1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
103 * cpu_slab->lock local lock
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
124 * irq, preemption, migration considerations
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH() (true)
178 #define slub_get_cpu_ptr(var) \
183 #define slub_put_cpu_ptr(var) \
188 #define USE_LOCKLESS_FAST_PATH() (false)
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
194 #define __fastpath_inline
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
203 #endif /* CONFIG_SLUB_DEBUG */
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
209 unsigned int orig_size;
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
223 void *fixup_red_left(struct kmem_cache *s, void *p)
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
241 * Issues still to be resolved:
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
245 * - Variable sizing of the per node arrays
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
251 #ifndef CONFIG_SLUB_TINY
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
256 #define MIN_PARTIAL 5
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
263 #define MAX_PARTIAL 10
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
288 #define OO_MASK ((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
291 /* Internal SLUB flags */
293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
296 #ifdef system_has_freelist_aba
297 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
299 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0U)
303 * Tracking user of a slab.
305 #define TRACK_ADDRS_COUNT 16
307 unsigned long addr; /* Called from address */
308 #ifdef CONFIG_STACKDEPOT
309 depot_stack_handle_t handle;
311 int cpu; /* Was running on cpu */
312 int pid; /* Pid context */
313 unsigned long when; /* When did the operation occur */
316 enum track_item { TRACK_ALLOC, TRACK_FREE };
318 #ifdef SLAB_SUPPORTS_SYSFS
319 static int sysfs_slab_add(struct kmem_cache *);
320 static int sysfs_slab_alias(struct kmem_cache *, const char *);
322 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
323 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
327 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
328 static void debugfs_slab_add(struct kmem_cache *);
330 static inline void debugfs_slab_add(struct kmem_cache *s) { }
333 static inline void stat(const struct kmem_cache *s, enum stat_item si)
335 #ifdef CONFIG_SLUB_STATS
337 * The rmw is racy on a preemptible kernel but this is acceptable, so
338 * avoid this_cpu_add()'s irq-disable overhead.
340 raw_cpu_inc(s->cpu_slab->stat[si]);
345 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
346 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
347 * differ during memory hotplug/hotremove operations.
348 * Protected by slab_mutex.
350 static nodemask_t slab_nodes;
352 #ifndef CONFIG_SLUB_TINY
354 * Workqueue used for flush_cpu_slab().
356 static struct workqueue_struct *flushwq;
359 /********************************************************************
360 * Core slab cache functions
361 *******************************************************************/
364 * Returns freelist pointer (ptr). With hardening, this is obfuscated
365 * with an XOR of the address where the pointer is held and a per-cache
368 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
369 unsigned long ptr_addr)
371 #ifdef CONFIG_SLAB_FREELIST_HARDENED
373 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
374 * Normally, this doesn't cause any issues, as both set_freepointer()
375 * and get_freepointer() are called with a pointer with the same tag.
376 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
377 * example, when __free_slub() iterates over objects in a cache, it
378 * passes untagged pointers to check_object(). check_object() in turns
379 * calls get_freepointer() with an untagged pointer, which causes the
380 * freepointer to be restored incorrectly.
382 return (void *)((unsigned long)ptr ^ s->random ^
383 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
389 /* Returns the freelist pointer recorded at location ptr_addr. */
390 static inline void *freelist_dereference(const struct kmem_cache *s,
393 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
394 (unsigned long)ptr_addr);
397 static inline void *get_freepointer(struct kmem_cache *s, void *object)
399 object = kasan_reset_tag(object);
400 return freelist_dereference(s, object + s->offset);
403 #ifndef CONFIG_SLUB_TINY
404 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
406 prefetchw(object + s->offset);
411 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
412 * pointer value in the case the current thread loses the race for the next
413 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
414 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
415 * KMSAN will still check all arguments of cmpxchg because of imperfect
416 * handling of inline assembly.
417 * To work around this problem, we apply __no_kmsan_checks to ensure that
418 * get_freepointer_safe() returns initialized memory.
