->flags);
488 * Interrupts must be disabled (for the fallback code to work right), typically
489 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
490 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
491 * allocation/ free operation in hardirq context. Therefore nothing can
492 * interrupt the operation.
494 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
495 void *freelist_old, unsigned long counters_old,
496 void *freelist_new, unsigned long counters_new,
499 if (USE_LOCKLESS_FAST_PATH())
500 lockdep_assert_irqs_disabled();
501 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
502 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
503 if (s->flags & __CMPXCHG_DOUBLE) {
504 if (cmpxchg_double(&slab->freelist, &slab->counters,
505 freelist_old, counters_old,
506 freelist_new, counters_new))
512 if (slab->freelist == freelist_old &&
513 slab->counters == counters_old) {
514 slab->freelist = freelist_new;
515 slab->counters = counters_new;
523 stat(s, CMPXCHG_DOUBLE_FAIL);
525 #ifdef SLUB_DEBUG_CMPXCHG
526 pr_info("%s %s: cmpxchg double redo ", n, s->name);
532 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
533 void *freelist_old, unsigned long counters_old,
534 void *freelist_new, unsigned long counters_new,
537 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
538 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
539 if (s->flags & __CMPXCHG_DOUBLE) {
540 if (cmpxchg_double(&slab->freelist, &slab->counters,
541 freelist_old, counters_old,
542 freelist_new, counters_new))
549 local_irq_save(flags);
551 if (slab->freelist == freelist_old &&
552 slab->counters == counters_old) {
553 slab->freelist = freelist_new;
554 slab->counters = counters_new;
556 local_irq_restore(flags);
560 local_irq_restore(flags);
564 stat(s, CMPXCHG_DOUBLE_FAIL);
566 #ifdef SLUB_DEBUG_CMPXCHG
567 pr_info("%s %s: cmpxchg double redo ", n, s->name);
573 #ifdef CONFIG_SLUB_DEBUG
574 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
575 static DEFINE_SPINLOCK(object_map_lock);
577 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
580 void *addr = slab_address(slab);
583 bitmap_zero(obj_map, slab->objects);
585 for (p = slab->freelist; p; p = get_freepointer(s, p))
586 set_bit(__obj_to_index(s, addr, p), obj_map);
589 #if IS_ENABLED(CONFIG_KUNIT)
590 static bool slab_add_kunit_errors(void)
592 struct kunit_resource *resource;
594 if (likely(!current->kunit_test))
597 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
601 (*(int *)resource->data)++;
602 kunit_put_resource(resource);
606 static inline bool slab_add_kunit_errors(void) { return false; }
609 static inline unsigned int size_from_object(struct kmem_cache *s)
611 if (s->flags & SLAB_RED_ZONE)
612 return s->size - s->red_left_pad;
617 static inline void *restore_red_left(struct kmem_cache *s, void *p)
619 if (s->flags & SLAB_RED_ZONE)
620 p -= s->red_left_pad;
628 #if defined(CONFIG_SLUB_DEBUG_ON)
629 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
631 static slab_flags_t slub_debug;
634 static char *slub_debug_string;
635 static int disable_higher_order_debug;
638 * slub is about to manipulate internal object metadata. This memory lies
639 * outside the range of the allocated object, so accessing it would normally
640 * be reported by kasan as a bounds error. metadata_access_enable() is used
641 * to tell kasan that these accesses are OK.
643 static inline void metadata_access_enable(void)
645 kasan_disable_current();
648 static inline void metadata_access_disable(void)
650 kasan_enable_current();
657 /* Verify that a pointer has an address that is valid within a slab page */
658 static inline int check_valid_pointer(struct kmem_cache *s,
659 struct slab *slab, void *object)
666 base = slab_address(slab);
667 object = kasan_reset_tag(object);
668 object = restore_red_left(s, object);
669 if (object < base || object >= base + slab->objects * s->size ||
670 (object - base) % s->size) {
677 static void print_section(char *level, char *text, u8 *addr,
680 metadata_access_enable();
681 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
682 16, 1, kasan_reset_tag((void *)addr), length, 1);
683 metadata_access_disable();
687 * See comment in calculate_sizes().
689 static inline bool freeptr_outside_object(struct kmem_cache *s)
691 return s->offset >= s->inuse;
695 * Return offset of the end of info block which is inuse + free pointer if
696 * not overlapping with object.
698 static inline unsigned int get_info_end(struct kmem_cache *s)
700 if (freeptr_outside_object(s))
701 return s->inuse + sizeof(void *);
706 static struct track *get_track(struct kmem_cache *s, void *object,
707 enum track_item alloc)
711 p = object + get_info_end(s);
713 return kasan_reset_tag(p + alloc);
716 #ifdef CONFIG_STACKDEPOT
717 static noinline depot_stack_handle_t set_track_prepare(void)
719 depot_stack_handle_t handle;
720 unsigned long entries[TRACK_ADDRS_COUNT];
721 unsigned int nr_entries;
723 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
724 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
729 static inline depot_stack_handle_t set_track_prepare(void)
735 static void set_track_update(struct kmem_cache *s, void *object,
736 enum track_item alloc, unsigned long addr,
737 depot_stack_handle_t handle)
739 struct track *p = get_track(s, object, alloc);
741 #ifdef CONFIG_STACKDEPOT
745 p->cpu = smp_processor_id();
746 p->pid = current->pid;
750 static __always_inline void set_track(struct kmem_cache *s, void *object,
751 enum track_item alloc, unsigned long addr)
753 depot_stack_handle_t handle = set_track_prepare();
755 set_track_update(s, object, alloc, addr, handle);
758 static void init_tracking(struct kmem_cache *s, void *object)
762 if (!(s->flags & SLAB_STORE_USER))
765 p = get_track(s, object, TRACK_ALLOC);
766 memset(p, 0, 2*sizeof(struct track));
769 static void print_track(const char *s, struct track *t, unsigned long pr_time)
771 depot_stack_handle_t handle __maybe_unused;
776 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
777 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
778 #ifdef CONFIG_STACKDEPOT
779 handle = READ_ONCE(t->handle);
781 stack_depot_print(handle);
783 pr_err("object allocation/free stack trace missing\n");
787 void print_tracking(struct kmem_cache *s, void *object)
789 unsigned long pr_time = jiffies;
790 if (!(s->flags & SLAB_STORE_USER))
793 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
794 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
797 static void print_slab_info(const struct slab *slab)
799 struct folio *folio = (struct folio *)slab_folio(slab);
801 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
802 slab, slab->objects, slab->inuse, slab->freelist,
803 folio_flags(folio, 0));
807 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
808 * family will round up the real request size to these fixed ones, so
809 * there could be an extra area than what is requested. Save the original
810 * request size in the meta data area, for better debug and sanity check.
812 static inline void set_orig_size(struct kmem_cache *s,
813 void *object, unsigned int orig_size)
815 void *p = kasan_reset_tag(object);
817 if (!slub_debug_orig_size(s))
820 p += get_info_end(s);
821 p += sizeof(struct track) * 2;
823 *(unsigned int *)p = orig_size;
826 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
828 void *p = kasan_reset_tag(object);
830 if (!slub_debug_orig_size(s))
831 return s->object_size;
833 p += get_info_end(s);
834 p += sizeof(struct track) * 2;
836 return *(unsigned int *)p;
839 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
841 struct va_format vaf;
847 pr_err("=============================================================================\n");
848 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
849 pr_err("-----------------------------------------------------------------------------\n\n");
854 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
856 struct va_format vaf;
859 if (slab_add_kunit_errors())
865 pr_err("FIX %s: %pV\n", s->name, &vaf);
869 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
871 unsigned int off; /* Offset of last byte */
872 u8 *addr = slab_address(slab);
874 print_tracking(s, p);
876 print_slab_info(slab);
878 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
879 p, p - addr, get_freepointer(s, p));
881 if (s->flags & SLAB_RED_ZONE)
882 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
884 else if (p > addr + 16)
885 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
887 print_section(KERN_ERR, "Object ", p,
888 min_t(unsigned int, s->object_size, PAGE_SIZE));
889 if (s->flags & SLAB_RED_ZONE)
890 print_section(KERN_ERR, "Redzone ", p + s->object_size,
891 s->inuse - s->object_size);
893 off = get_info_end(s);
895 if (s->flags & SLAB_STORE_USER)
896 off += 2 * sizeof(struct track);
898 if (slub_debug_orig_size(s))
899 off += sizeof(unsigned int);
901 off += kasan_metadata_size(s);
903 if (off != size_from_object(s))
904 /* Beginning of the filler is the free pointer */
905 print_section(KERN_ERR, "Padding ", p + off,
906 size_from_object(s) - off);
911 static void object_err(struct kmem_cache *s, struct slab *slab,
912 u8 *object, char *reason)
914 if (slab_add_kunit_errors())
917 slab_bug(s, "%s", reason);
918 print_trailer(s, slab, object);
919 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
922 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
923 void **freelist, void *nextfree)
925 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
926 !check_valid_pointer(s, slab, nextfree) && freelist) {
927 object_err(s, slab, *freelist, "Freechain corrupt");
929 slab_fix(s, "Isolate corrupted freechain");
936 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
937 const char *fmt, ...)
942 if (slab_add_kunit_errors())
946 vsnprintf(buf, sizeof(buf), fmt, args);
948 slab_bug(s, "%s", buf);
949 print_slab_info(slab);
951 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
954 static void init_object(struct kmem_cache *s, void *object, u8 val)
956 u8 *p = kasan_reset_tag(object);
958 if (s->flags & SLAB_RED_ZONE)
959 memset(p - s->red_left_pad, val, s->red_left_pad);
961 if (s->flags & __OBJECT_POISON) {
962 memset(p, POISON_FREE, s->object_size - 1);
963 p[s->object_size - 1] = POISON_END;
966 if (s->flags & SLAB_RED_ZONE)
967 memset(p + s->object_size, val, s->inuse - s->object_size);
970 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
971 void *from, void *to)
973 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
974 memset(from, data, to - from);
977 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
978 u8 *object, char *what,
979 u8 *start, unsigned int value, unsigned int bytes)
983 u8 *addr = slab_address(slab);
985 metadata_access_enable();
986 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
987 metadata_access_disable();
992 while (end > fault && end[-1] == value)
995 if (slab_add_kunit_errors())
998 slab_bug(s, "%s overwritten", what);
999 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1000 fault, end - 1, fault - addr,
1002 print_trailer(s, slab, object);
1003 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1006 restore_bytes(s, what, value, fault, end);
1014 * Bytes of the object to be managed.
1015 * If the freepointer may overlay the object then the free
1016 * pointer is at the middle of the object.
1018 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1021 * object + s->object_size
1022 * Padding to reach word boundary. This is also used for Redzoning.
1023 * Padding is extended by another word if Redzoning is enabled and
1024 * object_size == inuse.
1026 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1027 * 0xcc (RED_ACTIVE) for objects in use.
1030 * Meta data starts here.
1032 * A. Free pointer (if we cannot overwrite object on free)
1033 * B. Tracking data for SLAB_STORE_USER
1034 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1035 * D. Padding to reach required alignment boundary or at minimum
1036 * one word if debugging is on to be able to detect writes
1037 * before the word boundary.
1039 * Padding is done using 0x5a (POISON_INUSE)
1042 * Nothing is used beyond s->size.
1044 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1045 * ignored. And therefore no slab options that rely on these boundaries
1046 * may be used with merged slabcaches.
1049 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1051 unsigned long off = get_info_end(s); /* The end of info */
1053 if (s->flags & SLAB_STORE_USER) {
1054 /* We also have user information there */
1055 off += 2 * sizeof(struct track);
1057 if (s->flags & SLAB_KMALLOC)
1058 off += sizeof(unsigned int);
1061 off += kasan_metadata_size(s);
1063 if (size_from_object(s) == off)
1066 return check_bytes_and_report(s, slab, p, "Object padding",
1067 p + off, POISON_INUSE, size_from_object(s) - off);
1070 /* Check the pad bytes at the end of a slab page */
1071 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1080 if (!(s->flags & SLAB_POISON))
1083 start = slab_address(slab);
1084 length = slab_size(slab);
1085 end = start + length;
1086 remainder = length % s->size;
1090 pad = end - remainder;
1091 metadata_access_enable();
1092 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1093 metadata_access_disable();
1096 while (end > fault && end[-1] == POISON_INUSE)
1099 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1100 fault, end - 1, fault - start);
1101 print_section(KERN_ERR, "Padding ", pad, remainder);
1103 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1106 static int check_object(struct kmem_cache *s, struct slab *slab,
1107 void *object, u8 val)
1110 u8 *endobject = object + s->object_size;
1112 if (s->flags & SLAB_RED_ZONE) {
1113 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1114 object - s->red_left_pad, val, s->red_left_pad))
1117 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1118 endobject, val, s->inuse - s->object_size))
1121 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1122 check_bytes_and_report(s, slab, p, "Alignment padding",
1123 endobject, POISON_INUSE,
1124 s->inuse - s->object_size);
1128 if (s->flags & SLAB_POISON) {
1129 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1130 (!check_bytes_and_report(s, slab, p, "Poison", p,
1131 POISON_FREE, s->object_size - 1) ||
1132 !check_bytes_and_report(s, slab, p, "End Poison",
1133 p + s->object_size - 1, POISON_END, 1)))
1136 * check_pad_bytes cleans up on its own.
1138 check_pad_bytes(s, slab, p);
1141 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1143 * Object and freepointer overlap. Cannot check
1144 * freepointer while object is allocated.
1148 /* Check free pointer validity */
1149 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1150 object_err(s, slab, p, "Freepointer corrupt");
1152 * No choice but to zap it and thus lose the remainder
1153 * of the free objects in this slab. May cause
1154 * another error because the object count is now wrong.
1156 set_freepointer(s, p, NULL);
1162 static int check_slab(struct kmem_cache *s, struct slab *slab)
1166 if (!folio_test_slab(slab_folio(slab))) {
1167 slab_err(s, slab, "Not a valid slab page");
1171 maxobj = order_objects(slab_order(slab), s->size);
1172 if (slab->objects > maxobj) {
1173 slab_err(s, slab, "objects %u > max %u",
1174 slab->objects, maxobj);
1177 if (slab->inuse > slab->objects) {
1178 slab_err(s, slab, "inuse %u > max %u",
1179 slab->inuse, slab->objects);
1182 /* Slab_pad_check fixes things up after itself */
1183 slab_pad_check(s, slab);
1188 * Determine if a certain object in a slab is on the freelist. Must hold the
1189 * slab lock to guarantee that the chains are in a consistent state.
