1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/stackdepot.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/kfence.h>
33 #include <linux/memory.h>
34 #include <linux/math64.h>
35 #include <linux/fault-inject.h>
36 #include <linux/stacktrace.h>
37 #include <linux/prefetch.h>
38 #include <linux/memcontrol.h>
39 #include <linux/random.h>
40 #include <kunit/test.h>
41 #include <linux/sort.h>
43 #include <linux/debugfs.h>
44 #include <trace/events/kmem.h>
50 * 1. slab_mutex (Global Mutex)
51 * 2. node->list_lock (Spinlock)
52 * 3. kmem_cache->cpu_slab->lock (Local lock)
53 * 4. slab_lock(slab) (Only on some arches or for debugging)
54 * 5. object_map_lock (Only for debugging)
58 * The role of the slab_mutex is to protect the list of all the slabs
59 * and to synchronize major metadata changes to slab cache structures.
60 * Also synchronizes memory hotplug callbacks.
64 * The slab_lock is a wrapper around the page lock, thus it is a bit
67 * The slab_lock is only used for debugging and on arches that do not
68 * have the ability to do a cmpxchg_double. It only protects:
69 * A. slab->freelist -> List of free objects in a slab
70 * B. slab->inuse -> Number of objects in use
71 * C. slab->objects -> Number of objects in slab
72 * D. slab->frozen -> frozen state
76 * If a slab is frozen then it is exempt from list management. It is not
77 * on any list except per cpu partial list. The processor that froze the
78 * slab is the one who can perform list operations on the slab. Other
79 * processors may put objects onto the freelist but the processor that
80 * froze the slab is the only one that can retrieve the objects from the
85 * The list_lock protects the partial and full list on each node and
86 * the partial slab counter. If taken then no new slabs may be added or
87 * removed from the lists nor make the number of partial slabs be modified.
88 * (Note that the total number of slabs is an atomic value that may be
89 * modified without taking the list lock).
91 * The list_lock is a centralized lock and thus we avoid taking it as
92 * much as possible. As long as SLUB does not have to handle partial
93 * slabs, operations can continue without any centralized lock. F.e.
94 * allocating a long series of objects that fill up slabs does not require
97 * cpu_slab->lock local lock
99 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
100 * except the stat counters. This is a percpu structure manipulated only by
101 * the local cpu, so the lock protects against being preempted or interrupted
102 * by an irq. Fast path operations rely on lockless operations instead.
103 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
104 * prevent the lockless operations), so fastpath operations also need to take
105 * the lock and are no longer lockless.
109 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
110 * are fully lockless when satisfied from the percpu slab (and when
111 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
112 * They also don't disable preemption or migration or irqs. They rely on
113 * the transaction id (tid) field to detect being preempted or moved to
116 * irq, preemption, migration considerations
118 * Interrupts are disabled as part of list_lock or local_lock operations, or
119 * around the slab_lock operation, in order to make the slab allocator safe
120 * to use in the context of an irq.
122 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
123 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
124 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
125 * doesn't have to be revalidated in each section protected by the local lock.
127 * SLUB assigns one slab for allocation to each processor.
128 * Allocations only occur from these slabs called cpu slabs.
130 * Slabs with free elements are kept on a partial list and during regular
131 * operations no list for full slabs is used. If an object in a full slab is
132 * freed then the slab will show up again on the partial lists.
133 * We track full slabs for debugging purposes though because otherwise we
134 * cannot scan all objects.
136 * Slabs are freed when they become empty. Teardown and setup is
137 * minimal so we rely on the page allocators per cpu caches for
138 * fast frees and allocs.
140 * slab->frozen The slab is frozen and exempt from list processing.
141 * This means that the slab is dedicated to a purpose
142 * such as satisfying allocations for a specific
143 * processor. Objects may be freed in the slab while
144 * it is frozen but slab_free will then skip the usual
145 * list operations. It is up to the processor holding
146 * the slab to integrate the slab into the slab lists
147 * when the slab is no longer needed.
149 * One use of this flag is to mark slabs that are
150 * used for allocations. Then such a slab becomes a cpu
151 * slab. The cpu slab may be equipped with an additional
152 * freelist that allows lockless access to
153 * free objects in addition to the regular freelist
154 * that requires the slab lock.
156 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
157 * options set. This moves slab handling out of
158 * the fast path and disables lockless freelists.
162 * We could simply use migrate_disable()/enable() but as long as it's a
163 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
165 #ifndef CONFIG_PREEMPT_RT
166 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
167 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
169 #define slub_get_cpu_ptr(var) \
174 #define slub_put_cpu_ptr(var) \
181 #ifdef CONFIG_SLUB_DEBUG
182 #ifdef CONFIG_SLUB_DEBUG_ON
183 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
185 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
187 #endif /* CONFIG_SLUB_DEBUG */
189 static inline bool kmem_cache_debug(struct kmem_cache *s)
191 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
194 void *fixup_red_left(struct kmem_cache *s, void *p)
196 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
197 p += s->red_left_pad;
202 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
204 #ifdef CONFIG_SLUB_CPU_PARTIAL
205 return !kmem_cache_debug(s);
212 * Issues still to be resolved:
214 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
216 * - Variable sizing of the per node arrays
219 /* Enable to log cmpxchg failures */
220 #undef SLUB_DEBUG_CMPXCHG
223 * Minimum number of partial slabs. These will be left on the partial
224 * lists even if they are empty. kmem_cache_shrink may reclaim them.
226 #define MIN_PARTIAL 5
229 * Maximum number of desirable partial slabs.
230 * The existence of more partial slabs makes kmem_cache_shrink
231 * sort the partial list by the number of objects in use.
233 #define MAX_PARTIAL 10
235 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
236 SLAB_POISON | SLAB_STORE_USER)
239 * These debug flags cannot use CMPXCHG because there might be consistency
240 * issues when checking or reading debug information
242 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
247 * Debugging flags that require metadata to be stored in the slab. These get
248 * disabled when slub_debug=O is used and a cache's min order increases with
251 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
254 #define OO_MASK ((1 << OO_SHIFT) - 1)
255 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
257 /* Internal SLUB flags */
259 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
260 /* Use cmpxchg_double */
261 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
264 * Tracking user of a slab.
266 #define TRACK_ADDRS_COUNT 16
268 unsigned long addr; /* Called from address */
269 #ifdef CONFIG_STACKDEPOT
270 depot_stack_handle_t handle;
272 int cpu; /* Was running on cpu */
273 int pid; /* Pid context */
274 unsigned long when; /* When did the operation occur */
277 enum track_item { TRACK_ALLOC, TRACK_FREE };
280 static int sysfs_slab_add(struct kmem_cache *);
281 static int sysfs_slab_alias(struct kmem_cache *, const char *);
283 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
284 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
288 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
289 static void debugfs_slab_add(struct kmem_cache *);
291 static inline void debugfs_slab_add(struct kmem_cache *s) { }
294 static inline void stat(const struct kmem_cache *s, enum stat_item si)
296 #ifdef CONFIG_SLUB_STATS
298 * The rmw is racy on a preemptible kernel but this is acceptable, so
299 * avoid this_cpu_add()'s irq-disable overhead.
301 raw_cpu_inc(s->cpu_slab->stat[si]);
306 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
307 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
308 * differ during memory hotplug/hotremove operations.
309 * Protected by slab_mutex.
311 static nodemask_t slab_nodes;
313 /********************************************************************
314 * Core slab cache functions
315 *******************************************************************/
318 * Returns freelist pointer (ptr). With hardening, this is obfuscated
319 * with an XOR of the address where the pointer is held and a per-cache
322 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
323 unsigned long ptr_addr)
325 #ifdef CONFIG_SLAB_FREELIST_HARDENED
327 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
328 * Normally, this doesn't cause any issues, as both set_freepointer()
329 * and get_freepointer() are called with a pointer with the same tag.
330 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
331 * example, when __free_slub() iterates over objects in a cache, it
332 * passes untagged pointers to check_object(). check_object() in turns
333 * calls get_freepointer() with an untagged pointer, which causes the
334 * freepointer to be restored incorrectly.
336 return (void *)((unsigned long)ptr ^ s->random ^
337 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
343 /* Returns the freelist pointer recorded at location ptr_addr. */
344 static inline void *freelist_dereference(const struct kmem_cache *s,
347 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
348 (unsigned long)ptr_addr);
351 static inline void *get_freepointer(struct kmem_cache *s, void *object)
353 object = kasan_reset_tag(object);
354 return freelist_dereference(s, object + s->offset);
357 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
359 prefetchw(object + s->offset);
362 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
364 unsigned long freepointer_addr;
367 if (!debug_pagealloc_enabled_static())
368 return get_freepointer(s, object);
370 object = kasan_reset_tag(object);
371 freepointer_addr = (unsigned long)object + s->offset;
372 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
373 return freelist_ptr(s, p, freepointer_addr);
376 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
378 unsigned long freeptr_addr = (unsigned long)object + s->offset;
380 #ifdef CONFIG_SLAB_FREELIST_HARDENED
381 BUG_ON(object == fp); /* naive detection of double free or corruption */
384 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
385 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
388 /* Loop over all objects in a slab */
389 #define for_each_object(__p, __s, __addr, __objects) \
390 for (__p = fixup_red_left(__s, __addr); \
391 __p < (__addr) + (__objects) * (__s)->size; \
394 static inline unsigned int order_objects(unsigned int order, unsigned int size)
396 return ((unsigned int)PAGE_SIZE << order) / size;
399 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
402 struct kmem_cache_order_objects x = {
403 (order << OO_SHIFT) + order_objects(order, size)
409 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
411 return x.x >> OO_SHIFT;
414 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
416 return x.x & OO_MASK;
419 #ifdef CONFIG_SLUB_CPU_PARTIAL
420 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
422 unsigned int nr_slabs;
424 s->cpu_partial = nr_objects;
427 * We take the number of objects but actually limit the number of
428 * slabs on the per cpu partial list, in order to limit excessive
429 * growth of the list. For simplicity we assume that the slabs will
432 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
433 s->cpu_partial_slabs = nr_slabs;
437 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
440 #endif /* CONFIG_SLUB_CPU_PARTIAL */
443 * Per slab locking using the pagelock
445 static __always_inline void __slab_lock(struct slab *slab)
447 struct page *page = slab_page(slab);
449 VM_BUG_ON_PAGE(PageTail(page), page);
450 bit_spin_lock(PG_locked, &page->flags);
453 static __always_inline void __slab_unlock(struct slab *slab)
455 struct page *page = slab_page(slab);
457 VM_BUG_ON_PAGE(PageTail(page), page);
458 __bit_spin_unlock(PG_locked, &page->flags);
461 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
463 if (IS_ENABLED(CONFIG_PREEMPT_RT))
464 local_irq_save(*flags);
468 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
471 if (IS_ENABLED(CONFIG_PREEMPT_RT))
472 local_irq_restore(*flags);
476 * Interrupts must be disabled (for the fallback code to work right), typically
477 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
478 * so we disable interrupts as part of slab_[un]lock().
480 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
481 void *freelist_old, unsigned long counters_old,
482 void *freelist_new, unsigned long counters_new,
485 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
486 lockdep_assert_irqs_disabled();
487 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
488 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
489 if (s->flags & __CMPXCHG_DOUBLE) {
490 if (cmpxchg_double(&slab->freelist, &slab->counters,
491 freelist_old, counters_old,
492 freelist_new, counters_new))
497 /* init to 0 to prevent spurious warnings */
498 unsigned long flags = 0;
500 slab_lock(slab, &flags);
501 if (slab->freelist == freelist_old &&
502 slab->counters == counters_old) {
503 slab->freelist = freelist_new;
504 slab->counters = counters_new;
505 slab_unlock(slab, &flags);
508 slab_unlock(slab, &flags);
512 stat(s, CMPXCHG_DOUBLE_FAIL);
514 #ifdef SLUB_DEBUG_CMPXCHG
515 pr_info("%s %s: cmpxchg double redo ", n, s->name);
521 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new,
526 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
527 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
528 if (s->flags & __CMPXCHG_DOUBLE) {
529 if (cmpxchg_double(&slab->freelist, &slab->counters,
530 freelist_old, counters_old,
531 freelist_new, counters_new))
538 local_irq_save(flags);
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
545 local_irq_restore(flags);
549 local_irq_restore(flags);
553 stat(s, CMPXCHG_DOUBLE_FAIL);
555 #ifdef SLUB_DEBUG_CMPXCHG
556 pr_info("%s %s: cmpxchg double redo ", n, s->name);
562 #ifdef CONFIG_SLUB_DEBUG
563 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
564 static DEFINE_RAW_SPINLOCK(object_map_lock);
566 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
569 void *addr = slab_address(slab);
572 bitmap_zero(obj_map, slab->objects);
574 for (p = slab->freelist; p; p = get_freepointer(s, p))
575 set_bit(__obj_to_index(s, addr, p), obj_map);
578 #if IS_ENABLED(CONFIG_KUNIT)
579 static bool slab_add_kunit_errors(void)
581 struct kunit_resource *resource;
583 if (likely(!current->kunit_test))
586 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
590 (*(int *)resource->data)++;
591 kunit_put_resource(resource);
595 static inline bool slab_add_kunit_errors(void) { return false; }
599 * Determine a map of objects in use in a slab.
601 * Node listlock must be held to guarantee that the slab does
602 * not vanish from under us.
604 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
605 __acquires(&object_map_lock)
607 VM_BUG_ON(!irqs_disabled());
609 raw_spin_lock(&object_map_lock);
611 __fill_map(object_map, s, slab);
616 static void put_map(unsigned long *map) __releases(&object_map_lock)
618 VM_BUG_ON(map != object_map);
619 raw_spin_unlock(&object_map_lock);
622 static inline unsigned int size_from_object(struct kmem_cache *s)
624 if (s->flags & SLAB_RED_ZONE)
625 return s->size - s->red_left_pad;
630 static inline void *restore_red_left(struct kmem_cache *s, void *p)
632 if (s->flags & SLAB_RED_ZONE)
633 p -= s->red_left_pad;
641 #if defined(CONFIG_SLUB_DEBUG_ON)
642 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
644 static slab_flags_t slub_debug;
647 static char *slub_debug_string;
648 static int disable_higher_order_debug;
651 * slub is about to manipulate internal object metadata. This memory lies
652 * outside the range of the allocated object, so accessing it would normally
653 * be reported by kasan as a bounds error. metadata_access_enable() is used
654 * to tell kasan that these accesses are OK.
656 static inline void metadata_access_enable(void)
658 kasan_disable_current();
661 static inline void metadata_access_disable(void)
663 kasan_enable_current();
670 /* Verify that a pointer has an address that is valid within a slab page */
671 static inline int check_valid_pointer(struct kmem_cache *s,
672 struct slab *slab, void *object)
679 base = slab_address(slab);
680 object = kasan_reset_tag(object);
681 object = restore_red_left(s, object);
682 if (object < base || object >= base + slab->objects * s->size ||
683 (object - base) % s->size) {
690 static void print_section(char *level, char *text, u8 *addr,
693 metadata_access_enable();
694 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
695 16, 1, kasan_reset_tag((void *)addr), length, 1);
696 metadata_access_disable();
700 * See comment in calculate_sizes().
702 static inline bool freeptr_outside_object(struct kmem_cache *s)
704 return s->offset >= s->inuse;
708 * Return offset of the end of info block which is inuse + free pointer if
709 * not overlapping with object.