421 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
423 unsigned long freepointer_addr;
426 if (!debug_pagealloc_enabled_static())
427 return get_freepointer(s, object);
429 object = kasan_reset_tag(object);
430 freepointer_addr = (unsigned long)object + s->offset;
431 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
432 return freelist_ptr(s, p, freepointer_addr);
435 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
437 unsigned long freeptr_addr = (unsigned long)object + s->offset;
439 #ifdef CONFIG_SLAB_FREELIST_HARDENED
440 BUG_ON(object == fp); /* naive detection of double free or corruption */
443 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
444 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
447 /* Loop over all objects in a slab */
448 #define for_each_object(__p, __s, __addr, __objects) \
449 for (__p = fixup_red_left(__s, __addr); \
450 __p < (__addr) + (__objects) * (__s)->size; \
453 static inline unsigned int order_objects(unsigned int order, unsigned int size)
455 return ((unsigned int)PAGE_SIZE << order) / size;
458 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
461 struct kmem_cache_order_objects x = {
462 (order << OO_SHIFT) + order_objects(order, size)
468 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
470 return x.x >> OO_SHIFT;
473 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
475 return x.x & OO_MASK;
478 #ifdef CONFIG_SLUB_CPU_PARTIAL
479 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
481 unsigned int nr_slabs;
483 s->cpu_partial = nr_objects;
486 * We take the number of objects but actually limit the number of
487 * slabs on the per cpu partial list, in order to limit excessive
488 * growth of the list. For simplicity we assume that the slabs will
491 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
492 s->cpu_partial_slabs = nr_slabs;
496 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
499 #endif /* CONFIG_SLUB_CPU_PARTIAL */
502 * Per slab locking using the pagelock
504 static __always_inline void slab_lock(struct slab *slab)
506 struct page *page = slab_page(slab);
508 VM_BUG_ON_PAGE(PageTail(page), page);
509 bit_spin_lock(PG_locked, &page->flags);
512 static __always_inline void slab_unlock(struct slab *slab)
514 struct page *page = slab_page(slab);
516 VM_BUG_ON_PAGE(PageTail(page), page);
517 __bit_spin_unlock(PG_locked, &page->flags);
521 __update_freelist_fast(struct slab *slab,
522 void *freelist_old, unsigned long counters_old,
523 void *freelist_new, unsigned long counters_new)
525 #ifdef system_has_freelist_aba
526 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
527 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
529 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
536 __update_freelist_slow(struct slab *slab,
537 void *freelist_old, unsigned long counters_old,
538 void *freelist_new, unsigned long counters_new)
543 if (slab->freelist == freelist_old &&
544 slab->counters == counters_old) {
545 slab->freelist = freelist_new;
546 slab->counters = counters_new;
555 * Interrupts must be disabled (for the fallback code to work right), typically
556 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
557 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
558 * allocation/ free operation in hardirq context. Therefore nothing can
559 * interrupt the operation.
