1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
48 * 1. slab_mutex (Global Mutex)
49 * 2. node->list_lock (Spinlock)
50 * 3. kmem_cache->cpu_slab->lock (Local lock)
51 * 4. slab_lock(page) (Only on some arches or for debugging)
52 * 5. object_map_lock (Only for debugging)
56 * The role of the slab_mutex is to protect the list of all the slabs
57 * and to synchronize major metadata changes to slab cache structures.
58 * Also synchronizes memory hotplug callbacks.
62 * The slab_lock is a wrapper around the page lock, thus it is a bit
65 * The slab_lock is only used for debugging and on arches that do not
66 * have the ability to do a cmpxchg_double. It only protects:
67 * A. page->freelist -> List of object free in a page
68 * B. page->inuse -> Number of objects in use
69 * C. page->objects -> Number of objects in page
70 * D. page->frozen -> frozen state
74 * If a slab is frozen then it is exempt from list management. It is not
75 * on any list except per cpu partial list. The processor that froze the
76 * slab is the one who can perform list operations on the page. Other
77 * processors may put objects onto the freelist but the processor that
78 * froze the slab is the only one that can retrieve the objects from the
83 * The list_lock protects the partial and full list on each node and
84 * the partial slab counter. If taken then no new slabs may be added or
85 * removed from the lists nor make the number of partial slabs be modified.
86 * (Note that the total number of slabs is an atomic value that may be
87 * modified without taking the list lock).
89 * The list_lock is a centralized lock and thus we avoid taking it as
90 * much as possible. As long as SLUB does not have to handle partial
91 * slabs, operations can continue without any centralized lock. F.e.
92 * allocating a long series of objects that fill up slabs does not require
95 * cpu_slab->lock local lock
97 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
98 * except the stat counters. This is a percpu structure manipulated only by
99 * the local cpu, so the lock protects against being preempted or interrupted
100 * by an irq. Fast path operations rely on lockless operations instead.
101 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
102 * prevent the lockless operations), so fastpath operations also need to take
103 * the lock and are no longer lockless.
107 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
108 * are fully lockless when satisfied from the percpu slab (and when
109 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
110 * They also don't disable preemption or migration or irqs. They rely on
111 * the transaction id (tid) field to detect being preempted or moved to
114 * irq, preemption, migration considerations
116 * Interrupts are disabled as part of list_lock or local_lock operations, or
117 * around the slab_lock operation, in order to make the slab allocator safe
118 * to use in the context of an irq.
120 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
121 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
122 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
123 * doesn't have to be revalidated in each section protected by the local lock.
125 * SLUB assigns one slab for allocation to each processor.
126 * Allocations only occur from these slabs called cpu slabs.
128 * Slabs with free elements are kept on a partial list and during regular
129 * operations no list for full slabs is used. If an object in a full slab is
130 * freed then the slab will show up again on the partial lists.
131 * We track full slabs for debugging purposes though because otherwise we
132 * cannot scan all objects.
134 * Slabs are freed when they become empty. Teardown and setup is
135 * minimal so we rely on the page allocators per cpu caches for
136 * fast frees and allocs.
138 * page->frozen The slab is frozen and exempt from list processing.
139 * This means that the slab is dedicated to a purpose
140 * such as satisfying allocations for a specific
141 * processor. Objects may be freed in the slab while
142 * it is frozen but slab_free will then skip the usual
143 * list operations. It is up to the processor holding
144 * the slab to integrate the slab into the slab lists
145 * when the slab is no longer needed.
147 * One use of this flag is to mark slabs that are
148 * used for allocations. Then such a slab becomes a cpu
149 * slab. The cpu slab may be equipped with an additional
150 * freelist that allows lockless access to
151 * free objects in addition to the regular freelist
152 * that requires the slab lock.
154 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
155 * options set. This moves slab handling out of
156 * the fast path and disables lockless freelists.
160 * We could simply use migrate_disable()/enable() but as long as it's a
161 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
163 #ifndef CONFIG_PREEMPT_RT
164 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
165 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
167 #define slub_get_cpu_ptr(var) \
172 #define slub_put_cpu_ptr(var) \
179 #ifdef CONFIG_SLUB_DEBUG
180 #ifdef CONFIG_SLUB_DEBUG_ON
181 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
183 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
185 #endif /* CONFIG_SLUB_DEBUG */
187 static inline bool kmem_cache_debug(struct kmem_cache *s)
189 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
192 void *fixup_red_left(struct kmem_cache *s, void *p)
194 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
195 p += s->red_left_pad;
200 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
202 #ifdef CONFIG_SLUB_CPU_PARTIAL
203 return !kmem_cache_debug(s);
210 * Issues still to be resolved:
212 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
214 * - Variable sizing of the per node arrays
217 /* Enable to log cmpxchg failures */
218 #undef SLUB_DEBUG_CMPXCHG
221 * Minimum number of partial slabs. These will be left on the partial
222 * lists even if they are empty. kmem_cache_shrink may reclaim them.
224 #define MIN_PARTIAL 5
227 * Maximum number of desirable partial slabs.
228 * The existence of more partial slabs makes kmem_cache_shrink
229 * sort the partial list by the number of objects in use.
231 #define MAX_PARTIAL 10
233 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
234 SLAB_POISON | SLAB_STORE_USER)
237 * These debug flags cannot use CMPXCHG because there might be consistency
238 * issues when checking or reading debug information
240 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
245 * Debugging flags that require metadata to be stored in the slab. These get
246 * disabled when slub_debug=O is used and a cache's min order increases with
249 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
252 #define OO_MASK ((1 << OO_SHIFT) - 1)
253 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
255 /* Internal SLUB flags */
257 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
258 /* Use cmpxchg_double */
259 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
262 * Tracking user of a slab.
264 #define TRACK_ADDRS_COUNT 16
266 unsigned long addr; /* Called from address */
267 #ifdef CONFIG_STACKTRACE
268 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
270 int cpu; /* Was running on cpu */
271 int pid; /* Pid context */
272 unsigned long when; /* When did the operation occur */
275 enum track_item { TRACK_ALLOC, TRACK_FREE };
278 static int sysfs_slab_add(struct kmem_cache *);
279 static int sysfs_slab_alias(struct kmem_cache *, const char *);
281 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
282 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
286 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
287 static void debugfs_slab_add(struct kmem_cache *);
289 static inline void debugfs_slab_add(struct kmem_cache *s) { }
292 static inline void stat(const struct kmem_cache *s, enum stat_item si)
294 #ifdef CONFIG_SLUB_STATS
296 * The rmw is racy on a preemptible kernel but this is acceptable, so
297 * avoid this_cpu_add()'s irq-disable overhead.
299 raw_cpu_inc(s->cpu_slab->stat[si]);
304 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
305 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
306 * differ during memory hotplug/hotremove operations.
307 * Protected by slab_mutex.
309 static nodemask_t slab_nodes;
312 * Workqueue used for flush_cpu_slab().
314 static struct workqueue_struct *flushwq;
316 /********************************************************************
317 * Core slab cache functions
318 *******************************************************************/
321 * Returns freelist pointer (ptr). With hardening, this is obfuscated
322 * with an XOR of the address where the pointer is held and a per-cache
325 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
326 unsigned long ptr_addr)
328 #ifdef CONFIG_SLAB_FREELIST_HARDENED
330 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
331 * Normally, this doesn't cause any issues, as both set_freepointer()
332 * and get_freepointer() are called with a pointer with the same tag.
333 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
334 * example, when __free_slub() iterates over objects in a cache, it
335 * passes untagged pointers to check_object(). check_object() in turns
336 * calls get_freepointer() with an untagged pointer, which causes the
337 * freepointer to be restored incorrectly.
339 return (void *)((unsigned long)ptr ^ s->random ^
340 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
346 /* Returns the freelist pointer recorded at location ptr_addr. */
347 static inline void *freelist_dereference(const struct kmem_cache *s,
350 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
351 (unsigned long)ptr_addr);
354 static inline void *get_freepointer(struct kmem_cache *s, void *object)
356 object = kasan_reset_tag(object);
357 return freelist_dereference(s, object + s->offset);
360 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
362 prefetch(object + s->offset);
365 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
367 unsigned long freepointer_addr;
370 if (!debug_pagealloc_enabled_static())
371 return get_freepointer(s, object);
373 object = kasan_reset_tag(object);
374 freepointer_addr = (unsigned long)object + s->offset;
375 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
376 return freelist_ptr(s, p, freepointer_addr);
379 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
381 unsigned long freeptr_addr = (unsigned long)object + s->offset;
383 #ifdef CONFIG_SLAB_FREELIST_HARDENED
384 BUG_ON(object == fp); /* naive detection of double free or corruption */
387 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
388 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
391 /* Loop over all objects in a slab */
392 #define for_each_object(__p, __s, __addr, __objects) \
393 for (__p = fixup_red_left(__s, __addr); \
394 __p < (__addr) + (__objects) * (__s)->size; \
397 static inline unsigned int order_objects(unsigned int order, unsigned int size)
399 return ((unsigned int)PAGE_SIZE << order) / size;
402 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
405 struct kmem_cache_order_objects x = {
406 (order << OO_SHIFT) + order_objects(order, size)
412 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
414 return x.x >> OO_SHIFT;
417 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
419 return x.x & OO_MASK;
423 * Per slab locking using the pagelock
425 static __always_inline void __slab_lock(struct page *page)
427 VM_BUG_ON_PAGE(PageTail(page), page);
428 bit_spin_lock(PG_locked, &page->flags);
431 static __always_inline void __slab_unlock(struct page *page)
433 VM_BUG_ON_PAGE(PageTail(page), page);
434 __bit_spin_unlock(PG_locked, &page->flags);
437 static __always_inline void slab_lock(struct page *page, unsigned long *flags)
439 if (IS_ENABLED(CONFIG_PREEMPT_RT))
440 local_irq_save(*flags);
444 static __always_inline void slab_unlock(struct page *page, unsigned long *flags)
447 if (IS_ENABLED(CONFIG_PREEMPT_RT))
448 local_irq_restore(*flags);
452 * Interrupts must be disabled (for the fallback code to work right), typically
453 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
454 * so we disable interrupts as part of slab_[un]lock().
456 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
457 void *freelist_old, unsigned long counters_old,
458 void *freelist_new, unsigned long counters_new,
461 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
462 lockdep_assert_irqs_disabled();
463 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
464 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
465 if (s->flags & __CMPXCHG_DOUBLE) {
466 if (cmpxchg_double(&page->freelist, &page->counters,
467 freelist_old, counters_old,
468 freelist_new, counters_new))
473 /* init to 0 to prevent spurious warnings */
474 unsigned long flags = 0;
476 slab_lock(page, &flags);
477 if (page->freelist == freelist_old &&
478 page->counters == counters_old) {
479 page->freelist = freelist_new;
480 page->counters = counters_new;
481 slab_unlock(page, &flags);
484 slab_unlock(page, &flags);
488 stat(s, CMPXCHG_DOUBLE_FAIL);
490 #ifdef SLUB_DEBUG_CMPXCHG
491 pr_info("%s %s: cmpxchg double redo ", n, s->name);
497 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
498 void *freelist_old, unsigned long counters_old,
499 void *freelist_new, unsigned long counters_new,
502 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
503 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
504 if (s->flags & __CMPXCHG_DOUBLE) {
505 if (cmpxchg_double(&page->freelist, &page->counters,
506 freelist_old, counters_old,
507 freelist_new, counters_new))
514 local_irq_save(flags);
516 if (page->freelist == freelist_old &&
517 page->counters == counters_old) {
518 page->freelist = freelist_new;
519 page->counters = counters_new;
521 local_irq_restore(flags);
525 local_irq_restore(flags);
529 stat(s, CMPXCHG_DOUBLE_FAIL);
531 #ifdef SLUB_DEBUG_CMPXCHG
532 pr_info("%s %s: cmpxchg double redo ", n, s->name);
538 #ifdef CONFIG_SLUB_DEBUG
539 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
540 static DEFINE_RAW_SPINLOCK(object_map_lock);
542 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
545 void *addr = page_address(page);
548 bitmap_zero(obj_map, page->objects);
550 for (p = page->freelist; p; p = get_freepointer(s, p))
551 set_bit(__obj_to_index(s, addr, p), obj_map);
554 #if IS_ENABLED(CONFIG_KUNIT)
555 static bool slab_add_kunit_errors(void)
557 struct kunit_resource *resource;
559 if (likely(!current->kunit_test))
562 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
566 (*(int *)resource->data)++;
567 kunit_put_resource(resource);
571 static inline bool slab_add_kunit_errors(void) { return false; }
575 * Determine a map of object in use on a page.
577 * Node listlock must be held to guarantee that the page does
578 * not vanish from under us.
580 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
581 __acquires(&object_map_lock)
583 VM_BUG_ON(!irqs_disabled());
585 raw_spin_lock(&object_map_lock);
587 __fill_map(object_map, s, page);
592 static void put_map(unsigned long *map) __releases(&object_map_lock)
594 VM_BUG_ON(map != object_map);
595 raw_spin_unlock(&object_map_lock);
598 static inline unsigned int size_from_object(struct kmem_cache *s)
600 if (s->flags & SLAB_RED_ZONE)
601 return s->size - s->red_left_pad;
606 static inline void *restore_red_left(struct kmem_cache *s, void *p)
608 if (s->flags & SLAB_RED_ZONE)
609 p -= s->red_left_pad;
617 #if defined(CONFIG_SLUB_DEBUG_ON)
618 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
620 static slab_flags_t slub_debug;
623 static char *slub_debug_string;
624 static int disable_higher_order_debug;
627 * slub is about to manipulate internal object metadata. This memory lies
628 * outside the range of the allocated object, so accessing it would normally
629 * be reported by kasan as a bounds error. metadata_access_enable() is used
630 * to tell kasan that these accesses are OK.
632 static inline void metadata_access_enable(void)
634 kasan_disable_current();
637 static inline void metadata_access_disable(void)
639 kasan_enable_current();
646 /* Verify that a pointer has an address that is valid within a slab page */
647 static inline int check_valid_pointer(struct kmem_cache *s,
648 struct page *page, void *object)
655 base = page_address(page);
656 object = kasan_reset_tag(object);
657 object = restore_red_left(s, object);
658 if (object < base || object >= base + page->objects * s->size ||
659 (object - base) % s->size) {
666 static void print_section(char *level, char *text, u8 *addr,
669 metadata_access_enable();
670 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
671 16, 1, kasan_reset_tag((void *)addr), length, 1);
672 metadata_access_disable();
676 * See comment in calculate_sizes().
678 static inline bool freeptr_outside_object(struct kmem_cache *s)
680 return s->offset >= s->inuse;
684 * Return offset of the end of info block which is inuse + free pointer if
685 * not overlapping with object.
687 static inline unsigned int get_info_end(struct kmem_cache *s)
689 if (freeptr_outside_object(s))
690 return s->inuse + sizeof(void *);
695 static struct track *get_track(struct kmem_cache *s, void *object,
696 enum track_item alloc)
700 p = object + get_info_end(s);
702 return kasan_reset_tag(p + alloc);
705 static void set_track(struct kmem_cache *s, void *object,
706 enum track_item alloc, unsigned long addr)
708 struct track *p = get_track(s, object, alloc);
711 #ifdef CONFIG_STACKTRACE
712 unsigned int nr_entries;
714 metadata_access_enable();
715 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
716 TRACK_ADDRS_COUNT, 3);
717 metadata_access_disable();
719 if (nr_entries < TRACK_ADDRS_COUNT)
720 p->addrs[nr_entries] = 0;
723 p->cpu = smp_processor_id();
724 p->pid = current->pid;
727 memset(p, 0, sizeof(struct track));
731 static void init_tracking(struct kmem_cache *s, void *object)
733 if (!(s->flags & SLAB_STORE_USER))
736 set_track(s, object, TRACK_FREE, 0UL);
737 set_track(s, object, TRACK_ALLOC, 0UL);
740 static void print_track(const char *s, struct track *t, unsigned long pr_time)
745 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
746 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
747 #ifdef CONFIG_STACKTRACE
750 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
752 pr_err("\t%pS\n", (void *)t->addrs[i]);
759 void print_tracking(struct kmem_cache *s, void *object)
761 unsigned long pr_time = jiffies;
762 if (!(s->flags & SLAB_STORE_USER))
765 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
766 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
769 static void print_page_info(struct page *page)
771 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
772 page, page->objects, page->inuse, page->freelist,
773 page->flags, &page->flags);
777 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
779 struct va_format vaf;
785 pr_err("=============================================================================\n");
786 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
787 pr_err("-----------------------------------------------------------------------------\n\n");
792 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
794 struct va_format vaf;
797 if (slab_add_kunit_errors())
803 pr_err("FIX %s: %pV\n", s->name, &vaf);
807 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
808 void **freelist, void *nextfree)
810 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
811 !check_valid_pointer(s, page, nextfree) && freelist) {
812 object_err(s, page, *freelist, "Freechain corrupt");
814 slab_fix(s, "Isolate corrupted freechain");
821 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
823 unsigned int off; /* Offset of last byte */
824 u8 *addr = page_address(page);
826 print_tracking(s, p);
828 print_page_info(page);
830 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
831 p, p - addr, get_freepointer(s, p));
833 if (s->flags & SLAB_RED_ZONE)
834 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
836 else if (p > addr + 16)
837 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
839 print_section(KERN_ERR, "Object ", p,
840 min_t(unsigned int, s->object_size, PAGE_SIZE));
841 if (s->flags & SLAB_RED_ZONE)
842 print_section(KERN_ERR, "Redzone ", p + s->object_size,
843 s->inuse - s->object_size);
845 off = get_info_end(s);
847 if (s->flags & SLAB_STORE_USER)
848 off += 2 * sizeof(struct track);
850 off += kasan_metadata_size(s);
852 if (off != size_from_object(s))
853 /* Beginning of the filler is the free pointer */
854 print_section(KERN_ERR, "Padding ", p + off,
855 size_from_object(s) - off);
860 void object_err(struct kmem_cache *s, struct page *page,
861 u8 *object, char *reason)
863 if (slab_add_kunit_errors())
866 slab_bug(s, "%s", reason);
867 print_trailer(s, page, object);
868 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
871 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
872 const char *fmt, ...)