711 static inline unsigned int get_info_end(struct kmem_cache *s)
713 if (freeptr_outside_object(s))
714 return s->inuse + sizeof(void *);
719 static struct track *get_track(struct kmem_cache *s, void *object,
720 enum track_item alloc)
724 p = object + get_info_end(s);
726 return kasan_reset_tag(p + alloc);
729 static void noinline set_track(struct kmem_cache *s, void *object,
730 enum track_item alloc, unsigned long addr)
732 struct track *p = get_track(s, object, alloc);
734 #ifdef CONFIG_STACKDEPOT
735 unsigned long entries[TRACK_ADDRS_COUNT];
736 unsigned int nr_entries;
738 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
739 p->handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
743 p->cpu = smp_processor_id();
744 p->pid = current->pid;
748 static void init_tracking(struct kmem_cache *s, void *object)
752 if (!(s->flags & SLAB_STORE_USER))
755 p = get_track(s, object, TRACK_ALLOC);
756 memset(p, 0, 2*sizeof(struct track));
759 static void print_track(const char *s, struct track *t, unsigned long pr_time)
761 depot_stack_handle_t handle __maybe_unused;
766 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
767 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
768 #ifdef CONFIG_STACKDEPOT
769 handle = READ_ONCE(t->handle);
771 stack_depot_print(handle);
773 pr_err("object allocation/free stack trace missing\n");
777 void print_tracking(struct kmem_cache *s, void *object)
779 unsigned long pr_time = jiffies;
780 if (!(s->flags & SLAB_STORE_USER))
783 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
784 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
787 static void print_slab_info(const struct slab *slab)
789 struct folio *folio = (struct folio *)slab_folio(slab);
791 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
792 slab, slab->objects, slab->inuse, slab->freelist,
793 folio_flags(folio, 0));
796 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
798 struct va_format vaf;
804 pr_err("=============================================================================\n");
805 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
806 pr_err("-----------------------------------------------------------------------------\n\n");
811 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
813 struct va_format vaf;
816 if (slab_add_kunit_errors())
822 pr_err("FIX %s: %pV\n", s->name, &vaf);
826 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
828 unsigned int off; /* Offset of last byte */
829 u8 *addr = slab_address(slab);
831 print_tracking(s, p);
833 print_slab_info(slab);
835 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
836 p, p - addr, get_freepointer(s, p));
838 if (s->flags & SLAB_RED_ZONE)
839 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
841 else if (p > addr + 16)
842 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
844 print_section(KERN_ERR, "Object ", p,
845 min_t(unsigned int, s->object_size, PAGE_SIZE));
846 if (s->flags & SLAB_RED_ZONE)
847 print_section(KERN_ERR, "Redzone ", p + s->object_size,
848 s->inuse - s->object_size);
850 off = get_info_end(s);
852 if (s->flags & SLAB_STORE_USER)
853 off += 2 * sizeof(struct track);
855 off += kasan_metadata_size(s);
857 if (off != size_from_object(s))
858 /* Beginning of the filler is the free pointer */
859 print_section(KERN_ERR, "Padding ", p + off,
860 size_from_object(s) - off);
865 static void object_err(struct kmem_cache *s, struct slab *slab,
866 u8 *object, char *reason)
868 if (slab_add_kunit_errors())
871 slab_bug(s, "%s", reason);
872 print_trailer(s, slab, object);
873 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
876 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
877 void **freelist, void *nextfree)
879 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
880 !check_valid_pointer(s, slab, nextfree) && freelist) {
881 object_err(s, slab, *freelist, "Freechain corrupt");
883 slab_fix(s, "Isolate corrupted freechain");
890 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
891 const char *fmt, ...)
896 if (slab_add_kunit_errors())
900 vsnprintf(buf, sizeof(buf), fmt, args);
902 slab_bug(s, "%s", buf);
903 print_slab_info(slab);
905 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
908 static void init_object(struct kmem_cache *s, void *object, u8 val)
910 u8 *p = kasan_reset_tag(object);
912 if (s->flags & SLAB_RED_ZONE)
913 memset(p - s->red_left_pad, val, s->red_left_pad);
915 if (s->flags & __OBJECT_POISON) {
916 memset(p, POISON_FREE, s->object_size - 1);
917 p[s->object_size - 1] = POISON_END;
920 if (s->flags & SLAB_RED_ZONE)
921 memset(p + s->object_size, val, s->inuse - s->object_size);
924 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
925 void *from, void *to)
927 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
928 memset(from, data, to - from);
931 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
932 u8 *object, char *what,
933 u8 *start, unsigned int value, unsigned int bytes)
937 u8 *addr = slab_address(slab);
939 metadata_access_enable();
940 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
941 metadata_access_disable();
946 while (end > fault && end[-1] == value)
949 if (slab_add_kunit_errors())
952 slab_bug(s, "%s overwritten", what);
953 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
954 fault, end - 1, fault - addr,
956 print_trailer(s, slab, object);
957 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
960 restore_bytes(s, what, value, fault, end);
968 * Bytes of the object to be managed.
969 * If the freepointer may overlay the object then the free
970 * pointer is at the middle of the object.
972 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
975 * object + s->object_size
976 * Padding to reach word boundary. This is also used for Redzoning.
977 * Padding is extended by another word if Redzoning is enabled and
978 * object_size == inuse.
980 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
981 * 0xcc (RED_ACTIVE) for objects in use.
984 * Meta data starts here.
986 * A. Free pointer (if we cannot overwrite object on free)
987 * B. Tracking data for SLAB_STORE_USER
988 * C. Padding to reach required alignment boundary or at minimum
989 * one word if debugging is on to be able to detect writes
990 * before the word boundary.
992 * Padding is done using 0x5a (POISON_INUSE)
995 * Nothing is used beyond s->size.
997 * If slabcaches are merged then the object_size and inuse boundaries are mostly
998 * ignored. And therefore no slab options that rely on these boundaries
999 * may be used with merged slabcaches.
1002 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1004 unsigned long off = get_info_end(s); /* The end of info */
1006 if (s->flags & SLAB_STORE_USER)
1007 /* We also have user information there */
1008 off += 2 * sizeof(struct track);
1010 off += kasan_metadata_size(s);
1012 if (size_from_object(s) == off)
1015 return check_bytes_and_report(s, slab, p, "Object padding",
1016 p + off, POISON_INUSE, size_from_object(s) - off);
1019 /* Check the pad bytes at the end of a slab page */
1020 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1029 if (!(s->flags & SLAB_POISON))
1032 start = slab_address(slab);
1033 length = slab_size(slab);
1034 end = start + length;
1035 remainder = length % s->size;
1039 pad = end - remainder;
1040 metadata_access_enable();
1041 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1042 metadata_access_disable();
1045 while (end > fault && end[-1] == POISON_INUSE)
1048 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1049 fault, end - 1, fault - start);
1050 print_section(KERN_ERR, "Padding ", pad, remainder);
1052 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1055 static int check_object(struct kmem_cache *s, struct slab *slab,
1056 void *object, u8 val)
1059 u8 *endobject = object + s->object_size;
1061 if (s->flags & SLAB_RED_ZONE) {
1062 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1063 object - s->red_left_pad, val, s->red_left_pad))
1066 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1067 endobject, val, s->inuse - s->object_size))
1070 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1071 check_bytes_and_report(s, slab, p, "Alignment padding",
1072 endobject, POISON_INUSE,
1073 s->inuse - s->object_size);
1077 if (s->flags & SLAB_POISON) {
1078 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1079 (!check_bytes_and_report(s, slab, p, "Poison", p,
1080 POISON_FREE, s->object_size - 1) ||
1081 !check_bytes_and_report(s, slab, p, "End Poison",
1082 p + s->object_size - 1, POISON_END, 1)))
1085 * check_pad_bytes cleans up on its own.
1087 check_pad_bytes(s, slab, p);
1090 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1092 * Object and freepointer overlap. Cannot check
1093 * freepointer while object is allocated.
1097 /* Check free pointer validity */
1098 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1099 object_err(s, slab, p, "Freepointer corrupt");
1101 * No choice but to zap it and thus lose the remainder
1102 * of the free objects in this slab. May cause
1103 * another error because the object count is now wrong.
1105 set_freepointer(s, p, NULL);
1111 static int check_slab(struct kmem_cache *s, struct slab *slab)
1115 if (!folio_test_slab(slab_folio(slab))) {
1116 slab_err(s, slab, "Not a valid slab page");
1120 maxobj = order_objects(slab_order(slab), s->size);
1121 if (slab->objects > maxobj) {
1122 slab_err(s, slab, "objects %u > max %u",
1123 slab->objects, maxobj);
1126 if (slab->inuse > slab->objects) {
1127 slab_err(s, slab, "inuse %u > max %u",
1128 slab->inuse, slab->objects);
1131 /* Slab_pad_check fixes things up after itself */
1132 slab_pad_check(s, slab);
1137 * Determine if a certain object in a slab is on the freelist. Must hold the
1138 * slab lock to guarantee that the chains are in a consistent state.
1140 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1144 void *object = NULL;
1147 fp = slab->freelist;
1148 while (fp && nr <= slab->objects) {
1151 if (!check_valid_pointer(s, slab, fp)) {
1153 object_err(s, slab, object,
1154 "Freechain corrupt");
1155 set_freepointer(s, object, NULL);
1157 slab_err(s, slab, "Freepointer corrupt");
1158 slab->freelist = NULL;
1159 slab->inuse = slab->objects;
1160 slab_fix(s, "Freelist cleared");
1166 fp = get_freepointer(s, object);
1170 max_objects = order_objects(slab_order(slab), s->size);
1171 if (max_objects > MAX_OBJS_PER_PAGE)
1172 max_objects = MAX_OBJS_PER_PAGE;
1174 if (slab->objects != max_objects) {
1175 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1176 slab->objects, max_objects);
1177 slab->objects = max_objects;
1178 slab_fix(s, "Number of objects adjusted");
1180 if (slab->inuse != slab->objects - nr) {
1181 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1182 slab->inuse, slab->objects - nr);
1183 slab->inuse = slab->objects - nr;
1184 slab_fix(s, "Object count adjusted");
1186 return search == NULL;
1189 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1192 if (s->flags & SLAB_TRACE) {
1193 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1195 alloc ? "alloc" : "free",
1196 object, slab->inuse,
1200 print_section(KERN_INFO, "Object ", (void *)object,
1208 * Tracking of fully allocated slabs for debugging purposes.
1210 static void add_full(struct kmem_cache *s,
1211 struct kmem_cache_node *n, struct slab *slab)
1213 if (!(s->flags & SLAB_STORE_USER))
1216 lockdep_assert_held(&n->list_lock);
1217 list_add(&slab->slab_list, &n->full);
1220 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1222 if (!(s->flags & SLAB_STORE_USER))
1225 lockdep_assert_held(&n->list_lock);
1226 list_del(&slab->slab_list);
1229 /* Tracking of the number of slabs for debugging purposes */
1230 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1232 struct kmem_cache_node *n = get_node(s, node);
1234 return atomic_long_read(&n->nr_slabs);
1237 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1239 return atomic_long_read(&n->nr_slabs);
1242 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1244 struct kmem_cache_node *n = get_node(s, node);
1247 * May be called early in order to allocate a slab for the
1248 * kmem_cache_node structure. Solve the chicken-egg
1249 * dilemma by deferring the increment of the count during
1250 * bootstrap (see early_kmem_cache_node_alloc).
1253 atomic_long_inc(&n->nr_slabs);
1254 atomic_long_add(objects, &n->total_objects);
1257 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1259 struct kmem_cache_node *n = get_node(s, node);
1261 atomic_long_dec(&n->nr_slabs);
1262 atomic_long_sub(objects, &n->total_objects);
1265 /* Object debug checks for alloc/free paths */
1266 static void setup_object_debug(struct kmem_cache *s, void *object)
1268 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1271 init_object(s, object, SLUB_RED_INACTIVE);
1272 init_tracking(s, object);
1276 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1278 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1281 metadata_access_enable();
1282 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1283 metadata_access_disable();
1286 static inline int alloc_consistency_checks(struct kmem_cache *s,
1287 struct slab *slab, void *object)
1289 if (!check_slab(s, slab))
1292 if (!check_valid_pointer(s, slab, object)) {
1293 object_err(s, slab, object, "Freelist Pointer check fails");
1297 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1303 static noinline int alloc_debug_processing(struct kmem_cache *s,
1305 void *object, unsigned long addr)
1307 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1308 if (!alloc_consistency_checks(s, slab, object))
1312 /* Success perform special debug activities for allocs */
1313 if (s->flags & SLAB_STORE_USER)
1314 set_track(s, object, TRACK_ALLOC, addr);
1315 trace(s, slab, object, 1);
1316 init_object(s, object, SLUB_RED_ACTIVE);
1320 if (folio_test_slab(slab_folio(slab))) {
1322 * If this is a slab page then lets do the best we can
1323 * to avoid issues in the future. Marking all objects
1324 * as used avoids touching the remaining objects.
1326 slab_fix(s, "Marking all objects used");
1327 slab->inuse = slab->objects;
1328 slab->freelist = NULL;
1333 static inline int free_consistency_checks(struct kmem_cache *s,
1334 struct slab *slab, void *object, unsigned long addr)
1336 if (!check_valid_pointer(s, slab, object)) {
1337 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1341 if (on_freelist(s, slab, object)) {
1342 object_err(s, slab, object, "Object already free");
1346 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1349 if (unlikely(s != slab->slab_cache)) {
1350 if (!folio_test_slab(slab_folio(slab))) {
1351 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1353 } else if (!slab->slab_cache) {
1354 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1358 object_err(s, slab, object,
1359 "page slab pointer corrupt.");
1365 /* Supports checking bulk free of a constructed freelist */
1366 static noinline int free_debug_processing(
1367 struct kmem_cache *s, struct slab *slab,
1368 void *head, void *tail, int bulk_cnt,
1371 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1372 void *object = head;
1374 unsigned long flags, flags2;
1377 spin_lock_irqsave(&n->list_lock, flags);
1378 slab_lock(slab, &flags2);
1380 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1381 if (!check_slab(s, slab))
1388 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1389 if (!free_consistency_checks(s, slab, object, addr))
1393 if (s->flags & SLAB_STORE_USER)
1394 set_track(s, object, TRACK_FREE, addr);
1395 trace(s, slab, object, 0);
1396 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1397 init_object(s, object, SLUB_RED_INACTIVE);
1399 /* Reached end of constructed freelist yet? */
1400 if (object != tail) {
1401 object = get_freepointer(s, object);
1407 if (cnt != bulk_cnt)
1408 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1411 slab_unlock(slab, &flags2);
1412 spin_unlock_irqrestore(&n->list_lock, flags);
1414 slab_fix(s, "Object at 0x%p not freed", object);
1419 * Parse a block of slub_debug options. Blocks are delimited by ';'
1421 * @str: start of block
1422 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1423 * @slabs: return start of list of slabs, or NULL when there's no list
1424 * @init: assume this is initial parsing and not per-kmem-create parsing
1426 * returns the start of next block if there's any, or NULL
1429 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1431 bool higher_order_disable = false;
1433 /* Skip any completely empty blocks */
1434 while (*str && *str == ';')
1439 * No options but restriction on slabs. This means full
1440 * debugging for slabs matching a pattern.
1442 *flags = DEBUG_DEFAULT_FLAGS;
1447 /* Determine which debug features should be switched on */
1448 for (; *str && *str != ',' && *str != ';'; str++) {
1449 switch (tolower(*str)) {
1454 *flags |= SLAB_CONSISTENCY_CHECKS;
1457 *flags |= SLAB_RED_ZONE;
1460 *flags |= SLAB_POISON;
1463 *flags |= SLAB_STORE_USER;
1466 *flags |= SLAB_TRACE;
1469 *flags |= SLAB_FAILSLAB;
1473 * Avoid enabling debugging on caches if its minimum
1474 * order would increase as a result.
1476 higher_order_disable = true;
1480 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1489 /* Skip over the slab list */
1490 while (*str && *str != ';')
1493 /* Skip any completely empty blocks */
1494 while (*str && *str == ';')
1497 if (init && higher_order_disable)
1498 disable_higher_order_debug = 1;
1506 static int __init setup_slub_debug(char *str)
1509 slab_flags_t global_flags;
1512 bool global_slub_debug_changed = false;
1513 bool slab_list_specified = false;
1515 global_flags = DEBUG_DEFAULT_FLAGS;
1516 if (*str++ != '=' || !*str)
1518 * No options specified. Switch on full debugging.
1524 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1527 global_flags = flags;
1528 global_slub_debug_changed = true;
1530 slab_list_specified = true;
1531 if (flags & SLAB_STORE_USER)
1532 stack_depot_want_early_init();
1537 * For backwards compatibility, a single list of flags with list of
1538 * slabs means debugging is only changed for those slabs, so the global
1539 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1540 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1541 * long as there is no option specifying flags without a slab list.
1543 if (slab_list_specified) {
1544 if (!global_slub_debug_changed)
1545 global_flags = slub_debug;
1546 slub_debug_string = saved_str;
1549 slub_debug = global_flags;
1550 if (slub_debug & SLAB_STORE_USER)
1551 stack_depot_want_early_init();
1552 if (slub_debug != 0 || slub_debug_string)
1553 static_branch_enable(&slub_debug_enabled);
1555 static_branch_disable(&slub_debug_enabled);
1556 if ((static_branch_unlikely(&init_on_alloc) ||
1557 static_branch_unlikely(&init_on_free)) &&
1558 (slub_debug & SLAB_POISON))
1559 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1563 __setup("slub_debug", setup_slub_debug);
1566 * kmem_cache_flags - apply debugging options to the cache
1567 * @object_size: the size of an object without meta data
1568 * @flags: flags to set
1569 * @name: name of the cache
1571 * Debug option(s) are applied to @flags. In addition to the debug
1572 * option(s), if a slab name (or multiple) is specified i.e.
1573 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1574 * then only the select slabs will receive the debug option(s).