561 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
562 void *freelist_old, unsigned long counters_old,
563 void *freelist_new, unsigned long counters_new,
568 if (USE_LOCKLESS_FAST_PATH())
569 lockdep_assert_irqs_disabled();
571 if (s->flags & __CMPXCHG_DOUBLE) {
572 ret = __update_freelist_fast(slab, freelist_old, counters_old,
573 freelist_new, counters_new);
575 ret = __update_freelist_slow(slab, freelist_old, counters_old,
576 freelist_new, counters_new);
582 stat(s, CMPXCHG_DOUBLE_FAIL);
584 #ifdef SLUB_DEBUG_CMPXCHG
585 pr_info("%s %s: cmpxchg double redo ", n, s->name);
591 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
592 void *freelist_old, unsigned long counters_old,
593 void *freelist_new, unsigned long counters_new,
598 if (s->flags & __CMPXCHG_DOUBLE) {
599 ret = __update_freelist_fast(slab, freelist_old, counters_old,
600 freelist_new, counters_new);
604 local_irq_save(flags);
605 ret = __update_freelist_slow(slab, freelist_old, counters_old,
606 freelist_new, counters_new);
607 local_irq_restore(flags);
613 stat(s, CMPXCHG_DOUBLE_FAIL);
615 #ifdef SLUB_DEBUG_CMPXCHG
616 pr_info("%s %s: cmpxchg double redo ", n, s->name);
622 #ifdef CONFIG_SLUB_DEBUG
623 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
624 static DEFINE_SPINLOCK(object_map_lock);
626 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
629 void *addr = slab_address(slab);
632 bitmap_zero(obj_map, slab->objects);
634 for (p = slab->freelist; p; p = get_freepointer(s, p))
635 set_bit(__obj_to_index(s, addr, p), obj_map);
638 #if IS_ENABLED(CONFIG_KUNIT)
639 static bool slab_add_kunit_errors(void)
641 struct kunit_resource *resource;
643 if (!kunit_get_current_test())
646 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
650 (*(int *)resource->data)++;
651 kunit_put_resource(resource);
655 static inline bool slab_add_kunit_errors(void) { return false; }
658 static inline unsigned int size_from_object(struct kmem_cache *s)
660 if (s->flags & SLAB_RED_ZONE)
661 return s->size - s->red_left_pad;
666 static inline void *restore_red_left(struct kmem_cache *s, void *p)
668 if (s->flags & SLAB_RED_ZONE)
669 p -= s->red_left_pad;
677 #if defined(CONFIG_SLUB_DEBUG_ON)
678 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
680 static slab_flags_t slub_debug;
683 static char *slub_debug_string;
684 static int disable_higher_order_debug;
687 * slub is about to manipulate internal object metadata. This memory lies
688 * outside the range of the allocated object, so accessing it would normally
689 * be reported by kasan as a bounds error. metadata_access_enable() is used
690 * to tell kasan that these accesses are OK.
692 static inline void metadata_access_enable(void)
694 kasan_disable_current();
697 static inline void metadata_access_disable(void)
699 kasan_enable_current();
706 /* Verify that a pointer has an address that is valid within a slab page */
707 static inline int check_valid_pointer(struct kmem_cache *s,
708 struct slab *slab, void *object)
715 base = slab_address(slab);
716 object = kasan_reset_tag(object);
717 object = restore_red_left(s, object);
718 if (object < base || object >= base + slab->objects * s->size ||
719 (object - base) % s->size) {
726 static void print_section(char *level, char *text, u8 *addr,
729 metadata_access_enable();
730 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
731 16, 1, kasan_reset_tag((void *)addr), length, 1);
732 metadata_access_disable();
736 * See comment in calculate_sizes().
738 static inline bool freeptr_outside_object(struct kmem_cache *s)
740 return s->offset >= s->inuse;
744 * Return offset of the end of info block which is inuse + free pointer if
745 * not overlapping with object.
747 static inline unsigned int get_info_end(struct kmem_cache *s)
749 if (freeptr_outside_object(s))
750 return s->inuse + sizeof(void *);
755 static struct track *get_track(struct kmem_cache *s, void *object,
756 enum track_item alloc)
760 p = object + get_info_end(s);
762 return kasan_reset_tag(p + alloc);
765 #ifdef CONFIG_STACKDEPOT
766 static noinline depot_stack_handle_t set_track_prepare(void)
768 depot_stack_handle_t handle;
769 unsigned long entries[TRACK_ADDRS_COUNT];
770 unsigned int nr_entries;
772 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
773 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
778 static inline depot_stack_handle_t set_track_prepare(void)
784 static void set_track_update(struct kmem_cache *s, void *object,
785 enum track_item alloc, unsigned long addr,
786 depot_stack_handle_t handle)
788 struct track *p = get_track(s, object, alloc);
790 #ifdef CONFIG_STACKDEPOT
794 p->cpu = smp_processor_id();
795 p->pid = current->pid;
799 static __always_inline void set_track(struct kmem_cache *s, void *object,
800 enum track_item alloc, unsigned long addr)
802 depot_stack_handle_t handle = set_track_prepare();
804 set_track_update(s, object, alloc, addr, handle);
807 static void init_tracking(struct kmem_cache *s, void *object)
811 if (!(s->flags & SLAB_STORE_USER))
814 p = get_track(s, object, TRACK_ALLOC);
815 memset(p, 0, 2*sizeof(struct track));
818 static void print_track(const char *s, struct track *t, unsigned long pr_time)
820 depot_stack_handle_t handle __maybe_unused;
825 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
826 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
827 #ifdef CONFIG_STACKDEPOT
828 handle = READ_ONCE(t->handle);
830 stack_depot_print(handle);
832 pr_err("object allocation/free stack trace missing\n");
836 void print_tracking(struct kmem_cache *s, void *object)
838 unsigned long pr_time = jiffies;
839 if (!(s->flags & SLAB_STORE_USER))
842 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
843 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
846 static void print_slab_info(const struct slab *slab)
848 struct folio *folio = (struct folio *)slab_folio(slab);
850 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
851 slab, slab->objects, slab->inuse, slab->freelist,
852 folio_flags(folio, 0));
856 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
857 * family will round up the real request size to these fixed ones, so
858 * there could be an extra area than what is requested. Save the original
859 * request size in the meta data area, for better debug and sanity check.