1191 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1195 void *object = NULL;
1198 fp = slab->freelist;
1199 while (fp && nr <= slab->objects) {
1202 if (!check_valid_pointer(s, slab, fp)) {
1204 object_err(s, slab, object,
1205 "Freechain corrupt");
1206 set_freepointer(s, object, NULL);
1208 slab_err(s, slab, "Freepointer corrupt");
1209 slab->freelist = NULL;
1210 slab->inuse = slab->objects;
1211 slab_fix(s, "Freelist cleared");
1217 fp = get_freepointer(s, object);
1221 max_objects = order_objects(slab_order(slab), s->size);
1222 if (max_objects > MAX_OBJS_PER_PAGE)
1223 max_objects = MAX_OBJS_PER_PAGE;
1225 if (slab->objects != max_objects) {
1226 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1227 slab->objects, max_objects);
1228 slab->objects = max_objects;
1229 slab_fix(s, "Number of objects adjusted");
1231 if (slab->inuse != slab->objects - nr) {
1232 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1233 slab->inuse, slab->objects - nr);
1234 slab->inuse = slab->objects - nr;
1235 slab_fix(s, "Object count adjusted");
1237 return search == NULL;
1240 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1243 if (s->flags & SLAB_TRACE) {
1244 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1246 alloc ? "alloc" : "free",
1247 object, slab->inuse,
1251 print_section(KERN_INFO, "Object ", (void *)object,
1259 * Tracking of fully allocated slabs for debugging purposes.
1261 static void add_full(struct kmem_cache *s,
1262 struct kmem_cache_node *n, struct slab *slab)
1264 if (!(s->flags & SLAB_STORE_USER))
1267 lockdep_assert_held(&n->list_lock);
1268 list_add(&slab->slab_list, &n->full);
1271 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1273 if (!(s->flags & SLAB_STORE_USER))
1276 lockdep_assert_held(&n->list_lock);
1277 list_del(&slab->slab_list);
1280 /* Tracking of the number of slabs for debugging purposes */
1281 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1283 struct kmem_cache_node *n = get_node(s, node);
1285 return atomic_long_read(&n->nr_slabs);
1288 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1290 return atomic_long_read(&n->nr_slabs);
1293 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1295 struct kmem_cache_node *n = get_node(s, node);
1298 * May be called early in order to allocate a slab for the
1299 * kmem_cache_node structure. Solve the chicken-egg
1300 * dilemma by deferring the increment of the count during
1301 * bootstrap (see early_kmem_cache_node_alloc).
1304 atomic_long_inc(&n->nr_slabs);
1305 atomic_long_add(objects, &n->total_objects);
1308 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1310 struct kmem_cache_node *n = get_node(s, node);
1312 atomic_long_dec(&n->nr_slabs);
1313 atomic_long_sub(objects, &n->total_objects);
1316 /* Object debug checks for alloc/free paths */
1317 static void setup_object_debug(struct kmem_cache *s, void *object)
1319 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1322 init_object(s, object, SLUB_RED_INACTIVE);
1323 init_tracking(s, object);
1327 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1329 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1332 metadata_access_enable();
1333 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1334 metadata_access_disable();
1337 static inline int alloc_consistency_checks(struct kmem_cache *s,
1338 struct slab *slab, void *object)
1340 if (!check_slab(s, slab))
1343 if (!check_valid_pointer(s, slab, object)) {
1344 object_err(s, slab, object, "Freelist Pointer check fails");
1348 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1354 static noinline int alloc_debug_processing(struct kmem_cache *s,
1355 struct slab *slab, void *object, int orig_size)
1357 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1358 if (!alloc_consistency_checks(s, slab, object))
1362 /* Success. Perform special debug activities for allocs */
1363 trace(s, slab, object, 1);
1364 set_orig_size(s, object, orig_size);
1365 init_object(s, object, SLUB_RED_ACTIVE);
1369 if (folio_test_slab(slab_folio(slab))) {
1371 * If this is a slab page then lets do the best we can
1372 * to avoid issues in the future. Marking all objects
1373 * as used avoids touching the remaining objects.
1375 slab_fix(s, "Marking all objects used");
1376 slab->inuse = slab->objects;
1377 slab->freelist = NULL;
1382 static inline int free_consistency_checks(struct kmem_cache *s,
1383 struct slab *slab, void *object, unsigned long addr)
1385 if (!check_valid_pointer(s, slab, object)) {
1386 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1390 if (on_freelist(s, slab, object)) {
1391 object_err(s, slab, object, "Object already free");
1395 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1398 if (unlikely(s != slab->slab_cache)) {
1399 if (!folio_test_slab(slab_folio(slab))) {
1400 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1402 } else if (!slab->slab_cache) {
1403 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1407 object_err(s, slab, object,
1408 "page slab pointer corrupt.");
1415 * Parse a block of slub_debug options. Blocks are delimited by ';'
1417 * @str: start of block
1418 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1419 * @slabs: return start of list of slabs, or NULL when there's no list
1420 * @init: assume this is initial parsing and not per-kmem-create parsing
1422 * returns the start of next block if there's any, or NULL
1425 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1427 bool higher_order_disable = false;
1429 /* Skip any completely empty blocks */
1430 while (*str && *str == ';')
1435 * No options but restriction on slabs. This means full
1436 * debugging for slabs matching a pattern.
1438 *flags = DEBUG_DEFAULT_FLAGS;
1443 /* Determine which debug features should be switched on */
1444 for (; *str && *str != ',' && *str != ';'; str++) {
1445 switch (tolower(*str)) {
1450 *flags |= SLAB_CONSISTENCY_CHECKS;
1453 *flags |= SLAB_RED_ZONE;
1456 *flags |= SLAB_POISON;
1459 *flags |= SLAB_STORE_USER;
1462 *flags |= SLAB_TRACE;
1465 *flags |= SLAB_FAILSLAB;
1469 * Avoid enabling debugging on caches if its minimum
1470 * order would increase as a result.
1472 higher_order_disable = true;
1476 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1485 /* Skip over the slab list */
1486 while (*str && *str != ';')
1489 /* Skip any completely empty blocks */
1490 while (*str && *str == ';')
1493 if (init && higher_order_disable)
1494 disable_higher_order_debug = 1;
1502 static int __init setup_slub_debug(char *str)
1505 slab_flags_t global_flags;
1508 bool global_slub_debug_changed = false;
1509 bool slab_list_specified = false;
1511 global_flags = DEBUG_DEFAULT_FLAGS;
1512 if (*str++ != '=' || !*str)
1514 * No options specified. Switch on full debugging.
1520 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1523 global_flags = flags;
1524 global_slub_debug_changed = true;
1526 slab_list_specified = true;
1527 if (flags & SLAB_STORE_USER)
1528 stack_depot_want_early_init();
1533 * For backwards compatibility, a single list of flags with list of
1534 * slabs means debugging is only changed for those slabs, so the global
1535 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1536 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1537 * long as there is no option specifying flags without a slab list.
1539 if (slab_list_specified) {
1540 if (!global_slub_debug_changed)
1541 global_flags = slub_debug;
1542 slub_debug_string = saved_str;
1545 slub_debug = global_flags;
1546 if (slub_debug & SLAB_STORE_USER)
1547 stack_depot_want_early_init();
1548 if (slub_debug != 0 || slub_debug_string)
1549 static_branch_enable(&slub_debug_enabled);
1551 static_branch_disable(&slub_debug_enabled);
1552 if ((static_branch_unlikely(&init_on_alloc) ||
1553 static_branch_unlikely(&init_on_free)) &&
1554 (slub_debug & SLAB_POISON))
1555 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1559 __setup("slub_debug", setup_slub_debug);
1562 * kmem_cache_flags - apply debugging options to the cache
1563 * @object_size: the size of an object without meta data
1564 * @flags: flags to set
1565 * @name: name of the cache
1567 * Debug option(s) are applied to @flags. In addition to the debug
1568 * option(s), if a slab name (or multiple) is specified i.e.
1569 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1570 * then only the select slabs will receive the debug option(s).
1572 slab_flags_t kmem_cache_flags(unsigned int object_size,
1573 slab_flags_t flags, const char *name)
1578 slab_flags_t block_flags;
1579 slab_flags_t slub_debug_local = slub_debug;
1581 if (flags & SLAB_NO_USER_FLAGS)
1585 * If the slab cache is for debugging (e.g. kmemleak) then
1586 * don't store user (stack trace) information by default,
1587 * but let the user enable it via the command line below.
1589 if (flags & SLAB_NOLEAKTRACE)
1590 slub_debug_local &= ~SLAB_STORE_USER;
1593 next_block = slub_debug_string;
1594 /* Go through all blocks of debug options, see if any matches our slab's name */
1595 while (next_block) {
1596 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1599 /* Found a block that has a slab list, search it */
1604 end = strchrnul(iter, ',');
1605 if (next_block && next_block < end)
1606 end = next_block - 1;
1608 glob = strnchr(iter, end - iter, '*');
1610 cmplen = glob - iter;
1612 cmplen = max_t(size_t, len, (end - iter));
1614 if (!strncmp(name, iter, cmplen)) {
1615 flags |= block_flags;
1619 if (!*end || *end == ';')
1625 return flags | slub_debug_local;
1627 #else /* !CONFIG_SLUB_DEBUG */
1628 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1630 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1632 static inline int alloc_debug_processing(struct kmem_cache *s,
1633 struct slab *slab, void *object, int orig_size) { return 0; }
1635 static inline void free_debug_processing(
1636 struct kmem_cache *s, struct slab *slab,
1637 void *head, void *tail, int bulk_cnt,
1638 unsigned long addr) {}
1640 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1641 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1642 void *object, u8 val) { return 1; }
1643 static inline void set_track(struct kmem_cache *s, void *object,
1644 enum track_item alloc, unsigned long addr) {}
1645 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1646 struct slab *slab) {}
1647 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1648 struct slab *slab) {}
1649 slab_flags_t kmem_cache_flags(unsigned int object_size,
1650 slab_flags_t flags, const char *name)
1654 #define slub_debug 0
1656 #define disable_higher_order_debug 0
1658 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1660 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1662 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1664 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1667 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1668 void **freelist, void *nextfree)
1672 #endif /* CONFIG_SLUB_DEBUG */
1675 * Hooks for other subsystems that check memory allocations. In a typical
1676 * production configuration these hooks all should produce no code at all.
1678 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1681 kmemleak_free_recursive(x, s->flags);
1683 debug_check_no_locks_freed(x, s->object_size);
1685 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1686 debug_check_no_obj_freed(x, s->object_size);
1688 /* Use KCSAN to help debug racy use-after-free. */
1689 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1690 __kcsan_check_access(x, s->object_size,
1691 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1694 * As memory initialization might be integrated into KASAN,
1695 * kasan_slab_free and initialization memset's must be
1696 * kept together to avoid discrepancies in behavior.
1698 * The initialization memset's clear the object and the metadata,
1699 * but don't touch the SLAB redzone.
1704 if (!kasan_has_integrated_init())
1705 memset(kasan_reset_tag(x), 0, s->object_size);
1706 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1707 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1708 s->size - s->inuse - rsize);
1710 /* KASAN might put x into memory quarantine, delaying its reuse. */
1711 return kasan_slab_free(s, x, init);
1714 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1715 void **head, void **tail,
1721 void *old_tail = *tail ? *tail : *head;
1723 if (is_kfence_address(next)) {
1724 slab_free_hook(s, next, false);
1728 /* Head and tail of the reconstructed freelist */
1734 next = get_freepointer(s, object);
1736 /* If object's reuse doesn't have to be delayed */
1737 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1738 /* Move object to the new freelist */
1739 set_freepointer(s, object, *head);
1745 * Adjust the reconstructed freelist depth
1746 * accordingly if object's reuse is delayed.
1750 } while (object != old_tail);
1755 return *head != NULL;
1758 static void *setup_object(struct kmem_cache *s, void *object)
1760 setup_object_debug(s, object);
1761 object = kasan_init_slab_obj(s, object);
1762 if (unlikely(s->ctor)) {
1763 kasan_unpoison_object_data(s, object);
1765 kasan_poison_object_data(s, object);
1771 * Slab allocation and freeing
1773 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1774 struct kmem_cache_order_objects oo)
1776 struct folio *folio;
1778 unsigned int order = oo_order(oo);
1780 if (node == NUMA_NO_NODE)
1781 folio = (struct folio *)alloc_pages(flags, order);
1783 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1788 slab = folio_slab(folio);
1789 __folio_set_slab(folio);
1790 if (page_is_pfmemalloc(folio_page(folio, 0)))
1791 slab_set_pfmemalloc(slab);
1796 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1797 /* Pre-initialize the random sequence cache */
1798 static int init_cache_random_seq(struct kmem_cache *s)
1800 unsigned int count = oo_objects(s->oo);
1803 /* Bailout if already initialised */
1807 err = cache_random_seq_create(s, count, GFP_KERNEL);
1809 pr_err("SLUB: Unable to initialize free list for %s\n",
1814 /* Transform to an offset on the set of pages */
1815 if (s->random_seq) {
1818 for (i = 0; i < count; i++)
1819 s->random_seq[i] *= s->size;
1824 /* Initialize each random sequence freelist per cache */
1825 static void __init init_freelist_randomization(void)
1827 struct kmem_cache *s;
1829 mutex_lock(&slab_mutex);
1831 list_for_each_entry(s, &slab_caches, list)
1832 init_cache_random_seq(s);
1834 mutex_unlock(&slab_mutex);
1837 /* Get the next entry on the pre-computed freelist randomized */
1838 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1839 unsigned long *pos, void *start,
1840 unsigned long page_limit,
1841 unsigned long freelist_count)
1846 * If the target page allocation failed, the number of objects on the
1847 * page might be smaller than the usual size defined by the cache.
1850 idx = s->random_seq[*pos];
1852 if (*pos >= freelist_count)
1854 } while (unlikely(idx >= page_limit));
1856 return (char *)start + idx;
1859 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1860 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1865 unsigned long idx, pos, page_limit, freelist_count;
1867 if (slab->objects < 2 || !s->random_seq)
1870 freelist_count = oo_objects(s->oo);
1871 pos = get_random_int() % freelist_count;
1873 page_limit = slab->objects * s->size;
1874 start = fixup_red_left(s, slab_address(slab));
1876 /* First entry is used as the base of the freelist */
1877 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1879 cur = setup_object(s, cur);
1880 slab->freelist = cur;
1882 for (idx = 1; idx < slab->objects; idx++) {
1883 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1885 next = setup_object(s, next);
1886 set_freepointer(s, cur, next);
1889 set_freepointer(s, cur, NULL);
1894 static inline int init_cache_random_seq(struct kmem_cache *s)
1898 static inline void init_freelist_randomization(void) { }
1899 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1903 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1905 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1908 struct kmem_cache_order_objects oo = s->oo;
1910 void *start, *p, *next;
1914 flags &= gfp_allowed_mask;
1916 flags |= s->allocflags;
1919 * Let the initial higher-order allocation fail under memory pressure
1920 * so we fall-back to the minimum order allocation.
1922 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1923 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1924 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1926 slab = alloc_slab_page(alloc_gfp, node, oo);
1927 if (unlikely(!slab)) {
1931 * Allocation may have failed due to fragmentation.