877 if (slab_add_kunit_errors())
881 vsnprintf(buf, sizeof(buf), fmt, args);
883 slab_bug(s, "%s", buf);
884 print_page_info(page);
886 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
889 static void init_object(struct kmem_cache *s, void *object, u8 val)
891 u8 *p = kasan_reset_tag(object);
893 if (s->flags & SLAB_RED_ZONE)
894 memset(p - s->red_left_pad, val, s->red_left_pad);
896 if (s->flags & __OBJECT_POISON) {
897 memset(p, POISON_FREE, s->object_size - 1);
898 p[s->object_size - 1] = POISON_END;
901 if (s->flags & SLAB_RED_ZONE)
902 memset(p + s->object_size, val, s->inuse - s->object_size);
905 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
906 void *from, void *to)
908 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
909 memset(from, data, to - from);
912 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
913 u8 *object, char *what,
914 u8 *start, unsigned int value, unsigned int bytes)
918 u8 *addr = page_address(page);
920 metadata_access_enable();
921 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
922 metadata_access_disable();
927 while (end > fault && end[-1] == value)
930 if (slab_add_kunit_errors())
933 slab_bug(s, "%s overwritten", what);
934 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
935 fault, end - 1, fault - addr,
937 print_trailer(s, page, object);
938 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
941 restore_bytes(s, what, value, fault, end);
949 * Bytes of the object to be managed.
950 * If the freepointer may overlay the object then the free
951 * pointer is at the middle of the object.
953 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
956 * object + s->object_size
957 * Padding to reach word boundary. This is also used for Redzoning.
958 * Padding is extended by another word if Redzoning is enabled and
959 * object_size == inuse.
961 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
962 * 0xcc (RED_ACTIVE) for objects in use.
965 * Meta data starts here.
967 * A. Free pointer (if we cannot overwrite object on free)
968 * B. Tracking data for SLAB_STORE_USER
969 * C. Padding to reach required alignment boundary or at minimum
970 * one word if debugging is on to be able to detect writes
971 * before the word boundary.
973 * Padding is done using 0x5a (POISON_INUSE)
976 * Nothing is used beyond s->size.
978 * If slabcaches are merged then the object_size and inuse boundaries are mostly
979 * ignored. And therefore no slab options that rely on these boundaries
980 * may be used with merged slabcaches.
983 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
985 unsigned long off = get_info_end(s); /* The end of info */
987 if (s->flags & SLAB_STORE_USER)
988 /* We also have user information there */
989 off += 2 * sizeof(struct track);
991 off += kasan_metadata_size(s);
993 if (size_from_object(s) == off)
996 return check_bytes_and_report(s, page, p, "Object padding",
997 p + off, POISON_INUSE, size_from_object(s) - off);
1000 /* Check the pad bytes at the end of a slab page */
1001 static int slab_pad_check(struct kmem_cache *s, struct page *page)
1010 if (!(s->flags & SLAB_POISON))
1013 start = page_address(page);
1014 length = page_size(page);
1015 end = start + length;
1016 remainder = length % s->size;
1020 pad = end - remainder;
1021 metadata_access_enable();
1022 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1023 metadata_access_disable();
1026 while (end > fault && end[-1] == POISON_INUSE)
1029 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1030 fault, end - 1, fault - start);
1031 print_section(KERN_ERR, "Padding ", pad, remainder);
1033 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1037 static int check_object(struct kmem_cache *s, struct page *page,
1038 void *object, u8 val)
1041 u8 *endobject = object + s->object_size;
1043 if (s->flags & SLAB_RED_ZONE) {
1044 if (!check_bytes_and_report(s, page, object, "Left Redzone",
1045 object - s->red_left_pad, val, s->red_left_pad))
1048 if (!check_bytes_and_report(s, page, object, "Right Redzone",
1049 endobject, val, s->inuse - s->object_size))
1052 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1053 check_bytes_and_report(s, page, p, "Alignment padding",
1054 endobject, POISON_INUSE,
1055 s->inuse - s->object_size);
1059 if (s->flags & SLAB_POISON) {
1060 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1061 (!check_bytes_and_report(s, page, p, "Poison", p,
1062 POISON_FREE, s->object_size - 1) ||
1063 !check_bytes_and_report(s, page, p, "End Poison",
1064 p + s->object_size - 1, POISON_END, 1)))
1067 * check_pad_bytes cleans up on its own.
1069 check_pad_bytes(s, page, p);
1072 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1074 * Object and freepointer overlap. Cannot check
1075 * freepointer while object is allocated.
1079 /* Check free pointer validity */
1080 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
1081 object_err(s, page, p, "Freepointer corrupt");
1083 * No choice but to zap it and thus lose the remainder
1084 * of the free objects in this slab. May cause
1085 * another error because the object count is now wrong.
1087 set_freepointer(s, p, NULL);
1093 static int check_slab(struct kmem_cache *s, struct page *page)
1097 if (!PageSlab(page)) {
1098 slab_err(s, page, "Not a valid slab page");
1102 maxobj = order_objects(compound_order(page), s->size);
1103 if (page->objects > maxobj) {
1104 slab_err(s, page, "objects %u > max %u",
1105 page->objects, maxobj);
1108 if (page->inuse > page->objects) {
1109 slab_err(s, page, "inuse %u > max %u",
1110 page->inuse, page->objects);
1113 /* Slab_pad_check fixes things up after itself */
1114 slab_pad_check(s, page);
1119 * Determine if a certain object on a page is on the freelist. Must hold the
1120 * slab lock to guarantee that the chains are in a consistent state.
1122 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1126 void *object = NULL;
1129 fp = page->freelist;
1130 while (fp && nr <= page->objects) {
1133 if (!check_valid_pointer(s, page, fp)) {
1135 object_err(s, page, object,
1136 "Freechain corrupt");
1137 set_freepointer(s, object, NULL);
1139 slab_err(s, page, "Freepointer corrupt");
1140 page->freelist = NULL;
1141 page->inuse = page->objects;
1142 slab_fix(s, "Freelist cleared");
1148 fp = get_freepointer(s, object);
1152 max_objects = order_objects(compound_order(page), s->size);
1153 if (max_objects > MAX_OBJS_PER_PAGE)
1154 max_objects = MAX_OBJS_PER_PAGE;
1156 if (page->objects != max_objects) {
1157 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1158 page->objects, max_objects);
1159 page->objects = max_objects;
1160 slab_fix(s, "Number of objects adjusted");
1162 if (page->inuse != page->objects - nr) {
1163 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1164 page->inuse, page->objects - nr);
1165 page->inuse = page->objects - nr;
1166 slab_fix(s, "Object count adjusted");
1168 return search == NULL;
1171 static void trace(struct kmem_cache *s, struct page *page, void *object,
1174 if (s->flags & SLAB_TRACE) {
1175 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1177 alloc ? "alloc" : "free",
1178 object, page->inuse,
1182 print_section(KERN_INFO, "Object ", (void *)object,
1190 * Tracking of fully allocated slabs for debugging purposes.
1192 static void add_full(struct kmem_cache *s,
1193 struct kmem_cache_node *n, struct page *page)
1195 if (!(s->flags & SLAB_STORE_USER))
1198 lockdep_assert_held(&n->list_lock);
1199 list_add(&page->slab_list, &n->full);
1202 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1204 if (!(s->flags & SLAB_STORE_USER))
1207 lockdep_assert_held(&n->list_lock);
1208 list_del(&page->slab_list);
1211 /* Tracking of the number of slabs for debugging purposes */
1212 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1214 struct kmem_cache_node *n = get_node(s, node);
1216 return atomic_long_read(&n->nr_slabs);
1219 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1221 return atomic_long_read(&n->nr_slabs);
1224 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1226 struct kmem_cache_node *n = get_node(s, node);
1229 * May be called early in order to allocate a slab for the
1230 * kmem_cache_node structure. Solve the chicken-egg
1231 * dilemma by deferring the increment of the count during
1232 * bootstrap (see early_kmem_cache_node_alloc).
1235 atomic_long_inc(&n->nr_slabs);
1236 atomic_long_add(objects, &n->total_objects);
1239 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1241 struct kmem_cache_node *n = get_node(s, node);
1243 atomic_long_dec(&n->nr_slabs);
1244 atomic_long_sub(objects, &n->total_objects);
1247 /* Object debug checks for alloc/free paths */
1248 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1251 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1254 init_object(s, object, SLUB_RED_INACTIVE);
1255 init_tracking(s, object);
1259 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1261 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1264 metadata_access_enable();
1265 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1266 metadata_access_disable();
1269 static inline int alloc_consistency_checks(struct kmem_cache *s,
1270 struct page *page, void *object)
1272 if (!check_slab(s, page))
1275 if (!check_valid_pointer(s, page, object)) {
1276 object_err(s, page, object, "Freelist Pointer check fails");
1280 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1286 static noinline int alloc_debug_processing(struct kmem_cache *s,
1288 void *object, unsigned long addr)
1290 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1291 if (!alloc_consistency_checks(s, page, object))
1295 /* Success perform special debug activities for allocs */
1296 if (s->flags & SLAB_STORE_USER)
1297 set_track(s, object, TRACK_ALLOC, addr);
1298 trace(s, page, object, 1);
1299 init_object(s, object, SLUB_RED_ACTIVE);
1303 if (PageSlab(page)) {
1305 * If this is a slab page then lets do the best we can
1306 * to avoid issues in the future. Marking all objects
1307 * as used avoids touching the remaining objects.
1309 slab_fix(s, "Marking all objects used");
1310 page->inuse = page->objects;
1311 page->freelist = NULL;
1316 static inline int free_consistency_checks(struct kmem_cache *s,
1317 struct page *page, void *object, unsigned long addr)
1319 if (!check_valid_pointer(s, page, object)) {
1320 slab_err(s, page, "Invalid object pointer 0x%p", object);
1324 if (on_freelist(s, page, object)) {
1325 object_err(s, page, object, "Object already free");
1329 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1332 if (unlikely(s != page->slab_cache)) {
1333 if (!PageSlab(page)) {
1334 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1336 } else if (!page->slab_cache) {
1337 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1341 object_err(s, page, object,
1342 "page slab pointer corrupt.");
1348 /* Supports checking bulk free of a constructed freelist */
1349 static noinline int free_debug_processing(
1350 struct kmem_cache *s, struct page *page,
1351 void *head, void *tail, int bulk_cnt,
1354 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1355 void *object = head;
1357 unsigned long flags, flags2;
1360 spin_lock_irqsave(&n->list_lock, flags);
1361 slab_lock(page, &flags2);
1363 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1364 if (!check_slab(s, page))
1371 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1372 if (!free_consistency_checks(s, page, object, addr))
1376 if (s->flags & SLAB_STORE_USER)
1377 set_track(s, object, TRACK_FREE, addr);
1378 trace(s, page, object, 0);
1379 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1380 init_object(s, object, SLUB_RED_INACTIVE);
1382 /* Reached end of constructed freelist yet? */
1383 if (object != tail) {
1384 object = get_freepointer(s, object);
1390 if (cnt != bulk_cnt)
1391 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1394 slab_unlock(page, &flags2);
1395 spin_unlock_irqrestore(&n->list_lock, flags);
1397 slab_fix(s, "Object at 0x%p not freed", object);
1402 * Parse a block of slub_debug options. Blocks are delimited by ';'
1404 * @str: start of block
1405 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1406 * @slabs: return start of list of slabs, or NULL when there's no list
1407 * @init: assume this is initial parsing and not per-kmem-create parsing
1409 * returns the start of next block if there's any, or NULL
1412 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1414 bool higher_order_disable = false;
1416 /* Skip any completely empty blocks */
1417 while (*str && *str == ';')
1422 * No options but restriction on slabs. This means full
1423 * debugging for slabs matching a pattern.
1425 *flags = DEBUG_DEFAULT_FLAGS;
1430 /* Determine which debug features should be switched on */
1431 for (; *str && *str != ',' && *str != ';'; str++) {
1432 switch (tolower(*str)) {
1437 *flags |= SLAB_CONSISTENCY_CHECKS;
1440 *flags |= SLAB_RED_ZONE;
1443 *flags |= SLAB_POISON;
1446 *flags |= SLAB_STORE_USER;
1449 *flags |= SLAB_TRACE;
1452 *flags |= SLAB_FAILSLAB;
1456 * Avoid enabling debugging on caches if its minimum
1457 * order would increase as a result.
1459 higher_order_disable = true;
1463 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1472 /* Skip over the slab list */
1473 while (*str && *str != ';')
1476 /* Skip any completely empty blocks */
1477 while (*str && *str == ';')
1480 if (init && higher_order_disable)
1481 disable_higher_order_debug = 1;
1489 static int __init setup_slub_debug(char *str)
1492 slab_flags_t global_flags;
1495 bool global_slub_debug_changed = false;
1496 bool slab_list_specified = false;
1498 global_flags = DEBUG_DEFAULT_FLAGS;
1499 if (*str++ != '=' || !*str)
1501 * No options specified. Switch on full debugging.
1507 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1510 global_flags = flags;
1511 global_slub_debug_changed = true;
1513 slab_list_specified = true;
1518 * For backwards compatibility, a single list of flags with list of
1519 * slabs means debugging is only changed for those slabs, so the global
1520 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1521 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1522 * long as there is no option specifying flags without a slab list.
1524 if (slab_list_specified) {
1525 if (!global_slub_debug_changed)
1526 global_flags = slub_debug;
1527 slub_debug_string = saved_str;
1530 slub_debug = global_flags;
1531 if (slub_debug != 0 || slub_debug_string)
1532 static_branch_enable(&slub_debug_enabled);
1534 static_branch_disable(&slub_debug_enabled);
1535 if ((static_branch_unlikely(&init_on_alloc) ||
1536 static_branch_unlikely(&init_on_free)) &&
1537 (slub_debug & SLAB_POISON))
1538 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1542 __setup("slub_debug", setup_slub_debug);
1545 * kmem_cache_flags - apply debugging options to the cache
1546 * @object_size: the size of an object without meta data
1547 * @flags: flags to set
1548 * @name: name of the cache
1550 * Debug option(s) are applied to @flags. In addition to the debug
1551 * option(s), if a slab name (or multiple) is specified i.e.
1552 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1553 * then only the select slabs will receive the debug option(s).
1555 slab_flags_t kmem_cache_flags(unsigned int object_size,
1556 slab_flags_t flags, const char *name)
1561 slab_flags_t block_flags;
1562 slab_flags_t slub_debug_local = slub_debug;
1565 * If the slab cache is for debugging (e.g. kmemleak) then
1566 * don't store user (stack trace) information by default,
1567 * but let the user enable it via the command line below.