861 static inline void set_orig_size(struct kmem_cache *s,
862 void *object, unsigned int orig_size)
864 void *p = kasan_reset_tag(object);
866 if (!slub_debug_orig_size(s))
869 #ifdef CONFIG_KASAN_GENERIC
871 * KASAN could save its free meta data in object's data area at
872 * offset 0, if the size is larger than 'orig_size', it will
873 * overlap the data redzone in [orig_size+1, object_size], and
874 * the check should be skipped.
876 if (kasan_metadata_size(s, true) > orig_size)
877 orig_size = s->object_size;
880 p += get_info_end(s);
881 p += sizeof(struct track) * 2;
883 *(unsigned int *)p = orig_size;
886 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
888 void *p = kasan_reset_tag(object);
890 if (!slub_debug_orig_size(s))
891 return s->object_size;
893 p += get_info_end(s);
894 p += sizeof(struct track) * 2;
896 return *(unsigned int *)p;
899 void skip_orig_size_check(struct kmem_cache *s, const void *object)
901 set_orig_size(s, (void *)object, s->object_size);
904 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
906 struct va_format vaf;
912 pr_err("=============================================================================\n");
913 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
914 pr_err("-----------------------------------------------------------------------------\n\n");
919 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
921 struct va_format vaf;
924 if (slab_add_kunit_errors())
930 pr_err("FIX %s: %pV\n", s->name, &vaf);
934 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
936 unsigned int off; /* Offset of last byte */
937 u8 *addr = slab_address(slab);
939 print_tracking(s, p);
941 print_slab_info(slab);
943 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
944 p, p - addr, get_freepointer(s, p));
946 if (s->flags & SLAB_RED_ZONE)
947 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
949 else if (p > addr + 16)
950 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
952 print_section(KERN_ERR, "Object ", p,
953 min_t(unsigned int, s->object_size, PAGE_SIZE));
954 if (s->flags & SLAB_RED_ZONE)
955 print_section(KERN_ERR, "Redzone ", p + s->object_size,
956 s->inuse - s->object_size);
958 off = get_info_end(s);
960 if (s->flags & SLAB_STORE_USER)
961 off += 2 * sizeof(struct track);
963 if (slub_debug_orig_size(s))
964 off += sizeof(unsigned int);
966 off += kasan_metadata_size(s, false);
968 if (off != size_from_object(s))
969 /* Beginning of the filler is the free pointer */
970 print_section(KERN_ERR, "Padding ", p + off,
971 size_from_object(s) - off);
976 static void object_err(struct kmem_cache *s, struct slab *slab,
977 u8 *object, char *reason)
979 if (slab_add_kunit_errors())
982 slab_bug(s, "%s", reason);
983 print_trailer(s, slab, object);
984 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
987 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
988 void **freelist, void *nextfree)
990 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
991 !check_valid_pointer(s, slab, nextfree) && freelist) {
992 object_err(s, slab, *freelist, "Freechain corrupt");
994 slab_fix(s, "Isolate corrupted freechain");
1001 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1002 const char *fmt, ...)