1932 * Try a lower order alloc if possible
1934 slab = alloc_slab_page(alloc_gfp, node, oo);
1935 if (unlikely(!slab))
1937 stat(s, ORDER_FALLBACK);
1940 slab->objects = oo_objects(oo);
1944 account_slab(slab, oo_order(oo), s, flags);
1946 slab->slab_cache = s;
1948 kasan_poison_slab(slab);
1950 start = slab_address(slab);
1952 setup_slab_debug(s, slab, start);
1954 shuffle = shuffle_freelist(s, slab);
1957 start = fixup_red_left(s, start);
1958 start = setup_object(s, start);
1959 slab->freelist = start;
1960 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1962 next = setup_object(s, next);
1963 set_freepointer(s, p, next);
1966 set_freepointer(s, p, NULL);
1972 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1974 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1975 flags = kmalloc_fix_flags(flags);
1977 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1979 return allocate_slab(s,
1980 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1983 static void __free_slab(struct kmem_cache *s, struct slab *slab)
1985 struct folio *folio = slab_folio(slab);
1986 int order = folio_order(folio);
1987 int pages = 1 << order;
1989 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1992 slab_pad_check(s, slab);
1993 for_each_object(p, s, slab_address(slab), slab->objects)
1994 check_object(s, slab, p, SLUB_RED_INACTIVE);
1997 __slab_clear_pfmemalloc(slab);
1998 __folio_clear_slab(folio);
1999 folio->mapping = NULL;
2000 if (current->reclaim_state)
2001 current->reclaim_state->reclaimed_slab += pages;
2002 unaccount_slab(slab, order, s);
2003 __free_pages(folio_page(folio, 0), order);
2006 static void rcu_free_slab(struct rcu_head *h)
2008 struct slab *slab = container_of(h, struct slab, rcu_head);
2010 __free_slab(slab->slab_cache, slab);
2013 static void free_slab(struct kmem_cache *s, struct slab *slab)
2015 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2016 call_rcu(&slab->rcu_head, rcu_free_slab);
2018 __free_slab(s, slab);
2021 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2023 dec_slabs_node(s, slab_nid(slab), slab->objects);
2028 * Management of partially allocated slabs.
2031 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2034 if (tail == DEACTIVATE_TO_TAIL)
2035 list_add_tail(&slab->slab_list, &n->partial);
2037 list_add(&slab->slab_list, &n->partial);
2040 static inline void add_partial(struct kmem_cache_node *n,
2041 struct slab *slab, int tail)
2043 lockdep_assert_held(&n->list_lock);
2044 __add_partial(n, slab, tail);
2047 static inline void remove_partial(struct kmem_cache_node *n,
2050 lockdep_assert_held(&n->list_lock);
2051 list_del(&slab->slab_list);
2056 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2057 * slab from the n->partial list. Remove only a single object from the slab, do
2058 * the alloc_debug_processing() checks and leave the slab on the list, or move
2059 * it to full list if it was the last free object.
2061 static void *alloc_single_from_partial(struct kmem_cache *s,
2062 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2066 lockdep_assert_held(&n->list_lock);
2068 object = slab->freelist;
2069 slab->freelist = get_freepointer(s, object);
2072 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2073 remove_partial(n, slab);
2077 if (slab->inuse == slab->objects) {
2078 remove_partial(n, slab);
2079 add_full(s, n, slab);
2086 * Called only for kmem_cache_debug() caches to allocate from a freshly
2087 * allocated slab. Allocate a single object instead of whole freelist
2088 * and put the slab to the partial (or full) list.
2090 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2091 struct slab *slab, int orig_size)
2093 int nid = slab_nid(slab);
2094 struct kmem_cache_node *n = get_node(s, nid);
2095 unsigned long flags;
2099 object = slab->freelist;
2100 slab->freelist = get_freepointer(s, object);
2103 if (!alloc_debug_processing(s, slab, object, orig_size))
2105 * It's not really expected that this would fail on a
2106 * freshly allocated slab, but a concurrent memory
2107 * corruption in theory could cause that.
2111 spin_lock_irqsave(&n->list_lock, flags);
2113 if (slab->inuse == slab->objects)
2114 add_full(s, n, slab);
2116 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2118 inc_slabs_node(s, nid, slab->objects);
2119 spin_unlock_irqrestore(&n->list_lock, flags);
2125 * Remove slab from the partial list, freeze it and
2126 * return the pointer to the freelist.
2128 * Returns a list of objects or NULL if it fails.
2130 static inline void *acquire_slab(struct kmem_cache *s,
2131 struct kmem_cache_node *n, struct slab *slab,
2135 unsigned long counters;
2138 lockdep_assert_held(&n->list_lock);
2141 * Zap the freelist and set the frozen bit.
2142 * The old freelist is the list of objects for the
2143 * per cpu allocation list.
2145 freelist = slab->freelist;
2146 counters = slab->counters;
2147 new.counters = counters;
2149 new.inuse = slab->objects;
2150 new.freelist = NULL;
2152 new.freelist = freelist;
2155 VM_BUG_ON(new.frozen);
2158 if (!__cmpxchg_double_slab(s, slab,
2160 new.freelist, new.counters,
2164 remove_partial(n, slab);
2169 #ifdef CONFIG_SLUB_CPU_PARTIAL
2170 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2172 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2175 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2178 * Try to allocate a partial slab from a specific node.
2180 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2181 struct partial_context *pc)
2183 struct slab *slab, *slab2;
2184 void *object = NULL;
2185 unsigned long flags;
2186 unsigned int partial_slabs = 0;
2189 * Racy check. If we mistakenly see no partial slabs then we
2190 * just allocate an empty slab. If we mistakenly try to get a
2191 * partial slab and there is none available then get_partial()
2194 if (!n || !n->nr_partial)
2197 spin_lock_irqsave(&n->list_lock, flags);
2198 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2201 if (!pfmemalloc_match(slab, pc->flags))
2204 if (kmem_cache_debug(s)) {
2205 object = alloc_single_from_partial(s, n, slab,
2212 t = acquire_slab(s, n, slab, object == NULL);
2218 stat(s, ALLOC_FROM_PARTIAL);
2221 put_cpu_partial(s, slab, 0);
2222 stat(s, CPU_PARTIAL_NODE);
2225 #ifdef CONFIG_SLUB_CPU_PARTIAL
2226 if (!kmem_cache_has_cpu_partial(s)
2227 || partial_slabs > s->cpu_partial_slabs / 2)
2234 spin_unlock_irqrestore(&n->list_lock, flags);
2239 * Get a slab from somewhere. Search in increasing NUMA distances.
2241 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2244 struct zonelist *zonelist;
2247 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2249 unsigned int cpuset_mems_cookie;
2252 * The defrag ratio allows a configuration of the tradeoffs between
2253 * inter node defragmentation and node local allocations. A lower
2254 * defrag_ratio increases the tendency to do local allocations
2255 * instead of attempting to obtain partial slabs from other nodes.
2257 * If the defrag_ratio is set to 0 then kmalloc() always
2258 * returns node local objects. If the ratio is higher then kmalloc()
2259 * may return off node objects because partial slabs are obtained
2260 * from other nodes and filled up.
2262 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2263 * (which makes defrag_ratio = 1000) then every (well almost)
2264 * allocation will first attempt to defrag slab caches on other nodes.
2265 * This means scanning over all nodes to look for partial slabs which
2266 * may be expensive if we do it every time we are trying to find a slab
2267 * with available objects.
2269 if (!s->remote_node_defrag_ratio ||
2270 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2274 cpuset_mems_cookie = read_mems_allowed_begin();
2275 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2276 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2277 struct kmem_cache_node *n;
2279 n = get_node(s, zone_to_nid(zone));
2281 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2282 n->nr_partial > s->min_partial) {
2283 object = get_partial_node(s, n, pc);
2286 * Don't check read_mems_allowed_retry()
2287 * here - if mems_allowed was updated in
2288 * parallel, that was a harmless race
2289 * between allocation and the cpuset
2296 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2297 #endif /* CONFIG_NUMA */
2302 * Get a partial slab, lock it and return it.
2304 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2307 int searchnode = node;
2309 if (node == NUMA_NO_NODE)
2310 searchnode = numa_mem_id();
2312 object = get_partial_node(s, get_node(s, searchnode), pc);
2313 if (object || node != NUMA_NO_NODE)
2316 return get_any_partial(s, pc);
2319 #ifdef CONFIG_PREEMPTION
2321 * Calculate the next globally unique transaction for disambiguation
2322 * during cmpxchg. The transactions start with the cpu number and are then
2323 * incremented by CONFIG_NR_CPUS.
2325 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2328 * No preemption supported therefore also no need to check for
2334 static inline unsigned long next_tid(unsigned long tid)
2336 return tid + TID_STEP;
2339 #ifdef SLUB_DEBUG_CMPXCHG
2340 static inline unsigned int tid_to_cpu(unsigned long tid)
2342 return tid % TID_STEP;
2345 static inline unsigned long tid_to_event(unsigned long tid)
2347 return tid / TID_STEP;
2351 static inline unsigned int init_tid(int cpu)
2356 static inline void note_cmpxchg_failure(const char *n,
2357 const struct kmem_cache *s, unsigned long tid)
2359 #ifdef SLUB_DEBUG_CMPXCHG
2360 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2362 pr_info("%s %s: cmpxchg redo ", n, s->name);
2364 #ifdef CONFIG_PREEMPTION
2365 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2366 pr_warn("due to cpu change %d -> %d\n",
2367 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2370 if (tid_to_event(tid) != tid_to_event(actual_tid))
2371 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2372 tid_to_event(tid), tid_to_event(actual_tid));
2374 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2375 actual_tid, tid, next_tid(tid));
2377 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2380 static void init_kmem_cache_cpus(struct kmem_cache *s)
2383 struct kmem_cache_cpu *c;
2385 for_each_possible_cpu(cpu) {
2386 c = per_cpu_ptr(s->cpu_slab, cpu);
2387 local_lock_init(&c->lock);
2388 c->tid = init_tid(cpu);
2393 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2394 * unfreezes the slabs and puts it on the proper list.
2395 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2398 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2401 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2402 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2404 enum slab_modes mode = M_NONE;
2405 void *nextfree, *freelist_iter, *freelist_tail;
2406 int tail = DEACTIVATE_TO_HEAD;
2407 unsigned long flags = 0;
2411 if (slab->freelist) {
2412 stat(s, DEACTIVATE_REMOTE_FREES);
2413 tail = DEACTIVATE_TO_TAIL;
2417 * Stage one: Count the objects on cpu's freelist as free_delta and
2418 * remember the last object in freelist_tail for later splicing.
2420 freelist_tail = NULL;
2421 freelist_iter = freelist;
2422 while (freelist_iter) {
2423 nextfree = get_freepointer(s, freelist_iter);
2426 * If 'nextfree' is invalid, it is possible that the object at
2427 * 'freelist_iter' is already corrupted. So isolate all objects
2428 * starting at 'freelist_iter' by skipping them.
2430 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2433 freelist_tail = freelist_iter;
2436 freelist_iter = nextfree;
2440 * Stage two: Unfreeze the slab while splicing the per-cpu
2441 * freelist to the head of slab's freelist.
2443 * Ensure that the slab is unfrozen while the list presence
2444 * reflects the actual number of objects during unfreeze.
2446 * We first perform cmpxchg holding lock and insert to list
2447 * when it succeed. If there is mismatch then the slab is not
2448 * unfrozen and number of objects in the slab may have changed.
2449 * Then release lock and retry cmpxchg again.
2453 old.freelist = READ_ONCE(slab->freelist);
2454 old.counters = READ_ONCE(slab->counters);
2455 VM_BUG_ON(!old.frozen);
2457 /* Determine target state of the slab */
2458 new.counters = old.counters;
2459 if (freelist_tail) {
2460 new.inuse -= free_delta;
2461 set_freepointer(s, freelist_tail, old.freelist);
2462 new.freelist = freelist;
2464 new.freelist = old.freelist;
2468 if (!new.inuse && n->nr_partial >= s->min_partial) {
2470 } else if (new.freelist) {
2473 * Taking the spinlock removes the possibility that
2474 * acquire_slab() will see a slab that is frozen
2476 spin_lock_irqsave(&n->list_lock, flags);
2477 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2480 * This also ensures that the scanning of full
2481 * slabs from diagnostic functions will not see
2484 spin_lock_irqsave(&n->list_lock, flags);
2486 mode = M_FULL_NOLIST;
2490 if (!cmpxchg_double_slab(s, slab,
2491 old.freelist, old.counters,
2492 new.freelist, new.counters,
2493 "unfreezing slab")) {
2494 if (mode == M_PARTIAL || mode == M_FULL)
2495 spin_unlock_irqrestore(&n->list_lock, flags);
2500 if (mode == M_PARTIAL) {
2501 add_partial(n, slab, tail);
2502 spin_unlock_irqrestore(&n->list_lock, flags);
2504 } else if (mode == M_FREE) {
2505 stat(s, DEACTIVATE_EMPTY);
2506 discard_slab(s, slab);
2508 } else if (mode == M_FULL) {
2509 add_full(s, n, slab);
2510 spin_unlock_irqrestore(&n->list_lock, flags);
2511 stat(s, DEACTIVATE_FULL);
2512 } else if (mode == M_FULL_NOLIST) {
2513 stat(s, DEACTIVATE_FULL);
2517 #ifdef CONFIG_SLUB_CPU_PARTIAL
2518 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2520 struct kmem_cache_node *n = NULL, *n2 = NULL;
2521 struct slab *slab, *slab_to_discard = NULL;
2522 unsigned long flags = 0;
2524 while (partial_slab) {
2528 slab = partial_slab;
2529 partial_slab = slab->next;
2531 n2 = get_node(s, slab_nid(slab));
2534 spin_unlock_irqrestore(&n->list_lock, flags);
2537 spin_lock_irqsave(&n->list_lock, flags);
2542 old.freelist = slab->freelist;
2543 old.counters = slab->counters;
2544 VM_BUG_ON(!old.frozen);
2546 new.counters = old.counters;
2547 new.freelist = old.freelist;
2551 } while (!__cmpxchg_double_slab(s, slab,
2552 old.freelist, old.counters,
2553 new.freelist, new.counters,
2554 "unfreezing slab"));
2556 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2557 slab->next = slab_to_discard;
2558 slab_to_discard = slab;
2560 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2561 stat(s, FREE_ADD_PARTIAL);
2566 spin_unlock_irqrestore(&n->list_lock, flags);
2568 while (slab_to_discard) {
2569 slab = slab_to_discard;
2570 slab_to_discard = slab_to_discard->next;
2572 stat(s, DEACTIVATE_EMPTY);
2573 discard_slab(s, slab);
2579 * Unfreeze all the cpu partial slabs.
2581 static void unfreeze_partials(struct kmem_cache *s)
2583 struct slab *partial_slab;
2584 unsigned long flags;
2586 local_lock_irqsave(&s->cpu_slab->lock, flags);
2587 partial_slab = this_cpu_read(s->cpu_slab->partial);
2588 this_cpu_write(s->cpu_slab->partial, NULL);
2589 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2592 __unfreeze_partials(s, partial_slab);
2595 static void unfreeze_partials_cpu(struct kmem_cache *s,
2596 struct kmem_cache_cpu *c)
2598 struct slab *partial_slab;
2600 partial_slab = slub_percpu_partial(c);
2604 __unfreeze_partials(s, partial_slab);
2608 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2609 * partial slab slot if available.
2611 * If we did not find a slot then simply move all the partials to the
2612 * per node partial list.
2614 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2616 struct slab *oldslab;
2617 struct slab *slab_to_unfreeze = NULL;
2618 unsigned long flags;
2621 local_lock_irqsave(&s->cpu_slab->lock, flags);
2623 oldslab = this_cpu_read(s->cpu_slab->partial);
2626 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2628 * Partial array is full. Move the existing set to the
2629 * per node partial list. Postpone the actual unfreezing
2630 * outside of the critical section.