1569 if (flags & SLAB_NOLEAKTRACE)
1570 slub_debug_local &= ~SLAB_STORE_USER;
1573 next_block = slub_debug_string;
1574 /* Go through all blocks of debug options, see if any matches our slab's name */
1575 while (next_block) {
1576 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1579 /* Found a block that has a slab list, search it */
1584 end = strchrnul(iter, ',');
1585 if (next_block && next_block < end)
1586 end = next_block - 1;
1588 glob = strnchr(iter, end - iter, '*');
1590 cmplen = glob - iter;
1592 cmplen = max_t(size_t, len, (end - iter));
1594 if (!strncmp(name, iter, cmplen)) {
1595 flags |= block_flags;
1599 if (!*end || *end == ';')
1605 return flags | slub_debug_local;
1607 #else /* !CONFIG_SLUB_DEBUG */
1608 static inline void setup_object_debug(struct kmem_cache *s,
1609 struct page *page, void *object) {}
1611 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1613 static inline int alloc_debug_processing(struct kmem_cache *s,
1614 struct page *page, void *object, unsigned long addr) { return 0; }
1616 static inline int free_debug_processing(
1617 struct kmem_cache *s, struct page *page,
1618 void *head, void *tail, int bulk_cnt,
1619 unsigned long addr) { return 0; }
1621 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1623 static inline int check_object(struct kmem_cache *s, struct page *page,
1624 void *object, u8 val) { return 1; }
1625 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1626 struct page *page) {}
1627 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1628 struct page *page) {}
1629 slab_flags_t kmem_cache_flags(unsigned int object_size,
1630 slab_flags_t flags, const char *name)
1634 #define slub_debug 0
1636 #define disable_higher_order_debug 0
1638 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1640 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1642 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1644 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1647 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1648 void **freelist, void *nextfree)
1652 #endif /* CONFIG_SLUB_DEBUG */
1655 * Hooks for other subsystems that check memory allocations. In a typical
1656 * production configuration these hooks all should produce no code at all.
1658 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1660 ptr = kasan_kmalloc_large(ptr, size, flags);
1661 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1662 kmemleak_alloc(ptr, size, 1, flags);
1666 static __always_inline void kfree_hook(void *x)
1669 kasan_kfree_large(x);
1672 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1675 kmemleak_free_recursive(x, s->flags);
1677 debug_check_no_locks_freed(x, s->object_size);
1679 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1680 debug_check_no_obj_freed(x, s->object_size);
1682 /* Use KCSAN to help debug racy use-after-free. */
1683 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1684 __kcsan_check_access(x, s->object_size,
1685 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1688 * As memory initialization might be integrated into KASAN,
1689 * kasan_slab_free and initialization memset's must be
1690 * kept together to avoid discrepancies in behavior.
1692 * The initialization memset's clear the object and the metadata,
1693 * but don't touch the SLAB redzone.
1698 if (!kasan_has_integrated_init())
1699 memset(kasan_reset_tag(x), 0, s->object_size);
1700 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1701 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1702 s->size - s->inuse - rsize);
1704 /* KASAN might put x into memory quarantine, delaying its reuse. */
1705 return kasan_slab_free(s, x, init);
1708 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1709 void **head, void **tail,
1715 void *old_tail = *tail ? *tail : *head;
1717 if (is_kfence_address(next)) {
1718 slab_free_hook(s, next, false);
1722 /* Head and tail of the reconstructed freelist */
1728 next = get_freepointer(s, object);
1730 /* If object's reuse doesn't have to be delayed */
1731 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1732 /* Move object to the new freelist */
1733 set_freepointer(s, object, *head);
1739 * Adjust the reconstructed freelist depth
1740 * accordingly if object's reuse is delayed.
1744 } while (object != old_tail);
1749 return *head != NULL;
1752 static void *setup_object(struct kmem_cache *s, struct page *page,
1755 setup_object_debug(s, page, object);
1756 object = kasan_init_slab_obj(s, object);
1757 if (unlikely(s->ctor)) {
1758 kasan_unpoison_object_data(s, object);
1760 kasan_poison_object_data(s, object);
1766 * Slab allocation and freeing
1768 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1769 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1772 unsigned int order = oo_order(oo);
1774 if (node == NUMA_NO_NODE)
1775 page = alloc_pages(flags, order);
1777 page = __alloc_pages_node(node, flags, order);
1782 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1783 /* Pre-initialize the random sequence cache */
1784 static int init_cache_random_seq(struct kmem_cache *s)
1786 unsigned int count = oo_objects(s->oo);
1789 /* Bailout if already initialised */
1793 err = cache_random_seq_create(s, count, GFP_KERNEL);
1795 pr_err("SLUB: Unable to initialize free list for %s\n",
1800 /* Transform to an offset on the set of pages */
1801 if (s->random_seq) {
1804 for (i = 0; i < count; i++)
1805 s->random_seq[i] *= s->size;
1810 /* Initialize each random sequence freelist per cache */
1811 static void __init init_freelist_randomization(void)
1813 struct kmem_cache *s;
1815 mutex_lock(&slab_mutex);
1817 list_for_each_entry(s, &slab_caches, list)
1818 init_cache_random_seq(s);
1820 mutex_unlock(&slab_mutex);
1823 /* Get the next entry on the pre-computed freelist randomized */
1824 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1825 unsigned long *pos, void *start,
1826 unsigned long page_limit,
1827 unsigned long freelist_count)
1832 * If the target page allocation failed, the number of objects on the
1833 * page might be smaller than the usual size defined by the cache.
1836 idx = s->random_seq[*pos];
1838 if (*pos >= freelist_count)
1840 } while (unlikely(idx >= page_limit));
1842 return (char *)start + idx;
1845 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1846 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1851 unsigned long idx, pos, page_limit, freelist_count;
1853 if (page->objects < 2 || !s->random_seq)
1856 freelist_count = oo_objects(s->oo);
1857 pos = get_random_int() % freelist_count;
1859 page_limit = page->objects * s->size;
1860 start = fixup_red_left(s, page_address(page));
1862 /* First entry is used as the base of the freelist */
1863 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1865 cur = setup_object(s, page, cur);
1866 page->freelist = cur;
1868 for (idx = 1; idx < page->objects; idx++) {
1869 next = next_freelist_entry(s, page, &pos, start, page_limit,
1871 next = setup_object(s, page, next);
1872 set_freepointer(s, cur, next);
1875 set_freepointer(s, cur, NULL);
1880 static inline int init_cache_random_seq(struct kmem_cache *s)
1884 static inline void init_freelist_randomization(void) { }
1885 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1889 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1891 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1894 struct kmem_cache_order_objects oo = s->oo;
1896 void *start, *p, *next;
1900 flags &= gfp_allowed_mask;
1902 flags |= s->allocflags;
1905 * Let the initial higher-order allocation fail under memory pressure
1906 * so we fall-back to the minimum order allocation.
1908 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1909 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1910 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1912 page = alloc_slab_page(s, alloc_gfp, node, oo);
1913 if (unlikely(!page)) {
1917 * Allocation may have failed due to fragmentation.
1918 * Try a lower order alloc if possible
1920 page = alloc_slab_page(s, alloc_gfp, node, oo);
1921 if (unlikely(!page))
1923 stat(s, ORDER_FALLBACK);
1926 page->objects = oo_objects(oo);
1928 account_slab_page(page, oo_order(oo), s, flags);
1930 page->slab_cache = s;
1931 __SetPageSlab(page);
1932 if (page_is_pfmemalloc(page))
1933 SetPageSlabPfmemalloc(page);
1935 kasan_poison_slab(page);
1937 start = page_address(page);
1939 setup_page_debug(s, page, start);
1941 shuffle = shuffle_freelist(s, page);
1944 start = fixup_red_left(s, start);
1945 start = setup_object(s, page, start);
1946 page->freelist = start;
1947 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1949 next = setup_object(s, page, next);
1950 set_freepointer(s, p, next);
1953 set_freepointer(s, p, NULL);
1956 page->inuse = page->objects;
1963 inc_slabs_node(s, page_to_nid(page), page->objects);
1968 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1970 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1971 flags = kmalloc_fix_flags(flags);
1973 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
1975 return allocate_slab(s,
1976 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1979 static void __free_slab(struct kmem_cache *s, struct page *page)
1981 int order = compound_order(page);
1982 int pages = 1 << order;
1984 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1987 slab_pad_check(s, page);
1988 for_each_object(p, s, page_address(page),
1990 check_object(s, page, p, SLUB_RED_INACTIVE);
1993 __ClearPageSlabPfmemalloc(page);
1994 __ClearPageSlab(page);
1995 /* In union with page->mapping where page allocator expects NULL */
1996 page->slab_cache = NULL;
1997 if (current->reclaim_state)
1998 current->reclaim_state->reclaimed_slab += pages;
1999 unaccount_slab_page(page, order, s);
2000 __free_pages(page, order);
2003 static void rcu_free_slab(struct rcu_head *h)
2005 struct page *page = container_of(h, struct page, rcu_head);
2007 __free_slab(page->slab_cache, page);
2010 static void free_slab(struct kmem_cache *s, struct page *page)
2012 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2013 call_rcu(&page->rcu_head, rcu_free_slab);
2015 __free_slab(s, page);
2018 static void discard_slab(struct kmem_cache *s, struct page *page)
2020 dec_slabs_node(s, page_to_nid(page), page->objects);
2025 * Management of partially allocated slabs.
2028 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
2031 if (tail == DEACTIVATE_TO_TAIL)
2032 list_add_tail(&page->slab_list, &n->partial);
2034 list_add(&page->slab_list, &n->partial);
2037 static inline void add_partial(struct kmem_cache_node *n,
2038 struct page *page, int tail)
2040 lockdep_assert_held(&n->list_lock);
2041 __add_partial(n, page, tail);
2044 static inline void remove_partial(struct kmem_cache_node *n,
2047 lockdep_assert_held(&n->list_lock);
2048 list_del(&page->slab_list);
2053 * Remove slab from the partial list, freeze it and
2054 * return the pointer to the freelist.
2056 * Returns a list of objects or NULL if it fails.
2058 static inline void *acquire_slab(struct kmem_cache *s,
2059 struct kmem_cache_node *n, struct page *page,
2060 int mode, int *objects)
2063 unsigned long counters;
2066 lockdep_assert_held(&n->list_lock);
2069 * Zap the freelist and set the frozen bit.
2070 * The old freelist is the list of objects for the
2071 * per cpu allocation list.
2073 freelist = page->freelist;
2074 counters = page->counters;
2075 new.counters = counters;
2076 *objects = new.objects - new.inuse;
2078 new.inuse = page->objects;
2079 new.freelist = NULL;
2081 new.freelist = freelist;
2084 VM_BUG_ON(new.frozen);
2087 if (!__cmpxchg_double_slab(s, page,
2089 new.freelist, new.counters,
2093 remove_partial(n, page);
2098 #ifdef CONFIG_SLUB_CPU_PARTIAL
2099 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2101 static inline void put_cpu_partial(struct kmem_cache *s, struct page *page,
2104 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2107 * Try to allocate a partial slab from a specific node.
2109 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2110 struct page **ret_page, gfp_t gfpflags)
2112 struct page *page, *page2;
2113 void *object = NULL;
2114 unsigned int available = 0;
2115 unsigned long flags;
2119 * Racy check. If we mistakenly see no partial slabs then we
2120 * just allocate an empty slab. If we mistakenly try to get a
2121 * partial slab and there is none available then get_partial()
2124 if (!n || !n->nr_partial)
2127 spin_lock_irqsave(&n->list_lock, flags);
2128 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2131 if (!pfmemalloc_match(page, gfpflags))
2134 t = acquire_slab(s, n, page, object == NULL, &objects);
2138 available += objects;
2141 stat(s, ALLOC_FROM_PARTIAL);
2144 put_cpu_partial(s, page, 0);
2145 stat(s, CPU_PARTIAL_NODE);
2147 if (!kmem_cache_has_cpu_partial(s)
2148 || available > slub_cpu_partial(s) / 2)
2152 spin_unlock_irqrestore(&n->list_lock, flags);
2157 * Get a page from somewhere. Search in increasing NUMA distances.
2159 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2160 struct page **ret_page)
2163 struct zonelist *zonelist;
2166 enum zone_type highest_zoneidx = gfp_zone(flags);
2168 unsigned int cpuset_mems_cookie;
2171 * The defrag ratio allows a configuration of the tradeoffs between
2172 * inter node defragmentation and node local allocations. A lower
2173 * defrag_ratio increases the tendency to do local allocations
2174 * instead of attempting to obtain partial slabs from other nodes.
2176 * If the defrag_ratio is set to 0 then kmalloc() always
2177 * returns node local objects. If the ratio is higher then kmalloc()
2178 * may return off node objects because partial slabs are obtained
2179 * from other nodes and filled up.
2181 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2182 * (which makes defrag_ratio = 1000) then every (well almost)
2183 * allocation will first attempt to defrag slab caches on other nodes.
2184 * This means scanning over all nodes to look for partial slabs which
2185 * may be expensive if we do it every time we are trying to find a slab
2186 * with available objects.
2188 if (!s->remote_node_defrag_ratio ||
2189 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2193 cpuset_mems_cookie = read_mems_allowed_begin();
2194 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2195 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2196 struct kmem_cache_node *n;
2198 n = get_node(s, zone_to_nid(zone));
2200 if (n && cpuset_zone_allowed(zone, flags) &&
2201 n->nr_partial > s->min_partial) {
2202 object = get_partial_node(s, n, ret_page, flags);
2205 * Don't check read_mems_allowed_retry()
2206 * here - if mems_allowed was updated in
2207 * parallel, that was a harmless race
2208 * between allocation and the cpuset
2215 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2216 #endif /* CONFIG_NUMA */
2221 * Get a partial page, lock it and return it.
2223 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2224 struct page **ret_page)
2227 int searchnode = node;
2229 if (node == NUMA_NO_NODE)
2230 searchnode = numa_mem_id();
2232 object = get_partial_node(s, get_node(s, searchnode), ret_page, flags);
2233 if (object || node != NUMA_NO_NODE)
2236 return get_any_partial(s, flags, ret_page);
2239 #ifdef CONFIG_PREEMPTION
2241 * Calculate the next globally unique transaction for disambiguation
2242 * during cmpxchg. The transactions start with the cpu number and are then
2243 * incremented by CONFIG_NR_CPUS.
2245 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2248 * No preemption supported therefore also no need to check for
2254 static inline unsigned long next_tid(unsigned long tid)
2256 return tid + TID_STEP;
2259 #ifdef SLUB_DEBUG_CMPXCHG
2260 static inline unsigned int tid_to_cpu(unsigned long tid)
2262 return tid % TID_STEP;
2265 static inline unsigned long tid_to_event(unsigned long tid)
2267 return tid / TID_STEP;
2271 static inline unsigned int init_tid(int cpu)
2276 static inline void note_cmpxchg_failure(const char *n,
2277 const struct kmem_cache *s, unsigned long tid)
2279 #ifdef SLUB_DEBUG_CMPXCHG
2280 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2282 pr_info("%s %s: cmpxchg redo ", n, s->name);
2284 #ifdef CONFIG_PREEMPTION
2285 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2286 pr_warn("due to cpu change %d -> %d\n",
2287 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2290 if (tid_to_event(tid) != tid_to_event(actual_tid))
2291 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2292 tid_to_event(tid), tid_to_event(actual_tid));
2294 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2295 actual_tid, tid, next_tid(tid));
2297 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2300 static void init_kmem_cache_cpus(struct kmem_cache *s)
2303 struct kmem_cache_cpu *c;
2305 for_each_possible_cpu(cpu) {
2306 c = per_cpu_ptr(s->cpu_slab, cpu);
2307 local_lock_init(&c->lock);
2308 c->tid = init_tid(cpu);
2313 * Finishes removing the cpu slab. Merges cpu's freelist with page's freelist,
2314 * unfreezes the slabs and puts it on the proper list.
2315 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2318 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2321 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2322 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2323 int lock = 0, free_delta = 0;
2324 enum slab_modes l = M_NONE, m = M_NONE;
2325 void *nextfree, *freelist_iter, *freelist_tail;
2326 int tail = DEACTIVATE_TO_HEAD;
2327 unsigned long flags = 0;
2331 if (page->freelist) {
2332 stat(s, DEACTIVATE_REMOTE_FREES);
2333 tail = DEACTIVATE_TO_TAIL;
2337 * Stage one: Count the objects on cpu's freelist as free_delta and
2338 * remember the last object in freelist_tail for later splicing.
2340 freelist_tail = NULL;
2341 freelist_iter = freelist;
2342 while (freelist_iter) {
2343 nextfree = get_freepointer(s, freelist_iter);
2346 * If 'nextfree' is invalid, it is possible that the object at
2347 * 'freelist_iter' is already corrupted. So isolate all objects
2348 * starting at 'freelist_iter' by skipping them.