1007 if (slab_add_kunit_errors())
1010 va_start(args, fmt);
1011 vsnprintf(buf, sizeof(buf), fmt, args);
1013 slab_bug(s, "%s", buf);
1014 print_slab_info(slab);
1016 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1019 static void init_object(struct kmem_cache *s, void *object, u8 val)
1021 u8 *p = kasan_reset_tag(object);
1022 unsigned int poison_size = s->object_size;
1024 if (s->flags & SLAB_RED_ZONE) {
1025 memset(p - s->red_left_pad, val, s->red_left_pad);
1027 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1029 * Redzone the extra allocated space by kmalloc than
1030 * requested, and the poison size will be limited to
1031 * the original request size accordingly.
1033 poison_size = get_orig_size(s, object);
1037 if (s->flags & __OBJECT_POISON) {
1038 memset(p, POISON_FREE, poison_size - 1);
1039 p[poison_size - 1] = POISON_END;
1042 if (s->flags & SLAB_RED_ZONE)
1043 memset(p + poison_size, val, s->inuse - poison_size);
1046 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1047 void *from, void *to)
1049 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1050 memset(from, data, to - from);
1053 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1054 u8 *object, char *what,
1055 u8 *start, unsigned int value, unsigned int bytes)
1059 u8 *addr = slab_address(slab);
1061 metadata_access_enable();
1062 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1063 metadata_access_disable();
1067 end = start + bytes;
1068 while (end > fault && end[-1] == value)
1071 if (slab_add_kunit_errors())
1072 goto skip_bug_print;
1074 slab_bug(s, "%s overwritten", what);
1075 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1076 fault, end - 1, fault - addr,
1078 print_trailer(s, slab, object);
1079 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1082 restore_bytes(s, what, value, fault, end);
1090 * Bytes of the object to be managed.
1091 * If the freepointer may overlay the object then the free
1092 * pointer is at the middle of the object.
1094 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1097 * object + s->object_size
1098 * Padding to reach word boundary. This is also used for Redzoning.
1099 * Padding is extended by another word if Redzoning is enabled and
1100 * object_size == inuse.
1102 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1103 * 0xcc (RED_ACTIVE) for objects in use.
1106 * Meta data starts here.
1108 * A. Free pointer (if we cannot overwrite object on free)
1109 * B. Tracking data for SLAB_STORE_USER
1110 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1111 * D. Padding to reach required alignment boundary or at minimum
1112 * one word if debugging is on to be able to detect writes
1113 * before the word boundary.
1115 * Padding is done using 0x5a (POISON_INUSE)
1118 * Nothing is used beyond s->size.
1120 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1121 * ignored. And therefore no slab options that rely on these boundaries
1122 * may be used with merged slabcaches.