2632 slab_to_unfreeze = oldslab;
2635 slabs = oldslab->slabs;
2641 slab->slabs = slabs;
2642 slab->next = oldslab;
2644 this_cpu_write(s->cpu_slab->partial, slab);
2646 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2648 if (slab_to_unfreeze) {
2649 __unfreeze_partials(s, slab_to_unfreeze);
2650 stat(s, CPU_PARTIAL_DRAIN);
2654 #else /* CONFIG_SLUB_CPU_PARTIAL */
2656 static inline void unfreeze_partials(struct kmem_cache *s) { }
2657 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2658 struct kmem_cache_cpu *c) { }
2660 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2662 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2664 unsigned long flags;
2668 local_lock_irqsave(&s->cpu_slab->lock, flags);
2671 freelist = c->freelist;
2675 c->tid = next_tid(c->tid);
2677 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2680 deactivate_slab(s, slab, freelist);
2681 stat(s, CPUSLAB_FLUSH);
2685 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2687 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2688 void *freelist = c->freelist;
2689 struct slab *slab = c->slab;
2693 c->tid = next_tid(c->tid);
2696 deactivate_slab(s, slab, freelist);
2697 stat(s, CPUSLAB_FLUSH);
2700 unfreeze_partials_cpu(s, c);
2703 struct slub_flush_work {
2704 struct work_struct work;
2705 struct kmem_cache *s;
2712 * Called from CPU work handler with migration disabled.
2714 static void flush_cpu_slab(struct work_struct *w)
2716 struct kmem_cache *s;
2717 struct kmem_cache_cpu *c;
2718 struct slub_flush_work *sfw;
2720 sfw = container_of(w, struct slub_flush_work, work);
2723 c = this_cpu_ptr(s->cpu_slab);
2728 unfreeze_partials(s);
2731 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2733 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2735 return c->slab || slub_percpu_partial(c);
2738 static DEFINE_MUTEX(flush_lock);
2739 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2741 static void flush_all_cpus_locked(struct kmem_cache *s)
2743 struct slub_flush_work *sfw;
2746 lockdep_assert_cpus_held();
2747 mutex_lock(&flush_lock);
2749 for_each_online_cpu(cpu) {
2750 sfw = &per_cpu(slub_flush, cpu);
2751 if (!has_cpu_slab(cpu, s)) {
2755 INIT_WORK(&sfw->work, flush_cpu_slab);
2758 queue_work_on(cpu, flushwq, &sfw->work);
2761 for_each_online_cpu(cpu) {
2762 sfw = &per_cpu(slub_flush, cpu);
2765 flush_work(&sfw->work);
2768 mutex_unlock(&flush_lock);
2771 static void flush_all(struct kmem_cache *s)
2774 flush_all_cpus_locked(s);
2779 * Use the cpu notifier to insure that the cpu slabs are flushed when
2782 static int slub_cpu_dead(unsigned int cpu)
2784 struct kmem_cache *s;
2786 mutex_lock(&slab_mutex);
2787 list_for_each_entry(s, &slab_caches, list)
2788 __flush_cpu_slab(s, cpu);
2789 mutex_unlock(&slab_mutex);
2794 * Check if the objects in a per cpu structure fit numa
2795 * locality expectations.
2797 static inline int node_match(struct slab *slab, int node)
2800 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2806 #ifdef CONFIG_SLUB_DEBUG
2807 static int count_free(struct slab *slab)
2809 return slab->objects - slab->inuse;
2812 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2814 return atomic_long_read(&n->total_objects);
2817 /* Supports checking bulk free of a constructed freelist */
2818 static noinline void free_debug_processing(
2819 struct kmem_cache *s, struct slab *slab,
2820 void *head, void *tail, int bulk_cnt,
2823 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2824 struct slab *slab_free = NULL;
2825 void *object = head;
2827 unsigned long flags;
2828 bool checks_ok = false;
2829 depot_stack_handle_t handle = 0;
2831 if (s->flags & SLAB_STORE_USER)
2832 handle = set_track_prepare();
2834 spin_lock_irqsave(&n->list_lock, flags);
2836 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2837 if (!check_slab(s, slab))
2841 if (slab->inuse < bulk_cnt) {
2842 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2843 slab->inuse, bulk_cnt);
2849 if (++cnt > bulk_cnt)
2852 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2853 if (!free_consistency_checks(s, slab, object, addr))
2857 if (s->flags & SLAB_STORE_USER)
2858 set_track_update(s, object, TRACK_FREE, addr, handle);
2859 trace(s, slab, object, 0);
2860 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2861 init_object(s, object, SLUB_RED_INACTIVE);
2863 /* Reached end of constructed freelist yet? */
2864 if (object != tail) {
2865 object = get_freepointer(s, object);
2871 if (cnt != bulk_cnt)
2872 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2877 void *prior = slab->freelist;
2879 /* Perform the actual freeing while we still hold the locks */
2881 set_freepointer(s, tail, prior);
2882 slab->freelist = head;
2885 * If the slab is empty, and node's partial list is full,
2886 * it should be discarded anyway no matter it's on full or
2889 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
2893 /* was on full list */
2894 remove_full(s, n, slab);
2896 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2897 stat(s, FREE_ADD_PARTIAL);
2899 } else if (slab_free) {
2900 remove_partial(n, slab);
2901 stat(s, FREE_REMOVE_PARTIAL);
2907 * Update the counters while still holding n->list_lock to
2908 * prevent spurious validation warnings
2910 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
2913 spin_unlock_irqrestore(&n->list_lock, flags);
2916 slab_fix(s, "Object at 0x%p not freed", object);
2920 free_slab(s, slab_free);
2923 #endif /* CONFIG_SLUB_DEBUG */
2925 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2926 static unsigned long count_partial(struct kmem_cache_node *n,
2927 int (*get_count)(struct slab *))
2929 unsigned long flags;
2930 unsigned long x = 0;
2933 spin_lock_irqsave(&n->list_lock, flags);
2934 list_for_each_entry(slab, &n->partial, slab_list)
2935 x += get_count(slab);
2936 spin_unlock_irqrestore(&n->list_lock, flags);
2939 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2941 static noinline void
2942 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2944 #ifdef CONFIG_SLUB_DEBUG
2945 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2946 DEFAULT_RATELIMIT_BURST);
2948 struct kmem_cache_node *n;
2950 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2953 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2954 nid, gfpflags, &gfpflags);
2955 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2956 s->name, s->object_size, s->size, oo_order(s->oo),
2959 if (oo_order(s->min) > get_order(s->object_size))
2960 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2963 for_each_kmem_cache_node(s, node, n) {
2964 unsigned long nr_slabs;
2965 unsigned long nr_objs;
2966 unsigned long nr_free;
2968 nr_free = count_partial(n, count_free);
2969 nr_slabs = node_nr_slabs(n);
2970 nr_objs = node_nr_objs(n);
2972 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2973 node, nr_slabs, nr_objs, nr_free);
2978 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2980 if (unlikely(slab_test_pfmemalloc(slab)))
2981 return gfp_pfmemalloc_allowed(gfpflags);
2987 * Check the slab->freelist and either transfer the freelist to the
2988 * per cpu freelist or deactivate the slab.
2990 * The slab is still frozen if the return value is not NULL.
2992 * If this function returns NULL then the slab has been unfrozen.
2994 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2997 unsigned long counters;
3000 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3003 freelist = slab->freelist;
3004 counters = slab->counters;
3006 new.counters = counters;
3007 VM_BUG_ON(!new.frozen);
3009 new.inuse = slab->objects;
3010 new.frozen = freelist != NULL;
3012 } while (!__cmpxchg_double_slab(s, slab,
3021 * Slow path. The lockless freelist is empty or we need to perform
3024 * Processing is still very fast if new objects have been freed to the
3025 * regular freelist. In that case we simply take over the regular freelist
3026 * as the lockless freelist and zap the regular freelist.
3028 * If that is not working then we fall back to the partial lists. We take the
3029 * first element of the freelist as the object to allocate now and move the
3030 * rest of the freelist to the lockless freelist.
3032 * And if we were unable to get a new slab from the partial slab lists then
3033 * we need to allocate a new slab. This is the slowest path since it involves
3034 * a call to the page allocator and the setup of a new slab.
3036 * Version of __slab_alloc to use when we know that preemption is
3037 * already disabled (which is the case for bulk allocation).
3039 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3040 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3044 unsigned long flags;
3045 struct partial_context pc;
3047 stat(s, ALLOC_SLOWPATH);
3051 slab = READ_ONCE(c->slab);
3054 * if the node is not online or has no normal memory, just
3055 * ignore the node constraint
3057 if (unlikely(node != NUMA_NO_NODE &&
3058 !node_isset(node, slab_nodes)))
3059 node = NUMA_NO_NODE;
3064 if (unlikely(!node_match(slab, node))) {
3066 * same as above but node_match() being false already
3067 * implies node != NUMA_NO_NODE
3069 if (!node_isset(node, slab_nodes)) {
3070 node = NUMA_NO_NODE;
3072 stat(s, ALLOC_NODE_MISMATCH);
3073 goto deactivate_slab;
3078 * By rights, we should be searching for a slab page that was
3079 * PFMEMALLOC but right now, we are losing the pfmemalloc
3080 * information when the page leaves the per-cpu allocator
3082 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3083 goto deactivate_slab;
3085 /* must check again c->slab in case we got preempted and it changed */
3086 local_lock_irqsave(&s->cpu_slab->lock, flags);
3087 if (unlikely(slab != c->slab)) {
3088 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3091 freelist = c->freelist;
3095 freelist = get_freelist(s, slab);
3099 c->tid = next_tid(c->tid);
3100 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3101 stat(s, DEACTIVATE_BYPASS);
3105 stat(s, ALLOC_REFILL);
3109 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3112 * freelist is pointing to the list of objects to be used.
3113 * slab is pointing to the slab from which the objects are obtained.
3114 * That slab must be frozen for per cpu allocations to work.
3116 VM_BUG_ON(!c->slab->frozen);
3117 c->freelist = get_freepointer(s, freelist);
3118 c->tid = next_tid(c->tid);
3119 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3124 local_lock_irqsave(&s->cpu_slab->lock, flags);
3125 if (slab != c->slab) {
3126 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3129 freelist = c->freelist;
3132 c->tid = next_tid(c->tid);
3133 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3134 deactivate_slab(s, slab, freelist);
3138 if (slub_percpu_partial(c)) {
3139 local_lock_irqsave(&s->cpu_slab->lock, flags);
3140 if (unlikely(c->slab)) {
3141 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3144 if (unlikely(!slub_percpu_partial(c))) {
3145 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3146 /* we were preempted and partial list got empty */
3150 slab = c->slab = slub_percpu_partial(c);
3151 slub_set_percpu_partial(c, slab);
3152 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3153 stat(s, CPU_PARTIAL_ALLOC);
3159 pc.flags = gfpflags;
3161 pc.orig_size = orig_size;
3162 freelist = get_partial(s, node, &pc);
3164 goto check_new_slab;
3166 slub_put_cpu_ptr(s->cpu_slab);
3167 slab = new_slab(s, gfpflags, node);
3168 c = slub_get_cpu_ptr(s->cpu_slab);
3170 if (unlikely(!slab)) {
3171 slab_out_of_memory(s, gfpflags, node);
3175 stat(s, ALLOC_SLAB);
3177 if (kmem_cache_debug(s)) {
3178 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3180 if (unlikely(!freelist))
3183 if (s->flags & SLAB_STORE_USER)
3184 set_track(s, freelist, TRACK_ALLOC, addr);
3190 * No other reference to the slab yet so we can
3191 * muck around with it freely without cmpxchg
3193 freelist = slab->freelist;
3194 slab->freelist = NULL;
3195 slab->inuse = slab->objects;
3198 inc_slabs_node(s, slab_nid(slab), slab->objects);
3202 if (kmem_cache_debug(s)) {
3204 * For debug caches here we had to go through
3205 * alloc_single_from_partial() so just store the tracking info
3206 * and return the object
3208 if (s->flags & SLAB_STORE_USER)
3209 set_track(s, freelist, TRACK_ALLOC, addr);
3214 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3216 * For !pfmemalloc_match() case we don't load freelist so that
3217 * we don't make further mismatched allocations easier.
3219 deactivate_slab(s, slab, get_freepointer(s, freelist));
3225 local_lock_irqsave(&s->cpu_slab->lock, flags);
3226 if (unlikely(c->slab)) {
3227 void *flush_freelist = c->freelist;
3228 struct slab *flush_slab = c->slab;
3232 c->tid = next_tid(c->tid);
3234 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3236 deactivate_slab(s, flush_slab, flush_freelist);
3238 stat(s, CPUSLAB_FLUSH);
3240 goto retry_load_slab;
3248 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3249 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3252 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3253 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3257 #ifdef CONFIG_PREEMPT_COUNT
3259 * We may have been preempted and rescheduled on a different
3260 * cpu before disabling preemption. Need to reload cpu area
3263 c = slub_get_cpu_ptr(s->cpu_slab);
3266 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3267 #ifdef CONFIG_PREEMPT_COUNT
3268 slub_put_cpu_ptr(s->cpu_slab);
3274 * If the object has been wiped upon free, make sure it's fully initialized by
3275 * zeroing out freelist pointer.
3277 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3280 if (unlikely(slab_want_init_on_free(s)) && obj)
3281 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3286 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3287 * have the fastpath folded into their functions. So no function call
3288 * overhead for requests that can be satisfied on the fastpath.
3290 * The fastpath works by first checking if the lockless freelist can be used.
3291 * If not then __slab_alloc is called for slow processing.
3293 * Otherwise we can simply pick the next object from the lockless free list.
3295 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3296 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3299 struct kmem_cache_cpu *c;
3302 struct obj_cgroup *objcg = NULL;
3305 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3309 object = kfence_alloc(s, orig_size, gfpflags);
3310 if (unlikely(object))
3315 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3316 * enabled. We may switch back and forth between cpus while
3317 * reading from one cpu area. That does not matter as long
3318 * as we end up on the original cpu again when doing the cmpxchg.
3320 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3321 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3322 * the tid. If we are preempted and switched to another cpu between the
3323 * two reads, it's OK as the two are still associated with the same cpu
3324 * and cmpxchg later will validate the cpu.
3326 c = raw_cpu_ptr(s->cpu_slab);
3327 tid = READ_ONCE(c->tid);
3330 * Irqless object alloc/free algorithm used here depends on sequence
3331 * of fetching cpu_slab's data. tid should be fetched before anything
3332 * on c to guarantee that object and slab associated with previous tid
3333 * won't be used with current tid. If we fetch tid first, object and
3334 * slab could be one associated with next tid and our alloc/free
3335 * request will be failed. In this case, we will retry. So, no problem.
3340 * The transaction ids are globally unique per cpu and per operation on
3341 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3342 * occurs on the right processor and that there was no operation on the
3343 * linked list in between.
3346 object = c->freelist;
3349 if (!USE_LOCKLESS_FAST_PATH() ||
3350 unlikely(!object || !slab || !node_match(slab, node))) {
3351 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3353 void *next_object = get_freepointer_safe(s, object);
3356 * The cmpxchg will only match if there was no additional
3357 * operation and if we are on the right processor.
3359 * The cmpxchg does the following atomically (without lock
3361 * 1. Relocate first pointer to the current per cpu area.