2350 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2353 freelist_tail = freelist_iter;
2356 freelist_iter = nextfree;
2360 * Stage two: Unfreeze the page while splicing the per-cpu
2361 * freelist to the head of page's freelist.
2363 * Ensure that the page is unfrozen while the list presence
2364 * reflects the actual number of objects during unfreeze.
2366 * We setup the list membership and then perform a cmpxchg
2367 * with the count. If there is a mismatch then the page
2368 * is not unfrozen but the page is on the wrong list.
2370 * Then we restart the process which may have to remove
2371 * the page from the list that we just put it on again
2372 * because the number of objects in the slab may have
2377 old.freelist = READ_ONCE(page->freelist);
2378 old.counters = READ_ONCE(page->counters);
2379 VM_BUG_ON(!old.frozen);
2381 /* Determine target state of the slab */
2382 new.counters = old.counters;
2383 if (freelist_tail) {
2384 new.inuse -= free_delta;
2385 set_freepointer(s, freelist_tail, old.freelist);
2386 new.freelist = freelist;
2388 new.freelist = old.freelist;
2392 if (!new.inuse && n->nr_partial >= s->min_partial)
2394 else if (new.freelist) {
2399 * Taking the spinlock removes the possibility
2400 * that acquire_slab() will see a slab page that
2403 spin_lock_irqsave(&n->list_lock, flags);
2407 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2410 * This also ensures that the scanning of full
2411 * slabs from diagnostic functions will not see
2414 spin_lock_irqsave(&n->list_lock, flags);
2420 remove_partial(n, page);
2421 else if (l == M_FULL)
2422 remove_full(s, n, page);
2425 add_partial(n, page, tail);
2426 else if (m == M_FULL)
2427 add_full(s, n, page);
2431 if (!cmpxchg_double_slab(s, page,
2432 old.freelist, old.counters,
2433 new.freelist, new.counters,
2438 spin_unlock_irqrestore(&n->list_lock, flags);
2442 else if (m == M_FULL)
2443 stat(s, DEACTIVATE_FULL);
2444 else if (m == M_FREE) {
2445 stat(s, DEACTIVATE_EMPTY);
2446 discard_slab(s, page);
2451 #ifdef CONFIG_SLUB_CPU_PARTIAL
2452 static void __unfreeze_partials(struct kmem_cache *s, struct page *partial_page)
2454 struct kmem_cache_node *n = NULL, *n2 = NULL;
2455 struct page *page, *discard_page = NULL;
2456 unsigned long flags = 0;
2458 while (partial_page) {
2462 page = partial_page;
2463 partial_page = page->next;
2465 n2 = get_node(s, page_to_nid(page));
2468 spin_unlock_irqrestore(&n->list_lock, flags);
2471 spin_lock_irqsave(&n->list_lock, flags);
2476 old.freelist = page->freelist;
2477 old.counters = page->counters;
2478 VM_BUG_ON(!old.frozen);
2480 new.counters = old.counters;
2481 new.freelist = old.freelist;
2485 } while (!__cmpxchg_double_slab(s, page,
2486 old.freelist, old.counters,
2487 new.freelist, new.counters,
2488 "unfreezing slab"));
2490 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2491 page->next = discard_page;
2492 discard_page = page;
2494 add_partial(n, page, DEACTIVATE_TO_TAIL);
2495 stat(s, FREE_ADD_PARTIAL);
2500 spin_unlock_irqrestore(&n->list_lock, flags);
2502 while (discard_page) {
2503 page = discard_page;
2504 discard_page = discard_page->next;
2506 stat(s, DEACTIVATE_EMPTY);
2507 discard_slab(s, page);
2513 * Unfreeze all the cpu partial slabs.
2515 static void unfreeze_partials(struct kmem_cache *s)
2517 struct page *partial_page;
2518 unsigned long flags;
2520 local_lock_irqsave(&s->cpu_slab->lock, flags);
2521 partial_page = this_cpu_read(s->cpu_slab->partial);
2522 this_cpu_write(s->cpu_slab->partial, NULL);
2523 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2526 __unfreeze_partials(s, partial_page);
2529 static void unfreeze_partials_cpu(struct kmem_cache *s,
2530 struct kmem_cache_cpu *c)
2532 struct page *partial_page;
2534 partial_page = slub_percpu_partial(c);
2538 __unfreeze_partials(s, partial_page);
2542 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2543 * partial page slot if available.
2545 * If we did not find a slot then simply move all the partials to the
2546 * per node partial list.
2548 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2550 struct page *oldpage;
2551 struct page *page_to_unfreeze = NULL;
2552 unsigned long flags;
2556 local_lock_irqsave(&s->cpu_slab->lock, flags);
2558 oldpage = this_cpu_read(s->cpu_slab->partial);
2561 if (drain && oldpage->pobjects > slub_cpu_partial(s)) {
2563 * Partial array is full. Move the existing set to the
2564 * per node partial list. Postpone the actual unfreezing
2565 * outside of the critical section.
2567 page_to_unfreeze = oldpage;
2570 pobjects = oldpage->pobjects;
2571 pages = oldpage->pages;
2576 pobjects += page->objects - page->inuse;
2578 page->pages = pages;
2579 page->pobjects = pobjects;
2580 page->next = oldpage;
2582 this_cpu_write(s->cpu_slab->partial, page);
2584 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2586 if (page_to_unfreeze) {
2587 __unfreeze_partials(s, page_to_unfreeze);
2588 stat(s, CPU_PARTIAL_DRAIN);
2592 #else /* CONFIG_SLUB_CPU_PARTIAL */
2594 static inline void unfreeze_partials(struct kmem_cache *s) { }
2595 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2596 struct kmem_cache_cpu *c) { }
2598 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2600 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2602 unsigned long flags;
2606 local_lock_irqsave(&s->cpu_slab->lock, flags);
2609 freelist = c->freelist;
2613 c->tid = next_tid(c->tid);
2615 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2618 deactivate_slab(s, page, freelist);
2619 stat(s, CPUSLAB_FLUSH);
2623 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2625 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2626 void *freelist = c->freelist;
2627 struct page *page = c->page;
2631 c->tid = next_tid(c->tid);
2634 deactivate_slab(s, page, freelist);
2635 stat(s, CPUSLAB_FLUSH);
2638 unfreeze_partials_cpu(s, c);
2641 struct slub_flush_work {
2642 struct work_struct work;
2643 struct kmem_cache *s;
2650 * Called from CPU work handler with migration disabled.
2652 static void flush_cpu_slab(struct work_struct *w)
2654 struct kmem_cache *s;
2655 struct kmem_cache_cpu *c;
2656 struct slub_flush_work *sfw;
2658 sfw = container_of(w, struct slub_flush_work, work);
2661 c = this_cpu_ptr(s->cpu_slab);
2666 unfreeze_partials(s);
2669 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2671 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2673 return c->page || slub_percpu_partial(c);
2676 static DEFINE_MUTEX(flush_lock);
2677 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2679 static void flush_all_cpus_locked(struct kmem_cache *s)
2681 struct slub_flush_work *sfw;
2684 lockdep_assert_cpus_held();
2685 mutex_lock(&flush_lock);
2687 for_each_online_cpu(cpu) {
2688 sfw = &per_cpu(slub_flush, cpu);
2689 if (!has_cpu_slab(cpu, s)) {
2693 INIT_WORK(&sfw->work, flush_cpu_slab);
2696 queue_work_on(cpu, flushwq, &sfw->work);
2699 for_each_online_cpu(cpu) {
2700 sfw = &per_cpu(slub_flush, cpu);
2703 flush_work(&sfw->work);
2706 mutex_unlock(&flush_lock);
2709 static void flush_all(struct kmem_cache *s)
2712 flush_all_cpus_locked(s);
2717 * Use the cpu notifier to insure that the cpu slabs are flushed when
2720 static int slub_cpu_dead(unsigned int cpu)
2722 struct kmem_cache *s;
2724 mutex_lock(&slab_mutex);
2725 list_for_each_entry(s, &slab_caches, list)
2726 __flush_cpu_slab(s, cpu);
2727 mutex_unlock(&slab_mutex);
2732 * Check if the objects in a per cpu structure fit numa
2733 * locality expectations.
2735 static inline int node_match(struct page *page, int node)
2738 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2744 #ifdef CONFIG_SLUB_DEBUG
2745 static int count_free(struct page *page)
2747 return page->objects - page->inuse;
2750 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2752 return atomic_long_read(&n->total_objects);
2754 #endif /* CONFIG_SLUB_DEBUG */
2756 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2757 static unsigned long count_partial(struct kmem_cache_node *n,
2758 int (*get_count)(struct page *))
2760 unsigned long flags;
2761 unsigned long x = 0;
2764 spin_lock_irqsave(&n->list_lock, flags);
2765 list_for_each_entry(page, &n->partial, slab_list)
2766 x += get_count(page);
2767 spin_unlock_irqrestore(&n->list_lock, flags);
2770 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2772 static noinline void
2773 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2775 #ifdef CONFIG_SLUB_DEBUG
2776 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2777 DEFAULT_RATELIMIT_BURST);
2779 struct kmem_cache_node *n;
2781 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2784 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2785 nid, gfpflags, &gfpflags);
2786 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2787 s->name, s->object_size, s->size, oo_order(s->oo),
2790 if (oo_order(s->min) > get_order(s->object_size))
2791 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2794 for_each_kmem_cache_node(s, node, n) {
2795 unsigned long nr_slabs;
2796 unsigned long nr_objs;
2797 unsigned long nr_free;
2799 nr_free = count_partial(n, count_free);
2800 nr_slabs = node_nr_slabs(n);
2801 nr_objs = node_nr_objs(n);
2803 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2804 node, nr_slabs, nr_objs, nr_free);
2809 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2811 if (unlikely(PageSlabPfmemalloc(page)))
2812 return gfp_pfmemalloc_allowed(gfpflags);
2818 * A variant of pfmemalloc_match() that tests page flags without asserting
2819 * PageSlab. Intended for opportunistic checks before taking a lock and
2820 * rechecking that nobody else freed the page under us.
2822 static inline bool pfmemalloc_match_unsafe(struct page *page, gfp_t gfpflags)
2824 if (unlikely(__PageSlabPfmemalloc(page)))
2825 return gfp_pfmemalloc_allowed(gfpflags);
2831 * Check the page->freelist of a page and either transfer the freelist to the
2832 * per cpu freelist or deactivate the page.
2834 * The page is still frozen if the return value is not NULL.
2836 * If this function returns NULL then the page has been unfrozen.
2838 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2841 unsigned long counters;
2844 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2847 freelist = page->freelist;
2848 counters = page->counters;
2850 new.counters = counters;
2851 VM_BUG_ON(!new.frozen);
2853 new.inuse = page->objects;
2854 new.frozen = freelist != NULL;
2856 } while (!__cmpxchg_double_slab(s, page,
2865 * Slow path. The lockless freelist is empty or we need to perform
2868 * Processing is still very fast if new objects have been freed to the
2869 * regular freelist. In that case we simply take over the regular freelist
2870 * as the lockless freelist and zap the regular freelist.
2872 * If that is not working then we fall back to the partial lists. We take the
2873 * first element of the freelist as the object to allocate now and move the
2874 * rest of the freelist to the lockless freelist.
2876 * And if we were unable to get a new slab from the partial slab lists then
2877 * we need to allocate a new slab. This is the slowest path since it involves
2878 * a call to the page allocator and the setup of a new slab.
2880 * Version of __slab_alloc to use when we know that preemption is
2881 * already disabled (which is the case for bulk allocation).
2883 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2884 unsigned long addr, struct kmem_cache_cpu *c)
2888 unsigned long flags;
2890 stat(s, ALLOC_SLOWPATH);
2894 page = READ_ONCE(c->page);
2897 * if the node is not online or has no normal memory, just
2898 * ignore the node constraint
2900 if (unlikely(node != NUMA_NO_NODE &&
2901 !node_isset(node, slab_nodes)))
2902 node = NUMA_NO_NODE;
2907 if (unlikely(!node_match(page, node))) {
2909 * same as above but node_match() being false already
2910 * implies node != NUMA_NO_NODE
2912 if (!node_isset(node, slab_nodes)) {
2913 node = NUMA_NO_NODE;
2916 stat(s, ALLOC_NODE_MISMATCH);
2917 goto deactivate_slab;
2922 * By rights, we should be searching for a slab page that was
2923 * PFMEMALLOC but right now, we are losing the pfmemalloc
2924 * information when the page leaves the per-cpu allocator
2926 if (unlikely(!pfmemalloc_match_unsafe(page, gfpflags)))
2927 goto deactivate_slab;
2929 /* must check again c->page in case we got preempted and it changed */
2930 local_lock_irqsave(&s->cpu_slab->lock, flags);
2931 if (unlikely(page != c->page)) {
2932 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2935 freelist = c->freelist;
2939 freelist = get_freelist(s, page);
2943 c->tid = next_tid(c->tid);
2944 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2945 stat(s, DEACTIVATE_BYPASS);
2949 stat(s, ALLOC_REFILL);
2953 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2956 * freelist is pointing to the list of objects to be used.
2957 * page is pointing to the page from which the objects are obtained.
2958 * That page must be frozen for per cpu allocations to work.
2960 VM_BUG_ON(!c->page->frozen);
2961 c->freelist = get_freepointer(s, freelist);
2962 c->tid = next_tid(c->tid);
2963 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2968 local_lock_irqsave(&s->cpu_slab->lock, flags);
2969 if (page != c->page) {
2970 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2973 freelist = c->freelist;
2976 c->tid = next_tid(c->tid);
2977 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2978 deactivate_slab(s, page, freelist);
2982 if (slub_percpu_partial(c)) {
2983 local_lock_irqsave(&s->cpu_slab->lock, flags);
2984 if (unlikely(c->page)) {
2985 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2988 if (unlikely(!slub_percpu_partial(c))) {
2989 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2990 /* we were preempted and partial list got empty */
2994 page = c->page = slub_percpu_partial(c);
2995 slub_set_percpu_partial(c, page);
2996 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2997 stat(s, CPU_PARTIAL_ALLOC);
3003 freelist = get_partial(s, gfpflags, node, &page);
3005 goto check_new_page;
3007 slub_put_cpu_ptr(s->cpu_slab);
3008 page = new_slab(s, gfpflags, node);
3009 c = slub_get_cpu_ptr(s->cpu_slab);
3011 if (unlikely(!page)) {
3012 slab_out_of_memory(s, gfpflags, node);
3017 * No other reference to the page yet so we can
3018 * muck around with it freely without cmpxchg
3020 freelist = page->freelist;
3021 page->freelist = NULL;
3023 stat(s, ALLOC_SLAB);
3027 if (kmem_cache_debug(s)) {
3028 if (!alloc_debug_processing(s, page, freelist, addr)) {
3029 /* Slab failed checks. Next slab needed */
3033 * For debug case, we don't load freelist so that all
3034 * allocations go through alloc_debug_processing()
3040 if (unlikely(!pfmemalloc_match(page, gfpflags)))
3042 * For !pfmemalloc_match() case we don't load freelist so that
3043 * we don't make further mismatched allocations easier.
3049 local_lock_irqsave(&s->cpu_slab->lock, flags);
3050 if (unlikely(c->page)) {
3051 void *flush_freelist = c->freelist;
3052 struct page *flush_page = c->page;
3056 c->tid = next_tid(c->tid);
3058 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3060 deactivate_slab(s, flush_page, flush_freelist);
3062 stat(s, CPUSLAB_FLUSH);
3064 goto retry_load_page;
3072 deactivate_slab(s, page, get_freepointer(s, freelist));
3077 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3078 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3081 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3082 unsigned long addr, struct kmem_cache_cpu *c)
3086 #ifdef CONFIG_PREEMPT_COUNT
3088 * We may have been preempted and rescheduled on a different
3089 * cpu before disabling preemption. Need to reload cpu area
3092 c = slub_get_cpu_ptr(s->cpu_slab);
3095 p = ___slab_alloc(s, gfpflags, node, addr, c);
3096 #ifdef CONFIG_PREEMPT_COUNT
3097 slub_put_cpu_ptr(s->cpu_slab);
3103 * If the object has been wiped upon free, make sure it's fully initialized by
3104 * zeroing out freelist pointer.
3106 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3109 if (unlikely(slab_want_init_on_free(s)) && obj)
3110 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3115 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3116 * have the fastpath folded into their functions. So no function call
3117 * overhead for requests that can be satisfied on the fastpath.