1576 slab_flags_t kmem_cache_flags(unsigned int object_size,
1577 slab_flags_t flags, const char *name)
1582 slab_flags_t block_flags;
1583 slab_flags_t slub_debug_local = slub_debug;
1585 if (flags & SLAB_NO_USER_FLAGS)
1589 * If the slab cache is for debugging (e.g. kmemleak) then
1590 * don't store user (stack trace) information by default,
1591 * but let the user enable it via the command line below.
1593 if (flags & SLAB_NOLEAKTRACE)
1594 slub_debug_local &= ~SLAB_STORE_USER;
1597 next_block = slub_debug_string;
1598 /* Go through all blocks of debug options, see if any matches our slab's name */
1599 while (next_block) {
1600 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1603 /* Found a block that has a slab list, search it */
1608 end = strchrnul(iter, ',');
1609 if (next_block && next_block < end)
1610 end = next_block - 1;
1612 glob = strnchr(iter, end - iter, '*');
1614 cmplen = glob - iter;
1616 cmplen = max_t(size_t, len, (end - iter));
1618 if (!strncmp(name, iter, cmplen)) {
1619 flags |= block_flags;
1623 if (!*end || *end == ';')
1629 return flags | slub_debug_local;
1631 #else /* !CONFIG_SLUB_DEBUG */
1632 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1634 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1636 static inline int alloc_debug_processing(struct kmem_cache *s,
1637 struct slab *slab, void *object, unsigned long addr) { return 0; }
1639 static inline int free_debug_processing(
1640 struct kmem_cache *s, struct slab *slab,
1641 void *head, void *tail, int bulk_cnt,
1642 unsigned long addr) { return 0; }
1644 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1645 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1646 void *object, u8 val) { return 1; }
1647 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1648 struct slab *slab) {}
1649 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1650 struct slab *slab) {}
1651 slab_flags_t kmem_cache_flags(unsigned int object_size,
1652 slab_flags_t flags, const char *name)
1656 #define slub_debug 0
1658 #define disable_higher_order_debug 0
1660 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1662 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1664 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1666 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1669 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1670 void **freelist, void *nextfree)
1674 #endif /* CONFIG_SLUB_DEBUG */
1677 * Hooks for other subsystems that check memory allocations. In a typical
1678 * production configuration these hooks all should produce no code at all.
1680 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1682 ptr = kasan_kmalloc_large(ptr, size, flags);
1683 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1684 kmemleak_alloc(ptr, size, 1, flags);
1688 static __always_inline void kfree_hook(void *x)
1691 kasan_kfree_large(x);
1694 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1697 kmemleak_free_recursive(x, s->flags);
1699 debug_check_no_locks_freed(x, s->object_size);
1701 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1702 debug_check_no_obj_freed(x, s->object_size);
1704 /* Use KCSAN to help debug racy use-after-free. */
1705 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1706 __kcsan_check_access(x, s->object_size,
1707 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1710 * As memory initialization might be integrated into KASAN,
1711 * kasan_slab_free and initialization memset's must be
1712 * kept together to avoid discrepancies in behavior.
1714 * The initialization memset's clear the object and the metadata,
1715 * but don't touch the SLAB redzone.
1720 if (!kasan_has_integrated_init())
1721 memset(kasan_reset_tag(x), 0, s->object_size);
1722 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1723 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1724 s->size - s->inuse - rsize);
1726 /* KASAN might put x into memory quarantine, delaying its reuse. */
1727 return kasan_slab_free(s, x, init);
1730 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1731 void **head, void **tail,
1737 void *old_tail = *tail ? *tail : *head;
1739 if (is_kfence_address(next)) {
1740 slab_free_hook(s, next, false);
1744 /* Head and tail of the reconstructed freelist */
1750 next = get_freepointer(s, object);
1752 /* If object's reuse doesn't have to be delayed */
1753 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1754 /* Move object to the new freelist */
1755 set_freepointer(s, object, *head);
1761 * Adjust the reconstructed freelist depth
1762 * accordingly if object's reuse is delayed.
1766 } while (object != old_tail);
1771 return *head != NULL;
1774 static void *setup_object(struct kmem_cache *s, void *object)
1776 setup_object_debug(s, object);
1777 object = kasan_init_slab_obj(s, object);
1778 if (unlikely(s->ctor)) {
1779 kasan_unpoison_object_data(s, object);
1781 kasan_poison_object_data(s, object);
1787 * Slab allocation and freeing
1789 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1790 struct kmem_cache_order_objects oo)
1792 struct folio *folio;
1794 unsigned int order = oo_order(oo);
1796 if (node == NUMA_NO_NODE)
1797 folio = (struct folio *)alloc_pages(flags, order);
1799 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1804 slab = folio_slab(folio);
1805 __folio_set_slab(folio);
1806 if (page_is_pfmemalloc(folio_page(folio, 0)))
1807 slab_set_pfmemalloc(slab);
1812 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1813 /* Pre-initialize the random sequence cache */
1814 static int init_cache_random_seq(struct kmem_cache *s)
1816 unsigned int count = oo_objects(s->oo);
1819 /* Bailout if already initialised */
1823 err = cache_random_seq_create(s, count, GFP_KERNEL);
1825 pr_err("SLUB: Unable to initialize free list for %s\n",
1830 /* Transform to an offset on the set of pages */
1831 if (s->random_seq) {
1834 for (i = 0; i < count; i++)
1835 s->random_seq[i] *= s->size;
1840 /* Initialize each random sequence freelist per cache */
1841 static void __init init_freelist_randomization(void)
1843 struct kmem_cache *s;
1845 mutex_lock(&slab_mutex);
1847 list_for_each_entry(s, &slab_caches, list)
1848 init_cache_random_seq(s);
1850 mutex_unlock(&slab_mutex);
1853 /* Get the next entry on the pre-computed freelist randomized */
1854 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1855 unsigned long *pos, void *start,
1856 unsigned long page_limit,
1857 unsigned long freelist_count)
1862 * If the target page allocation failed, the number of objects on the
1863 * page might be smaller than the usual size defined by the cache.
1866 idx = s->random_seq[*pos];
1868 if (*pos >= freelist_count)
1870 } while (unlikely(idx >= page_limit));
1872 return (char *)start + idx;
1875 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1876 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1881 unsigned long idx, pos, page_limit, freelist_count;
1883 if (slab->objects < 2 || !s->random_seq)
1886 freelist_count = oo_objects(s->oo);
1887 pos = get_random_int() % freelist_count;
1889 page_limit = slab->objects * s->size;
1890 start = fixup_red_left(s, slab_address(slab));
1892 /* First entry is used as the base of the freelist */
1893 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1895 cur = setup_object(s, cur);
1896 slab->freelist = cur;
1898 for (idx = 1; idx < slab->objects; idx++) {
1899 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1901 next = setup_object(s, next);
1902 set_freepointer(s, cur, next);
1905 set_freepointer(s, cur, NULL);
1910 static inline int init_cache_random_seq(struct kmem_cache *s)
1914 static inline void init_freelist_randomization(void) { }
1915 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1919 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1921 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1924 struct kmem_cache_order_objects oo = s->oo;
1926 void *start, *p, *next;
1930 flags &= gfp_allowed_mask;
1932 flags |= s->allocflags;
1935 * Let the initial higher-order allocation fail under memory pressure
1936 * so we fall-back to the minimum order allocation.
1938 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1939 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1940 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1942 slab = alloc_slab_page(alloc_gfp, node, oo);
1943 if (unlikely(!slab)) {
1947 * Allocation may have failed due to fragmentation.
1948 * Try a lower order alloc if possible
1950 slab = alloc_slab_page(alloc_gfp, node, oo);
1951 if (unlikely(!slab))
1953 stat(s, ORDER_FALLBACK);
1956 slab->objects = oo_objects(oo);
1958 account_slab(slab, oo_order(oo), s, flags);
1960 slab->slab_cache = s;
1962 kasan_poison_slab(slab);
1964 start = slab_address(slab);
1966 setup_slab_debug(s, slab, start);
1968 shuffle = shuffle_freelist(s, slab);
1971 start = fixup_red_left(s, start);
1972 start = setup_object(s, start);
1973 slab->freelist = start;
1974 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
1976 next = setup_object(s, next);
1977 set_freepointer(s, p, next);
1980 set_freepointer(s, p, NULL);
1983 slab->inuse = slab->objects;
1990 inc_slabs_node(s, slab_nid(slab), slab->objects);
1995 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1997 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1998 flags = kmalloc_fix_flags(flags);
2000 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2002 return allocate_slab(s,
2003 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2006 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2008 struct folio *folio = slab_folio(slab);
2009 int order = folio_order(folio);
2010 int pages = 1 << order;
2012 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2015 slab_pad_check(s, slab);
2016 for_each_object(p, s, slab_address(slab), slab->objects)
2017 check_object(s, slab, p, SLUB_RED_INACTIVE);
2020 __slab_clear_pfmemalloc(slab);
2021 __folio_clear_slab(folio);
2022 folio->mapping = NULL;
2023 if (current->reclaim_state)
2024 current->reclaim_state->reclaimed_slab += pages;
2025 unaccount_slab(slab, order, s);
2026 __free_pages(folio_page(folio, 0), order);
2029 static void rcu_free_slab(struct rcu_head *h)
2031 struct slab *slab = container_of(h, struct slab, rcu_head);
2033 __free_slab(slab->slab_cache, slab);
2036 static void free_slab(struct kmem_cache *s, struct slab *slab)
2038 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2039 call_rcu(&slab->rcu_head, rcu_free_slab);
2041 __free_slab(s, slab);
2044 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2046 dec_slabs_node(s, slab_nid(slab), slab->objects);
2051 * Management of partially allocated slabs.
2054 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2057 if (tail == DEACTIVATE_TO_TAIL)
2058 list_add_tail(&slab->slab_list, &n->partial);
2060 list_add(&slab->slab_list, &n->partial);
2063 static inline void add_partial(struct kmem_cache_node *n,
2064 struct slab *slab, int tail)
2066 lockdep_assert_held(&n->list_lock);
2067 __add_partial(n, slab, tail);
2070 static inline void remove_partial(struct kmem_cache_node *n,
2073 lockdep_assert_held(&n->list_lock);
2074 list_del(&slab->slab_list);
2079 * Remove slab from the partial list, freeze it and
2080 * return the pointer to the freelist.
2082 * Returns a list of objects or NULL if it fails.
2084 static inline void *acquire_slab(struct kmem_cache *s,
2085 struct kmem_cache_node *n, struct slab *slab,
2089 unsigned long counters;
2092 lockdep_assert_held(&n->list_lock);
2095 * Zap the freelist and set the frozen bit.
2096 * The old freelist is the list of objects for the
2097 * per cpu allocation list.
2099 freelist = slab->freelist;
2100 counters = slab->counters;
2101 new.counters = counters;
2103 new.inuse = slab->objects;
2104 new.freelist = NULL;
2106 new.freelist = freelist;
2109 VM_BUG_ON(new.frozen);
2112 if (!__cmpxchg_double_slab(s, slab,
2114 new.freelist, new.counters,
2118 remove_partial(n, slab);
2123 #ifdef CONFIG_SLUB_CPU_PARTIAL
2124 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2126 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2129 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2132 * Try to allocate a partial slab from a specific node.
2134 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2135 struct slab **ret_slab, gfp_t gfpflags)
2137 struct slab *slab, *slab2;
2138 void *object = NULL;
2139 unsigned long flags;
2140 unsigned int partial_slabs = 0;
2143 * Racy check. If we mistakenly see no partial slabs then we
2144 * just allocate an empty slab. If we mistakenly try to get a
2145 * partial slab and there is none available then get_partial()
2148 if (!n || !n->nr_partial)
2151 spin_lock_irqsave(&n->list_lock, flags);
2152 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2155 if (!pfmemalloc_match(slab, gfpflags))
2158 t = acquire_slab(s, n, slab, object == NULL);
2164 stat(s, ALLOC_FROM_PARTIAL);
2167 put_cpu_partial(s, slab, 0);
2168 stat(s, CPU_PARTIAL_NODE);
2171 #ifdef CONFIG_SLUB_CPU_PARTIAL
2172 if (!kmem_cache_has_cpu_partial(s)
2173 || partial_slabs > s->cpu_partial_slabs / 2)
2180 spin_unlock_irqrestore(&n->list_lock, flags);
2185 * Get a slab from somewhere. Search in increasing NUMA distances.
2187 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2188 struct slab **ret_slab)
2191 struct zonelist *zonelist;
2194 enum zone_type highest_zoneidx = gfp_zone(flags);
2196 unsigned int cpuset_mems_cookie;
2199 * The defrag ratio allows a configuration of the tradeoffs between
2200 * inter node defragmentation and node local allocations. A lower
2201 * defrag_ratio increases the tendency to do local allocations
2202 * instead of attempting to obtain partial slabs from other nodes.
2204 * If the defrag_ratio is set to 0 then kmalloc() always
2205 * returns node local objects. If the ratio is higher then kmalloc()
2206 * may return off node objects because partial slabs are obtained
2207 * from other nodes and filled up.
2209 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2210 * (which makes defrag_ratio = 1000) then every (well almost)
2211 * allocation will first attempt to defrag slab caches on other nodes.
2212 * This means scanning over all nodes to look for partial slabs which
2213 * may be expensive if we do it every time we are trying to find a slab
2214 * with available objects.
2216 if (!s->remote_node_defrag_ratio ||
2217 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2221 cpuset_mems_cookie = read_mems_allowed_begin();
2222 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2223 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2224 struct kmem_cache_node *n;
2226 n = get_node(s, zone_to_nid(zone));
2228 if (n && cpuset_zone_allowed(zone, flags) &&
2229 n->nr_partial > s->min_partial) {
2230 object = get_partial_node(s, n, ret_slab, flags);
2233 * Don't check read_mems_allowed_retry()
2234 * here - if mems_allowed was updated in
2235 * parallel, that was a harmless race
2236 * between allocation and the cpuset
2243 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2244 #endif /* CONFIG_NUMA */
2249 * Get a partial slab, lock it and return it.
2251 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2252 struct slab **ret_slab)
2255 int searchnode = node;
2257 if (node == NUMA_NO_NODE)
2258 searchnode = numa_mem_id();
2260 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2261 if (object || node != NUMA_NO_NODE)
2264 return get_any_partial(s, flags, ret_slab);
2267 #ifdef CONFIG_PREEMPTION
2269 * Calculate the next globally unique transaction for disambiguation
2270 * during cmpxchg. The transactions start with the cpu number and are then
2271 * incremented by CONFIG_NR_CPUS.
2273 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2276 * No preemption supported therefore also no need to check for
2282 static inline unsigned long next_tid(unsigned long tid)
2284 return tid + TID_STEP;
2287 #ifdef SLUB_DEBUG_CMPXCHG
2288 static inline unsigned int tid_to_cpu(unsigned long tid)
2290 return tid % TID_STEP;
2293 static inline unsigned long tid_to_event(unsigned long tid)
2295 return tid / TID_STEP;
2299 static inline unsigned int init_tid(int cpu)
2304 static inline void note_cmpxchg_failure(const char *n,
2305 const struct kmem_cache *s, unsigned long tid)
2307 #ifdef SLUB_DEBUG_CMPXCHG
2308 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2310 pr_info("%s %s: cmpxchg redo ", n, s->name);
2312 #ifdef CONFIG_PREEMPTION
2313 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2314 pr_warn("due to cpu change %d -> %d\n",
2315 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2318 if (tid_to_event(tid) != tid_to_event(actual_tid))
2319 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2320 tid_to_event(tid), tid_to_event(actual_tid));
2322 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2323 actual_tid, tid, next_tid(tid));
2325 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2328 static void init_kmem_cache_cpus(struct kmem_cache *s)
2331 struct kmem_cache_cpu *c;
2333 for_each_possible_cpu(cpu) {
2334 c = per_cpu_ptr(s->cpu_slab, cpu);
2335 local_lock_init(&c->lock);
2336 c->tid = init_tid(cpu);
2341 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2342 * unfreezes the slabs and puts it on the proper list.
2343 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2346 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2349 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2350 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2352 enum slab_modes mode = M_NONE;
2353 void *nextfree, *freelist_iter, *freelist_tail;
2354 int tail = DEACTIVATE_TO_HEAD;
2355 unsigned long flags = 0;
2359 if (slab->freelist) {
2360 stat(s, DEACTIVATE_REMOTE_FREES);
2361 tail = DEACTIVATE_TO_TAIL;
2365 * Stage one: Count the objects on cpu's freelist as free_delta and
2366 * remember the last object in freelist_tail for later splicing.
2368 freelist_tail = NULL;
2369 freelist_iter = freelist;
2370 while (freelist_iter) {
2371 nextfree = get_freepointer(s, freelist_iter);
2374 * If 'nextfree' is invalid, it is possible that the object at
2375 * 'freelist_iter' is already corrupted. So isolate all objects
2376 * starting at 'freelist_iter' by skipping them.