3362 * 2. Verify that tid and freelist have not been changed
3363 * 3. If they were not changed replace tid and freelist
3365 * Since this is without lock semantics the protection is only
3366 * against code executing on this cpu *not* from access by
3369 if (unlikely(!this_cpu_cmpxchg_double(
3370 s->cpu_slab->freelist, s->cpu_slab->tid,
3372 next_object, next_tid(tid)))) {
3374 note_cmpxchg_failure("slab_alloc", s, tid);
3377 prefetch_freepointer(s, next_object);
3378 stat(s, ALLOC_FASTPATH);
3381 maybe_wipe_obj_freeptr(s, object);
3382 init = slab_want_init_on_alloc(gfpflags, s);
3385 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3390 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3391 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3393 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3396 static __always_inline
3397 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3400 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3402 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3407 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3409 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3411 EXPORT_SYMBOL(kmem_cache_alloc);
3413 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3416 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3418 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3420 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3421 int node, size_t orig_size,
3422 unsigned long caller)
3424 return slab_alloc_node(s, NULL, gfpflags, node,
3428 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3430 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3432 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3436 EXPORT_SYMBOL(kmem_cache_alloc_node);
3439 * Slow path handling. This may still be called frequently since objects
3440 * have a longer lifetime than the cpu slabs in most processing loads.
3442 * So we still attempt to reduce cache line usage. Just take the slab
3443 * lock and free the item. If there is no additional partial slab
3444 * handling required then we can return immediately.
3446 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3447 void *head, void *tail, int cnt,
3454 unsigned long counters;
3455 struct kmem_cache_node *n = NULL;
3456 unsigned long flags;
3458 stat(s, FREE_SLOWPATH);
3460 if (kfence_free(head))
3463 if (kmem_cache_debug(s)) {
3464 free_debug_processing(s, slab, head, tail, cnt, addr);
3470 spin_unlock_irqrestore(&n->list_lock, flags);
3473 prior = slab->freelist;
3474 counters = slab->counters;
3475 set_freepointer(s, tail, prior);
3476 new.counters = counters;
3477 was_frozen = new.frozen;
3479 if ((!new.inuse || !prior) && !was_frozen) {
3481 if (kmem_cache_has_cpu_partial(s) && !prior) {
3484 * Slab was on no list before and will be
3486 * We can defer the list move and instead
3491 } else { /* Needs to be taken off a list */
3493 n = get_node(s, slab_nid(slab));
3495 * Speculatively acquire the list_lock.
3496 * If the cmpxchg does not succeed then we may
3497 * drop the list_lock without any processing.
3499 * Otherwise the list_lock will synchronize with
3500 * other processors updating the list of slabs.
3502 spin_lock_irqsave(&n->list_lock, flags);
3507 } while (!cmpxchg_double_slab(s, slab,
3514 if (likely(was_frozen)) {
3516 * The list lock was not taken therefore no list
3517 * activity can be necessary.
3519 stat(s, FREE_FROZEN);
3520 } else if (new.frozen) {
3522 * If we just froze the slab then put it onto the
3523 * per cpu partial list.
3525 put_cpu_partial(s, slab, 1);
3526 stat(s, CPU_PARTIAL_FREE);
3532 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3536 * Objects left in the slab. If it was not on the partial list before
3539 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3540 remove_full(s, n, slab);
3541 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3542 stat(s, FREE_ADD_PARTIAL);
3544 spin_unlock_irqrestore(&n->list_lock, flags);
3550 * Slab on the partial list.
3552 remove_partial(n, slab);
3553 stat(s, FREE_REMOVE_PARTIAL);
3555 /* Slab must be on the full list */
3556 remove_full(s, n, slab);
3559 spin_unlock_irqrestore(&n->list_lock, flags);
3561 discard_slab(s, slab);
3565 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3566 * can perform fastpath freeing without additional function calls.
3568 * The fastpath is only possible if we are freeing to the current cpu slab
3569 * of this processor. This typically the case if we have just allocated
3572 * If fastpath is not possible then fall back to __slab_free where we deal
3573 * with all sorts of special processing.
3575 * Bulk free of a freelist with several objects (all pointing to the
3576 * same slab) possible by specifying head and tail ptr, plus objects
3577 * count (cnt). Bulk free indicated by tail pointer being set.
3579 static __always_inline void do_slab_free(struct kmem_cache *s,
3580 struct slab *slab, void *head, void *tail,
3581 int cnt, unsigned long addr)
3583 void *tail_obj = tail ? : head;
3584 struct kmem_cache_cpu *c;
3590 * Determine the currently cpus per cpu slab.
3591 * The cpu may change afterward. However that does not matter since
3592 * data is retrieved via this pointer. If we are on the same cpu
3593 * during the cmpxchg then the free will succeed.
3595 c = raw_cpu_ptr(s->cpu_slab);
3596 tid = READ_ONCE(c->tid);
3598 /* Same with comment on barrier() in slab_alloc_node() */
3601 if (unlikely(slab != c->slab)) {
3602 __slab_free(s, slab, head, tail_obj, cnt, addr);
3606 if (USE_LOCKLESS_FAST_PATH()) {
3607 freelist = READ_ONCE(c->freelist);
3609 set_freepointer(s, tail_obj, freelist);
3611 if (unlikely(!this_cpu_cmpxchg_double(
3612 s->cpu_slab->freelist, s->cpu_slab->tid,
3614 head, next_tid(tid)))) {
3616 note_cmpxchg_failure("slab_free", s, tid);
3620 /* Update the free list under the local lock */
3621 local_lock(&s->cpu_slab->lock);
3622 c = this_cpu_ptr(s->cpu_slab);
3623 if (unlikely(slab != c->slab)) {
3624 local_unlock(&s->cpu_slab->lock);
3628 freelist = c->freelist;
3630 set_freepointer(s, tail_obj, freelist);
3632 c->tid = next_tid(tid);
3634 local_unlock(&s->cpu_slab->lock);
3636 stat(s, FREE_FASTPATH);
3639 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3640 void *head, void *tail, void **p, int cnt,
3643 memcg_slab_free_hook(s, slab, p, cnt);
3645 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3646 * to remove objects, whose reuse must be delayed.
3648 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3649 do_slab_free(s, slab, head, tail, cnt, addr);
3652 #ifdef CONFIG_KASAN_GENERIC
3653 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3655 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3659 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3661 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3664 void kmem_cache_free(struct kmem_cache *s, void *x)
3666 s = cache_from_obj(s, x);
3669 trace_kmem_cache_free(_RET_IP_, x, s);
3670 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3672 EXPORT_SYMBOL(kmem_cache_free);
3674 struct detached_freelist {
3679 struct kmem_cache *s;
3683 * This function progressively scans the array with free objects (with
3684 * a limited look ahead) and extract objects belonging to the same
3685 * slab. It builds a detached freelist directly within the given
3686 * slab/objects. This can happen without any need for
3687 * synchronization, because the objects are owned by running process.
3688 * The freelist is build up as a single linked list in the objects.
3689 * The idea is, that this detached freelist can then be bulk
3690 * transferred to the real freelist(s), but only requiring a single
3691 * synchronization primitive. Look ahead in the array is limited due
3692 * to performance reasons.
3695 int build_detached_freelist(struct kmem_cache *s, size_t size,
3696 void **p, struct detached_freelist *df)
3700 struct folio *folio;
3704 folio = virt_to_folio(object);
3706 /* Handle kalloc'ed objects */
3707 if (unlikely(!folio_test_slab(folio))) {
3708 free_large_kmalloc(folio, object);
3712 /* Derive kmem_cache from object */
3713 df->slab = folio_slab(folio);
3714 df->s = df->slab->slab_cache;
3716 df->slab = folio_slab(folio);
3717 df->s = cache_from_obj(s, object); /* Support for memcg */
3720 /* Start new detached freelist */
3722 df->freelist = object;
3725 if (is_kfence_address(object))
3728 set_freepointer(df->s, object, NULL);
3733 /* df->slab is always set at this point */
3734 if (df->slab == virt_to_slab(object)) {
3735 /* Opportunity build freelist */
3736 set_freepointer(df->s, object, df->freelist);
3737 df->freelist = object;
3741 swap(p[size], p[same]);
3745 /* Limit look ahead search */
3753 /* Note that interrupts must be enabled when calling this function. */
3754 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3760 struct detached_freelist df;
3762 size = build_detached_freelist(s, size, p, &df);
3766 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3768 } while (likely(size));
3770 EXPORT_SYMBOL(kmem_cache_free_bulk);
3772 /* Note that interrupts must be enabled when calling this function. */
3773 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3776 struct kmem_cache_cpu *c;
3778 struct obj_cgroup *objcg = NULL;
3780 /* memcg and kmem_cache debug support */
3781 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3785 * Drain objects in the per cpu slab, while disabling local
3786 * IRQs, which protects against PREEMPT and interrupts
3787 * handlers invoking normal fastpath.
3789 c = slub_get_cpu_ptr(s->cpu_slab);
3790 local_lock_irq(&s->cpu_slab->lock);
3792 for (i = 0; i < size; i++) {
3793 void *object = kfence_alloc(s, s->object_size, flags);
3795 if (unlikely(object)) {
3800 object = c->freelist;
3801 if (unlikely(!object)) {
3803 * We may have removed an object from c->freelist using
3804 * the fastpath in the previous iteration; in that case,
3805 * c->tid has not been bumped yet.
3806 * Since ___slab_alloc() may reenable interrupts while
3807 * allocating memory, we should bump c->tid now.
3809 c->tid = next_tid(c->tid);
3811 local_unlock_irq(&s->cpu_slab->lock);
3814 * Invoking slow path likely have side-effect
3815 * of re-populating per CPU c->freelist
3817 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3818 _RET_IP_, c, s->object_size);
3819 if (unlikely(!p[i]))
3822 c = this_cpu_ptr(s->cpu_slab);
3823 maybe_wipe_obj_freeptr(s, p[i]);
3825 local_lock_irq(&s->cpu_slab->lock);
3827 continue; /* goto for-loop */
3829 c->freelist = get_freepointer(s, object);
3831 maybe_wipe_obj_freeptr(s, p[i]);
3833 c->tid = next_tid(c->tid);
3834 local_unlock_irq(&s->cpu_slab->lock);
3835 slub_put_cpu_ptr(s->cpu_slab);
3838 * memcg and kmem_cache debug support and memory initialization.
3839 * Done outside of the IRQ disabled fastpath loop.
3841 slab_post_alloc_hook(s, objcg, flags, size, p,
3842 slab_want_init_on_alloc(flags, s));
3845 slub_put_cpu_ptr(s->cpu_slab);
3846 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3847 kmem_cache_free_bulk(s, i, p);
3850 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3854 * Object placement in a slab is made very easy because we always start at
3855 * offset 0. If we tune the size of the object to the alignment then we can
3856 * get the required alignment by putting one properly sized object after
3859 * Notice that the allocation order determines the sizes of the per cpu
3860 * caches. Each processor has always one slab available for allocations.
3861 * Increasing the allocation order reduces the number of times that slabs
3862 * must be moved on and off the partial lists and is therefore a factor in
3867 * Minimum / Maximum order of slab pages. This influences locking overhead
3868 * and slab fragmentation. A higher order reduces the number of partial slabs
3869 * and increases the number of allocations possible without having to
3870 * take the list_lock.
3872 static unsigned int slub_min_order;
3873 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3874 static unsigned int slub_min_objects;
3877 * Calculate the order of allocation given an slab object size.
3879 * The order of allocation has significant impact on performance and other
3880 * system components. Generally order 0 allocations should be preferred since
3881 * order 0 does not cause fragmentation in the page allocator. Larger objects
3882 * be problematic to put into order 0 slabs because there may be too much
3883 * unused space left. We go to a higher order if more than 1/16th of the slab
3886 * In order to reach satisfactory performance we must ensure that a minimum
3887 * number of objects is in one slab. Otherwise we may generate too much
3888 * activity on the partial lists which requires taking the list_lock. This is
3889 * less a concern for large slabs though which are rarely used.
3891 * slub_max_order specifies the order where we begin to stop considering the
3892 * number of objects in a slab as critical. If we reach slub_max_order then
3893 * we try to keep the page order as low as possible. So we accept more waste
3894 * of space in favor of a small page order.
3896 * Higher order allocations also allow the placement of more objects in a
3897 * slab and thereby reduce object handling overhead. If the user has
3898 * requested a higher minimum order then we start with that one instead of
3899 * the smallest order which will fit the object.
3901 static inline unsigned int calc_slab_order(unsigned int size,
3902 unsigned int min_objects, unsigned int max_order,
3903 unsigned int fract_leftover)
3905 unsigned int min_order = slub_min_order;
3908 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3909 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3911 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3912 order <= max_order; order++) {
3914 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3917 rem = slab_size % size;
3919 if (rem <= slab_size / fract_leftover)
3926 static inline int calculate_order(unsigned int size)
3929 unsigned int min_objects;
3930 unsigned int max_objects;
3931 unsigned int nr_cpus;
3934 * Attempt to find best configuration for a slab. This
3935 * works by first attempting to generate a layout with
3936 * the best configuration and backing off gradually.
3938 * First we increase the acceptable waste in a slab. Then
3939 * we reduce the minimum objects required in a slab.
3941 min_objects = slub_min_objects;
3944 * Some architectures will only update present cpus when
3945 * onlining them, so don't trust the number if it's just 1. But
3946 * we also don't want to use nr_cpu_ids always, as on some other
3947 * architectures, there can be many possible cpus, but never
3948 * onlined. Here we compromise between trying to avoid too high
3949 * order on systems that appear larger than they are, and too
3950 * low order on systems that appear smaller than they are.
3952 nr_cpus = num_present_cpus();
3954 nr_cpus = nr_cpu_ids;
3955 min_objects = 4 * (fls(nr_cpus) + 1);
3957 max_objects = order_objects(slub_max_order, size);
3958 min_objects = min(min_objects, max_objects);
3960 while (min_objects > 1) {
3961 unsigned int fraction;
3964 while (fraction >= 4) {
3965 order = calc_slab_order(size, min_objects,
3966 slub_max_order, fraction);
3967 if (order <= slub_max_order)
3975 * We were unable to place multiple objects in a slab. Now
3976 * lets see if we can place a single object there.
3978 order = calc_slab_order(size, 1, slub_max_order, 1);
3979 if (order <= slub_max_order)
3983 * Doh this slab cannot be placed using slub_max_order.
3985 order = calc_slab_order(size, 1, MAX_ORDER, 1);
3986 if (order < MAX_ORDER)
3992 init_kmem_cache_node(struct kmem_cache_node *n)
3995 spin_lock_init(&n->list_lock);
3996 INIT_LIST_HEAD(&n->partial);
3997 #ifdef CONFIG_SLUB_DEBUG
3998 atomic_long_set(&n->nr_slabs, 0);
3999 atomic_long_set(&n->total_objects, 0);
4000 INIT_LIST_HEAD(&n->full);
4004 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4006 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4007 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4010 * Must align to double word boundary for the double cmpxchg
4011 * instructions to work; see __pcpu_double_call_return_bool().