3119 * The fastpath works by first checking if the lockless freelist can be used.
3120 * If not then __slab_alloc is called for slow processing.
3122 * Otherwise we can simply pick the next object from the lockless free list.
3124 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
3125 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3128 struct kmem_cache_cpu *c;
3131 struct obj_cgroup *objcg = NULL;
3134 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
3138 object = kfence_alloc(s, orig_size, gfpflags);
3139 if (unlikely(object))
3144 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3145 * enabled. We may switch back and forth between cpus while
3146 * reading from one cpu area. That does not matter as long
3147 * as we end up on the original cpu again when doing the cmpxchg.
3149 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3150 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3151 * the tid. If we are preempted and switched to another cpu between the
3152 * two reads, it's OK as the two are still associated with the same cpu
3153 * and cmpxchg later will validate the cpu.
3155 c = raw_cpu_ptr(s->cpu_slab);
3156 tid = READ_ONCE(c->tid);
3159 * Irqless object alloc/free algorithm used here depends on sequence
3160 * of fetching cpu_slab's data. tid should be fetched before anything
3161 * on c to guarantee that object and page associated with previous tid
3162 * won't be used with current tid. If we fetch tid first, object and
3163 * page could be one associated with next tid and our alloc/free
3164 * request will be failed. In this case, we will retry. So, no problem.
3169 * The transaction ids are globally unique per cpu and per operation on
3170 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3171 * occurs on the right processor and that there was no operation on the
3172 * linked list in between.
3175 object = c->freelist;
3178 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3179 * slowpath has taken the local_lock_irqsave(), it is not protected
3180 * against a fast path operation in an irq handler. So we need to take
3181 * the slow path which uses local_lock. It is still relatively fast if
3182 * there is a suitable cpu freelist.
3184 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3185 unlikely(!object || !page || !node_match(page, node))) {
3186 object = __slab_alloc(s, gfpflags, node, addr, c);
3188 void *next_object = get_freepointer_safe(s, object);
3191 * The cmpxchg will only match if there was no additional
3192 * operation and if we are on the right processor.
3194 * The cmpxchg does the following atomically (without lock
3196 * 1. Relocate first pointer to the current per cpu area.
3197 * 2. Verify that tid and freelist have not been changed
3198 * 3. If they were not changed replace tid and freelist
3200 * Since this is without lock semantics the protection is only
3201 * against code executing on this cpu *not* from access by
3204 if (unlikely(!this_cpu_cmpxchg_double(
3205 s->cpu_slab->freelist, s->cpu_slab->tid,
3207 next_object, next_tid(tid)))) {
3209 note_cmpxchg_failure("slab_alloc", s, tid);
3212 prefetch_freepointer(s, next_object);
3213 stat(s, ALLOC_FASTPATH);
3216 maybe_wipe_obj_freeptr(s, object);
3217 init = slab_want_init_on_alloc(gfpflags, s);
3220 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3225 static __always_inline void *slab_alloc(struct kmem_cache *s,
3226 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3228 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
3231 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3233 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
3235 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3240 EXPORT_SYMBOL(kmem_cache_alloc);
3242 #ifdef CONFIG_TRACING
3243 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3245 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
3246 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3247 ret = kasan_kmalloc(s, ret, size, gfpflags);
3250 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3254 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3256 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
3258 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3259 s->object_size, s->size, gfpflags, node);
3263 EXPORT_SYMBOL(kmem_cache_alloc_node);
3265 #ifdef CONFIG_TRACING
3266 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3268 int node, size_t size)
3270 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
3272 trace_kmalloc_node(_RET_IP_, ret,
3273 size, s->size, gfpflags, node);
3275 ret = kasan_kmalloc(s, ret, size, gfpflags);
3278 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3280 #endif /* CONFIG_NUMA */
3283 * Slow path handling. This may still be called frequently since objects
3284 * have a longer lifetime than the cpu slabs in most processing loads.
3286 * So we still attempt to reduce cache line usage. Just take the slab
3287 * lock and free the item. If there is no additional partial page
3288 * handling required then we can return immediately.
3290 static void __slab_free(struct kmem_cache *s, struct page *page,
3291 void *head, void *tail, int cnt,
3298 unsigned long counters;
3299 struct kmem_cache_node *n = NULL;
3300 unsigned long flags;
3302 stat(s, FREE_SLOWPATH);
3304 if (kfence_free(head))
3307 if (kmem_cache_debug(s) &&
3308 !free_debug_processing(s, page, head, tail, cnt, addr))
3313 spin_unlock_irqrestore(&n->list_lock, flags);
3316 prior = page->freelist;
3317 counters = page->counters;
3318 set_freepointer(s, tail, prior);
3319 new.counters = counters;
3320 was_frozen = new.frozen;
3322 if ((!new.inuse || !prior) && !was_frozen) {
3324 if (kmem_cache_has_cpu_partial(s) && !prior) {
3327 * Slab was on no list before and will be
3329 * We can defer the list move and instead
3334 } else { /* Needs to be taken off a list */
3336 n = get_node(s, page_to_nid(page));
3338 * Speculatively acquire the list_lock.
3339 * If the cmpxchg does not succeed then we may
3340 * drop the list_lock without any processing.
3342 * Otherwise the list_lock will synchronize with
3343 * other processors updating the list of slabs.
3345 spin_lock_irqsave(&n->list_lock, flags);
3350 } while (!cmpxchg_double_slab(s, page,
3357 if (likely(was_frozen)) {
3359 * The list lock was not taken therefore no list
3360 * activity can be necessary.
3362 stat(s, FREE_FROZEN);
3363 } else if (new.frozen) {
3365 * If we just froze the page then put it onto the
3366 * per cpu partial list.
3368 put_cpu_partial(s, page, 1);
3369 stat(s, CPU_PARTIAL_FREE);
3375 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3379 * Objects left in the slab. If it was not on the partial list before
3382 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3383 remove_full(s, n, page);
3384 add_partial(n, page, DEACTIVATE_TO_TAIL);
3385 stat(s, FREE_ADD_PARTIAL);
3387 spin_unlock_irqrestore(&n->list_lock, flags);
3393 * Slab on the partial list.
3395 remove_partial(n, page);
3396 stat(s, FREE_REMOVE_PARTIAL);
3398 /* Slab must be on the full list */
3399 remove_full(s, n, page);
3402 spin_unlock_irqrestore(&n->list_lock, flags);
3404 discard_slab(s, page);
3408 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3409 * can perform fastpath freeing without additional function calls.
3411 * The fastpath is only possible if we are freeing to the current cpu slab
3412 * of this processor. This typically the case if we have just allocated
3415 * If fastpath is not possible then fall back to __slab_free where we deal
3416 * with all sorts of special processing.
3418 * Bulk free of a freelist with several objects (all pointing to the
3419 * same page) possible by specifying head and tail ptr, plus objects
3420 * count (cnt). Bulk free indicated by tail pointer being set.
3422 static __always_inline void do_slab_free(struct kmem_cache *s,
3423 struct page *page, void *head, void *tail,
3424 int cnt, unsigned long addr)
3426 void *tail_obj = tail ? : head;
3427 struct kmem_cache_cpu *c;
3430 /* memcg_slab_free_hook() is already called for bulk free. */
3432 memcg_slab_free_hook(s, &head, 1);
3435 * Determine the currently cpus per cpu slab.
3436 * The cpu may change afterward. However that does not matter since
3437 * data is retrieved via this pointer. If we are on the same cpu
3438 * during the cmpxchg then the free will succeed.
3440 c = raw_cpu_ptr(s->cpu_slab);
3441 tid = READ_ONCE(c->tid);
3443 /* Same with comment on barrier() in slab_alloc_node() */
3446 if (likely(page == c->page)) {
3447 #ifndef CONFIG_PREEMPT_RT
3448 void **freelist = READ_ONCE(c->freelist);
3450 set_freepointer(s, tail_obj, freelist);
3452 if (unlikely(!this_cpu_cmpxchg_double(
3453 s->cpu_slab->freelist, s->cpu_slab->tid,
3455 head, next_tid(tid)))) {
3457 note_cmpxchg_failure("slab_free", s, tid);
3460 #else /* CONFIG_PREEMPT_RT */
3462 * We cannot use the lockless fastpath on PREEMPT_RT because if
3463 * a slowpath has taken the local_lock_irqsave(), it is not
3464 * protected against a fast path operation in an irq handler. So
3465 * we need to take the local_lock. We shouldn't simply defer to
3466 * __slab_free() as that wouldn't use the cpu freelist at all.
3470 local_lock(&s->cpu_slab->lock);
3471 c = this_cpu_ptr(s->cpu_slab);
3472 if (unlikely(page != c->page)) {
3473 local_unlock(&s->cpu_slab->lock);
3477 freelist = c->freelist;
3479 set_freepointer(s, tail_obj, freelist);
3481 c->tid = next_tid(tid);
3483 local_unlock(&s->cpu_slab->lock);
3485 stat(s, FREE_FASTPATH);
3487 __slab_free(s, page, head, tail_obj, cnt, addr);
3491 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3492 void *head, void *tail, int cnt,
3496 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3497 * to remove objects, whose reuse must be delayed.
3499 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3500 do_slab_free(s, page, head, tail, cnt, addr);
3503 #ifdef CONFIG_KASAN_GENERIC
3504 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3506 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3510 void kmem_cache_free(struct kmem_cache *s, void *x)
3512 s = cache_from_obj(s, x);
3515 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3516 trace_kmem_cache_free(_RET_IP_, x, s->name);
3518 EXPORT_SYMBOL(kmem_cache_free);
3520 struct detached_freelist {
3525 struct kmem_cache *s;
3528 static inline void free_nonslab_page(struct page *page, void *object)
3530 unsigned int order = compound_order(page);
3532 VM_BUG_ON_PAGE(!PageCompound(page), page);
3534 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3535 __free_pages(page, order);
3539 * This function progressively scans the array with free objects (with
3540 * a limited look ahead) and extract objects belonging to the same
3541 * page. It builds a detached freelist directly within the given
3542 * page/objects. This can happen without any need for
3543 * synchronization, because the objects are owned by running process.
3544 * The freelist is build up as a single linked list in the objects.
3545 * The idea is, that this detached freelist can then be bulk
3546 * transferred to the real freelist(s), but only requiring a single
3547 * synchronization primitive. Look ahead in the array is limited due
3548 * to performance reasons.
3551 int build_detached_freelist(struct kmem_cache *s, size_t size,
3552 void **p, struct detached_freelist *df)
3554 size_t first_skipped_index = 0;
3559 /* Always re-init detached_freelist */
3564 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3565 } while (!object && size);
3570 page = virt_to_head_page(object);
3572 /* Handle kalloc'ed objects */
3573 if (unlikely(!PageSlab(page))) {
3574 free_nonslab_page(page, object);
3575 p[size] = NULL; /* mark object processed */
3578 /* Derive kmem_cache from object */
3579 df->s = page->slab_cache;
3581 df->s = cache_from_obj(s, object); /* Support for memcg */
3584 if (is_kfence_address(object)) {
3585 slab_free_hook(df->s, object, false);
3586 __kfence_free(object);
3587 p[size] = NULL; /* mark object processed */
3591 /* Start new detached freelist */
3593 set_freepointer(df->s, object, NULL);
3595 df->freelist = object;
3596 p[size] = NULL; /* mark object processed */
3602 continue; /* Skip processed objects */
3604 /* df->page is always set at this point */
3605 if (df->page == virt_to_head_page(object)) {
3606 /* Opportunity build freelist */
3607 set_freepointer(df->s, object, df->freelist);
3608 df->freelist = object;
3610 p[size] = NULL; /* mark object processed */
3615 /* Limit look ahead search */
3619 if (!first_skipped_index)
3620 first_skipped_index = size + 1;
3623 return first_skipped_index;
3626 /* Note that interrupts must be enabled when calling this function. */
3627 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3632 memcg_slab_free_hook(s, p, size);
3634 struct detached_freelist df;
3636 size = build_detached_freelist(s, size, p, &df);
3640 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3641 } while (likely(size));
3643 EXPORT_SYMBOL(kmem_cache_free_bulk);
3645 /* Note that interrupts must be enabled when calling this function. */
3646 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3649 struct kmem_cache_cpu *c;
3651 struct obj_cgroup *objcg = NULL;
3653 /* memcg and kmem_cache debug support */
3654 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3658 * Drain objects in the per cpu slab, while disabling local
3659 * IRQs, which protects against PREEMPT and interrupts
3660 * handlers invoking normal fastpath.
3662 c = slub_get_cpu_ptr(s->cpu_slab);
3663 local_lock_irq(&s->cpu_slab->lock);
3665 for (i = 0; i < size; i++) {
3666 void *object = kfence_alloc(s, s->object_size, flags);
3668 if (unlikely(object)) {
3673 object = c->freelist;
3674 if (unlikely(!object)) {
3676 * We may have removed an object from c->freelist using
3677 * the fastpath in the previous iteration; in that case,
3678 * c->tid has not been bumped yet.
3679 * Since ___slab_alloc() may reenable interrupts while
3680 * allocating memory, we should bump c->tid now.
3682 c->tid = next_tid(c->tid);
3684 local_unlock_irq(&s->cpu_slab->lock);
3687 * Invoking slow path likely have side-effect
3688 * of re-populating per CPU c->freelist
3690 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3692 if (unlikely(!p[i]))
3695 c = this_cpu_ptr(s->cpu_slab);
3696 maybe_wipe_obj_freeptr(s, p[i]);
3698 local_lock_irq(&s->cpu_slab->lock);
3700 continue; /* goto for-loop */
3702 c->freelist = get_freepointer(s, object);
3704 maybe_wipe_obj_freeptr(s, p[i]);
3706 c->tid = next_tid(c->tid);
3707 local_unlock_irq(&s->cpu_slab->lock);
3708 slub_put_cpu_ptr(s->cpu_slab);
3711 * memcg and kmem_cache debug support and memory initialization.
3712 * Done outside of the IRQ disabled fastpath loop.
3714 slab_post_alloc_hook(s, objcg, flags, size, p,
3715 slab_want_init_on_alloc(flags, s));
3718 slub_put_cpu_ptr(s->cpu_slab);
3719 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3720 __kmem_cache_free_bulk(s, i, p);
3723 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3727 * Object placement in a slab is made very easy because we always start at
3728 * offset 0. If we tune the size of the object to the alignment then we can
3729 * get the required alignment by putting one properly sized object after
3732 * Notice that the allocation order determines the sizes of the per cpu
3733 * caches. Each processor has always one slab available for allocations.
3734 * Increasing the allocation order reduces the number of times that slabs
3735 * must be moved on and off the partial lists and is therefore a factor in
3740 * Minimum / Maximum order of slab pages. This influences locking overhead
3741 * and slab fragmentation. A higher order reduces the number of partial slabs
3742 * and increases the number of allocations possible without having to
3743 * take the list_lock.
3745 static unsigned int slub_min_order;
3746 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3747 static unsigned int slub_min_objects;
3750 * Calculate the order of allocation given an slab object size.
3752 * The order of allocation has significant impact on performance and other
3753 * system components. Generally order 0 allocations should be preferred since
3754 * order 0 does not cause fragmentation in the page allocator. Larger objects
3755 * be problematic to put into order 0 slabs because there may be too much
3756 * unused space left. We go to a higher order if more than 1/16th of the slab
3759 * In order to reach satisfactory performance we must ensure that a minimum
3760 * number of objects is in one slab. Otherwise we may generate too much
3761 * activity on the partial lists which requires taking the list_lock. This is
3762 * less a concern for large slabs though which are rarely used.
3764 * slub_max_order specifies the order where we begin to stop considering the
3765 * number of objects in a slab as critical. If we reach slub_max_order then
3766 * we try to keep the page order as low as possible. So we accept more waste
3767 * of space in favor of a small page order.
3769 * Higher order allocations also allow the placement of more objects in a
3770 * slab and thereby reduce object handling overhead. If the user has
3771 * requested a higher minimum order then we start with that one instead of
3772 * the smallest order which will fit the object.
3774 static inline unsigned int slab_order(unsigned int size,
3775 unsigned int min_objects, unsigned int max_order,
3776 unsigned int fract_leftover)
3778 unsigned int min_order = slub_min_order;
3781 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3782 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3784 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3785 order <= max_order; order++) {
3787 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3790 rem = slab_size % size;
3792 if (rem <= slab_size / fract_leftover)
3799 static inline int calculate_order(unsigned int size)
3802 unsigned int min_objects;
3803 unsigned int max_objects;
3804 unsigned int nr_cpus;
3807 * Attempt to find best configuration for a slab. This
3808 * works by first attempting to generate a layout with
3809 * the best configuration and backing off gradually.