2378 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2381 freelist_tail = freelist_iter;
2384 freelist_iter = nextfree;
2388 * Stage two: Unfreeze the slab while splicing the per-cpu
2389 * freelist to the head of slab's freelist.
2391 * Ensure that the slab is unfrozen while the list presence
2392 * reflects the actual number of objects during unfreeze.
2394 * We first perform cmpxchg holding lock and insert to list
2395 * when it succeed. If there is mismatch then the slab is not
2396 * unfrozen and number of objects in the slab may have changed.
2397 * Then release lock and retry cmpxchg again.
2401 old.freelist = READ_ONCE(slab->freelist);
2402 old.counters = READ_ONCE(slab->counters);
2403 VM_BUG_ON(!old.frozen);
2405 /* Determine target state of the slab */
2406 new.counters = old.counters;
2407 if (freelist_tail) {
2408 new.inuse -= free_delta;
2409 set_freepointer(s, freelist_tail, old.freelist);
2410 new.freelist = freelist;
2412 new.freelist = old.freelist;
2416 if (!new.inuse && n->nr_partial >= s->min_partial) {
2418 } else if (new.freelist) {
2421 * Taking the spinlock removes the possibility that
2422 * acquire_slab() will see a slab that is frozen
2424 spin_lock_irqsave(&n->list_lock, flags);
2425 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2428 * This also ensures that the scanning of full
2429 * slabs from diagnostic functions will not see
2432 spin_lock_irqsave(&n->list_lock, flags);
2434 mode = M_FULL_NOLIST;
2438 if (!cmpxchg_double_slab(s, slab,
2439 old.freelist, old.counters,
2440 new.freelist, new.counters,
2441 "unfreezing slab")) {
2442 if (mode == M_PARTIAL || mode == M_FULL)
2443 spin_unlock_irqrestore(&n->list_lock, flags);
2448 if (mode == M_PARTIAL) {
2449 add_partial(n, slab, tail);
2450 spin_unlock_irqrestore(&n->list_lock, flags);
2452 } else if (mode == M_FREE) {
2453 stat(s, DEACTIVATE_EMPTY);
2454 discard_slab(s, slab);
2456 } else if (mode == M_FULL) {
2457 add_full(s, n, slab);
2458 spin_unlock_irqrestore(&n->list_lock, flags);
2459 stat(s, DEACTIVATE_FULL);
2460 } else if (mode == M_FULL_NOLIST) {
2461 stat(s, DEACTIVATE_FULL);
2465 #ifdef CONFIG_SLUB_CPU_PARTIAL
2466 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2468 struct kmem_cache_node *n = NULL, *n2 = NULL;
2469 struct slab *slab, *slab_to_discard = NULL;
2470 unsigned long flags = 0;
2472 while (partial_slab) {
2476 slab = partial_slab;
2477 partial_slab = slab->next;
2479 n2 = get_node(s, slab_nid(slab));
2482 spin_unlock_irqrestore(&n->list_lock, flags);
2485 spin_lock_irqsave(&n->list_lock, flags);
2490 old.freelist = slab->freelist;
2491 old.counters = slab->counters;
2492 VM_BUG_ON(!old.frozen);
2494 new.counters = old.counters;
2495 new.freelist = old.freelist;
2499 } while (!__cmpxchg_double_slab(s, slab,
2500 old.freelist, old.counters,
2501 new.freelist, new.counters,
2502 "unfreezing slab"));
2504 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2505 slab->next = slab_to_discard;
2506 slab_to_discard = slab;
2508 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2509 stat(s, FREE_ADD_PARTIAL);
2514 spin_unlock_irqrestore(&n->list_lock, flags);
2516 while (slab_to_discard) {
2517 slab = slab_to_discard;
2518 slab_to_discard = slab_to_discard->next;
2520 stat(s, DEACTIVATE_EMPTY);
2521 discard_slab(s, slab);
2527 * Unfreeze all the cpu partial slabs.
2529 static void unfreeze_partials(struct kmem_cache *s)
2531 struct slab *partial_slab;
2532 unsigned long flags;
2534 local_lock_irqsave(&s->cpu_slab->lock, flags);
2535 partial_slab = this_cpu_read(s->cpu_slab->partial);
2536 this_cpu_write(s->cpu_slab->partial, NULL);
2537 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2540 __unfreeze_partials(s, partial_slab);
2543 static void unfreeze_partials_cpu(struct kmem_cache *s,
2544 struct kmem_cache_cpu *c)
2546 struct slab *partial_slab;
2548 partial_slab = slub_percpu_partial(c);
2552 __unfreeze_partials(s, partial_slab);
2556 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2557 * partial slab slot if available.
2559 * If we did not find a slot then simply move all the partials to the
2560 * per node partial list.
2562 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2564 struct slab *oldslab;
2565 struct slab *slab_to_unfreeze = NULL;
2566 unsigned long flags;
2569 local_lock_irqsave(&s->cpu_slab->lock, flags);
2571 oldslab = this_cpu_read(s->cpu_slab->partial);
2574 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2576 * Partial array is full. Move the existing set to the
2577 * per node partial list. Postpone the actual unfreezing
2578 * outside of the critical section.
2580 slab_to_unfreeze = oldslab;
2583 slabs = oldslab->slabs;
2589 slab->slabs = slabs;
2590 slab->next = oldslab;
2592 this_cpu_write(s->cpu_slab->partial, slab);
2594 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2596 if (slab_to_unfreeze) {
2597 __unfreeze_partials(s, slab_to_unfreeze);
2598 stat(s, CPU_PARTIAL_DRAIN);
2602 #else /* CONFIG_SLUB_CPU_PARTIAL */
2604 static inline void unfreeze_partials(struct kmem_cache *s) { }
2605 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2606 struct kmem_cache_cpu *c) { }
2608 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2610 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2612 unsigned long flags;
2616 local_lock_irqsave(&s->cpu_slab->lock, flags);
2619 freelist = c->freelist;
2623 c->tid = next_tid(c->tid);
2625 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2628 deactivate_slab(s, slab, freelist);
2629 stat(s, CPUSLAB_FLUSH);
2633 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2635 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2636 void *freelist = c->freelist;
2637 struct slab *slab = c->slab;
2641 c->tid = next_tid(c->tid);
2644 deactivate_slab(s, slab, freelist);
2645 stat(s, CPUSLAB_FLUSH);
2648 unfreeze_partials_cpu(s, c);
2651 struct slub_flush_work {
2652 struct work_struct work;
2653 struct kmem_cache *s;
2660 * Called from CPU work handler with migration disabled.
2662 static void flush_cpu_slab(struct work_struct *w)
2664 struct kmem_cache *s;
2665 struct kmem_cache_cpu *c;
2666 struct slub_flush_work *sfw;
2668 sfw = container_of(w, struct slub_flush_work, work);
2671 c = this_cpu_ptr(s->cpu_slab);
2676 unfreeze_partials(s);
2679 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2681 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2683 return c->slab || slub_percpu_partial(c);
2686 static DEFINE_MUTEX(flush_lock);
2687 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2689 static void flush_all_cpus_locked(struct kmem_cache *s)
2691 struct slub_flush_work *sfw;
2694 lockdep_assert_cpus_held();
2695 mutex_lock(&flush_lock);
2697 for_each_online_cpu(cpu) {
2698 sfw = &per_cpu(slub_flush, cpu);
2699 if (!has_cpu_slab(cpu, s)) {
2703 INIT_WORK(&sfw->work, flush_cpu_slab);
2706 schedule_work_on(cpu, &sfw->work);
2709 for_each_online_cpu(cpu) {
2710 sfw = &per_cpu(slub_flush, cpu);
2713 flush_work(&sfw->work);
2716 mutex_unlock(&flush_lock);
2719 static void flush_all(struct kmem_cache *s)
2722 flush_all_cpus_locked(s);
2727 * Use the cpu notifier to insure that the cpu slabs are flushed when
2730 static int slub_cpu_dead(unsigned int cpu)
2732 struct kmem_cache *s;
2734 mutex_lock(&slab_mutex);
2735 list_for_each_entry(s, &slab_caches, list)
2736 __flush_cpu_slab(s, cpu);
2737 mutex_unlock(&slab_mutex);
2742 * Check if the objects in a per cpu structure fit numa
2743 * locality expectations.
2745 static inline int node_match(struct slab *slab, int node)
2748 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2754 #ifdef CONFIG_SLUB_DEBUG
2755 static int count_free(struct slab *slab)
2757 return slab->objects - slab->inuse;
2760 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2762 return atomic_long_read(&n->total_objects);
2764 #endif /* CONFIG_SLUB_DEBUG */
2766 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2767 static unsigned long count_partial(struct kmem_cache_node *n,
2768 int (*get_count)(struct slab *))
2770 unsigned long flags;
2771 unsigned long x = 0;
2774 spin_lock_irqsave(&n->list_lock, flags);
2775 list_for_each_entry(slab, &n->partial, slab_list)
2776 x += get_count(slab);
2777 spin_unlock_irqrestore(&n->list_lock, flags);
2780 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2782 static noinline void
2783 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2785 #ifdef CONFIG_SLUB_DEBUG
2786 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2787 DEFAULT_RATELIMIT_BURST);
2789 struct kmem_cache_node *n;
2791 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2794 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2795 nid, gfpflags, &gfpflags);
2796 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2797 s->name, s->object_size, s->size, oo_order(s->oo),
2800 if (oo_order(s->min) > get_order(s->object_size))
2801 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2804 for_each_kmem_cache_node(s, node, n) {
2805 unsigned long nr_slabs;
2806 unsigned long nr_objs;
2807 unsigned long nr_free;
2809 nr_free = count_partial(n, count_free);
2810 nr_slabs = node_nr_slabs(n);
2811 nr_objs = node_nr_objs(n);
2813 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2814 node, nr_slabs, nr_objs, nr_free);
2819 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2821 if (unlikely(slab_test_pfmemalloc(slab)))
2822 return gfp_pfmemalloc_allowed(gfpflags);
2828 * Check the slab->freelist and either transfer the freelist to the
2829 * per cpu freelist or deactivate the slab.
2831 * The slab is still frozen if the return value is not NULL.
2833 * If this function returns NULL then the slab has been unfrozen.
2835 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2838 unsigned long counters;
2841 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2844 freelist = slab->freelist;
2845 counters = slab->counters;
2847 new.counters = counters;
2848 VM_BUG_ON(!new.frozen);
2850 new.inuse = slab->objects;
2851 new.frozen = freelist != NULL;
2853 } while (!__cmpxchg_double_slab(s, slab,
2862 * Slow path. The lockless freelist is empty or we need to perform
2865 * Processing is still very fast if new objects have been freed to the
2866 * regular freelist. In that case we simply take over the regular freelist
2867 * as the lockless freelist and zap the regular freelist.
2869 * If that is not working then we fall back to the partial lists. We take the
2870 * first element of the freelist as the object to allocate now and move the
2871 * rest of the freelist to the lockless freelist.
2873 * And if we were unable to get a new slab from the partial slab lists then
2874 * we need to allocate a new slab. This is the slowest path since it involves
2875 * a call to the page allocator and the setup of a new slab.
2877 * Version of __slab_alloc to use when we know that preemption is
2878 * already disabled (which is the case for bulk allocation).
2880 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2881 unsigned long addr, struct kmem_cache_cpu *c)
2885 unsigned long flags;
2887 stat(s, ALLOC_SLOWPATH);
2891 slab = READ_ONCE(c->slab);
2894 * if the node is not online or has no normal memory, just
2895 * ignore the node constraint
2897 if (unlikely(node != NUMA_NO_NODE &&
2898 !node_isset(node, slab_nodes)))
2899 node = NUMA_NO_NODE;
2904 if (unlikely(!node_match(slab, node))) {
2906 * same as above but node_match() being false already
2907 * implies node != NUMA_NO_NODE
2909 if (!node_isset(node, slab_nodes)) {
2910 node = NUMA_NO_NODE;
2912 stat(s, ALLOC_NODE_MISMATCH);
2913 goto deactivate_slab;
2918 * By rights, we should be searching for a slab page that was
2919 * PFMEMALLOC but right now, we are losing the pfmemalloc
2920 * information when the page leaves the per-cpu allocator
2922 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2923 goto deactivate_slab;
2925 /* must check again c->slab in case we got preempted and it changed */
2926 local_lock_irqsave(&s->cpu_slab->lock, flags);
2927 if (unlikely(slab != c->slab)) {
2928 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2931 freelist = c->freelist;
2935 freelist = get_freelist(s, slab);
2939 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2940 stat(s, DEACTIVATE_BYPASS);
2944 stat(s, ALLOC_REFILL);
2948 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2951 * freelist is pointing to the list of objects to be used.
2952 * slab is pointing to the slab from which the objects are obtained.
2953 * That slab must be frozen for per cpu allocations to work.
2955 VM_BUG_ON(!c->slab->frozen);
2956 c->freelist = get_freepointer(s, freelist);
2957 c->tid = next_tid(c->tid);
2958 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2963 local_lock_irqsave(&s->cpu_slab->lock, flags);
2964 if (slab != c->slab) {
2965 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2968 freelist = c->freelist;
2971 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2972 deactivate_slab(s, slab, freelist);
2976 if (slub_percpu_partial(c)) {
2977 local_lock_irqsave(&s->cpu_slab->lock, flags);
2978 if (unlikely(c->slab)) {
2979 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2982 if (unlikely(!slub_percpu_partial(c))) {
2983 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2984 /* we were preempted and partial list got empty */
2988 slab = c->slab = slub_percpu_partial(c);
2989 slub_set_percpu_partial(c, slab);
2990 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2991 stat(s, CPU_PARTIAL_ALLOC);
2997 freelist = get_partial(s, gfpflags, node, &slab);
2999 goto check_new_slab;
3001 slub_put_cpu_ptr(s->cpu_slab);
3002 slab = new_slab(s, gfpflags, node);
3003 c = slub_get_cpu_ptr(s->cpu_slab);
3005 if (unlikely(!slab)) {
3006 slab_out_of_memory(s, gfpflags, node);
3011 * No other reference to the slab yet so we can
3012 * muck around with it freely without cmpxchg
3014 freelist = slab->freelist;
3015 slab->freelist = NULL;
3017 stat(s, ALLOC_SLAB);
3021 if (kmem_cache_debug(s)) {
3022 if (!alloc_debug_processing(s, slab, freelist, addr)) {
3023 /* Slab failed checks. Next slab needed */
3027 * For debug case, we don't load freelist so that all
3028 * allocations go through alloc_debug_processing()
3034 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3036 * For !pfmemalloc_match() case we don't load freelist so that
3037 * we don't make further mismatched allocations easier.
3043 local_lock_irqsave(&s->cpu_slab->lock, flags);
3044 if (unlikely(c->slab)) {
3045 void *flush_freelist = c->freelist;
3046 struct slab *flush_slab = c->slab;
3050 c->tid = next_tid(c->tid);
3052 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3054 deactivate_slab(s, flush_slab, flush_freelist);
3056 stat(s, CPUSLAB_FLUSH);
3058 goto retry_load_slab;
3066 deactivate_slab(s, slab, get_freepointer(s, freelist));
3071 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3072 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3075 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3076 unsigned long addr, struct kmem_cache_cpu *c)
3080 #ifdef CONFIG_PREEMPT_COUNT
3082 * We may have been preempted and rescheduled on a different
3083 * cpu before disabling preemption. Need to reload cpu area
3086 c = slub_get_cpu_ptr(s->cpu_slab);
3089 p = ___slab_alloc(s, gfpflags, node, addr, c);
3090 #ifdef CONFIG_PREEMPT_COUNT
3091 slub_put_cpu_ptr(s->cpu_slab);
3097 * If the object has been wiped upon free, make sure it's fully initialized by
3098 * zeroing out freelist pointer.
3100 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3103 if (unlikely(slab_want_init_on_free(s)) && obj)
3104 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3109 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3110 * have the fastpath folded into their functions. So no function call
3111 * overhead for requests that can be satisfied on the fastpath.
3113 * The fastpath works by first checking if the lockless freelist can be used.
3114 * If not then __slab_alloc is called for slow processing.
3116 * Otherwise we can simply pick the next object from the lockless free list.
3118 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3119 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3122 struct kmem_cache_cpu *c;
3125 struct obj_cgroup *objcg = NULL;
3128 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3132 object = kfence_alloc(s, orig_size, gfpflags);
3133 if (unlikely(object))
3138 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3139 * enabled. We may switch back and forth between cpus while
3140 * reading from one cpu area. That does not matter as long
3141 * as we end up on the original cpu again when doing the cmpxchg.