4013 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4014 2 * sizeof(void *));
4019 init_kmem_cache_cpus(s);
4024 static struct kmem_cache *kmem_cache_node;
4027 * No kmalloc_node yet so do it by hand. We know that this is the first
4028 * slab on the node for this slabcache. There are no concurrent accesses
4031 * Note that this function only works on the kmem_cache_node
4032 * when allocating for the kmem_cache_node. This is used for bootstrapping
4033 * memory on a fresh node that has no slab structures yet.
4035 static void early_kmem_cache_node_alloc(int node)
4038 struct kmem_cache_node *n;
4040 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4042 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4045 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4046 if (slab_nid(slab) != node) {
4047 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4048 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4053 #ifdef CONFIG_SLUB_DEBUG
4054 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4055 init_tracking(kmem_cache_node, n);
4057 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4058 slab->freelist = get_freepointer(kmem_cache_node, n);
4060 kmem_cache_node->node[node] = n;
4061 init_kmem_cache_node(n);
4062 inc_slabs_node(kmem_cache_node, node, slab->objects);
4065 * No locks need to be taken here as it has just been
4066 * initialized and there is no concurrent access.
4068 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4071 static void free_kmem_cache_nodes(struct kmem_cache *s)
4074 struct kmem_cache_node *n;
4076 for_each_kmem_cache_node(s, node, n) {
4077 s->node[node] = NULL;
4078 kmem_cache_free(kmem_cache_node, n);
4082 void __kmem_cache_release(struct kmem_cache *s)
4084 cache_random_seq_destroy(s);
4085 free_percpu(s->cpu_slab);
4086 free_kmem_cache_nodes(s);
4089 static int init_kmem_cache_nodes(struct kmem_cache *s)
4093 for_each_node_mask(node, slab_nodes) {
4094 struct kmem_cache_node *n;
4096 if (slab_state == DOWN) {
4097 early_kmem_cache_node_alloc(node);
4100 n = kmem_cache_alloc_node(kmem_cache_node,
4104 free_kmem_cache_nodes(s);
4108 init_kmem_cache_node(n);
4114 static void set_cpu_partial(struct kmem_cache *s)
4116 #ifdef CONFIG_SLUB_CPU_PARTIAL
4117 unsigned int nr_objects;
4120 * cpu_partial determined the maximum number of objects kept in the
4121 * per cpu partial lists of a processor.
4123 * Per cpu partial lists mainly contain slabs that just have one
4124 * object freed. If they are used for allocation then they can be
4125 * filled up again with minimal effort. The slab will never hit the
4126 * per node partial lists and therefore no locking will be required.
4128 * For backwards compatibility reasons, this is determined as number
4129 * of objects, even though we now limit maximum number of pages, see
4130 * slub_set_cpu_partial()
4132 if (!kmem_cache_has_cpu_partial(s))
4134 else if (s->size >= PAGE_SIZE)
4136 else if (s->size >= 1024)
4138 else if (s->size >= 256)
4143 slub_set_cpu_partial(s, nr_objects);
4148 * calculate_sizes() determines the order and the distribution of data within
4151 static int calculate_sizes(struct kmem_cache *s)
4153 slab_flags_t flags = s->flags;
4154 unsigned int size = s->object_size;
4158 * Round up object size to the next word boundary. We can only
4159 * place the free pointer at word boundaries and this determines
4160 * the possible location of the free pointer.
4162 size = ALIGN(size, sizeof(void *));
4164 #ifdef CONFIG_SLUB_DEBUG
4166 * Determine if we can poison the object itself. If the user of
4167 * the slab may touch the object after free or before allocation
4168 * then we should never poison the object itself.
4170 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4172 s->flags |= __OBJECT_POISON;
4174 s->flags &= ~__OBJECT_POISON;
4178 * If we are Redzoning then check if there is some space between the
4179 * end of the object and the free pointer. If not then add an
4180 * additional word to have some bytes to store Redzone information.
4182 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4183 size += sizeof(void *);
4187 * With that we have determined the number of bytes in actual use
4188 * by the object and redzoning.
4192 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4193 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4196 * Relocate free pointer after the object if it is not
4197 * permitted to overwrite the first word of the object on
4200 * This is the case if we do RCU, have a constructor or
4201 * destructor, are poisoning the objects, or are
4202 * redzoning an object smaller than sizeof(void *).
4204 * The assumption that s->offset >= s->inuse means free
4205 * pointer is outside of the object is used in the
4206 * freeptr_outside_object() function. If that is no
4207 * longer true, the function needs to be modified.
4210 size += sizeof(void *);
4213 * Store freelist pointer near middle of object to keep
4214 * it away from the edges of the object to avoid small
4215 * sized over/underflows from neighboring allocations.
4217 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4220 #ifdef CONFIG_SLUB_DEBUG
4221 if (flags & SLAB_STORE_USER) {
4223 * Need to store information about allocs and frees after
4226 size += 2 * sizeof(struct track);
4228 /* Save the original kmalloc request size */
4229 if (flags & SLAB_KMALLOC)
4230 size += sizeof(unsigned int);
4234 kasan_cache_create(s, &size, &s->flags);
4235 #ifdef CONFIG_SLUB_DEBUG
4236 if (flags & SLAB_RED_ZONE) {
4238 * Add some empty padding so that we can catch
4239 * overwrites from earlier objects rather than let
4240 * tracking information or the free pointer be
4241 * corrupted if a user writes before the start
4244 size += sizeof(void *);
4246 s->red_left_pad = sizeof(void *);
4247 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4248 size += s->red_left_pad;
4253 * SLUB stores one object immediately after another beginning from
4254 * offset 0. In order to align the objects we have to simply size
4255 * each object to conform to the alignment.
4257 size = ALIGN(size, s->align);
4259 s->reciprocal_size = reciprocal_value(size);
4260 order = calculate_order(size);
4267 s->allocflags |= __GFP_COMP;
4269 if (s->flags & SLAB_CACHE_DMA)
4270 s->allocflags |= GFP_DMA;
4272 if (s->flags & SLAB_CACHE_DMA32)
4273 s->allocflags |= GFP_DMA32;
4275 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4276 s->allocflags |= __GFP_RECLAIMABLE;
4279 * Determine the number of objects per slab
4281 s->oo = oo_make(order, size);
4282 s->min = oo_make(get_order(size), size);
4284 return !!oo_objects(s->oo);
4287 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4289 s->flags = kmem_cache_flags(s->size, flags, s->name);
4290 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4291 s->random = get_random_long();
4294 if (!calculate_sizes(s))
4296 if (disable_higher_order_debug) {
4298 * Disable debugging flags that store metadata if the min slab
4301 if (get_order(s->size) > get_order(s->object_size)) {
4302 s->flags &= ~DEBUG_METADATA_FLAGS;
4304 if (!calculate_sizes(s))
4309 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4310 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4311 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4312 /* Enable fast mode */
4313 s->flags |= __CMPXCHG_DOUBLE;
4317 * The larger the object size is, the more slabs we want on the partial
4318 * list to avoid pounding the page allocator excessively.
4320 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4321 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4326 s->remote_node_defrag_ratio = 1000;
4329 /* Initialize the pre-computed randomized freelist if slab is up */
4330 if (slab_state >= UP) {
4331 if (init_cache_random_seq(s))
4335 if (!init_kmem_cache_nodes(s))
4338 if (alloc_kmem_cache_cpus(s))
4342 __kmem_cache_release(s);
4346 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4349 #ifdef CONFIG_SLUB_DEBUG
4350 void *addr = slab_address(slab);
4353 slab_err(s, slab, text, s->name);
4355 spin_lock(&object_map_lock);
4356 __fill_map(object_map, s, slab);
4358 for_each_object(p, s, addr, slab->objects) {
4360 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4361 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4362 print_tracking(s, p);
4365 spin_unlock(&object_map_lock);
4370 * Attempt to free all partial slabs on a node.
4371 * This is called from __kmem_cache_shutdown(). We must take list_lock
4372 * because sysfs file might still access partial list after the shutdowning.
4374 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4377 struct slab *slab, *h;
4379 BUG_ON(irqs_disabled());
4380 spin_lock_irq(&n->list_lock);
4381 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4383 remove_partial(n, slab);
4384 list_add(&slab->slab_list, &discard);
4386 list_slab_objects(s, slab,
4387 "Objects remaining in %s on __kmem_cache_shutdown()");
4390 spin_unlock_irq(&n->list_lock);
4392 list_for_each_entry_safe(slab, h, &discard, slab_list)
4393 discard_slab(s, slab);
4396 bool __kmem_cache_empty(struct kmem_cache *s)
4399 struct kmem_cache_node *n;
4401 for_each_kmem_cache_node(s, node, n)
4402 if (n->nr_partial || slabs_node(s, node))
4408 * Release all resources used by a slab cache.
4410 int __kmem_cache_shutdown(struct kmem_cache *s)
4413 struct kmem_cache_node *n;
4415 flush_all_cpus_locked(s);
4416 /* Attempt to free all objects */
4417 for_each_kmem_cache_node(s, node, n) {
4419 if (n->nr_partial || slabs_node(s, node))
4425 #ifdef CONFIG_PRINTK
4426 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4429 int __maybe_unused i;
4433 struct kmem_cache *s = slab->slab_cache;
4434 struct track __maybe_unused *trackp;
4436 kpp->kp_ptr = object;
4437 kpp->kp_slab = slab;
4438 kpp->kp_slab_cache = s;
4439 base = slab_address(slab);
4440 objp0 = kasan_reset_tag(object);
4441 #ifdef CONFIG_SLUB_DEBUG
4442 objp = restore_red_left(s, objp0);
4446 objnr = obj_to_index(s, slab, objp);
4447 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4448 objp = base + s->size * objnr;
4449 kpp->kp_objp = objp;
4450 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4451 || (objp - base) % s->size) ||
4452 !(s->flags & SLAB_STORE_USER))
4454 #ifdef CONFIG_SLUB_DEBUG
4455 objp = fixup_red_left(s, objp);
4456 trackp = get_track(s, objp, TRACK_ALLOC);
4457 kpp->kp_ret = (void *)trackp->addr;
4458 #ifdef CONFIG_STACKDEPOT
4460 depot_stack_handle_t handle;
4461 unsigned long *entries;
4462 unsigned int nr_entries;
4464 handle = READ_ONCE(trackp->handle);
4466 nr_entries = stack_depot_fetch(handle, &entries);
4467 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4468 kpp->kp_stack[i] = (void *)entries[i];
4471 trackp = get_track(s, objp, TRACK_FREE);
4472 handle = READ_ONCE(trackp->handle);
4474 nr_entries = stack_depot_fetch(handle, &entries);
4475 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4476 kpp->kp_free_stack[i] = (void *)entries[i];
4484 /********************************************************************
4486 *******************************************************************/
4488 static int __init setup_slub_min_order(char *str)
4490 get_option(&str, (int *)&slub_min_order);
4495 __setup("slub_min_order=", setup_slub_min_order);
4497 static int __init setup_slub_max_order(char *str)
4499 get_option(&str, (int *)&slub_max_order);
4500 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4505 __setup("slub_max_order=", setup_slub_max_order);
4507 static int __init setup_slub_min_objects(char *str)
4509 get_option(&str, (int *)&slub_min_objects);
4514 __setup("slub_min_objects=", setup_slub_min_objects);
4516 #ifdef CONFIG_HARDENED_USERCOPY
4518 * Rejects incorrectly sized objects and objects that are to be copied
4519 * to/from userspace but do not fall entirely within the containing slab
4520 * cache's usercopy region.
4522 * Returns NULL if check passes, otherwise const char * to name of cache
4523 * to indicate an error.
4525 void __check_heap_object(const void *ptr, unsigned long n,
4526 const struct slab *slab, bool to_user)
4528 struct kmem_cache *s;
4529 unsigned int offset;
4530 bool is_kfence = is_kfence_address(ptr);
4532 ptr = kasan_reset_tag(ptr);
4534 /* Find object and usable object size. */
4535 s = slab->slab_cache;
4537 /* Reject impossible pointers. */
4538 if (ptr < slab_address(slab))
4539 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4542 /* Find offset within object. */
4544 offset = ptr - kfence_object_start(ptr);
4546 offset = (ptr - slab_address(slab)) % s->size;
4548 /* Adjust for redzone and reject if within the redzone. */
4549 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4550 if (offset < s->red_left_pad)
4551 usercopy_abort("SLUB object in left red zone",
4552 s->name, to_user, offset, n);
4553 offset -= s->red_left_pad;
4556 /* Allow address range falling entirely within usercopy region. */
4557 if (offset >= s->useroffset &&
4558 offset - s->useroffset <= s->usersize &&
4559 n <= s->useroffset - offset + s->usersize)
4562 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4564 #endif /* CONFIG_HARDENED_USERCOPY */
4566 #define SHRINK_PROMOTE_MAX 32
4569 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4570 * up most to the head of the partial lists. New allocations will then
4571 * fill those up and thus they can be removed from the partial lists.
4573 * The slabs with the least items are placed last. This results in them
4574 * being allocated from last increasing the chance that the last objects
4575 * are freed in them.
4577 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4581 struct kmem_cache_node *n;
4584 struct list_head discard;
4585 struct list_head promote[SHRINK_PROMOTE_MAX];
4586 unsigned long flags;
4589 for_each_kmem_cache_node(s, node, n) {
4590 INIT_LIST_HEAD(&discard);
4591 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4592 INIT_LIST_HEAD(promote + i);
4594 spin_lock_irqsave(&n->list_lock, flags);
4597 * Build lists of slabs to discard or promote.
4599 * Note that concurrent frees may occur while we hold the
4600 * list_lock. slab->inuse here is the upper limit.
4602 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4603 int free = slab->objects - slab->inuse;
4605 /* Do not reread slab->inuse */
4608 /* We do not keep full slabs on the list */
4611 if (free == slab->objects) {
4612 list_move(&slab->slab_list, &discard);
4614 dec_slabs_node(s, node, slab->objects);
4615 } else if (free <= SHRINK_PROMOTE_MAX)
4616 list_move(&slab->slab_list, promote + free - 1);
4620 * Promote the slabs filled up most to the head of the
4623 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4624 list_splice(promote + i, &n->partial);
4626 spin_unlock_irqrestore(&n->list_lock, flags);
4628 /* Release empty slabs */
4629 list_for_each_entry_safe(slab, t, &discard, slab_list)
4632 if (slabs_node(s, node))
4639 int __kmem_cache_shrink(struct kmem_cache *s)
4642 return __kmem_cache_do_shrink(s);
4645 static int slab_mem_going_offline_callback(void *arg)
4647 struct kmem_cache *s;
4649 mutex_lock(&slab_mutex);
4650 list_for_each_entry(s, &slab_caches, list) {
4651 flush_all_cpus_locked(s);
4652 __kmem_cache_do_shrink(s);
4654 mutex_unlock(&slab_mutex);
4659 static void slab_mem_offline_callback(void *arg)
4661 struct memory_notify *marg = arg;
4664 offline_node = marg->status_change_nid_normal;
4667 * If the node still has available memory. we need kmem_cache_node
4670 if (offline_node < 0)
4673 mutex_lock(&slab_mutex);
4674 node_clear(offline_node, slab_nodes);
4676 * We no longer free kmem_cache_node structures here, as it would be
4677 * racy with all get_node() users, and infeasible to protect them with
4680 mutex_unlock(&slab_mutex);
4683 static int slab_mem_going_online_callback(void *arg)
4685 struct kmem_cache_node *n;
4686 struct kmem_cache *s;
4687 struct memory_notify *marg = arg;
4688 int nid = marg->status_change_nid_normal;
4692 * If the node's memory is already available, then kmem_cache_node is
4693 * already created. Nothing to do.