3811 * First we increase the acceptable waste in a slab. Then
3812 * we reduce the minimum objects required in a slab.
3814 min_objects = slub_min_objects;
3817 * Some architectures will only update present cpus when
3818 * onlining them, so don't trust the number if it's just 1. But
3819 * we also don't want to use nr_cpu_ids always, as on some other
3820 * architectures, there can be many possible cpus, but never
3821 * onlined. Here we compromise between trying to avoid too high
3822 * order on systems that appear larger than they are, and too
3823 * low order on systems that appear smaller than they are.
3825 nr_cpus = num_present_cpus();
3827 nr_cpus = nr_cpu_ids;
3828 min_objects = 4 * (fls(nr_cpus) + 1);
3830 max_objects = order_objects(slub_max_order, size);
3831 min_objects = min(min_objects, max_objects);
3833 while (min_objects > 1) {
3834 unsigned int fraction;
3837 while (fraction >= 4) {
3838 order = slab_order(size, min_objects,
3839 slub_max_order, fraction);
3840 if (order <= slub_max_order)
3848 * We were unable to place multiple objects in a slab. Now
3849 * lets see if we can place a single object there.
3851 order = slab_order(size, 1, slub_max_order, 1);
3852 if (order <= slub_max_order)
3856 * Doh this slab cannot be placed using slub_max_order.
3858 order = slab_order(size, 1, MAX_ORDER, 1);
3859 if (order < MAX_ORDER)
3865 init_kmem_cache_node(struct kmem_cache_node *n)
3868 spin_lock_init(&n->list_lock);
3869 INIT_LIST_HEAD(&n->partial);
3870 #ifdef CONFIG_SLUB_DEBUG
3871 atomic_long_set(&n->nr_slabs, 0);
3872 atomic_long_set(&n->total_objects, 0);
3873 INIT_LIST_HEAD(&n->full);
3877 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3879 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3880 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3883 * Must align to double word boundary for the double cmpxchg
3884 * instructions to work; see __pcpu_double_call_return_bool().
3886 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3887 2 * sizeof(void *));
3892 init_kmem_cache_cpus(s);
3897 static struct kmem_cache *kmem_cache_node;
3900 * No kmalloc_node yet so do it by hand. We know that this is the first
3901 * slab on the node for this slabcache. There are no concurrent accesses
3904 * Note that this function only works on the kmem_cache_node
3905 * when allocating for the kmem_cache_node. This is used for bootstrapping
3906 * memory on a fresh node that has no slab structures yet.
3908 static void early_kmem_cache_node_alloc(int node)
3911 struct kmem_cache_node *n;
3913 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3915 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3918 if (page_to_nid(page) != node) {
3919 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3920 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3925 #ifdef CONFIG_SLUB_DEBUG
3926 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3927 init_tracking(kmem_cache_node, n);
3929 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3930 page->freelist = get_freepointer(kmem_cache_node, n);
3933 kmem_cache_node->node[node] = n;
3934 init_kmem_cache_node(n);
3935 inc_slabs_node(kmem_cache_node, node, page->objects);
3938 * No locks need to be taken here as it has just been
3939 * initialized and there is no concurrent access.
3941 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3944 static void free_kmem_cache_nodes(struct kmem_cache *s)
3947 struct kmem_cache_node *n;
3949 for_each_kmem_cache_node(s, node, n) {
3950 s->node[node] = NULL;
3951 kmem_cache_free(kmem_cache_node, n);
3955 void __kmem_cache_release(struct kmem_cache *s)
3957 cache_random_seq_destroy(s);
3958 free_percpu(s->cpu_slab);
3959 free_kmem_cache_nodes(s);
3962 static int init_kmem_cache_nodes(struct kmem_cache *s)
3966 for_each_node_mask(node, slab_nodes) {
3967 struct kmem_cache_node *n;
3969 if (slab_state == DOWN) {
3970 early_kmem_cache_node_alloc(node);
3973 n = kmem_cache_alloc_node(kmem_cache_node,
3977 free_kmem_cache_nodes(s);
3981 init_kmem_cache_node(n);
3987 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3989 if (min < MIN_PARTIAL)
3991 else if (min > MAX_PARTIAL)
3993 s->min_partial = min;
3996 static void set_cpu_partial(struct kmem_cache *s)
3998 #ifdef CONFIG_SLUB_CPU_PARTIAL
4000 * cpu_partial determined the maximum number of objects kept in the
4001 * per cpu partial lists of a processor.
4003 * Per cpu partial lists mainly contain slabs that just have one
4004 * object freed. If they are used for allocation then they can be
4005 * filled up again with minimal effort. The slab will never hit the
4006 * per node partial lists and therefore no locking will be required.
4008 * This setting also determines
4010 * A) The number of objects from per cpu partial slabs dumped to the
4011 * per node list when we reach the limit.
4012 * B) The number of objects in cpu partial slabs to extract from the
4013 * per node list when we run out of per cpu objects. We only fetch
4014 * 50% to keep some capacity around for frees.
4016 if (!kmem_cache_has_cpu_partial(s))
4017 slub_set_cpu_partial(s, 0);
4018 else if (s->size >= PAGE_SIZE)
4019 slub_set_cpu_partial(s, 2);
4020 else if (s->size >= 1024)
4021 slub_set_cpu_partial(s, 6);
4022 else if (s->size >= 256)
4023 slub_set_cpu_partial(s, 13);
4025 slub_set_cpu_partial(s, 30);
4030 * calculate_sizes() determines the order and the distribution of data within
4033 static int calculate_sizes(struct kmem_cache *s, int forced_order)
4035 slab_flags_t flags = s->flags;
4036 unsigned int size = s->object_size;
4040 * Round up object size to the next word boundary. We can only
4041 * place the free pointer at word boundaries and this determines
4042 * the possible location of the free pointer.
4044 size = ALIGN(size, sizeof(void *));
4046 #ifdef CONFIG_SLUB_DEBUG
4048 * Determine if we can poison the object itself. If the user of
4049 * the slab may touch the object after free or before allocation
4050 * then we should never poison the object itself.
4052 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4054 s->flags |= __OBJECT_POISON;
4056 s->flags &= ~__OBJECT_POISON;
4060 * If we are Redzoning then check if there is some space between the
4061 * end of the object and the free pointer. If not then add an
4062 * additional word to have some bytes to store Redzone information.
4064 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4065 size += sizeof(void *);
4069 * With that we have determined the number of bytes in actual use
4070 * by the object and redzoning.
4074 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4075 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4078 * Relocate free pointer after the object if it is not
4079 * permitted to overwrite the first word of the object on
4082 * This is the case if we do RCU, have a constructor or
4083 * destructor, are poisoning the objects, or are
4084 * redzoning an object smaller than sizeof(void *).
4086 * The assumption that s->offset >= s->inuse means free
4087 * pointer is outside of the object is used in the
4088 * freeptr_outside_object() function. If that is no
4089 * longer true, the function needs to be modified.
4092 size += sizeof(void *);
4095 * Store freelist pointer near middle of object to keep
4096 * it away from the edges of the object to avoid small
4097 * sized over/underflows from neighboring allocations.
4099 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4102 #ifdef CONFIG_SLUB_DEBUG
4103 if (flags & SLAB_STORE_USER)
4105 * Need to store information about allocs and frees after
4108 size += 2 * sizeof(struct track);
4111 kasan_cache_create(s, &size, &s->flags);
4112 #ifdef CONFIG_SLUB_DEBUG
4113 if (flags & SLAB_RED_ZONE) {
4115 * Add some empty padding so that we can catch
4116 * overwrites from earlier objects rather than let
4117 * tracking information or the free pointer be
4118 * corrupted if a user writes before the start
4121 size += sizeof(void *);
4123 s->red_left_pad = sizeof(void *);
4124 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4125 size += s->red_left_pad;
4130 * SLUB stores one object immediately after another beginning from
4131 * offset 0. In order to align the objects we have to simply size
4132 * each object to conform to the alignment.
4134 size = ALIGN(size, s->align);
4136 s->reciprocal_size = reciprocal_value(size);
4137 if (forced_order >= 0)
4138 order = forced_order;
4140 order = calculate_order(size);
4147 s->allocflags |= __GFP_COMP;
4149 if (s->flags & SLAB_CACHE_DMA)
4150 s->allocflags |= GFP_DMA;
4152 if (s->flags & SLAB_CACHE_DMA32)
4153 s->allocflags |= GFP_DMA32;
4155 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4156 s->allocflags |= __GFP_RECLAIMABLE;
4159 * Determine the number of objects per slab
4161 s->oo = oo_make(order, size);
4162 s->min = oo_make(get_order(size), size);
4163 if (oo_objects(s->oo) > oo_objects(s->max))
4166 return !!oo_objects(s->oo);
4169 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4171 s->flags = kmem_cache_flags(s->size, flags, s->name);
4172 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4173 s->random = get_random_long();
4176 if (!calculate_sizes(s, -1))
4178 if (disable_higher_order_debug) {
4180 * Disable debugging flags that store metadata if the min slab
4183 if (get_order(s->size) > get_order(s->object_size)) {
4184 s->flags &= ~DEBUG_METADATA_FLAGS;
4186 if (!calculate_sizes(s, -1))
4191 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4192 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4193 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4194 /* Enable fast mode */
4195 s->flags |= __CMPXCHG_DOUBLE;
4199 * The larger the object size is, the more pages we want on the partial
4200 * list to avoid pounding the page allocator excessively.
4202 set_min_partial(s, ilog2(s->size) / 2);
4207 s->remote_node_defrag_ratio = 1000;
4210 /* Initialize the pre-computed randomized freelist if slab is up */
4211 if (slab_state >= UP) {
4212 if (init_cache_random_seq(s))
4216 if (!init_kmem_cache_nodes(s))
4219 if (alloc_kmem_cache_cpus(s))
4223 __kmem_cache_release(s);
4227 static void list_slab_objects(struct kmem_cache *s, struct page *page,
4230 #ifdef CONFIG_SLUB_DEBUG
4231 void *addr = page_address(page);
4232 unsigned long flags;
4236 slab_err(s, page, text, s->name);
4237 slab_lock(page, &flags);
4239 map = get_map(s, page);
4240 for_each_object(p, s, addr, page->objects) {
4242 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4243 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4244 print_tracking(s, p);
4248 slab_unlock(page, &flags);
4253 * Attempt to free all partial slabs on a node.
4254 * This is called from __kmem_cache_shutdown(). We must take list_lock
4255 * because sysfs file might still access partial list after the shutdowning.
4257 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4260 struct page *page, *h;
4262 BUG_ON(irqs_disabled());
4263 spin_lock_irq(&n->list_lock);
4264 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
4266 remove_partial(n, page);
4267 list_add(&page->slab_list, &discard);
4269 list_slab_objects(s, page,
4270 "Objects remaining in %s on __kmem_cache_shutdown()");
4273 spin_unlock_irq(&n->list_lock);
4275 list_for_each_entry_safe(page, h, &discard, slab_list)
4276 discard_slab(s, page);
4279 bool __kmem_cache_empty(struct kmem_cache *s)
4282 struct kmem_cache_node *n;
4284 for_each_kmem_cache_node(s, node, n)
4285 if (n->nr_partial || slabs_node(s, node))
4291 * Release all resources used by a slab cache.
4293 int __kmem_cache_shutdown(struct kmem_cache *s)
4296 struct kmem_cache_node *n;
4298 flush_all_cpus_locked(s);
4299 /* Attempt to free all objects */
4300 for_each_kmem_cache_node(s, node, n) {
4302 if (n->nr_partial || slabs_node(s, node))
4308 #ifdef CONFIG_PRINTK
4309 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4312 int __maybe_unused i;
4316 struct kmem_cache *s = page->slab_cache;
4317 struct track __maybe_unused *trackp;
4319 kpp->kp_ptr = object;
4320 kpp->kp_page = page;
4321 kpp->kp_slab_cache = s;
4322 base = page_address(page);
4323 objp0 = kasan_reset_tag(object);
4324 #ifdef CONFIG_SLUB_DEBUG
4325 objp = restore_red_left(s, objp0);
4329 objnr = obj_to_index(s, page, objp);
4330 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4331 objp = base + s->size * objnr;
4332 kpp->kp_objp = objp;
4333 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4334 !(s->flags & SLAB_STORE_USER))
4336 #ifdef CONFIG_SLUB_DEBUG
4337 objp = fixup_red_left(s, objp);
4338 trackp = get_track(s, objp, TRACK_ALLOC);
4339 kpp->kp_ret = (void *)trackp->addr;
4340 #ifdef CONFIG_STACKTRACE
4341 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4342 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4343 if (!kpp->kp_stack[i])
4347 trackp = get_track(s, objp, TRACK_FREE);
4348 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4349 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4350 if (!kpp->kp_free_stack[i])
4358 /********************************************************************
4360 *******************************************************************/
4362 static int __init setup_slub_min_order(char *str)
4364 get_option(&str, (int *)&slub_min_order);
4369 __setup("slub_min_order=", setup_slub_min_order);
4371 static int __init setup_slub_max_order(char *str)
4373 get_option(&str, (int *)&slub_max_order);
4374 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4379 __setup("slub_max_order=", setup_slub_max_order);
4381 static int __init setup_slub_min_objects(char *str)
4383 get_option(&str, (int *)&slub_min_objects);
4388 __setup("slub_min_objects=", setup_slub_min_objects);
4390 void *__kmalloc(size_t size, gfp_t flags)
4392 struct kmem_cache *s;
4395 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4396 return kmalloc_large(size, flags);
4398 s = kmalloc_slab(size, flags);
4400 if (unlikely(ZERO_OR_NULL_PTR(s)))
4403 ret = slab_alloc(s, flags, _RET_IP_, size);
4405 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4407 ret = kasan_kmalloc(s, ret, size, flags);
4411 EXPORT_SYMBOL(__kmalloc);
4414 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4418 unsigned int order = get_order(size);
4420 flags |= __GFP_COMP;
4421 page = alloc_pages_node(node, flags, order);
4423 ptr = page_address(page);
4424 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4425 PAGE_SIZE << order);
4428 return kmalloc_large_node_hook(ptr, size, flags);
4431 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4433 struct kmem_cache *s;
4436 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4437 ret = kmalloc_large_node(size, flags, node);
4439 trace_kmalloc_node(_RET_IP_, ret,
4440 size, PAGE_SIZE << get_order(size),
4446 s = kmalloc_slab(size, flags);
4448 if (unlikely(ZERO_OR_NULL_PTR(s)))
4451 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4453 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4455 ret = kasan_kmalloc(s, ret, size, flags);
4459 EXPORT_SYMBOL(__kmalloc_node);
4460 #endif /* CONFIG_NUMA */
4462 #ifdef CONFIG_HARDENED_USERCOPY
4464 * Rejects incorrectly sized objects and objects that are to be copied
4465 * to/from userspace but do not fall entirely within the containing slab
4466 * cache's usercopy region.
4468 * Returns NULL if check passes, otherwise const char * to name of cache
4469 * to indicate an error.
4471 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4474 struct kmem_cache *s;
4475 unsigned int offset;
4477 bool is_kfence = is_kfence_address(ptr);
4479 ptr = kasan_reset_tag(ptr);
4481 /* Find object and usable object size. */
4482 s = page->slab_cache;
4484 /* Reject impossible pointers. */
4485 if (ptr < page_address(page))
4486 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4489 /* Find offset within object. */
4491 offset = ptr - kfence_object_start(ptr);
4493 offset = (ptr - page_address(page)) % s->size;
4495 /* Adjust for redzone and reject if within the redzone. */
4496 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4497 if (offset < s->red_left_pad)
4498 usercopy_abort("SLUB object in left red zone",
4499 s->name, to_user, offset, n);
4500 offset -= s->red_left_pad;
4503 /* Allow address range falling entirely within usercopy region. */
4504 if (offset >= s->useroffset &&
4505 offset - s->useroffset <= s->usersize &&
4506 n <= s->useroffset - offset + s->usersize)
4510 * If the copy is still within the allocated object, produce
4511 * a warning instead of rejecting the copy. This is intended
4512 * to be a temporary method to find any missing usercopy
4515 object_size = slab_ksize(s);
4516 if (usercopy_fallback &&
4517 offset <= object_size && n <= object_size - offset) {
4518 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4522 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4524 #endif /* CONFIG_HARDENED_USERCOPY */
4526 size_t __ksize(const void *object)
4530 if (unlikely(object == ZERO_SIZE_PTR))
4533 page = virt_to_head_page(object);
4535 if (unlikely(!PageSlab(page))) {
4536 WARN_ON(!PageCompound(page));
4537 return page_size(page);
4540 return slab_ksize(page->slab_cache);
4542 EXPORT_SYMBOL(__ksize);
4544 void kfree(const void *x)
4547 void *object = (void *)x;
4549 trace_kfree(_RET_IP_, x);
4551 if (unlikely(ZERO_OR_NULL_PTR(x)))
4554 page = virt_to_head_page(x);
4555 if (unlikely(!PageSlab(page))) {
4556 free_nonslab_page(page, object);
4559 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4561 EXPORT_SYMBOL(kfree);
4563 #define SHRINK_PROMOTE_MAX 32
4566 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4567 * up most to the head of the partial lists. New allocations will then
4568 * fill those up and thus they can be removed from the partial lists.