3143 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3144 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3145 * the tid. If we are preempted and switched to another cpu between the
3146 * two reads, it's OK as the two are still associated with the same cpu
3147 * and cmpxchg later will validate the cpu.
3149 c = raw_cpu_ptr(s->cpu_slab);
3150 tid = READ_ONCE(c->tid);
3153 * Irqless object alloc/free algorithm used here depends on sequence
3154 * of fetching cpu_slab's data. tid should be fetched before anything
3155 * on c to guarantee that object and slab associated with previous tid
3156 * won't be used with current tid. If we fetch tid first, object and
3157 * slab could be one associated with next tid and our alloc/free
3158 * request will be failed. In this case, we will retry. So, no problem.
3163 * The transaction ids are globally unique per cpu and per operation on
3164 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3165 * occurs on the right processor and that there was no operation on the
3166 * linked list in between.
3169 object = c->freelist;
3172 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3173 * slowpath has taken the local_lock_irqsave(), it is not protected
3174 * against a fast path operation in an irq handler. So we need to take
3175 * the slow path which uses local_lock. It is still relatively fast if
3176 * there is a suitable cpu freelist.
3178 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3179 unlikely(!object || !slab || !node_match(slab, node))) {
3180 object = __slab_alloc(s, gfpflags, node, addr, c);
3182 void *next_object = get_freepointer_safe(s, object);
3185 * The cmpxchg will only match if there was no additional
3186 * operation and if we are on the right processor.
3188 * The cmpxchg does the following atomically (without lock
3190 * 1. Relocate first pointer to the current per cpu area.
3191 * 2. Verify that tid and freelist have not been changed
3192 * 3. If they were not changed replace tid and freelist
3194 * Since this is without lock semantics the protection is only
3195 * against code executing on this cpu *not* from access by
3198 if (unlikely(!this_cpu_cmpxchg_double(
3199 s->cpu_slab->freelist, s->cpu_slab->tid,
3201 next_object, next_tid(tid)))) {
3203 note_cmpxchg_failure("slab_alloc", s, tid);
3206 prefetch_freepointer(s, next_object);
3207 stat(s, ALLOC_FASTPATH);
3210 maybe_wipe_obj_freeptr(s, object);
3211 init = slab_want_init_on_alloc(gfpflags, s);
3214 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3219 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3220 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3222 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3225 static __always_inline
3226 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3229 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3231 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
3237 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3239 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3241 EXPORT_SYMBOL(kmem_cache_alloc);
3243 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3246 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3248 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3250 #ifdef CONFIG_TRACING
3251 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3253 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3254 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
3255 ret = kasan_kmalloc(s, ret, size, gfpflags);
3258 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3262 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3264 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3266 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3267 s->object_size, s->size, gfpflags, node);
3271 EXPORT_SYMBOL(kmem_cache_alloc_node);
3273 #ifdef CONFIG_TRACING
3274 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3276 int node, size_t size)
3278 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3280 trace_kmalloc_node(_RET_IP_, ret,
3281 size, s->size, gfpflags, node);
3283 ret = kasan_kmalloc(s, ret, size, gfpflags);
3286 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3288 #endif /* CONFIG_NUMA */
3291 * Slow path handling. This may still be called frequently since objects
3292 * have a longer lifetime than the cpu slabs in most processing loads.
3294 * So we still attempt to reduce cache line usage. Just take the slab
3295 * lock and free the item. If there is no additional partial slab
3296 * handling required then we can return immediately.
3298 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3299 void *head, void *tail, int cnt,
3306 unsigned long counters;
3307 struct kmem_cache_node *n = NULL;
3308 unsigned long flags;
3310 stat(s, FREE_SLOWPATH);
3312 if (kfence_free(head))
3315 if (kmem_cache_debug(s) &&
3316 !free_debug_processing(s, slab, head, tail, cnt, addr))
3321 spin_unlock_irqrestore(&n->list_lock, flags);
3324 prior = slab->freelist;
3325 counters = slab->counters;
3326 set_freepointer(s, tail, prior);
3327 new.counters = counters;
3328 was_frozen = new.frozen;
3330 if ((!new.inuse || !prior) && !was_frozen) {
3332 if (kmem_cache_has_cpu_partial(s) && !prior) {
3335 * Slab was on no list before and will be
3337 * We can defer the list move and instead
3342 } else { /* Needs to be taken off a list */
3344 n = get_node(s, slab_nid(slab));
3346 * Speculatively acquire the list_lock.
3347 * If the cmpxchg does not succeed then we may
3348 * drop the list_lock without any processing.
3350 * Otherwise the list_lock will synchronize with
3351 * other processors updating the list of slabs.
3353 spin_lock_irqsave(&n->list_lock, flags);
3358 } while (!cmpxchg_double_slab(s, slab,
3365 if (likely(was_frozen)) {
3367 * The list lock was not taken therefore no list
3368 * activity can be necessary.
3370 stat(s, FREE_FROZEN);
3371 } else if (new.frozen) {
3373 * If we just froze the slab then put it onto the
3374 * per cpu partial list.
3376 put_cpu_partial(s, slab, 1);
3377 stat(s, CPU_PARTIAL_FREE);
3383 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3387 * Objects left in the slab. If it was not on the partial list before
3390 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3391 remove_full(s, n, slab);
3392 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3393 stat(s, FREE_ADD_PARTIAL);
3395 spin_unlock_irqrestore(&n->list_lock, flags);
3401 * Slab on the partial list.
3403 remove_partial(n, slab);
3404 stat(s, FREE_REMOVE_PARTIAL);
3406 /* Slab must be on the full list */
3407 remove_full(s, n, slab);
3410 spin_unlock_irqrestore(&n->list_lock, flags);
3412 discard_slab(s, slab);
3416 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3417 * can perform fastpath freeing without additional function calls.
3419 * The fastpath is only possible if we are freeing to the current cpu slab
3420 * of this processor. This typically the case if we have just allocated
3423 * If fastpath is not possible then fall back to __slab_free where we deal
3424 * with all sorts of special processing.
3426 * Bulk free of a freelist with several objects (all pointing to the
3427 * same slab) possible by specifying head and tail ptr, plus objects
3428 * count (cnt). Bulk free indicated by tail pointer being set.
3430 static __always_inline void do_slab_free(struct kmem_cache *s,
3431 struct slab *slab, void *head, void *tail,
3432 int cnt, unsigned long addr)
3434 void *tail_obj = tail ? : head;
3435 struct kmem_cache_cpu *c;
3438 /* memcg_slab_free_hook() is already called for bulk free. */
3440 memcg_slab_free_hook(s, &head, 1);
3443 * Determine the currently cpus per cpu slab.
3444 * The cpu may change afterward. However that does not matter since
3445 * data is retrieved via this pointer. If we are on the same cpu
3446 * during the cmpxchg then the free will succeed.
3448 c = raw_cpu_ptr(s->cpu_slab);
3449 tid = READ_ONCE(c->tid);
3451 /* Same with comment on barrier() in slab_alloc_node() */
3454 if (likely(slab == c->slab)) {
3455 #ifndef CONFIG_PREEMPT_RT
3456 void **freelist = READ_ONCE(c->freelist);
3458 set_freepointer(s, tail_obj, freelist);
3460 if (unlikely(!this_cpu_cmpxchg_double(
3461 s->cpu_slab->freelist, s->cpu_slab->tid,
3463 head, next_tid(tid)))) {
3465 note_cmpxchg_failure("slab_free", s, tid);
3468 #else /* CONFIG_PREEMPT_RT */
3470 * We cannot use the lockless fastpath on PREEMPT_RT because if
3471 * a slowpath has taken the local_lock_irqsave(), it is not
3472 * protected against a fast path operation in an irq handler. So
3473 * we need to take the local_lock. We shouldn't simply defer to
3474 * __slab_free() as that wouldn't use the cpu freelist at all.
3478 local_lock(&s->cpu_slab->lock);
3479 c = this_cpu_ptr(s->cpu_slab);
3480 if (unlikely(slab != c->slab)) {
3481 local_unlock(&s->cpu_slab->lock);
3485 freelist = c->freelist;
3487 set_freepointer(s, tail_obj, freelist);
3489 c->tid = next_tid(tid);
3491 local_unlock(&s->cpu_slab->lock);
3493 stat(s, FREE_FASTPATH);
3495 __slab_free(s, slab, head, tail_obj, cnt, addr);
3499 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3500 void *head, void *tail, int cnt,
3504 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3505 * to remove objects, whose reuse must be delayed.
3507 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3508 do_slab_free(s, slab, head, tail, cnt, addr);
3511 #ifdef CONFIG_KASAN_GENERIC
3512 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3514 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3518 void kmem_cache_free(struct kmem_cache *s, void *x)
3520 s = cache_from_obj(s, x);
3523 trace_kmem_cache_free(_RET_IP_, x, s->name);
3524 slab_free(s, virt_to_slab(x), x, NULL, 1, _RET_IP_);
3526 EXPORT_SYMBOL(kmem_cache_free);
3528 struct detached_freelist {
3533 struct kmem_cache *s;
3536 static inline void free_large_kmalloc(struct folio *folio, void *object)
3538 unsigned int order = folio_order(folio);
3540 if (WARN_ON_ONCE(order == 0))
3541 pr_warn_once("object pointer: 0x%p\n", object);
3544 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3545 -(PAGE_SIZE << order));
3546 __free_pages(folio_page(folio, 0), order);
3550 * This function progressively scans the array with free objects (with
3551 * a limited look ahead) and extract objects belonging to the same
3552 * slab. It builds a detached freelist directly within the given
3553 * slab/objects. This can happen without any need for
3554 * synchronization, because the objects are owned by running process.
3555 * The freelist is build up as a single linked list in the objects.
3556 * The idea is, that this detached freelist can then be bulk
3557 * transferred to the real freelist(s), but only requiring a single
3558 * synchronization primitive. Look ahead in the array is limited due
3559 * to performance reasons.
3562 int build_detached_freelist(struct kmem_cache *s, size_t size,
3563 void **p, struct detached_freelist *df)
3565 size_t first_skipped_index = 0;
3568 struct folio *folio;
3571 /* Always re-init detached_freelist */
3576 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3577 } while (!object && size);
3582 folio = virt_to_folio(object);
3584 /* Handle kalloc'ed objects */
3585 if (unlikely(!folio_test_slab(folio))) {
3586 free_large_kmalloc(folio, object);
3587 p[size] = NULL; /* mark object processed */
3590 /* Derive kmem_cache from object */
3591 slab = folio_slab(folio);
3592 df->s = slab->slab_cache;
3594 slab = folio_slab(folio);
3595 df->s = cache_from_obj(s, object); /* Support for memcg */
3598 if (is_kfence_address(object)) {
3599 slab_free_hook(df->s, object, false);
3600 __kfence_free(object);
3601 p[size] = NULL; /* mark object processed */
3605 /* Start new detached freelist */
3607 set_freepointer(df->s, object, NULL);
3609 df->freelist = object;
3610 p[size] = NULL; /* mark object processed */
3616 continue; /* Skip processed objects */
3618 /* df->slab is always set at this point */
3619 if (df->slab == virt_to_slab(object)) {
3620 /* Opportunity build freelist */
3621 set_freepointer(df->s, object, df->freelist);
3622 df->freelist = object;
3624 p[size] = NULL; /* mark object processed */
3629 /* Limit look ahead search */
3633 if (!first_skipped_index)
3634 first_skipped_index = size + 1;
3637 return first_skipped_index;
3640 /* Note that interrupts must be enabled when calling this function. */
3641 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3646 memcg_slab_free_hook(s, p, size);
3648 struct detached_freelist df;
3650 size = build_detached_freelist(s, size, p, &df);
3654 slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt, _RET_IP_);
3655 } while (likely(size));
3657 EXPORT_SYMBOL(kmem_cache_free_bulk);
3659 /* Note that interrupts must be enabled when calling this function. */
3660 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3663 struct kmem_cache_cpu *c;
3665 struct obj_cgroup *objcg = NULL;
3667 /* memcg and kmem_cache debug support */
3668 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3672 * Drain objects in the per cpu slab, while disabling local
3673 * IRQs, which protects against PREEMPT and interrupts
3674 * handlers invoking normal fastpath.
3676 c = slub_get_cpu_ptr(s->cpu_slab);
3677 local_lock_irq(&s->cpu_slab->lock);
3679 for (i = 0; i < size; i++) {
3680 void *object = kfence_alloc(s, s->object_size, flags);
3682 if (unlikely(object)) {
3687 object = c->freelist;
3688 if (unlikely(!object)) {
3690 * We may have removed an object from c->freelist using
3691 * the fastpath in the previous iteration; in that case,
3692 * c->tid has not been bumped yet.
3693 * Since ___slab_alloc() may reenable interrupts while
3694 * allocating memory, we should bump c->tid now.
3696 c->tid = next_tid(c->tid);
3698 local_unlock_irq(&s->cpu_slab->lock);
3701 * Invoking slow path likely have side-effect
3702 * of re-populating per CPU c->freelist
3704 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3706 if (unlikely(!p[i]))
3709 c = this_cpu_ptr(s->cpu_slab);
3710 maybe_wipe_obj_freeptr(s, p[i]);
3712 local_lock_irq(&s->cpu_slab->lock);
3714 continue; /* goto for-loop */
3716 c->freelist = get_freepointer(s, object);
3718 maybe_wipe_obj_freeptr(s, p[i]);
3720 c->tid = next_tid(c->tid);
3721 local_unlock_irq(&s->cpu_slab->lock);
3722 slub_put_cpu_ptr(s->cpu_slab);
3725 * memcg and kmem_cache debug support and memory initialization.
3726 * Done outside of the IRQ disabled fastpath loop.
3728 slab_post_alloc_hook(s, objcg, flags, size, p,
3729 slab_want_init_on_alloc(flags, s));
3732 slub_put_cpu_ptr(s->cpu_slab);
3733 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3734 __kmem_cache_free_bulk(s, i, p);
3737 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3741 * Object placement in a slab is made very easy because we always start at
3742 * offset 0. If we tune the size of the object to the alignment then we can
3743 * get the required alignment by putting one properly sized object after
3746 * Notice that the allocation order determines the sizes of the per cpu
3747 * caches. Each processor has always one slab available for allocations.
3748 * Increasing the allocation order reduces the number of times that slabs
3749 * must be moved on and off the partial lists and is therefore a factor in
3754 * Minimum / Maximum order of slab pages. This influences locking overhead
3755 * and slab fragmentation. A higher order reduces the number of partial slabs
3756 * and increases the number of allocations possible without having to
3757 * take the list_lock.
3759 static unsigned int slub_min_order;
3760 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3761 static unsigned int slub_min_objects;
3764 * Calculate the order of allocation given an slab object size.
3766 * The order of allocation has significant impact on performance and other
3767 * system components. Generally order 0 allocations should be preferred since
3768 * order 0 does not cause fragmentation in the page allocator. Larger objects
3769 * be problematic to put into order 0 slabs because there may be too much
3770 * unused space left. We go to a higher order if more than 1/16th of the slab
3773 * In order to reach satisfactory performance we must ensure that a minimum
3774 * number of objects is in one slab. Otherwise we may generate too much
3775 * activity on the partial lists which requires taking the list_lock. This is
3776 * less a concern for large slabs though which are rarely used.
3778 * slub_max_order specifies the order where we begin to stop considering the
3779 * number of objects in a slab as critical. If we reach slub_max_order then
3780 * we try to keep the page order as low as possible. So we accept more waste
3781 * of space in favor of a small page order.
3783 * Higher order allocations also allow the placement of more objects in a
3784 * slab and thereby reduce object handling overhead. If the user has
3785 * requested a higher minimum order then we start with that one instead of
3786 * the smallest order which will fit the object.
3788 static inline unsigned int calc_slab_order(unsigned int size,
3789 unsigned int min_objects, unsigned int max_order,
3790 unsigned int fract_leftover)
3792 unsigned int min_order = slub_min_order;
3795 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3796 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3798 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3799 order <= max_order; order++) {
3801 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3804 rem = slab_size % size;
3806 if (rem <= slab_size / fract_leftover)
3813 static inline int calculate_order(unsigned int size)
3816 unsigned int min_objects;
3817 unsigned int max_objects;
3818 unsigned int nr_cpus;
3821 * Attempt to find best configuration for a slab. This
3822 * works by first attempting to generate a layout with
3823 * the best configuration and backing off gradually.
3825 * First we increase the acceptable waste in a slab. Then
3826 * we reduce the minimum objects required in a slab.