4699 * We are bringing a node online. No memory is available yet. We must
4700 * allocate a kmem_cache_node structure in order to bring the node
4703 mutex_lock(&slab_mutex);
4704 list_for_each_entry(s, &slab_caches, list) {
4706 * The structure may already exist if the node was previously
4707 * onlined and offlined.
4709 if (get_node(s, nid))
4712 * XXX: kmem_cache_alloc_node will fallback to other nodes
4713 * since memory is not yet available from the node that
4716 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4721 init_kmem_cache_node(n);
4725 * Any cache created after this point will also have kmem_cache_node
4726 * initialized for the new node.
4728 node_set(nid, slab_nodes);
4730 mutex_unlock(&slab_mutex);
4734 static int slab_memory_callback(struct notifier_block *self,
4735 unsigned long action, void *arg)
4740 case MEM_GOING_ONLINE:
4741 ret = slab_mem_going_online_callback(arg);
4743 case MEM_GOING_OFFLINE:
4744 ret = slab_mem_going_offline_callback(arg);
4747 case MEM_CANCEL_ONLINE:
4748 slab_mem_offline_callback(arg);
4751 case MEM_CANCEL_OFFLINE:
4755 ret = notifier_from_errno(ret);
4761 static struct notifier_block slab_memory_callback_nb = {
4762 .notifier_call = slab_memory_callback,
4763 .priority = SLAB_CALLBACK_PRI,
4766 /********************************************************************
4767 * Basic setup of slabs
4768 *******************************************************************/
4771 * Used for early kmem_cache structures that were allocated using
4772 * the page allocator. Allocate them properly then fix up the pointers
4773 * that may be pointing to the wrong kmem_cache structure.
4776 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4779 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4780 struct kmem_cache_node *n;
4782 memcpy(s, static_cache, kmem_cache->object_size);
4785 * This runs very early, and only the boot processor is supposed to be
4786 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4789 __flush_cpu_slab(s, smp_processor_id());
4790 for_each_kmem_cache_node(s, node, n) {
4793 list_for_each_entry(p, &n->partial, slab_list)
4796 #ifdef CONFIG_SLUB_DEBUG
4797 list_for_each_entry(p, &n->full, slab_list)
4801 list_add(&s->list, &slab_caches);
4805 void __init kmem_cache_init(void)
4807 static __initdata struct kmem_cache boot_kmem_cache,
4808 boot_kmem_cache_node;
4811 if (debug_guardpage_minorder())
4814 /* Print slub debugging pointers without hashing */
4815 if (__slub_debug_enabled())
4816 no_hash_pointers_enable(NULL);
4818 kmem_cache_node = &boot_kmem_cache_node;
4819 kmem_cache = &boot_kmem_cache;
4822 * Initialize the nodemask for which we will allocate per node
4823 * structures. Here we don't need taking slab_mutex yet.
4825 for_each_node_state(node, N_NORMAL_MEMORY)
4826 node_set(node, slab_nodes);
4828 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4829 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4831 register_hotmemory_notifier(&slab_memory_callback_nb);
4833 /* Able to allocate the per node structures */
4834 slab_state = PARTIAL;
4836 create_boot_cache(kmem_cache, "kmem_cache",
4837 offsetof(struct kmem_cache, node) +
4838 nr_node_ids * sizeof(struct kmem_cache_node *),
4839 SLAB_HWCACHE_ALIGN, 0, 0);
4841 kmem_cache = bootstrap(&boot_kmem_cache);
4842 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4844 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4845 setup_kmalloc_cache_index_table();
4846 create_kmalloc_caches(0);
4848 /* Setup random freelists for each cache */
4849 init_freelist_randomization();
4851 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4854 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4856 slub_min_order, slub_max_order, slub_min_objects,
4857 nr_cpu_ids, nr_node_ids);
4860 void __init kmem_cache_init_late(void)
4862 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4867 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4868 slab_flags_t flags, void (*ctor)(void *))
4870 struct kmem_cache *s;
4872 s = find_mergeable(size, align, flags, name, ctor);
4874 if (sysfs_slab_alias(s, name))
4880 * Adjust the object sizes so that we clear
4881 * the complete object on kzalloc.
4883 s->object_size = max(s->object_size, size);
4884 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4890 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4894 err = kmem_cache_open(s, flags);
4898 /* Mutex is not taken during early boot */
4899 if (slab_state <= UP)
4902 err = sysfs_slab_add(s);
4904 __kmem_cache_release(s);
4908 if (s->flags & SLAB_STORE_USER)
4909 debugfs_slab_add(s);
4915 static int count_inuse(struct slab *slab)
4920 static int count_total(struct slab *slab)
4922 return slab->objects;
4926 #ifdef CONFIG_SLUB_DEBUG
4927 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4928 unsigned long *obj_map)
4931 void *addr = slab_address(slab);
4933 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4936 /* Now we know that a valid freelist exists */
4937 __fill_map(obj_map, s, slab);
4938 for_each_object(p, s, addr, slab->objects) {
4939 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4940 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4942 if (!check_object(s, slab, p, val))
4947 static int validate_slab_node(struct kmem_cache *s,
4948 struct kmem_cache_node *n, unsigned long *obj_map)
4950 unsigned long count = 0;
4952 unsigned long flags;
4954 spin_lock_irqsave(&n->list_lock, flags);
4956 list_for_each_entry(slab, &n->partial, slab_list) {
4957 validate_slab(s, slab, obj_map);
4960 if (count != n->nr_partial) {
4961 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4962 s->name, count, n->nr_partial);
4963 slab_add_kunit_errors();
4966 if (!(s->flags & SLAB_STORE_USER))
4969 list_for_each_entry(slab, &n->full, slab_list) {
4970 validate_slab(s, slab, obj_map);
4973 if (count != atomic_long_read(&n->nr_slabs)) {
4974 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4975 s->name, count, atomic_long_read(&n->nr_slabs));
4976 slab_add_kunit_errors();
4980 spin_unlock_irqrestore(&n->list_lock, flags);
4984 long validate_slab_cache(struct kmem_cache *s)
4987 unsigned long count = 0;
4988 struct kmem_cache_node *n;
4989 unsigned long *obj_map;
4991 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4996 for_each_kmem_cache_node(s, node, n)
4997 count += validate_slab_node(s, n, obj_map);
4999 bitmap_free(obj_map);
5003 EXPORT_SYMBOL(validate_slab_cache);
5005 #ifdef CONFIG_DEBUG_FS
5007 * Generate lists of code addresses where slabcache objects are allocated
5012 depot_stack_handle_t handle;
5013 unsigned long count;
5015 unsigned long waste;
5021 DECLARE_BITMAP(cpus, NR_CPUS);
5027 unsigned long count;
5028 struct location *loc;
5032 static struct dentry *slab_debugfs_root;
5034 static void free_loc_track(struct loc_track *t)
5037 free_pages((unsigned long)t->loc,
5038 get_order(sizeof(struct location) * t->max));
5041 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5046 order = get_order(sizeof(struct location) * max);
5048 l = (void *)__get_free_pages(flags, order);
5053 memcpy(l, t->loc, sizeof(struct location) * t->count);
5061 static int add_location(struct loc_track *t, struct kmem_cache *s,
5062 const struct track *track,
5063 unsigned int orig_size)
5065 long start, end, pos;
5067 unsigned long caddr, chandle, cwaste;
5068 unsigned long age = jiffies - track->when;
5069 depot_stack_handle_t handle = 0;
5070 unsigned int waste = s->object_size - orig_size;
5072 #ifdef CONFIG_STACKDEPOT
5073 handle = READ_ONCE(track->handle);
5079 pos = start + (end - start + 1) / 2;
5082 * There is nothing at "end". If we end up there
5083 * we need to add something to before end.
5090 chandle = l->handle;
5092 if ((track->addr == caddr) && (handle == chandle) &&
5093 (waste == cwaste)) {
5098 if (age < l->min_time)
5100 if (age > l->max_time)
5103 if (track->pid < l->min_pid)
5104 l->min_pid = track->pid;
5105 if (track->pid > l->max_pid)
5106 l->max_pid = track->pid;
5108 cpumask_set_cpu(track->cpu,
5109 to_cpumask(l->cpus));
5111 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5115 if (track->addr < caddr)
5117 else if (track->addr == caddr && handle < chandle)
5119 else if (track->addr == caddr && handle == chandle &&
5127 * Not found. Insert new tracking element.
5129 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5135 (t->count - pos) * sizeof(struct location));
5138 l->addr = track->addr;
5142 l->min_pid = track->pid;
5143 l->max_pid = track->pid;
5146 cpumask_clear(to_cpumask(l->cpus));
5147 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5148 nodes_clear(l->nodes);
5149 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5153 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5154 struct slab *slab, enum track_item alloc,
5155 unsigned long *obj_map)
5157 void *addr = slab_address(slab);
5158 bool is_alloc = (alloc == TRACK_ALLOC);
5161 __fill_map(obj_map, s, slab);
5163 for_each_object(p, s, addr, slab->objects)
5164 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5165 add_location(t, s, get_track(s, p, alloc),
5166 is_alloc ? get_orig_size(s, p) :
5169 #endif /* CONFIG_DEBUG_FS */
5170 #endif /* CONFIG_SLUB_DEBUG */
5173 enum slab_stat_type {
5174 SL_ALL, /* All slabs */
5175 SL_PARTIAL, /* Only partially allocated slabs */
5176 SL_CPU, /* Only slabs used for cpu caches */
5177 SL_OBJECTS, /* Determine allocated objects not slabs */
5178 SL_TOTAL /* Determine object capacity not slabs */
5181 #define SO_ALL (1 << SL_ALL)
5182 #define SO_PARTIAL (1 << SL_PARTIAL)
5183 #define SO_CPU (1 << SL_CPU)
5184 #define SO_OBJECTS (1 << SL_OBJECTS)
5185 #define SO_TOTAL (1 << SL_TOTAL)
5187 static ssize_t show_slab_objects(struct kmem_cache *s,
5188 char *buf, unsigned long flags)
5190 unsigned long total = 0;
5193 unsigned long *nodes;
5196 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5200 if (flags & SO_CPU) {
5203 for_each_possible_cpu(cpu) {
5204 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5209 slab = READ_ONCE(c->slab);
5213 node = slab_nid(slab);
5214 if (flags & SO_TOTAL)
5216 else if (flags & SO_OBJECTS)
5224 #ifdef CONFIG_SLUB_CPU_PARTIAL
5225 slab = slub_percpu_partial_read_once(c);
5227 node = slab_nid(slab);
5228 if (flags & SO_TOTAL)
5230 else if (flags & SO_OBJECTS)
5242 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5243 * already held which will conflict with an existing lock order:
5245 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5247 * We don't really need mem_hotplug_lock (to hold off
5248 * slab_mem_going_offline_callback) here because slab's memory hot
5249 * unplug code doesn't destroy the kmem_cache->node[] data.