4570 * The slabs with the least items are placed last. This results in them
4571 * being allocated from last increasing the chance that the last objects
4572 * are freed in them.
4574 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4578 struct kmem_cache_node *n;
4581 struct list_head discard;
4582 struct list_head promote[SHRINK_PROMOTE_MAX];
4583 unsigned long flags;
4586 for_each_kmem_cache_node(s, node, n) {
4587 INIT_LIST_HEAD(&discard);
4588 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4589 INIT_LIST_HEAD(promote + i);
4591 spin_lock_irqsave(&n->list_lock, flags);
4594 * Build lists of slabs to discard or promote.
4596 * Note that concurrent frees may occur while we hold the
4597 * list_lock. page->inuse here is the upper limit.
4599 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4600 int free = page->objects - page->inuse;
4602 /* Do not reread page->inuse */
4605 /* We do not keep full slabs on the list */
4608 if (free == page->objects) {
4609 list_move(&page->slab_list, &discard);
4611 } else if (free <= SHRINK_PROMOTE_MAX)
4612 list_move(&page->slab_list, promote + free - 1);
4616 * Promote the slabs filled up most to the head of the
4619 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4620 list_splice(promote + i, &n->partial);
4622 spin_unlock_irqrestore(&n->list_lock, flags);
4624 /* Release empty slabs */
4625 list_for_each_entry_safe(page, t, &discard, slab_list)
4626 discard_slab(s, page);
4628 if (slabs_node(s, node))
4635 int __kmem_cache_shrink(struct kmem_cache *s)
4638 return __kmem_cache_do_shrink(s);
4641 static int slab_mem_going_offline_callback(void *arg)
4643 struct kmem_cache *s;
4645 mutex_lock(&slab_mutex);
4646 list_for_each_entry(s, &slab_caches, list) {
4647 flush_all_cpus_locked(s);
4648 __kmem_cache_do_shrink(s);
4650 mutex_unlock(&slab_mutex);
4655 static void slab_mem_offline_callback(void *arg)
4657 struct memory_notify *marg = arg;
4660 offline_node = marg->status_change_nid_normal;
4663 * If the node still has available memory. we need kmem_cache_node
4666 if (offline_node < 0)
4669 mutex_lock(&slab_mutex);
4670 node_clear(offline_node, slab_nodes);
4672 * We no longer free kmem_cache_node structures here, as it would be
4673 * racy with all get_node() users, and infeasible to protect them with
4676 mutex_unlock(&slab_mutex);
4679 static int slab_mem_going_online_callback(void *arg)
4681 struct kmem_cache_node *n;
4682 struct kmem_cache *s;
4683 struct memory_notify *marg = arg;
4684 int nid = marg->status_change_nid_normal;
4688 * If the node's memory is already available, then kmem_cache_node is
4689 * already created. Nothing to do.
4695 * We are bringing a node online. No memory is available yet. We must
4696 * allocate a kmem_cache_node structure in order to bring the node
4699 mutex_lock(&slab_mutex);
4700 list_for_each_entry(s, &slab_caches, list) {
4702 * The structure may already exist if the node was previously
4703 * onlined and offlined.
4705 if (get_node(s, nid))
4708 * XXX: kmem_cache_alloc_node will fallback to other nodes
4709 * since memory is not yet available from the node that
4712 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4717 init_kmem_cache_node(n);
4721 * Any cache created after this point will also have kmem_cache_node
4722 * initialized for the new node.
4724 node_set(nid, slab_nodes);
4726 mutex_unlock(&slab_mutex);
4730 static int slab_memory_callback(struct notifier_block *self,
4731 unsigned long action, void *arg)
4736 case MEM_GOING_ONLINE:
4737 ret = slab_mem_going_online_callback(arg);
4739 case MEM_GOING_OFFLINE:
4740 ret = slab_mem_going_offline_callback(arg);
4743 case MEM_CANCEL_ONLINE:
4744 slab_mem_offline_callback(arg);
4747 case MEM_CANCEL_OFFLINE:
4751 ret = notifier_from_errno(ret);
4757 static struct notifier_block slab_memory_callback_nb = {
4758 .notifier_call = slab_memory_callback,
4759 .priority = SLAB_CALLBACK_PRI,
4762 /********************************************************************
4763 * Basic setup of slabs
4764 *******************************************************************/
4767 * Used for early kmem_cache structures that were allocated using
4768 * the page allocator. Allocate them properly then fix up the pointers
4769 * that may be pointing to the wrong kmem_cache structure.
4772 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4775 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4776 struct kmem_cache_node *n;
4778 memcpy(s, static_cache, kmem_cache->object_size);
4781 * This runs very early, and only the boot processor is supposed to be
4782 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4785 __flush_cpu_slab(s, smp_processor_id());
4786 for_each_kmem_cache_node(s, node, n) {
4789 list_for_each_entry(p, &n->partial, slab_list)
4792 #ifdef CONFIG_SLUB_DEBUG
4793 list_for_each_entry(p, &n->full, slab_list)
4797 list_add(&s->list, &slab_caches);
4801 void __init kmem_cache_init(void)
4803 static __initdata struct kmem_cache boot_kmem_cache,
4804 boot_kmem_cache_node;
4807 if (debug_guardpage_minorder())
4810 /* Print slub debugging pointers without hashing */
4811 if (__slub_debug_enabled())
4812 no_hash_pointers_enable(NULL);
4814 kmem_cache_node = &boot_kmem_cache_node;
4815 kmem_cache = &boot_kmem_cache;
4818 * Initialize the nodemask for which we will allocate per node
4819 * structures. Here we don't need taking slab_mutex yet.
4821 for_each_node_state(node, N_NORMAL_MEMORY)
4822 node_set(node, slab_nodes);
4824 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4825 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4827 register_hotmemory_notifier(&slab_memory_callback_nb);
4829 /* Able to allocate the per node structures */
4830 slab_state = PARTIAL;
4832 create_boot_cache(kmem_cache, "kmem_cache",
4833 offsetof(struct kmem_cache, node) +
4834 nr_node_ids * sizeof(struct kmem_cache_node *),
4835 SLAB_HWCACHE_ALIGN, 0, 0);
4837 kmem_cache = bootstrap(&boot_kmem_cache);
4838 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4840 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4841 setup_kmalloc_cache_index_table();
4842 create_kmalloc_caches(0);
4844 /* Setup random freelists for each cache */
4845 init_freelist_randomization();
4847 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4850 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4852 slub_min_order, slub_max_order, slub_min_objects,
4853 nr_cpu_ids, nr_node_ids);
4856 void __init kmem_cache_init_late(void)
4858 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
4863 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4864 slab_flags_t flags, void (*ctor)(void *))
4866 struct kmem_cache *s;
4868 s = find_mergeable(size, align, flags, name, ctor);
4873 * Adjust the object sizes so that we clear
4874 * the complete object on kzalloc.
4876 s->object_size = max(s->object_size, size);
4877 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4879 if (sysfs_slab_alias(s, name)) {
4888 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4892 err = kmem_cache_open(s, flags);
4896 /* Mutex is not taken during early boot */
4897 if (slab_state <= UP)
4900 err = sysfs_slab_add(s);
4902 __kmem_cache_release(s);
4906 if (s->flags & SLAB_STORE_USER)
4907 debugfs_slab_add(s);
4912 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4914 struct kmem_cache *s;
4917 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4918 return kmalloc_large(size, gfpflags);
4920 s = kmalloc_slab(size, gfpflags);
4922 if (unlikely(ZERO_OR_NULL_PTR(s)))
4925 ret = slab_alloc(s, gfpflags, caller, size);
4927 /* Honor the call site pointer we received. */
4928 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4930 ret = kasan_kmalloc(s, ret, size, gfpflags);
4934 EXPORT_SYMBOL(__kmalloc_track_caller);
4937 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4938 int node, unsigned long caller)
4940 struct kmem_cache *s;
4943 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4944 ret = kmalloc_large_node(size, gfpflags, node);
4946 trace_kmalloc_node(caller, ret,
4947 size, PAGE_SIZE << get_order(size),
4953 s = kmalloc_slab(size, gfpflags);
4955 if (unlikely(ZERO_OR_NULL_PTR(s)))
4958 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4960 /* Honor the call site pointer we received. */
4961 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4963 ret = kasan_kmalloc(s, ret, size, gfpflags);
4967 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4971 static int count_inuse(struct page *page)
4976 static int count_total(struct page *page)
4978 return page->objects;
4982 #ifdef CONFIG_SLUB_DEBUG
4983 static void validate_slab(struct kmem_cache *s, struct page *page,
4984 unsigned long *obj_map)
4987 void *addr = page_address(page);
4988 unsigned long flags;
4990 slab_lock(page, &flags);
4992 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4995 /* Now we know that a valid freelist exists */
4996 __fill_map(obj_map, s, page);
4997 for_each_object(p, s, addr, page->objects) {
4998 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4999 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5001 if (!check_object(s, page, p, val))
5005 slab_unlock(page, &flags);
5008 static int validate_slab_node(struct kmem_cache *s,
5009 struct kmem_cache_node *n, unsigned long *obj_map)
5011 unsigned long count = 0;
5013 unsigned long flags;
5015 spin_lock_irqsave(&n->list_lock, flags);
5017 list_for_each_entry(page, &n->partial, slab_list) {
5018 validate_slab(s, page, obj_map);
5021 if (count != n->nr_partial) {
5022 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5023 s->name, count, n->nr_partial);
5024 slab_add_kunit_errors();
5027 if (!(s->flags & SLAB_STORE_USER))
5030 list_for_each_entry(page, &n->full, slab_list) {
5031 validate_slab(s, page, obj_map);
5034 if (count != atomic_long_read(&n->nr_slabs)) {
5035 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5036 s->name, count, atomic_long_read(&n->nr_slabs));
5037 slab_add_kunit_errors();
5041 spin_unlock_irqrestore(&n->list_lock, flags);
5045 long validate_slab_cache(struct kmem_cache *s)
5048 unsigned long count = 0;
5049 struct kmem_cache_node *n;
5050 unsigned long *obj_map;
5052 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5057 for_each_kmem_cache_node(s, node, n)
5058 count += validate_slab_node(s, n, obj_map);
5060 bitmap_free(obj_map);
5064 EXPORT_SYMBOL(validate_slab_cache);
5066 #ifdef CONFIG_DEBUG_FS
5068 * Generate lists of code addresses where slabcache objects are allocated
5073 unsigned long count;
5080 DECLARE_BITMAP(cpus, NR_CPUS);
5086 unsigned long count;
5087 struct location *loc;
5091 static struct dentry *slab_debugfs_root;
5093 static void free_loc_track(struct loc_track *t)
5096 free_pages((unsigned long)t->loc,
5097 get_order(sizeof(struct location) * t->max));
5100 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5105 order = get_order(sizeof(struct location) * max);
5107 l = (void *)__get_free_pages(flags, order);
5112 memcpy(l, t->loc, sizeof(struct location) * t->count);
5120 static int add_location(struct loc_track *t, struct kmem_cache *s,
5121 const struct track *track)
5123 long start, end, pos;
5125 unsigned long caddr;
5126 unsigned long age = jiffies - track->when;
5132 pos = start + (end - start + 1) / 2;
5135 * There is nothing at "end". If we end up there
5136 * we need to add something to before end.
5141 caddr = t->loc[pos].addr;
5142 if (track->addr == caddr) {
5148 if (age < l->min_time)
5150 if (age > l->max_time)
5153 if (track->pid < l->min_pid)
5154 l->min_pid = track->pid;
5155 if (track->pid > l->max_pid)
5156 l->max_pid = track->pid;
5158 cpumask_set_cpu(track->cpu,
5159 to_cpumask(l->cpus));
5161 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5165 if (track->addr < caddr)
5172 * Not found. Insert new tracking element.
5174 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5180 (t->count - pos) * sizeof(struct location));
5183 l->addr = track->addr;
5187 l->min_pid = track->pid;
5188 l->max_pid = track->pid;
5189 cpumask_clear(to_cpumask(l->cpus));
5190 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5191 nodes_clear(l->nodes);
5192 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5196 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5197 struct page *page, enum track_item alloc,
5198 unsigned long *obj_map)
5200 void *addr = page_address(page);
5203 __fill_map(obj_map, s, page);
5205 for_each_object(p, s, addr, page->objects)
5206 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5207 add_location(t, s, get_track(s, p, alloc));
5209 #endif /* CONFIG_DEBUG_FS */
5210 #endif /* CONFIG_SLUB_DEBUG */
5213 enum slab_stat_type {
5214 SL_ALL, /* All slabs */
5215 SL_PARTIAL, /* Only partially allocated slabs */
5216 SL_CPU, /* Only slabs used for cpu caches */
5217 SL_OBJECTS, /* Determine allocated objects not slabs */
5218 SL_TOTAL /* Determine object capacity not slabs */
5221 #define SO_ALL (1 << SL_ALL)
5222 #define SO_PARTIAL (1 << SL_PARTIAL)
5223 #define SO_CPU (1 << SL_CPU)
5224 #define SO_OBJECTS (1 << SL_OBJECTS)
5225 #define SO_TOTAL (1 << SL_TOTAL)
5227 static ssize_t show_slab_objects(struct kmem_cache *s,
5228 char *buf, unsigned long flags)
5230 unsigned long total = 0;
5233 unsigned long *nodes;
5236 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5240 if (flags & SO_CPU) {
5243 for_each_possible_cpu(cpu) {
5244 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5249 page = READ_ONCE(c->page);
5253 node = page_to_nid(page);
5254 if (flags & SO_TOTAL)
5256 else if (flags & SO_OBJECTS)
5264 page = slub_percpu_partial_read_once(c);
5266 node = page_to_nid(page);
5267 if (flags & SO_TOTAL)
5269 else if (flags & SO_OBJECTS)
5280 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5281 * already held which will conflict with an existing lock order:
5283 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5285 * We don't really need mem_hotplug_lock (to hold off
5286 * slab_mem_going_offline_callback) here because slab's memory hot
5287 * unplug code doesn't destroy the kmem_cache->node[] data.