3828 min_objects = slub_min_objects;
3831 * Some architectures will only update present cpus when
3832 * onlining them, so don't trust the number if it's just 1. But
3833 * we also don't want to use nr_cpu_ids always, as on some other
3834 * architectures, there can be many possible cpus, but never
3835 * onlined. Here we compromise between trying to avoid too high
3836 * order on systems that appear larger than they are, and too
3837 * low order on systems that appear smaller than they are.
3839 nr_cpus = num_present_cpus();
3841 nr_cpus = nr_cpu_ids;
3842 min_objects = 4 * (fls(nr_cpus) + 1);
3844 max_objects = order_objects(slub_max_order, size);
3845 min_objects = min(min_objects, max_objects);
3847 while (min_objects > 1) {
3848 unsigned int fraction;
3851 while (fraction >= 4) {
3852 order = calc_slab_order(size, min_objects,
3853 slub_max_order, fraction);
3854 if (order <= slub_max_order)
3862 * We were unable to place multiple objects in a slab. Now
3863 * lets see if we can place a single object there.
3865 order = calc_slab_order(size, 1, slub_max_order, 1);
3866 if (order <= slub_max_order)
3870 * Doh this slab cannot be placed using slub_max_order.
3872 order = calc_slab_order(size, 1, MAX_ORDER, 1);
3873 if (order < MAX_ORDER)
3879 init_kmem_cache_node(struct kmem_cache_node *n)
3882 spin_lock_init(&n->list_lock);
3883 INIT_LIST_HEAD(&n->partial);
3884 #ifdef CONFIG_SLUB_DEBUG
3885 atomic_long_set(&n->nr_slabs, 0);
3886 atomic_long_set(&n->total_objects, 0);
3887 INIT_LIST_HEAD(&n->full);
3891 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3893 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3894 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3897 * Must align to double word boundary for the double cmpxchg
3898 * instructions to work; see __pcpu_double_call_return_bool().
3900 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3901 2 * sizeof(void *));
3906 init_kmem_cache_cpus(s);
3911 static struct kmem_cache *kmem_cache_node;
3914 * No kmalloc_node yet so do it by hand. We know that this is the first
3915 * slab on the node for this slabcache. There are no concurrent accesses
3918 * Note that this function only works on the kmem_cache_node
3919 * when allocating for the kmem_cache_node. This is used for bootstrapping
3920 * memory on a fresh node that has no slab structures yet.
3922 static void early_kmem_cache_node_alloc(int node)
3925 struct kmem_cache_node *n;
3927 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3929 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3932 if (slab_nid(slab) != node) {
3933 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3934 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3939 #ifdef CONFIG_SLUB_DEBUG
3940 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3941 init_tracking(kmem_cache_node, n);
3943 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3944 slab->freelist = get_freepointer(kmem_cache_node, n);
3947 kmem_cache_node->node[node] = n;
3948 init_kmem_cache_node(n);
3949 inc_slabs_node(kmem_cache_node, node, slab->objects);
3952 * No locks need to be taken here as it has just been
3953 * initialized and there is no concurrent access.
3955 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
3958 static void free_kmem_cache_nodes(struct kmem_cache *s)
3961 struct kmem_cache_node *n;
3963 for_each_kmem_cache_node(s, node, n) {
3964 s->node[node] = NULL;
3965 kmem_cache_free(kmem_cache_node, n);
3969 void __kmem_cache_release(struct kmem_cache *s)
3971 cache_random_seq_destroy(s);
3972 free_percpu(s->cpu_slab);
3973 free_kmem_cache_nodes(s);
3976 static int init_kmem_cache_nodes(struct kmem_cache *s)
3980 for_each_node_mask(node, slab_nodes) {
3981 struct kmem_cache_node *n;
3983 if (slab_state == DOWN) {
3984 early_kmem_cache_node_alloc(node);
3987 n = kmem_cache_alloc_node(kmem_cache_node,
3991 free_kmem_cache_nodes(s);
3995 init_kmem_cache_node(n);
4001 static void set_cpu_partial(struct kmem_cache *s)
4003 #ifdef CONFIG_SLUB_CPU_PARTIAL
4004 unsigned int nr_objects;
4007 * cpu_partial determined the maximum number of objects kept in the
4008 * per cpu partial lists of a processor.
4010 * Per cpu partial lists mainly contain slabs that just have one
4011 * object freed. If they are used for allocation then they can be
4012 * filled up again with minimal effort. The slab will never hit the
4013 * per node partial lists and therefore no locking will be required.
4015 * For backwards compatibility reasons, this is determined as number
4016 * of objects, even though we now limit maximum number of pages, see
4017 * slub_set_cpu_partial()
4019 if (!kmem_cache_has_cpu_partial(s))
4021 else if (s->size >= PAGE_SIZE)
4023 else if (s->size >= 1024)
4025 else if (s->size >= 256)
4030 slub_set_cpu_partial(s, nr_objects);
4035 * calculate_sizes() determines the order and the distribution of data within
4038 static int calculate_sizes(struct kmem_cache *s)
4040 slab_flags_t flags = s->flags;
4041 unsigned int size = s->object_size;
4045 * Round up object size to the next word boundary. We can only
4046 * place the free pointer at word boundaries and this determines
4047 * the possible location of the free pointer.
4049 size = ALIGN(size, sizeof(void *));
4051 #ifdef CONFIG_SLUB_DEBUG
4053 * Determine if we can poison the object itself. If the user of
4054 * the slab may touch the object after free or before allocation
4055 * then we should never poison the object itself.
4057 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4059 s->flags |= __OBJECT_POISON;
4061 s->flags &= ~__OBJECT_POISON;
4065 * If we are Redzoning then check if there is some space between the
4066 * end of the object and the free pointer. If not then add an
4067 * additional word to have some bytes to store Redzone information.
4069 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4070 size += sizeof(void *);
4074 * With that we have determined the number of bytes in actual use
4075 * by the object and redzoning.
4079 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4080 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4083 * Relocate free pointer after the object if it is not
4084 * permitted to overwrite the first word of the object on
4087 * This is the case if we do RCU, have a constructor or
4088 * destructor, are poisoning the objects, or are
4089 * redzoning an object smaller than sizeof(void *).
4091 * The assumption that s->offset >= s->inuse means free
4092 * pointer is outside of the object is used in the
4093 * freeptr_outside_object() function. If that is no
4094 * longer true, the function needs to be modified.
4097 size += sizeof(void *);
4100 * Store freelist pointer near middle of object to keep
4101 * it away from the edges of the object to avoid small
4102 * sized over/underflows from neighboring allocations.
4104 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4107 #ifdef CONFIG_SLUB_DEBUG
4108 if (flags & SLAB_STORE_USER)
4110 * Need to store information about allocs and frees after
4113 size += 2 * sizeof(struct track);
4116 kasan_cache_create(s, &size, &s->flags);
4117 #ifdef CONFIG_SLUB_DEBUG
4118 if (flags & SLAB_RED_ZONE) {
4120 * Add some empty padding so that we can catch
4121 * overwrites from earlier objects rather than let
4122 * tracking information or the free pointer be
4123 * corrupted if a user writes before the start
4126 size += sizeof(void *);
4128 s->red_left_pad = sizeof(void *);
4129 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4130 size += s->red_left_pad;
4135 * SLUB stores one object immediately after another beginning from
4136 * offset 0. In order to align the objects we have to simply size
4137 * each object to conform to the alignment.
4139 size = ALIGN(size, s->align);
4141 s->reciprocal_size = reciprocal_value(size);
4142 order = calculate_order(size);
4149 s->allocflags |= __GFP_COMP;
4151 if (s->flags & SLAB_CACHE_DMA)
4152 s->allocflags |= GFP_DMA;
4154 if (s->flags & SLAB_CACHE_DMA32)
4155 s->allocflags |= GFP_DMA32;
4157 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4158 s->allocflags |= __GFP_RECLAIMABLE;
4161 * Determine the number of objects per slab
4163 s->oo = oo_make(order, size);
4164 s->min = oo_make(get_order(size), size);
4166 return !!oo_objects(s->oo);
4169 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4171 s->flags = kmem_cache_flags(s->size, flags, s->name);
4172 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4173 s->random = get_random_long();
4176 if (!calculate_sizes(s))
4178 if (disable_higher_order_debug) {
4180 * Disable debugging flags that store metadata if the min slab
4183 if (get_order(s->size) > get_order(s->object_size)) {
4184 s->flags &= ~DEBUG_METADATA_FLAGS;
4186 if (!calculate_sizes(s))
4191 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4192 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4193 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4194 /* Enable fast mode */
4195 s->flags |= __CMPXCHG_DOUBLE;
4199 * The larger the object size is, the more slabs we want on the partial
4200 * list to avoid pounding the page allocator excessively.
4202 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4203 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4208 s->remote_node_defrag_ratio = 1000;
4211 /* Initialize the pre-computed randomized freelist if slab is up */
4212 if (slab_state >= UP) {
4213 if (init_cache_random_seq(s))
4217 if (!init_kmem_cache_nodes(s))
4220 if (alloc_kmem_cache_cpus(s))
4224 __kmem_cache_release(s);
4228 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4231 #ifdef CONFIG_SLUB_DEBUG
4232 void *addr = slab_address(slab);
4233 unsigned long flags;
4237 slab_err(s, slab, text, s->name);
4238 slab_lock(slab, &flags);
4240 map = get_map(s, slab);
4241 for_each_object(p, s, addr, slab->objects) {
4243 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4244 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4245 print_tracking(s, p);
4249 slab_unlock(slab, &flags);
4254 * Attempt to free all partial slabs on a node.
4255 * This is called from __kmem_cache_shutdown(). We must take list_lock
4256 * because sysfs file might still access partial list after the shutdowning.
4258 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4261 struct slab *slab, *h;
4263 BUG_ON(irqs_disabled());
4264 spin_lock_irq(&n->list_lock);
4265 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4267 remove_partial(n, slab);
4268 list_add(&slab->slab_list, &discard);
4270 list_slab_objects(s, slab,
4271 "Objects remaining in %s on __kmem_cache_shutdown()");
4274 spin_unlock_irq(&n->list_lock);
4276 list_for_each_entry_safe(slab, h, &discard, slab_list)
4277 discard_slab(s, slab);
4280 bool __kmem_cache_empty(struct kmem_cache *s)
4283 struct kmem_cache_node *n;
4285 for_each_kmem_cache_node(s, node, n)
4286 if (n->nr_partial || slabs_node(s, node))
4292 * Release all resources used by a slab cache.
4294 int __kmem_cache_shutdown(struct kmem_cache *s)
4297 struct kmem_cache_node *n;
4299 flush_all_cpus_locked(s);
4300 /* Attempt to free all objects */
4301 for_each_kmem_cache_node(s, node, n) {
4303 if (n->nr_partial || slabs_node(s, node))
4309 #ifdef CONFIG_PRINTK
4310 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4313 int __maybe_unused i;
4317 struct kmem_cache *s = slab->slab_cache;
4318 struct track __maybe_unused *trackp;
4320 kpp->kp_ptr = object;
4321 kpp->kp_slab = slab;
4322 kpp->kp_slab_cache = s;
4323 base = slab_address(slab);
4324 objp0 = kasan_reset_tag(object);
4325 #ifdef CONFIG_SLUB_DEBUG
4326 objp = restore_red_left(s, objp0);
4330 objnr = obj_to_index(s, slab, objp);
4331 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4332 objp = base + s->size * objnr;
4333 kpp->kp_objp = objp;
4334 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4335 || (objp - base) % s->size) ||
4336 !(s->flags & SLAB_STORE_USER))
4338 #ifdef CONFIG_SLUB_DEBUG
4339 objp = fixup_red_left(s, objp);
4340 trackp = get_track(s, objp, TRACK_ALLOC);
4341 kpp->kp_ret = (void *)trackp->addr;
4342 #ifdef CONFIG_STACKDEPOT
4344 depot_stack_handle_t handle;
4345 unsigned long *entries;
4346 unsigned int nr_entries;
4348 handle = READ_ONCE(trackp->handle);
4350 nr_entries = stack_depot_fetch(handle, &entries);
4351 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4352 kpp->kp_stack[i] = (void *)entries[i];
4355 trackp = get_track(s, objp, TRACK_FREE);
4356 handle = READ_ONCE(trackp->handle);
4358 nr_entries = stack_depot_fetch(handle, &entries);
4359 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4360 kpp->kp_free_stack[i] = (void *)entries[i];
4368 /********************************************************************
4370 *******************************************************************/
4372 static int __init setup_slub_min_order(char *str)
4374 get_option(&str, (int *)&slub_min_order);
4379 __setup("slub_min_order=", setup_slub_min_order);
4381 static int __init setup_slub_max_order(char *str)
4383 get_option(&str, (int *)&slub_max_order);
4384 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4389 __setup("slub_max_order=", setup_slub_max_order);
4391 static int __init setup_slub_min_objects(char *str)
4393 get_option(&str, (int *)&slub_min_objects);
4398 __setup("slub_min_objects=", setup_slub_min_objects);
4400 void *__kmalloc(size_t size, gfp_t flags)
4402 struct kmem_cache *s;
4405 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4406 return kmalloc_large(size, flags);
4408 s = kmalloc_slab(size, flags);
4410 if (unlikely(ZERO_OR_NULL_PTR(s)))
4413 ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
4415 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4417 ret = kasan_kmalloc(s, ret, size, flags);
4421 EXPORT_SYMBOL(__kmalloc);
4424 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4428 unsigned int order = get_order(size);
4430 flags |= __GFP_COMP;
4431 page = alloc_pages_node(node, flags, order);
4433 ptr = page_address(page);
4434 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4435 PAGE_SIZE << order);
4438 return kmalloc_large_node_hook(ptr, size, flags);
4441 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4443 struct kmem_cache *s;
4446 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4447 ret = kmalloc_large_node(size, flags, node);
4449 trace_kmalloc_node(_RET_IP_, ret,
4450 size, PAGE_SIZE << get_order(size),
4456 s = kmalloc_slab(size, flags);
4458 if (unlikely(ZERO_OR_NULL_PTR(s)))
4461 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
4463 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4465 ret = kasan_kmalloc(s, ret, size, flags);
4469 EXPORT_SYMBOL(__kmalloc_node);
4470 #endif /* CONFIG_NUMA */
4472 #ifdef CONFIG_HARDENED_USERCOPY
4474 * Rejects incorrectly sized objects and objects that are to be copied
4475 * to/from userspace but do not fall entirely within the containing slab
4476 * cache's usercopy region.
4478 * Returns NULL if check passes, otherwise const char * to name of cache
4479 * to indicate an error.
4481 void __check_heap_object(const void *ptr, unsigned long n,
4482 const struct slab *slab, bool to_user)
4484 struct kmem_cache *s;
4485 unsigned int offset;
4486 bool is_kfence = is_kfence_address(ptr);
4488 ptr = kasan_reset_tag(ptr);
4490 /* Find object and usable object size. */
4491 s = slab->slab_cache;
4493 /* Reject impossible pointers. */
4494 if (ptr < slab_address(slab))
4495 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4498 /* Find offset within object. */
4500 offset = ptr - kfence_object_start(ptr);
4502 offset = (ptr - slab_address(slab)) % s->size;
4504 /* Adjust for redzone and reject if within the redzone. */
4505 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4506 if (offset < s->red_left_pad)
4507 usercopy_abort("SLUB object in left red zone",
4508 s->name, to_user, offset, n);
4509 offset -= s->red_left_pad;
4512 /* Allow address range falling entirely within usercopy region. */
4513 if (offset >= s->useroffset &&
4514 offset - s->useroffset <= s->usersize &&
4515 n <= s->useroffset - offset + s->usersize)
4518 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4520 #endif /* CONFIG_HARDENED_USERCOPY */
4522 size_t __ksize(const void *object)
4524 struct folio *folio;
4526 if (unlikely(object == ZERO_SIZE_PTR))
4529 folio = virt_to_folio(object);
4531 if (unlikely(!folio_test_slab(folio)))
4532 return folio_size(folio);
4534 return slab_ksize(folio_slab(folio)->slab_cache);
4536 EXPORT_SYMBOL(__ksize);
4538 void kfree(const void *x)
4540 struct folio *folio;
4542 void *object = (void *)x;
4544 trace_kfree(_RET_IP_, x);
4546 if (unlikely(ZERO_OR_NULL_PTR(x)))
4549 folio = virt_to_folio(x);
4550 if (unlikely(!folio_test_slab(folio))) {
4551 free_large_kmalloc(folio, object);
4554 slab = folio_slab(folio);
4555 slab_free(slab->slab_cache, slab, object, NULL, 1, _RET_IP_);
4557 EXPORT_SYMBOL(kfree);
4559 #define SHRINK_PROMOTE_MAX 32
4562 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4563 * up most to the head of the partial lists. New allocations will then
4564 * fill those up and thus they can be removed from the partial lists.