5252 #ifdef CONFIG_SLUB_DEBUG
5253 if (flags & SO_ALL) {
5254 struct kmem_cache_node *n;
5256 for_each_kmem_cache_node(s, node, n) {
5258 if (flags & SO_TOTAL)
5259 x = atomic_long_read(&n->total_objects);
5260 else if (flags & SO_OBJECTS)
5261 x = atomic_long_read(&n->total_objects) -
5262 count_partial(n, count_free);
5264 x = atomic_long_read(&n->nr_slabs);
5271 if (flags & SO_PARTIAL) {
5272 struct kmem_cache_node *n;
5274 for_each_kmem_cache_node(s, node, n) {
5275 if (flags & SO_TOTAL)
5276 x = count_partial(n, count_total);
5277 else if (flags & SO_OBJECTS)
5278 x = count_partial(n, count_inuse);
5286 len += sysfs_emit_at(buf, len, "%lu", total);
5288 for (node = 0; node < nr_node_ids; node++) {
5290 len += sysfs_emit_at(buf, len, " N%d=%lu",
5294 len += sysfs_emit_at(buf, len, "\n");
5300 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5301 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5303 struct slab_attribute {
5304 struct attribute attr;
5305 ssize_t (*show)(struct kmem_cache *s, char *buf);
5306 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5309 #define SLAB_ATTR_RO(_name) \
5310 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5312 #define SLAB_ATTR(_name) \
5313 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5315 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5317 return sysfs_emit(buf, "%u\n", s->size);
5319 SLAB_ATTR_RO(slab_size);
5321 static ssize_t align_show(struct kmem_cache *s, char *buf)
5323 return sysfs_emit(buf, "%u\n", s->align);
5325 SLAB_ATTR_RO(align);
5327 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5329 return sysfs_emit(buf, "%u\n", s->object_size);
5331 SLAB_ATTR_RO(object_size);
5333 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5335 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5337 SLAB_ATTR_RO(objs_per_slab);
5339 static ssize_t order_show(struct kmem_cache *s, char *buf)
5341 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5343 SLAB_ATTR_RO(order);
5345 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5347 return sysfs_emit(buf, "%lu\n", s->min_partial);
5350 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5356 err = kstrtoul(buf, 10, &min);
5360 s->min_partial = min;
5363 SLAB_ATTR(min_partial);
5365 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5367 unsigned int nr_partial = 0;
5368 #ifdef CONFIG_SLUB_CPU_PARTIAL
5369 nr_partial = s->cpu_partial;
5372 return sysfs_emit(buf, "%u\n", nr_partial);
5375 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5378 unsigned int objects;
5381 err = kstrtouint(buf, 10, &objects);
5384 if (objects && !kmem_cache_has_cpu_partial(s))
5387 slub_set_cpu_partial(s, objects);
5391 SLAB_ATTR(cpu_partial);
5393 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5397 return sysfs_emit(buf, "%pS\n", s->ctor);
5401 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5403 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5405 SLAB_ATTR_RO(aliases);
5407 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5409 return show_slab_objects(s, buf, SO_PARTIAL);
5411 SLAB_ATTR_RO(partial);
5413 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5415 return show_slab_objects(s, buf, SO_CPU);
5417 SLAB_ATTR_RO(cpu_slabs);
5419 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5421 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5423 SLAB_ATTR_RO(objects);
5425 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5427 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5429 SLAB_ATTR_RO(objects_partial);
5431 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5435 int cpu __maybe_unused;
5438 #ifdef CONFIG_SLUB_CPU_PARTIAL
5439 for_each_online_cpu(cpu) {
5442 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5445 slabs += slab->slabs;
5449 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5450 objects = (slabs * oo_objects(s->oo)) / 2;
5451 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5453 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5454 for_each_online_cpu(cpu) {
5457 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5459 slabs = READ_ONCE(slab->slabs);
5460 objects = (slabs * oo_objects(s->oo)) / 2;
5461 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5462 cpu, objects, slabs);
5466 len += sysfs_emit_at(buf, len, "\n");
5470 SLAB_ATTR_RO(slabs_cpu_partial);
5472 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5474 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5476 SLAB_ATTR_RO(reclaim_account);
5478 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5480 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5482 SLAB_ATTR_RO(hwcache_align);
5484 #ifdef CONFIG_ZONE_DMA
5485 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5487 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5489 SLAB_ATTR_RO(cache_dma);
5492 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5494 return sysfs_emit(buf, "%u\n", s->usersize);
5496 SLAB_ATTR_RO(usersize);
5498 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5500 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5502 SLAB_ATTR_RO(destroy_by_rcu);
5504 #ifdef CONFIG_SLUB_DEBUG
5505 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5507 return show_slab_objects(s, buf, SO_ALL);
5509 SLAB_ATTR_RO(slabs);
5511 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5513 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5515 SLAB_ATTR_RO(total_objects);
5517 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5519 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5521 SLAB_ATTR_RO(sanity_checks);
5523 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5525 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5527 SLAB_ATTR_RO(trace);
5529 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5531 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5534 SLAB_ATTR_RO(red_zone);
5536 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5538 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5541 SLAB_ATTR_RO(poison);
5543 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5545 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5548 SLAB_ATTR_RO(store_user);
5550 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5555 static ssize_t validate_store(struct kmem_cache *s,
5556 const char *buf, size_t length)
5560 if (buf[0] == '1' && kmem_cache_debug(s)) {
5561 ret = validate_slab_cache(s);
5567 SLAB_ATTR(validate);
5569 #endif /* CONFIG_SLUB_DEBUG */
5571 #ifdef CONFIG_FAILSLAB
5572 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5574 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5576 SLAB_ATTR_RO(failslab);
5579 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5584 static ssize_t shrink_store(struct kmem_cache *s,
5585 const char *buf, size_t length)
5588 kmem_cache_shrink(s);
5596 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5598 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5601 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5602 const char *buf, size_t length)
5607 err = kstrtouint(buf, 10, &ratio);
5613 s->remote_node_defrag_ratio = ratio * 10;
5617 SLAB_ATTR(remote_node_defrag_ratio);
5620 #ifdef CONFIG_SLUB_STATS
5621 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5623 unsigned long sum = 0;
5626 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5631 for_each_online_cpu(cpu) {
5632 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5638 len += sysfs_emit_at(buf, len, "%lu", sum);
5641 for_each_online_cpu(cpu) {
5643 len += sysfs_emit_at(buf, len, " C%d=%u",
5648 len += sysfs_emit_at(buf, len, "\n");
5653 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5657 for_each_online_cpu(cpu)
5658 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5661 #define STAT_ATTR(si, text) \
5662 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5664 return show_stat(s, buf, si); \
5666 static ssize_t text##_store(struct kmem_cache *s, \
5667 const char *buf, size_t length) \
5669 if (buf[0] != '0') \
5671 clear_stat(s, si); \
5676 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5677 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5678 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5679 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5680 STAT_ATTR(FREE_FROZEN, free_frozen);
5681 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5682 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5683 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5684 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5685 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5686 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5687 STAT_ATTR(FREE_SLAB, free_slab);
5688 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5689 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5690 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5691 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5692 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5693 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5694 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5695 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5696 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5697 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5698 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5699 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5700 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5701 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5702 #endif /* CONFIG_SLUB_STATS */
5704 static struct attribute *slab_attrs[] = {
5705 &slab_size_attr.attr,
5706 &object_size_attr.attr,
5707 &objs_per_slab_attr.attr,
5709 &min_partial_attr.attr,
5710 &cpu_partial_attr.attr,
5712 &objects_partial_attr.attr,
5714 &cpu_slabs_attr.attr,
5718 &hwcache_align_attr.attr,
5719 &reclaim_account_attr.attr,
5720 &destroy_by_rcu_attr.attr,
5722 &slabs_cpu_partial_attr.attr,
5723 #ifdef CONFIG_SLUB_DEBUG
5724 &total_objects_attr.attr,
5726 &sanity_checks_attr.attr,
5728 &red_zone_attr.attr,
5730 &store_user_attr.attr,
5731 &validate_attr.attr,
5733 #ifdef CONFIG_ZONE_DMA
5734 &cache_dma_attr.attr,
5737 &remote_node_defrag_ratio_attr.attr,
5739 #ifdef CONFIG_SLUB_STATS
5740 &alloc_fastpath_attr.attr,
5741 &alloc_slowpath_attr.attr,
5742 &free_fastpath_attr.attr,
5743 &free_slowpath_attr.attr,
5744 &free_frozen_attr.attr,
5745 &free_add_partial_attr.attr,
5746 &free_remove_partial_attr.attr,
5747 &alloc_from_partial_attr.attr,
5748 &alloc_slab_attr.attr,
5749 &alloc_refill_attr.attr,
5750 &alloc_node_mismatch_attr.attr,
5751 &free_slab_attr.attr,
5752 &cpuslab_flush_attr.attr,
5753 &deactivate_full_attr.attr,
5754 &deactivate_empty_attr.attr,
5755 &deactivate_to_head_attr.attr,
5756 &deactivate_to_tail_attr.attr,
5757 &deactivate_remote_frees_attr.attr,
5758 &deactivate_bypass_attr.attr,
5759 &order_fallback_attr.attr,
5760 &cmpxchg_double_fail_attr.attr,
5761 &cmpxchg_double_cpu_fail_attr.attr,
5762 &cpu_partial_alloc_attr.attr,
5763 &cpu_partial_free_attr.attr,
5764 &cpu_partial_node_attr.attr,
5765 &cpu_partial_drain_attr.attr,
5767 #ifdef CONFIG_FAILSLAB
5768 &failslab_attr.attr,
5770 &usersize_attr.attr,
5775 static const struct attribute_group slab_attr_group = {
5776 .attrs = slab_attrs,
5779 static ssize_t slab_attr_show(struct kobject *kobj,
5780 struct attribute *attr,
5783 struct slab_attribute *attribute;
5784 struct kmem_cache *s;
5786 attribute = to_slab_attr(attr);
5789 if (!attribute->show)
5792 return attribute->show(s, buf);
5795 static ssize_t slab_attr_store(struct kobject *kobj,
5796 struct attribute *attr,
5797 const char *buf, size_t len)
5799 struct slab_attribute *attribute;
5800 struct kmem_cache *s;
5802 attribute = to_slab_attr(attr);
5805 if (!attribute->store)
5808 return attribute->store(s, buf, len);
5811 static void kmem_cache_release(struct kobject *k)
5813 slab_kmem_cache_release(to_slab(k));
5816 static const struct sysfs_ops slab_sysfs_ops = {
5817 .show = slab_attr_show,
5818 .store = slab_attr_store,
5821 static struct kobj_type slab_ktype = {
5822 .sysfs_ops = &slab_sysfs_ops,
5823 .release = kmem_cache_release,
5826 static struct kset *slab_kset;
5828 static inline struct kset *cache_kset(struct kmem_cache *s)
5833 #define ID_STR_LENGTH 32
5835 /* Create a unique string id for a slab cache:
5837 * Format :[flags-]size
5839 static char *create_unique_id(struct kmem_cache *s)
5841 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5845 return ERR_PTR(-ENOMEM);
5849 * First flags affecting slabcache operations. We will only
5850 * get here for aliasable slabs so we do not need to support
5851 * too many flags. The flags here must cover all flags that
5852 * are matched during merging to guarantee that the id is
5855 if (s->flags & SLAB_CACHE_DMA)
5857 if (s->flags & SLAB_CACHE_DMA32)
5859 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5861 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5863 if (s->flags & SLAB_ACCOUNT)
5867 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
5869 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
5871 return ERR_PTR(-EINVAL);
5876 static int sysfs_slab_add(struct kmem_cache *s)
5880 struct kset *kset = cache_kset(s);
5881 int unmergeable = slab_unmergeable(s);
5884 kobject_init(&s->kobj, &slab_ktype);
5888 if (!unmergeable && disable_higher_order_debug &&
5889 (slub_debug & DEBUG_METADATA_FLAGS))
5894 * Slabcache can never be merged so we can use the name proper.
5895 * This is typically the case for debug situations. In that
5896 * case we can catch duplicate names easily.
5898 sysfs_remove_link(&slab_kset->kobj, s->name);
5902 * Create a unique name for the slab as a target
5905 name = create_unique_id(s);
5907 return PTR_ERR(name);
5910 s->kobj.kset = kset;
5911 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5915 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5920 /* Setup first alias */
5921 sysfs_slab_alias(s, s->name);
5928 kobject_del(&s->kobj);
5932 void sysfs_slab_unlink(struct kmem_cache *s)
5934 if (slab_state >= FULL)
5935 kobject_del(&s->kobj);
5938 void sysfs_slab_release(struct kmem_cache *s)
5940 if (slab_state >= FULL)
5941 kobject_put(&s->kobj);
5945 * Need to buffer aliases during bootup until sysfs becomes
5946 * available lest we lose that information.
5948 struct saved_alias {
5949 struct kmem_cache *s;
5951 struct saved_alias *next;
5954 static struct saved_alias *alias_list;
5956 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5958 struct saved_alias *al;
5960 if (slab_state == FULL) {
5962 * If we have a leftover link then remove it.
5964 sysfs_remove_link(&slab_kset->kobj, name);
5965 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5968 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5974 al->next = alias_list;
5979 static int __init slab_sysfs_init(void)
5981 struct kmem_cache *s;
5984 mutex_lock(&slab_mutex);
5986 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5988 mutex_unlock(&slab_mutex);
5989 pr_err("Cannot register slab subsystem.\n");
5995 list_for_each_entry(s, &slab_caches, list) {
5996 err = sysfs_slab_add(s);
5998 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6002 while (alias_list) {
6003 struct saved_alias *al = alias_list;
6005 alias_list = alias_list->next;
6006 err = sysfs_slab_alias(al->s, al->name);
6008 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6013 mutex_unlock(&slab_mutex);
6017 __initcall(slab_sysfs_init);
6018 #endif /* CONFIG_SYSFS */
6020 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6021 static int slab_debugfs_show(struct seq_file *seq, void *v)
6023 struct loc_track *t = seq->private;
6027 idx = (unsigned long) t->idx;
6028 if (idx < t->count) {
6031 seq_printf(seq, "%7ld ", l->count);
6034 seq_printf(seq, "%pS", (void *)l->addr);
6036 seq_puts(seq, "<not-available>");
6039 seq_printf(seq, " waste=%lu/%lu",
6040 l->count * l->waste, l->waste);
6042 if (l->sum_time != l->min_time) {
6043 seq_printf(seq, " age=%ld/%llu/%ld",
6044 l->min_time, div_u64(l->sum_time, l->count),
6047 seq_printf(seq, " age=%ld", l->min_time);
6049 if (l->min_pid != l->max_pid)
6050 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6052 seq_printf(seq, " pid=%ld",
6055 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6056 seq_printf(seq, " cpus=%*pbl",
6057 cpumask_pr_args(to_cpumask(l->cpus)));
6059 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6060 seq_printf(seq, " nodes=%*pbl",
6061 nodemask_pr_args(&l->nodes));
6063 #ifdef CONFIG_STACKDEPOT
6065 depot_stack_handle_t handle;
6066 unsigned long *entries;
6067 unsigned int nr_entries, j;
6069 handle = READ_ONCE(l->handle);
6071 nr_entries = stack_depot_fetch(handle, &entries);
6072 seq_puts(seq, "\n");
6073 for (j = 0; j < nr_entries; j++)
6074 seq_printf(seq, " %pS\n", (void *)entries[j]);
6078 seq_puts(seq, "\n");
6081 if (!idx && !t->count)
6082 seq_puts(seq, "No data\n");
6087 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6091 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6093 struct loc_track *t = seq->private;
6096 if (*ppos <= t->count)
6102 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6104 struct location *loc1 = (struct location *)a;
6105 struct location *loc2 = (struct location *)b;
6107 if (loc1->count > loc2->count)
6113 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6115 struct loc_track *t = seq->private;
6121 static const struct seq_operations slab_debugfs_sops = {
6122 .start = slab_debugfs_start,
6123 .next = slab_debugfs_next,
6124 .stop = slab_debugfs_stop,
6125 .show = slab_debugfs_show,
6128 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6131 struct kmem_cache_node *n;
6132 enum track_item alloc;
6134 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6135 sizeof(struct loc_track));
6136 struct kmem_cache *s = file_inode(filep)->i_private;
6137 unsigned long *obj_map;
6142 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6144 seq_release_private(inode, filep);
6148 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6149 alloc = TRACK_ALLOC;
6153 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6154 bitmap_free(obj_map);
6155 seq_release_private(inode, filep);
6159 for_each_kmem_cache_node(s, node, n) {
6160 unsigned long flags;
6163 if (!atomic_long_read(&n->nr_slabs))
6166 spin_lock_irqsave(&n->list_lock, flags);
6167 list_for_each_entry(slab, &n->partial, slab_list)
6168 process_slab(t, s, slab, alloc, obj_map);
6169 list_for_each_entry(slab, &n->full, slab_list)
6170 process_slab(t, s, slab, alloc, obj_map);
6171 spin_unlock_irqrestore(&n->list_lock, flags);
6174 /* Sort locations by count */
6175 sort_r(t->loc, t->count, sizeof(struct location),
6176 cmp_loc_by_count, NULL, NULL);
6178 bitmap_free(obj_map);
6182 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6184 struct seq_file *seq = file->private_data;
6185 struct loc_track *t = seq->private;
6188 return seq_release_private(inode, file);
6191 static const struct file_operations slab_debugfs_fops = {
6192 .open = slab_debug_trace_open,
6194 .llseek = seq_lseek,
6195 .release = slab_debug_trace_release,
6198 static void debugfs_slab_add(struct kmem_cache *s)
6200 struct dentry *slab_cache_dir;
6202 if (unlikely(!slab_debugfs_root))
6205 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6207 debugfs_create_file("alloc_traces", 0400,
6208 slab_cache_dir, s, &slab_debugfs_fops);
6210 debugfs_create_file("free_traces", 0400,
6211 slab_cache_dir, s, &slab_debugfs_fops);
6214 void debugfs_slab_release(struct kmem_cache *s)
6216 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6219 static int __init slab_debugfs_init(void)
6221 struct kmem_cache *s;
6223 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6225 list_for_each_entry(s, &slab_caches, list)
6226 if (s->flags & SLAB_STORE_USER)
6227 debugfs_slab_add(s);
6232 __initcall(slab_debugfs_init);
6235 * The /proc/slabinfo ABI
6237 #ifdef CONFIG_SLUB_DEBUG
6238 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6240 unsigned long nr_slabs = 0;
6241 unsigned long nr_objs = 0;
6242 unsigned long nr_free = 0;
6244 struct kmem_cache_node *n;
6246 for_each_kmem_cache_node(s, node, n) {
6247 nr_slabs += node_nr_slabs(n);
6248 nr_objs += node_nr_objs(n);
6249 nr_free += count_partial(n, count_free);
6252 sinfo->active_objs = nr_objs - nr_free;
6253 sinfo->num_objs = nr_objs;
6254 sinfo->active_slabs = nr_slabs;
6255 sinfo->num_slabs = nr_slabs;
6256 sinfo->objects_per_slab = oo_objects(s->oo);
6257 sinfo->cache_order = oo_order(s->oo);
6260 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6264 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6265 size_t count, loff_t *ppos)
6269 #endif /* CONFIG_SLUB_DEBUG */