5290 #ifdef CONFIG_SLUB_DEBUG
5291 if (flags & SO_ALL) {
5292 struct kmem_cache_node *n;
5294 for_each_kmem_cache_node(s, node, n) {
5296 if (flags & SO_TOTAL)
5297 x = atomic_long_read(&n->total_objects);
5298 else if (flags & SO_OBJECTS)
5299 x = atomic_long_read(&n->total_objects) -
5300 count_partial(n, count_free);
5302 x = atomic_long_read(&n->nr_slabs);
5309 if (flags & SO_PARTIAL) {
5310 struct kmem_cache_node *n;
5312 for_each_kmem_cache_node(s, node, n) {
5313 if (flags & SO_TOTAL)
5314 x = count_partial(n, count_total);
5315 else if (flags & SO_OBJECTS)
5316 x = count_partial(n, count_inuse);
5324 len += sysfs_emit_at(buf, len, "%lu", total);
5326 for (node = 0; node < nr_node_ids; node++) {
5328 len += sysfs_emit_at(buf, len, " N%d=%lu",
5332 len += sysfs_emit_at(buf, len, "\n");
5338 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5339 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5341 struct slab_attribute {
5342 struct attribute attr;
5343 ssize_t (*show)(struct kmem_cache *s, char *buf);
5344 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5347 #define SLAB_ATTR_RO(_name) \
5348 static struct slab_attribute _name##_attr = \
5349 __ATTR(_name, 0400, _name##_show, NULL)
5351 #define SLAB_ATTR(_name) \
5352 static struct slab_attribute _name##_attr = \
5353 __ATTR(_name, 0600, _name##_show, _name##_store)
5355 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5357 return sysfs_emit(buf, "%u\n", s->size);
5359 SLAB_ATTR_RO(slab_size);
5361 static ssize_t align_show(struct kmem_cache *s, char *buf)
5363 return sysfs_emit(buf, "%u\n", s->align);
5365 SLAB_ATTR_RO(align);
5367 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5369 return sysfs_emit(buf, "%u\n", s->object_size);
5371 SLAB_ATTR_RO(object_size);
5373 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5375 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5377 SLAB_ATTR_RO(objs_per_slab);
5379 static ssize_t order_show(struct kmem_cache *s, char *buf)
5381 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5383 SLAB_ATTR_RO(order);
5385 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5387 return sysfs_emit(buf, "%lu\n", s->min_partial);
5390 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5396 err = kstrtoul(buf, 10, &min);
5400 set_min_partial(s, min);
5403 SLAB_ATTR(min_partial);
5405 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5407 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5410 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5413 unsigned int objects;
5416 err = kstrtouint(buf, 10, &objects);
5419 if (objects && !kmem_cache_has_cpu_partial(s))
5422 slub_set_cpu_partial(s, objects);
5426 SLAB_ATTR(cpu_partial);
5428 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5432 return sysfs_emit(buf, "%pS\n", s->ctor);
5436 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5438 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5440 SLAB_ATTR_RO(aliases);
5442 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5444 return show_slab_objects(s, buf, SO_PARTIAL);
5446 SLAB_ATTR_RO(partial);
5448 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5450 return show_slab_objects(s, buf, SO_CPU);
5452 SLAB_ATTR_RO(cpu_slabs);
5454 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5456 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5458 SLAB_ATTR_RO(objects);
5460 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5462 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5464 SLAB_ATTR_RO(objects_partial);
5466 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5473 for_each_online_cpu(cpu) {
5476 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5479 pages += page->pages;
5480 objects += page->pobjects;
5484 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5487 for_each_online_cpu(cpu) {
5490 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5492 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5493 cpu, page->pobjects, page->pages);
5496 len += sysfs_emit_at(buf, len, "\n");
5500 SLAB_ATTR_RO(slabs_cpu_partial);
5502 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5504 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5506 SLAB_ATTR_RO(reclaim_account);
5508 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5510 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5512 SLAB_ATTR_RO(hwcache_align);
5514 #ifdef CONFIG_ZONE_DMA
5515 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5517 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5519 SLAB_ATTR_RO(cache_dma);
5522 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5524 return sysfs_emit(buf, "%u\n", s->usersize);
5526 SLAB_ATTR_RO(usersize);
5528 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5530 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5532 SLAB_ATTR_RO(destroy_by_rcu);
5534 #ifdef CONFIG_SLUB_DEBUG
5535 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5537 return show_slab_objects(s, buf, SO_ALL);
5539 SLAB_ATTR_RO(slabs);
5541 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5543 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5545 SLAB_ATTR_RO(total_objects);
5547 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5549 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5551 SLAB_ATTR_RO(sanity_checks);
5553 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5555 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5557 SLAB_ATTR_RO(trace);
5559 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5561 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5564 SLAB_ATTR_RO(red_zone);
5566 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5568 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5571 SLAB_ATTR_RO(poison);
5573 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5575 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5578 SLAB_ATTR_RO(store_user);
5580 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5585 static ssize_t validate_store(struct kmem_cache *s,
5586 const char *buf, size_t length)
5590 if (buf[0] == '1') {
5591 ret = validate_slab_cache(s);
5597 SLAB_ATTR(validate);
5599 #endif /* CONFIG_SLUB_DEBUG */
5601 #ifdef CONFIG_FAILSLAB
5602 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5604 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5606 SLAB_ATTR_RO(failslab);
5609 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5614 static ssize_t shrink_store(struct kmem_cache *s,
5615 const char *buf, size_t length)
5618 kmem_cache_shrink(s);
5626 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5628 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5631 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5632 const char *buf, size_t length)
5637 err = kstrtouint(buf, 10, &ratio);
5643 s->remote_node_defrag_ratio = ratio * 10;
5647 SLAB_ATTR(remote_node_defrag_ratio);
5650 #ifdef CONFIG_SLUB_STATS
5651 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5653 unsigned long sum = 0;
5656 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5661 for_each_online_cpu(cpu) {
5662 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5668 len += sysfs_emit_at(buf, len, "%lu", sum);
5671 for_each_online_cpu(cpu) {
5673 len += sysfs_emit_at(buf, len, " C%d=%u",
5678 len += sysfs_emit_at(buf, len, "\n");
5683 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5687 for_each_online_cpu(cpu)
5688 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5691 #define STAT_ATTR(si, text) \
5692 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5694 return show_stat(s, buf, si); \
5696 static ssize_t text##_store(struct kmem_cache *s, \
5697 const char *buf, size_t length) \
5699 if (buf[0] != '0') \
5701 clear_stat(s, si); \
5706 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5707 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5708 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5709 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5710 STAT_ATTR(FREE_FROZEN, free_frozen);
5711 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5712 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5713 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5714 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5715 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5716 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5717 STAT_ATTR(FREE_SLAB, free_slab);
5718 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5719 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5720 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5721 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5722 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5723 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5724 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5725 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5726 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5727 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5728 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5729 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5730 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5731 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5732 #endif /* CONFIG_SLUB_STATS */
5734 static struct attribute *slab_attrs[] = {
5735 &slab_size_attr.attr,
5736 &object_size_attr.attr,
5737 &objs_per_slab_attr.attr,
5739 &min_partial_attr.attr,
5740 &cpu_partial_attr.attr,
5742 &objects_partial_attr.attr,
5744 &cpu_slabs_attr.attr,
5748 &hwcache_align_attr.attr,
5749 &reclaim_account_attr.attr,
5750 &destroy_by_rcu_attr.attr,
5752 &slabs_cpu_partial_attr.attr,
5753 #ifdef CONFIG_SLUB_DEBUG
5754 &total_objects_attr.attr,
5756 &sanity_checks_attr.attr,
5758 &red_zone_attr.attr,
5760 &store_user_attr.attr,
5761 &validate_attr.attr,
5763 #ifdef CONFIG_ZONE_DMA
5764 &cache_dma_attr.attr,
5767 &remote_node_defrag_ratio_attr.attr,
5769 #ifdef CONFIG_SLUB_STATS
5770 &alloc_fastpath_attr.attr,
5771 &alloc_slowpath_attr.attr,
5772 &free_fastpath_attr.attr,
5773 &free_slowpath_attr.attr,
5774 &free_frozen_attr.attr,
5775 &free_add_partial_attr.attr,
5776 &free_remove_partial_attr.attr,
5777 &alloc_from_partial_attr.attr,
5778 &alloc_slab_attr.attr,
5779 &alloc_refill_attr.attr,
5780 &alloc_node_mismatch_attr.attr,
5781 &free_slab_attr.attr,
5782 &cpuslab_flush_attr.attr,
5783 &deactivate_full_attr.attr,
5784 &deactivate_empty_attr.attr,
5785 &deactivate_to_head_attr.attr,
5786 &deactivate_to_tail_attr.attr,
5787 &deactivate_remote_frees_attr.attr,
5788 &deactivate_bypass_attr.attr,
5789 &order_fallback_attr.attr,
5790 &cmpxchg_double_fail_attr.attr,
5791 &cmpxchg_double_cpu_fail_attr.attr,
5792 &cpu_partial_alloc_attr.attr,
5793 &cpu_partial_free_attr.attr,
5794 &cpu_partial_node_attr.attr,
5795 &cpu_partial_drain_attr.attr,
5797 #ifdef CONFIG_FAILSLAB
5798 &failslab_attr.attr,
5800 &usersize_attr.attr,
5805 static const struct attribute_group slab_attr_group = {
5806 .attrs = slab_attrs,
5809 static ssize_t slab_attr_show(struct kobject *kobj,
5810 struct attribute *attr,
5813 struct slab_attribute *attribute;
5814 struct kmem_cache *s;
5817 attribute = to_slab_attr(attr);
5820 if (!attribute->show)
5823 err = attribute->show(s, buf);
5828 static ssize_t slab_attr_store(struct kobject *kobj,
5829 struct attribute *attr,
5830 const char *buf, size_t len)
5832 struct slab_attribute *attribute;
5833 struct kmem_cache *s;
5836 attribute = to_slab_attr(attr);
5839 if (!attribute->store)
5842 err = attribute->store(s, buf, len);
5846 static void kmem_cache_release(struct kobject *k)
5848 slab_kmem_cache_release(to_slab(k));
5851 static const struct sysfs_ops slab_sysfs_ops = {
5852 .show = slab_attr_show,
5853 .store = slab_attr_store,
5856 static struct kobj_type slab_ktype = {
5857 .sysfs_ops = &slab_sysfs_ops,
5858 .release = kmem_cache_release,
5861 static struct kset *slab_kset;
5863 static inline struct kset *cache_kset(struct kmem_cache *s)
5868 #define ID_STR_LENGTH 64
5870 /* Create a unique string id for a slab cache:
5872 * Format :[flags-]size
5874 static char *create_unique_id(struct kmem_cache *s)
5876 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5880 return ERR_PTR(-ENOMEM);
5884 * First flags affecting slabcache operations. We will only
5885 * get here for aliasable slabs so we do not need to support
5886 * too many flags. The flags here must cover all flags that
5887 * are matched during merging to guarantee that the id is
5890 if (s->flags & SLAB_CACHE_DMA)
5892 if (s->flags & SLAB_CACHE_DMA32)
5894 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5896 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5898 if (s->flags & SLAB_ACCOUNT)
5902 p += sprintf(p, "%07u", s->size);
5904 BUG_ON(p > name + ID_STR_LENGTH - 1);
5908 static int sysfs_slab_add(struct kmem_cache *s)
5912 struct kset *kset = cache_kset(s);
5913 int unmergeable = slab_unmergeable(s);
5916 kobject_init(&s->kobj, &slab_ktype);
5920 if (!unmergeable && disable_higher_order_debug &&
5921 (slub_debug & DEBUG_METADATA_FLAGS))
5926 * Slabcache can never be merged so we can use the name proper.
5927 * This is typically the case for debug situations. In that
5928 * case we can catch duplicate names easily.
5930 sysfs_remove_link(&slab_kset->kobj, s->name);
5934 * Create a unique name for the slab as a target
5937 name = create_unique_id(s);
5939 return PTR_ERR(name);
5942 s->kobj.kset = kset;
5943 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5947 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5952 /* Setup first alias */
5953 sysfs_slab_alias(s, s->name);
5960 kobject_del(&s->kobj);
5964 void sysfs_slab_unlink(struct kmem_cache *s)
5966 if (slab_state >= FULL)
5967 kobject_del(&s->kobj);
5970 void sysfs_slab_release(struct kmem_cache *s)
5972 if (slab_state >= FULL)
5973 kobject_put(&s->kobj);
5977 * Need to buffer aliases during bootup until sysfs becomes
5978 * available lest we lose that information.
5980 struct saved_alias {
5981 struct kmem_cache *s;
5983 struct saved_alias *next;
5986 static struct saved_alias *alias_list;
5988 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5990 struct saved_alias *al;
5992 if (slab_state == FULL) {
5994 * If we have a leftover link then remove it.
5996 sysfs_remove_link(&slab_kset->kobj, name);
5997 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6000 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6006 al->next = alias_list;
6011 static int __init slab_sysfs_init(void)
6013 struct kmem_cache *s;
6016 mutex_lock(&slab_mutex);
6018 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6020 mutex_unlock(&slab_mutex);
6021 pr_err("Cannot register slab subsystem.\n");
6027 list_for_each_entry(s, &slab_caches, list) {
6028 err = sysfs_slab_add(s);
6030 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6034 while (alias_list) {
6035 struct saved_alias *al = alias_list;
6037 alias_list = alias_list->next;
6038 err = sysfs_slab_alias(al->s, al->name);
6040 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6045 mutex_unlock(&slab_mutex);
6049 __initcall(slab_sysfs_init);
6050 #endif /* CONFIG_SYSFS */
6052 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6053 static int slab_debugfs_show(struct seq_file *seq, void *v)
6055 struct loc_track *t = seq->private;
6059 idx = (unsigned long) t->idx;
6060 if (idx < t->count) {
6063 seq_printf(seq, "%7ld ", l->count);
6066 seq_printf(seq, "%pS", (void *)l->addr);
6068 seq_puts(seq, "<not-available>");
6070 if (l->sum_time != l->min_time) {
6071 seq_printf(seq, " age=%ld/%llu/%ld",
6072 l->min_time, div_u64(l->sum_time, l->count),
6075 seq_printf(seq, " age=%ld", l->min_time);
6077 if (l->min_pid != l->max_pid)
6078 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6080 seq_printf(seq, " pid=%ld",
6083 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6084 seq_printf(seq, " cpus=%*pbl",
6085 cpumask_pr_args(to_cpumask(l->cpus)));
6087 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6088 seq_printf(seq, " nodes=%*pbl",
6089 nodemask_pr_args(&l->nodes));
6091 seq_puts(seq, "\n");
6094 if (!idx && !t->count)
6095 seq_puts(seq, "No data\n");
6100 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6104 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6106 struct loc_track *t = seq->private;
6109 if (*ppos <= t->count)
6115 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6117 struct loc_track *t = seq->private;
6123 static const struct seq_operations slab_debugfs_sops = {
6124 .start = slab_debugfs_start,
6125 .next = slab_debugfs_next,
6126 .stop = slab_debugfs_stop,
6127 .show = slab_debugfs_show,
6130 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6133 struct kmem_cache_node *n;
6134 enum track_item alloc;
6136 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6137 sizeof(struct loc_track));
6138 struct kmem_cache *s = file_inode(filep)->i_private;
6139 unsigned long *obj_map;
6144 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6146 seq_release_private(inode, filep);
6150 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6151 alloc = TRACK_ALLOC;
6155 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6156 bitmap_free(obj_map);
6157 seq_release_private(inode, filep);
6161 for_each_kmem_cache_node(s, node, n) {
6162 unsigned long flags;
6165 if (!atomic_long_read(&n->nr_slabs))
6168 spin_lock_irqsave(&n->list_lock, flags);
6169 list_for_each_entry(page, &n->partial, slab_list)
6170 process_slab(t, s, page, alloc, obj_map);
6171 list_for_each_entry(page, &n->full, slab_list)
6172 process_slab(t, s, page, alloc, obj_map);
6173 spin_unlock_irqrestore(&n->list_lock, flags);
6176 bitmap_free(obj_map);
6180 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6182 struct seq_file *seq = file->private_data;
6183 struct loc_track *t = seq->private;
6186 return seq_release_private(inode, file);
6189 static const struct file_operations slab_debugfs_fops = {
6190 .open = slab_debug_trace_open,
6192 .llseek = seq_lseek,
6193 .release = slab_debug_trace_release,
6196 static void debugfs_slab_add(struct kmem_cache *s)
6198 struct dentry *slab_cache_dir;
6200 if (unlikely(!slab_debugfs_root))
6203 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6205 debugfs_create_file("alloc_traces", 0400,
6206 slab_cache_dir, s, &slab_debugfs_fops);
6208 debugfs_create_file("free_traces", 0400,
6209 slab_cache_dir, s, &slab_debugfs_fops);
6212 void debugfs_slab_release(struct kmem_cache *s)
6214 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6217 static int __init slab_debugfs_init(void)
6219 struct kmem_cache *s;
6221 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6223 list_for_each_entry(s, &slab_caches, list)
6224 if (s->flags & SLAB_STORE_USER)
6225 debugfs_slab_add(s);
6230 __initcall(slab_debugfs_init);
6233 * The /proc/slabinfo ABI
6235 #ifdef CONFIG_SLUB_DEBUG
6236 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6238 unsigned long nr_slabs = 0;
6239 unsigned long nr_objs = 0;
6240 unsigned long nr_free = 0;
6242 struct kmem_cache_node *n;
6244 for_each_kmem_cache_node(s, node, n) {
6245 nr_slabs += node_nr_slabs(n);
6246 nr_objs += node_nr_objs(n);
6247 nr_free += count_partial(n, count_free);
6250 sinfo->active_objs = nr_objs - nr_free;
6251 sinfo->num_objs = nr_objs;
6252 sinfo->active_slabs = nr_slabs;
6253 sinfo->num_slabs = nr_slabs;
6254 sinfo->objects_per_slab = oo_objects(s->oo);
6255 sinfo->cache_order = oo_order(s->oo);
6258 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6262 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6263 size_t count, loff_t *ppos)
6267 #endif /* CONFIG_SLUB_DEBUG */