4566 * The slabs with the least items are placed last. This results in them
4567 * being allocated from last increasing the chance that the last objects
4568 * are freed in them.
4570 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4574 struct kmem_cache_node *n;
4577 struct list_head discard;
4578 struct list_head promote[SHRINK_PROMOTE_MAX];
4579 unsigned long flags;
4582 for_each_kmem_cache_node(s, node, n) {
4583 INIT_LIST_HEAD(&discard);
4584 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4585 INIT_LIST_HEAD(promote + i);
4587 spin_lock_irqsave(&n->list_lock, flags);
4590 * Build lists of slabs to discard or promote.
4592 * Note that concurrent frees may occur while we hold the
4593 * list_lock. slab->inuse here is the upper limit.
4595 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4596 int free = slab->objects - slab->inuse;
4598 /* Do not reread slab->inuse */
4601 /* We do not keep full slabs on the list */
4604 if (free == slab->objects) {
4605 list_move(&slab->slab_list, &discard);
4607 } else if (free <= SHRINK_PROMOTE_MAX)
4608 list_move(&slab->slab_list, promote + free - 1);
4612 * Promote the slabs filled up most to the head of the
4615 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4616 list_splice(promote + i, &n->partial);
4618 spin_unlock_irqrestore(&n->list_lock, flags);
4620 /* Release empty slabs */
4621 list_for_each_entry_safe(slab, t, &discard, slab_list)
4622 discard_slab(s, slab);
4624 if (slabs_node(s, node))
4631 int __kmem_cache_shrink(struct kmem_cache *s)
4634 return __kmem_cache_do_shrink(s);
4637 static int slab_mem_going_offline_callback(void *arg)
4639 struct kmem_cache *s;
4641 mutex_lock(&slab_mutex);
4642 list_for_each_entry(s, &slab_caches, list) {
4643 flush_all_cpus_locked(s);
4644 __kmem_cache_do_shrink(s);
4646 mutex_unlock(&slab_mutex);
4651 static void slab_mem_offline_callback(void *arg)
4653 struct memory_notify *marg = arg;
4656 offline_node = marg->status_change_nid_normal;
4659 * If the node still has available memory. we need kmem_cache_node
4662 if (offline_node < 0)
4665 mutex_lock(&slab_mutex);
4666 node_clear(offline_node, slab_nodes);
4668 * We no longer free kmem_cache_node structures here, as it would be
4669 * racy with all get_node() users, and infeasible to protect them with
4672 mutex_unlock(&slab_mutex);
4675 static int slab_mem_going_online_callback(void *arg)
4677 struct kmem_cache_node *n;
4678 struct kmem_cache *s;
4679 struct memory_notify *marg = arg;
4680 int nid = marg->status_change_nid_normal;
4684 * If the node's memory is already available, then kmem_cache_node is
4685 * already created. Nothing to do.
4691 * We are bringing a node online. No memory is available yet. We must
4692 * allocate a kmem_cache_node structure in order to bring the node
4695 mutex_lock(&slab_mutex);
4696 list_for_each_entry(s, &slab_caches, list) {
4698 * The structure may already exist if the node was previously
4699 * onlined and offlined.
4701 if (get_node(s, nid))
4704 * XXX: kmem_cache_alloc_node will fallback to other nodes
4705 * since memory is not yet available from the node that
4708 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4713 init_kmem_cache_node(n);
4717 * Any cache created after this point will also have kmem_cache_node
4718 * initialized for the new node.
4720 node_set(nid, slab_nodes);
4722 mutex_unlock(&slab_mutex);
4726 static int slab_memory_callback(struct notifier_block *self,
4727 unsigned long action, void *arg)
4732 case MEM_GOING_ONLINE:
4733 ret = slab_mem_going_online_callback(arg);
4735 case MEM_GOING_OFFLINE:
4736 ret = slab_mem_going_offline_callback(arg);
4739 case MEM_CANCEL_ONLINE:
4740 slab_mem_offline_callback(arg);
4743 case MEM_CANCEL_OFFLINE:
4747 ret = notifier_from_errno(ret);
4753 static struct notifier_block slab_memory_callback_nb = {
4754 .notifier_call = slab_memory_callback,
4755 .priority = SLAB_CALLBACK_PRI,
4758 /********************************************************************
4759 * Basic setup of slabs
4760 *******************************************************************/
4763 * Used for early kmem_cache structures that were allocated using
4764 * the page allocator. Allocate them properly then fix up the pointers
4765 * that may be pointing to the wrong kmem_cache structure.
4768 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4771 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4772 struct kmem_cache_node *n;
4774 memcpy(s, static_cache, kmem_cache->object_size);
4777 * This runs very early, and only the boot processor is supposed to be
4778 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4781 __flush_cpu_slab(s, smp_processor_id());
4782 for_each_kmem_cache_node(s, node, n) {
4785 list_for_each_entry(p, &n->partial, slab_list)
4788 #ifdef CONFIG_SLUB_DEBUG
4789 list_for_each_entry(p, &n->full, slab_list)
4793 list_add(&s->list, &slab_caches);
4797 void __init kmem_cache_init(void)
4799 static __initdata struct kmem_cache boot_kmem_cache,
4800 boot_kmem_cache_node;
4803 if (debug_guardpage_minorder())
4806 /* Print slub debugging pointers without hashing */
4807 if (__slub_debug_enabled())
4808 no_hash_pointers_enable(NULL);
4810 kmem_cache_node = &boot_kmem_cache_node;
4811 kmem_cache = &boot_kmem_cache;
4814 * Initialize the nodemask for which we will allocate per node
4815 * structures. Here we don't need taking slab_mutex yet.
4817 for_each_node_state(node, N_NORMAL_MEMORY)
4818 node_set(node, slab_nodes);
4820 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4821 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4823 register_hotmemory_notifier(&slab_memory_callback_nb);
4825 /* Able to allocate the per node structures */
4826 slab_state = PARTIAL;
4828 create_boot_cache(kmem_cache, "kmem_cache",
4829 offsetof(struct kmem_cache, node) +
4830 nr_node_ids * sizeof(struct kmem_cache_node *),
4831 SLAB_HWCACHE_ALIGN, 0, 0);
4833 kmem_cache = bootstrap(&boot_kmem_cache);
4834 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4836 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4837 setup_kmalloc_cache_index_table();
4838 create_kmalloc_caches(0);
4840 /* Setup random freelists for each cache */
4841 init_freelist_randomization();
4843 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4846 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4848 slub_min_order, slub_max_order, slub_min_objects,
4849 nr_cpu_ids, nr_node_ids);
4852 void __init kmem_cache_init_late(void)
4857 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4858 slab_flags_t flags, void (*ctor)(void *))
4860 struct kmem_cache *s;
4862 s = find_mergeable(size, align, flags, name, ctor);
4867 * Adjust the object sizes so that we clear
4868 * the complete object on kzalloc.
4870 s->object_size = max(s->object_size, size);
4871 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4873 if (sysfs_slab_alias(s, name)) {
4882 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4886 err = kmem_cache_open(s, flags);
4890 /* Mutex is not taken during early boot */
4891 if (slab_state <= UP)
4894 err = sysfs_slab_add(s);
4896 __kmem_cache_release(s);
4900 if (s->flags & SLAB_STORE_USER)
4901 debugfs_slab_add(s);
4906 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4908 struct kmem_cache *s;
4911 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4912 return kmalloc_large(size, gfpflags);
4914 s = kmalloc_slab(size, gfpflags);
4916 if (unlikely(ZERO_OR_NULL_PTR(s)))
4919 ret = slab_alloc(s, NULL, gfpflags, caller, size);
4921 /* Honor the call site pointer we received. */
4922 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4926 EXPORT_SYMBOL(__kmalloc_track_caller);
4929 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4930 int node, unsigned long caller)
4932 struct kmem_cache *s;
4935 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4936 ret = kmalloc_large_node(size, gfpflags, node);
4938 trace_kmalloc_node(caller, ret,
4939 size, PAGE_SIZE << get_order(size),
4945 s = kmalloc_slab(size, gfpflags);
4947 if (unlikely(ZERO_OR_NULL_PTR(s)))
4950 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
4952 /* Honor the call site pointer we received. */
4953 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4957 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4961 static int count_inuse(struct slab *slab)
4966 static int count_total(struct slab *slab)
4968 return slab->objects;
4972 #ifdef CONFIG_SLUB_DEBUG
4973 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4974 unsigned long *obj_map)
4977 void *addr = slab_address(slab);
4978 unsigned long flags;
4980 slab_lock(slab, &flags);
4982 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
4985 /* Now we know that a valid freelist exists */
4986 __fill_map(obj_map, s, slab);
4987 for_each_object(p, s, addr, slab->objects) {
4988 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4989 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4991 if (!check_object(s, slab, p, val))
4995 slab_unlock(slab, &flags);
4998 static int validate_slab_node(struct kmem_cache *s,
4999 struct kmem_cache_node *n, unsigned long *obj_map)
5001 unsigned long count = 0;
5003 unsigned long flags;
5005 spin_lock_irqsave(&n->list_lock, flags);
5007 list_for_each_entry(slab, &n->partial, slab_list) {
5008 validate_slab(s, slab, obj_map);
5011 if (count != n->nr_partial) {
5012 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5013 s->name, count, n->nr_partial);
5014 slab_add_kunit_errors();
5017 if (!(s->flags & SLAB_STORE_USER))
5020 list_for_each_entry(slab, &n->full, slab_list) {
5021 validate_slab(s, slab, obj_map);
5024 if (count != atomic_long_read(&n->nr_slabs)) {
5025 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5026 s->name, count, atomic_long_read(&n->nr_slabs));
5027 slab_add_kunit_errors();
5031 spin_unlock_irqrestore(&n->list_lock, flags);
5035 long validate_slab_cache(struct kmem_cache *s)
5038 unsigned long count = 0;
5039 struct kmem_cache_node *n;
5040 unsigned long *obj_map;
5042 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5047 for_each_kmem_cache_node(s, node, n)
5048 count += validate_slab_node(s, n, obj_map);
5050 bitmap_free(obj_map);
5054 EXPORT_SYMBOL(validate_slab_cache);
5056 #ifdef CONFIG_DEBUG_FS
5058 * Generate lists of code addresses where slabcache objects are allocated
5063 depot_stack_handle_t handle;
5064 unsigned long count;
5071 DECLARE_BITMAP(cpus, NR_CPUS);
5077 unsigned long count;
5078 struct location *loc;
5082 static struct dentry *slab_debugfs_root;
5084 static void free_loc_track(struct loc_track *t)
5087 free_pages((unsigned long)t->loc,
5088 get_order(sizeof(struct location) * t->max));
5091 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5096 order = get_order(sizeof(struct location) * max);
5098 l = (void *)__get_free_pages(flags, order);
5103 memcpy(l, t->loc, sizeof(struct location) * t->count);
5111 static int add_location(struct loc_track *t, struct kmem_cache *s,
5112 const struct track *track)
5114 long start, end, pos;
5116 unsigned long caddr, chandle;
5117 unsigned long age = jiffies - track->when;
5118 depot_stack_handle_t handle = 0;
5120 #ifdef CONFIG_STACKDEPOT
5121 handle = READ_ONCE(track->handle);
5127 pos = start + (end - start + 1) / 2;
5130 * There is nothing at "end". If we end up there
5131 * we need to add something to before end.
5136 caddr = t->loc[pos].addr;
5137 chandle = t->loc[pos].handle;
5138 if ((track->addr == caddr) && (handle == chandle)) {
5144 if (age < l->min_time)
5146 if (age > l->max_time)
5149 if (track->pid < l->min_pid)
5150 l->min_pid = track->pid;
5151 if (track->pid > l->max_pid)
5152 l->max_pid = track->pid;
5154 cpumask_set_cpu(track->cpu,
5155 to_cpumask(l->cpus));
5157 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5161 if (track->addr < caddr)
5163 else if (track->addr == caddr && handle < chandle)
5170 * Not found. Insert new tracking element.
5172 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5178 (t->count - pos) * sizeof(struct location));
5181 l->addr = track->addr;
5185 l->min_pid = track->pid;
5186 l->max_pid = track->pid;
5188 cpumask_clear(to_cpumask(l->cpus));
5189 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5190 nodes_clear(l->nodes);
5191 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5195 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5196 struct slab *slab, enum track_item alloc,
5197 unsigned long *obj_map)
5199 void *addr = slab_address(slab);
5202 __fill_map(obj_map, s, slab);
5204 for_each_object(p, s, addr, slab->objects)
5205 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5206 add_location(t, s, get_track(s, p, alloc));
5208 #endif /* CONFIG_DEBUG_FS */
5209 #endif /* CONFIG_SLUB_DEBUG */
5212 enum slab_stat_type {
5213 SL_ALL, /* All slabs */
5214 SL_PARTIAL, /* Only partially allocated slabs */
5215 SL_CPU, /* Only slabs used for cpu caches */
5216 SL_OBJECTS, /* Determine allocated objects not slabs */
5217 SL_TOTAL /* Determine object capacity not slabs */
5220 #define SO_ALL (1 << SL_ALL)
5221 #define SO_PARTIAL (1 << SL_PARTIAL)
5222 #define SO_CPU (1 << SL_CPU)
5223 #define SO_OBJECTS (1 << SL_OBJECTS)
5224 #define SO_TOTAL (1 << SL_TOTAL)
5226 static ssize_t show_slab_objects(struct kmem_cache *s,
5227 char *buf, unsigned long flags)
5229 unsigned long total = 0;
5232 unsigned long *nodes;
5235 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5239 if (flags & SO_CPU) {
5242 for_each_possible_cpu(cpu) {
5243 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5248 slab = READ_ONCE(c->slab);
5252 node = slab_nid(slab);
5253 if (flags & SO_TOTAL)
5255 else if (flags & SO_OBJECTS)
5263 #ifdef CONFIG_SLUB_CPU_PARTIAL
5264 slab = slub_percpu_partial_read_once(c);
5266 node = slab_nid(slab);
5267 if (flags & SO_TOTAL)
5269 else if (flags & SO_OBJECTS)
5281 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5282 * already held which will conflict with an existing lock order:
5284 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5286 * We don't really need mem_hotplug_lock (to hold off
5287 * slab_mem_going_offline_callback) here because slab's memory hot
5288 * unplug code doesn't destroy the kmem_cache->node[] data.
5291 #ifdef CONFIG_SLUB_DEBUG
5292 if (flags & SO_ALL) {
5293 struct kmem_cache_node *n;
5295 for_each_kmem_cache_node(s, node, n) {
5297 if (flags & SO_TOTAL)
5298 x = atomic_long_read(&n->total_objects);
5299 else if (flags & SO_OBJECTS)
5300 x = atomic_long_read(&n->total_objects) -
5301 count_partial(n, count_free);
5303 x = atomic_long_read(&n->nr_slabs);
5310 if (flags & SO_PARTIAL) {
5311 struct kmem_cache_node *n;
5313 for_each_kmem_cache_node(s, node, n) {
5314 if (flags & SO_TOTAL)
5315 x = count_partial(n, count_total);
5316 else if (flags & SO_OBJECTS)
5317 x = count_partial(n, count_inuse);
5325 len += sysfs_emit_at(buf, len, "%lu", total);
5327 for (node = 0; node < nr_node_ids; node++) {
5329 len += sysfs_emit_at(buf, len, " N%d=%lu",
5333 len += sysfs_emit_at(buf, len, "\n");
5339 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5340 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5342 struct slab_attribute {
5343 struct attribute attr;
5344 ssize_t (*show)(struct kmem_cache *s, char *buf);
5345 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5348 #define SLAB_ATTR_RO(_name) \
5349 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5351 #define SLAB_ATTR(_name) \
5352 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5354 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5356 return sysfs_emit(buf, "%u\n", s->size);
5358 SLAB_ATTR_RO(slab_size);
5360 static ssize_t align_show(struct kmem_cache *s, char *buf)
5362 return sysfs_emit(buf, "%u\n", s->align);
5364 SLAB_ATTR_RO(align);
5366 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5368 return sysfs_emit(buf, "%u\n", s->object_size);
5370 SLAB_ATTR_RO(object_size);
5372 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5374 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5376 SLAB_ATTR_RO(objs_per_slab);
5378 static ssize_t order_show(struct kmem_cache *s, char *buf)
5380 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5382 SLAB_ATTR_RO(order);
5384 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5386 return sysfs_emit(buf, "%lu\n", s->min_partial);
5389 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5395 err = kstrtoul(buf, 10, &min);
5399 s->min_partial = min;
5402 SLAB_ATTR(min_partial);
5404 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5406 unsigned int nr_partial = 0;
5407 #ifdef CONFIG_SLUB_CPU_PARTIAL
5408 nr_partial = s->cpu_partial;
5411 return sysfs_emit(buf, "%u\n", nr_partial);
5414 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5417 unsigned int objects;
5420 err = kstrtouint(buf, 10, &objects);
5423 if (objects && !kmem_cache_has_cpu_partial(s))
5426 slub_set_cpu_partial(s, objects);
5430 SLAB_ATTR(cpu_partial);
5432 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5436 return sysfs_emit(buf, "%pS\n", s->ctor);
5440 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5442 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5444 SLAB_ATTR_RO(aliases);
5446 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5448 return show_slab_objects(s, buf, SO_PARTIAL);
5450 SLAB_ATTR_RO(partial);
5452 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5454 return show_slab_objects(s, buf, SO_CPU);
5456 SLAB_ATTR_RO(cpu_slabs);
5458 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5460 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5462 SLAB_ATTR_RO(objects);
5464 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5466 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5468 SLAB_ATTR_RO(objects_partial);
5470 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5474 int cpu __maybe_unused;
5477 #ifdef CONFIG_SLUB_CPU_PARTIAL
5478 for_each_online_cpu(cpu) {
5481 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5484 slabs += slab->slabs;
5488 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5489 objects = (slabs * oo_objects(s->oo)) / 2;
5490 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5492 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5493 for_each_online_cpu(cpu) {
5496 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5498 slabs = READ_ONCE(slab->slabs);
5499 objects = (slabs * oo_objects(s->oo)) / 2;
5500 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5501 cpu, objects, slabs);
5505 len += sysfs_emit_at(buf, len, "\n");
5509 SLAB_ATTR_RO(slabs_cpu_partial);
5511 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5513 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5515 SLAB_ATTR_RO(reclaim_account);
5517 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5519 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5521 SLAB_ATTR_RO(hwcache_align);
5523 #ifdef CONFIG_ZONE_DMA
5524 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5526 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5528 SLAB_ATTR_RO(cache_dma);
5531 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5533 return sysfs_emit(buf, "%u\n", s->usersize);
5535 SLAB_ATTR_RO(usersize);
5537 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5541 SLAB_ATTR_RO(destroy_by_rcu);
5543 #ifdef CONFIG_SLUB_DEBUG
5544 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5546 return show_slab_objects(s, buf, SO_ALL);
5548 SLAB_ATTR_RO(slabs);
5550 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5552 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5554 SLAB_ATTR_RO(total_objects);
5556 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5558 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5560 SLAB_ATTR_RO(sanity_checks);
5562 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5564 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5566 SLAB_ATTR_RO(trace);
5568 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5570 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5573 SLAB_ATTR_RO(red_zone);
5575 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5577 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5580 SLAB_ATTR_RO(poison);
5582 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5584 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5587 SLAB_ATTR_RO(store_user);
5589 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5594 static ssize_t validate_store(struct kmem_cache *s,
5595 const char *buf, size_t length)
5599 if (buf[0] == '1') {
5600 ret = validate_slab_cache(s);
5606 SLAB_ATTR(validate);
5608 #endif /* CONFIG_SLUB_DEBUG */
5610 #ifdef CONFIG_FAILSLAB
5611 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5613 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5615 SLAB_ATTR_RO(failslab);
5618 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5623 static ssize_t shrink_store(struct kmem_cache *s,
5624 const char *buf, size_t length)
5627 kmem_cache_shrink(s);
5635 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5637 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5640 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5641 const char *buf, size_t length)
5646 err = kstrtouint(buf, 10, &ratio);
5652 s->remote_node_defrag_ratio = ratio * 10;
5656 SLAB_ATTR(remote_node_defrag_ratio);
5659 #ifdef CONFIG_SLUB_STATS
5660 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5662 unsigned long sum = 0;
5665 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5670 for_each_online_cpu(cpu) {
5671 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5677 len += sysfs_emit_at(buf, len, "%lu", sum);
5680 for_each_online_cpu(cpu) {
5682 len += sysfs_emit_at(buf, len, " C%d=%u",
5687 len += sysfs_emit_at(buf, len, "\n");
5692 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5696 for_each_online_cpu(cpu)
5697 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5700 #define STAT_ATTR(si, text) \
5701 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5703 return show_stat(s, buf, si); \
5705 static ssize_t text##_store(struct kmem_cache *s, \
5706 const char *buf, size_t length) \
5708 if (buf[0] != '0') \
5710 clear_stat(s, si); \
5715 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5716 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5717 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5718 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5719 STAT_ATTR(FREE_FROZEN, free_frozen);
5720 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5721 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5722 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5723 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5724 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5725 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5726 STAT_ATTR(FREE_SLAB, free_slab);
5727 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5728 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5729 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5730 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5731 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5732 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5733 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5734 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5735 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5736 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5737 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5738 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5739 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5740 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5741 #endif /* CONFIG_SLUB_STATS */
5743 static struct attribute *slab_attrs[] = {
5744 &slab_size_attr.attr,
5745 &object_size_attr.attr,
5746 &objs_per_slab_attr.attr,
5748 &min_partial_attr.attr,
5749 &cpu_partial_attr.attr,
5751 &objects_partial_attr.attr,
5753 &cpu_slabs_attr.attr,
5757 &hwcache_align_attr.attr,
5758 &reclaim_account_attr.attr,
5759 &destroy_by_rcu_attr.attr,
5761 &slabs_cpu_partial_attr.attr,
5762 #ifdef CONFIG_SLUB_DEBUG
5763 &total_objects_attr.attr,
5765 &sanity_checks_attr.attr,
5767 &red_zone_attr.attr,
5769 &store_user_attr.attr,
5770 &validate_attr.attr,
5772 #ifdef CONFIG_ZONE_DMA
5773 &cache_dma_attr.attr,
5776 &remote_node_defrag_ratio_attr.attr,
5778 #ifdef CONFIG_SLUB_STATS
5779 &alloc_fastpath_attr.attr,
5780 &alloc_slowpath_attr.attr,
5781 &free_fastpath_attr.attr,
5782 &free_slowpath_attr.attr,
5783 &free_frozen_attr.attr,
5784 &free_add_partial_attr.attr,
5785 &free_remove_partial_attr.attr,
5786 &alloc_from_partial_attr.attr,
5787 &alloc_slab_attr.attr,
5788 &alloc_refill_attr.attr,
5789 &alloc_node_mismatch_attr.attr,
5790 &free_slab_attr.attr,
5791 &cpuslab_flush_attr.attr,
5792 &deactivate_full_attr.attr,
5793 &deactivate_empty_attr.attr,
5794 &deactivate_to_head_attr.attr,
5795 &deactivate_to_tail_attr.attr,
5796 &deactivate_remote_frees_attr.attr,
5797 &deactivate_bypass_attr.attr,
5798 &order_fallback_attr.attr,
5799 &cmpxchg_double_fail_attr.attr,
5800 &cmpxchg_double_cpu_fail_attr.attr,
5801 &cpu_partial_alloc_attr.attr,
5802 &cpu_partial_free_attr.attr,
5803 &cpu_partial_node_attr.attr,
5804 &cpu_partial_drain_attr.attr,
5806 #ifdef CONFIG_FAILSLAB
5807 &failslab_attr.attr,
5809 &usersize_attr.attr,
5814 static const struct attribute_group slab_attr_group = {
5815 .attrs = slab_attrs,
5818 static ssize_t slab_attr_show(struct kobject *kobj,
5819 struct attribute *attr,
5822 struct slab_attribute *attribute;
5823 struct kmem_cache *s;
5826 attribute = to_slab_attr(attr);
5829 if (!attribute->show)
5832 err = attribute->show(s, buf);
5837 static ssize_t slab_attr_store(struct kobject *kobj,
5838 struct attribute *attr,
5839 const char *buf, size_t len)
5841 struct slab_attribute *attribute;
5842 struct kmem_cache *s;
5845 attribute = to_slab_attr(attr);
5848 if (!attribute->store)
5851 err = attribute->store(s, buf, len);
5855 static void kmem_cache_release(struct kobject *k)
5857 slab_kmem_cache_release(to_slab(k));
5860 static const struct sysfs_ops slab_sysfs_ops = {
5861 .show = slab_attr_show,
5862 .store = slab_attr_store,
5865 static struct kobj_type slab_ktype = {
5866 .sysfs_ops = &slab_sysfs_ops,
5867 .release = kmem_cache_release,
5870 static struct kset *slab_kset;
5872 static inline struct kset *cache_kset(struct kmem_cache *s)
5877 #define ID_STR_LENGTH 64
5879 /* Create a unique string id for a slab cache:
5881 * Format :[flags-]size
5883 static char *create_unique_id(struct kmem_cache *s)
5885 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5892 * First flags affecting slabcache operations. We will only
5893 * get here for aliasable slabs so we do not need to support
5894 * too many flags. The flags here must cover all flags that
5895 * are matched during merging to guarantee that the id is
5898 if (s->flags & SLAB_CACHE_DMA)
5900 if (s->flags & SLAB_CACHE_DMA32)
5902 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5904 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5906 if (s->flags & SLAB_ACCOUNT)
5910 p += sprintf(p, "%07u", s->size);
5912 BUG_ON(p > name + ID_STR_LENGTH - 1);
5916 static int sysfs_slab_add(struct kmem_cache *s)
5920 struct kset *kset = cache_kset(s);
5921 int unmergeable = slab_unmergeable(s);
5924 kobject_init(&s->kobj, &slab_ktype);
5928 if (!unmergeable && disable_higher_order_debug &&
5929 (slub_debug & DEBUG_METADATA_FLAGS))
5934 * Slabcache can never be merged so we can use the name proper.
5935 * This is typically the case for debug situations. In that
5936 * case we can catch duplicate names easily.
5938 sysfs_remove_link(&slab_kset->kobj, s->name);
5942 * Create a unique name for the slab as a target
5945 name = create_unique_id(s);
5948 s->kobj.kset = kset;
5949 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5953 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5958 /* Setup first alias */
5959 sysfs_slab_alias(s, s->name);
5966 kobject_del(&s->kobj);
5970 void sysfs_slab_unlink(struct kmem_cache *s)
5972 if (slab_state >= FULL)
5973 kobject_del(&s->kobj);
5976 void sysfs_slab_release(struct kmem_cache *s)
5978 if (slab_state >= FULL)
5979 kobject_put(&s->kobj);
5983 * Need to buffer aliases during bootup until sysfs becomes
5984 * available lest we lose that information.
5986 struct saved_alias {
5987 struct kmem_cache *s;
5989 struct saved_alias *next;
5992 static struct saved_alias *alias_list;
5994 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5996 struct saved_alias *al;
5998 if (slab_state == FULL) {
6000 * If we have a leftover link then remove it.
6002 sysfs_remove_link(&slab_kset->kobj, name);
6003 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6006 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6012 al->next = alias_list;
6017 static int __init slab_sysfs_init(void)
6019 struct kmem_cache *s;
6022 mutex_lock(&slab_mutex);
6024 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6026 mutex_unlock(&slab_mutex);
6027 pr_err("Cannot register slab subsystem.\n");
6033 list_for_each_entry(s, &slab_caches, list) {
6034 err = sysfs_slab_add(s);
6036 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6040 while (alias_list) {
6041 struct saved_alias *al = alias_list;
6043 alias_list = alias_list->next;
6044 err = sysfs_slab_alias(al->s, al->name);
6046 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6051 mutex_unlock(&slab_mutex);
6055 __initcall(slab_sysfs_init);
6056 #endif /* CONFIG_SYSFS */
6058 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6059 static int slab_debugfs_show(struct seq_file *seq, void *v)
6061 struct loc_track *t = seq->private;
6065 idx = (unsigned long) t->idx;
6066 if (idx < t->count) {
6069 seq_printf(seq, "%7ld ", l->count);
6072 seq_printf(seq, "%pS", (void *)l->addr);
6074 seq_puts(seq, "<not-available>");
6076 if (l->sum_time != l->min_time) {
6077 seq_printf(seq, " age=%ld/%llu/%ld",
6078 l->min_time, div_u64(l->sum_time, l->count),
6081 seq_printf(seq, " age=%ld", l->min_time);
6083 if (l->min_pid != l->max_pid)
6084 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6086 seq_printf(seq, " pid=%ld",
6089 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6090 seq_printf(seq, " cpus=%*pbl",
6091 cpumask_pr_args(to_cpumask(l->cpus)));
6093 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6094 seq_printf(seq, " nodes=%*pbl",
6095 nodemask_pr_args(&l->nodes));
6097 #ifdef CONFIG_STACKDEPOT
6099 depot_stack_handle_t handle;
6100 unsigned long *entries;
6101 unsigned int nr_entries, j;
6103 handle = READ_ONCE(l->handle);
6105 nr_entries = stack_depot_fetch(handle, &entries);
6106 seq_puts(seq, "\n");
6107 for (j = 0; j < nr_entries; j++)
6108 seq_printf(seq, " %pS\n", (void *)entries[j]);
6112 seq_puts(seq, "\n");
6115 if (!idx && !t->count)
6116 seq_puts(seq, "No data\n");
6121 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6125 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6127 struct loc_track *t = seq->private;
6130 if (*ppos <= t->count)
6136 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6138 struct location *loc1 = (struct location *)a;
6139 struct location *loc2 = (struct location *)b;
6141 if (loc1->count > loc2->count)
6147 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6149 struct loc_track *t = seq->private;
6155 static const struct seq_operations slab_debugfs_sops = {
6156 .start = slab_debugfs_start,
6157 .next = slab_debugfs_next,
6158 .stop = slab_debugfs_stop,
6159 .show = slab_debugfs_show,
6162 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6165 struct kmem_cache_node *n;
6166 enum track_item alloc;
6168 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6169 sizeof(struct loc_track));
6170 struct kmem_cache *s = file_inode(filep)->i_private;
6171 unsigned long *obj_map;
6176 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6178 seq_release_private(inode, filep);
6182 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6183 alloc = TRACK_ALLOC;
6187 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6188 bitmap_free(obj_map);
6189 seq_release_private(inode, filep);
6193 for_each_kmem_cache_node(s, node, n) {
6194 unsigned long flags;
6197 if (!atomic_long_read(&n->nr_slabs))
6200 spin_lock_irqsave(&n->list_lock, flags);
6201 list_for_each_entry(slab, &n->partial, slab_list)
6202 process_slab(t, s, slab, alloc, obj_map);
6203 list_for_each_entry(slab, &n->full, slab_list)
6204 process_slab(t, s, slab, alloc, obj_map);
6205 spin_unlock_irqrestore(&n->list_lock, flags);
6208 /* Sort locations by count */
6209 sort_r(t->loc, t->count, sizeof(struct location),
6210 cmp_loc_by_count, NULL, NULL);
6212 bitmap_free(obj_map);
6216 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6218 struct seq_file *seq = file->private_data;
6219 struct loc_track *t = seq->private;
6222 return seq_release_private(inode, file);
6225 static const struct file_operations slab_debugfs_fops = {
6226 .open = slab_debug_trace_open,
6228 .llseek = seq_lseek,
6229 .release = slab_debug_trace_release,
6232 static void debugfs_slab_add(struct kmem_cache *s)
6234 struct dentry *slab_cache_dir;
6236 if (unlikely(!slab_debugfs_root))
6239 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6241 debugfs_create_file("alloc_traces", 0400,
6242 slab_cache_dir, s, &slab_debugfs_fops);
6244 debugfs_create_file("free_traces", 0400,
6245 slab_cache_dir, s, &slab_debugfs_fops);
6248 void debugfs_slab_release(struct kmem_cache *s)
6250 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6253 static int __init slab_debugfs_init(void)
6255 struct kmem_cache *s;
6257 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6259 list_for_each_entry(s, &slab_caches, list)
6260 if (s->flags & SLAB_STORE_USER)
6261 debugfs_slab_add(s);
6266 __initcall(slab_debugfs_init);
6269 * The /proc/slabinfo ABI
6271 #ifdef CONFIG_SLUB_DEBUG
6272 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6274 unsigned long nr_slabs = 0;
6275 unsigned long nr_objs = 0;
6276 unsigned long nr_free = 0;
6278 struct kmem_cache_node *n;
6280 for_each_kmem_cache_node(s, node, n) {
6281 nr_slabs += node_nr_slabs(n);
6282 nr_objs += node_nr_objs(n);
6283 nr_free += count_partial(n, count_free);
6286 sinfo->active_objs = nr_objs - nr_free;
6287 sinfo->num_objs = nr_objs;
6288 sinfo->active_slabs = nr_slabs;
6289 sinfo->num_slabs = nr_slabs;
6290 sinfo->objects_per_slab = oo_objects(s->oo);
6291 sinfo->cache_order = oo_order(s->oo);
6294 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6298 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6299 size_t count, loff_t *ppos)
6303 #endif /* CONFIG_SLUB_DEBUG */