1125 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1127 unsigned long off = get_info_end(s); /* The end of info */
1129 if (s->flags & SLAB_STORE_USER) {
1130 /* We also have user information there */
1131 off += 2 * sizeof(struct track);
1133 if (s->flags & SLAB_KMALLOC)
1134 off += sizeof(unsigned int);
1137 off += kasan_metadata_size(s, false);
1139 if (size_from_object(s) == off)
1142 return check_bytes_and_report(s, slab, p, "Object padding",
1143 p + off, POISON_INUSE, size_from_object(s) - off);
1146 /* Check the pad bytes at the end of a slab page */
1147 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1156 if (!(s->flags & SLAB_POISON))
1159 start = slab_address(slab);
1160 length = slab_size(slab);
1161 end = start + length;
1162 remainder = length % s->size;
1166 pad = end - remainder;
1167 metadata_access_enable();
1168 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1169 metadata_access_disable();
1172 while (end > fault && end[-1] == POISON_INUSE)
1175 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1176 fault, end - 1, fault - start);
1177 print_section(KERN_ERR, "Padding ", pad, remainder);
1179 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1182 static int check_object(struct kmem_cache *s, struct slab *slab,
1183 void *object, u8 val)
1186 u8 *endobject = object + s->object_size;
1187 unsigned int orig_size;
1189 if (s->flags & SLAB_RED_ZONE) {
1190 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1191 object - s->red_left_pad, val, s->red_left_pad))
1194 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1195 endobject, val, s->inuse - s->object_size))
1198 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1199 orig_size = get_orig_size(s, object);
1201 if (s->object_size > orig_size &&
1202 !check_bytes_and_report(s, slab, object,
1203 "kmalloc Redzone", p + orig_size,
1204 val, s->object_size - orig_size)) {
1209 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1210 check_bytes_and_report(s, slab, p, "Alignment padding",
1211 endobject, POISON_INUSE,
1212 s->inuse - s->object_size);
1216 if (s->flags & SLAB_POISON) {
1217 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1218 (!check_bytes_and_report(s, slab, p, "Poison", p,
1219 POISON_FREE, s->object_size - 1) ||
1220 !check_bytes_and_report(s, slab, p, "End Poison",
1221 p + s->object_size - 1, POISON_END, 1)))
1224 * check_pad_bytes cleans up on its own.
1226 check_pad_bytes(s, slab, p);
1229 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1231 * Object and freepointer overlap. Cannot check
1232 * freepointer while object is allocated.
1236 /* Check free pointer validity */
1237 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1238 object_err(s, slab, p, "Freepointer corrupt");
1240 * No choice but to zap it and thus lose the remainder
1241 * of the free objects in this slab. May cause
1242 * another error because the object count is now wrong.
1244 set_freepointer(s, p, NULL);
1250 static int check_slab(struct kmem_cache *s, struct slab *slab)
1254 if (!folio_test_slab(slab_folio(slab))) {
1255 slab_err(s, slab, "Not a valid slab page");
1259 maxobj = order_objects(slab_order(slab), s->size);
1260 if (slab->objects > maxobj) {
1261 slab_err(s, slab, "objects %u > max %u",
1262 slab->objects, maxobj);
1265 if (slab->inuse > slab->objects) {
1266 slab_err(s, slab, "inuse %u > max %u",
1267 slab->inuse, slab->objects);
1270 /* Slab_pad_check fixes things up after itself */
1271 slab_pad_check(s, slab);
1276 * Determine if a certain object in a slab is on the freelist. Must hold the
1277 * slab lock to guarantee that the chains are in a consistent state.
1279 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1283 void *object = NULL;
1286 fp = slab->freelist;
1287 while (fp && nr <= slab->objects) {
1290 if (!check_valid_pointer(s, slab, fp)) {
1292 object_err(s, slab, object,
1293 "Freechain corrupt");
1294 set_freepointer(s, object, NULL);
1296 slab_err(s, slab, "Freepointer corrupt");
1297 slab->freelist = NULL;
1298 slab->inuse = slab->objects;
1299 slab_fix(s, "Freelist cleared");
1305 fp = get_freepointer(s, object);
1309 max_objects = order_objects(slab_order(slab), s->size);
1310 if (max_objects > MAX_OBJS_PER_PAGE)
1311 max_objects = MAX_OBJS_PER_PAGE;
1313 if (slab->objects != max_objects) {
1314 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1315 slab->objects, max_objects);
1316 slab->objects = max_objects;
1317 slab_fix(s, "Number of objects adjusted");
1319 if (slab->inuse != slab->objects - nr) {
1320 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1321 slab->inuse, slab->objects - nr);
1322 slab->inuse = slab->objects - nr;
1323 slab_fix(s, "Object count adjusted");
1325 return search == NULL;
1328 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1331 if (s->flags & SLAB_TRACE) {
1332 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1334 alloc ? "alloc" : "free",
1335 object, slab->inuse,
1339 print_section(KERN_INFO, "Object ", (void *)object,
1347 * Tracking of fully allocated slabs for debugging purposes.
1349 static void add_full(struct kmem_cache *s,
1350 struct kmem_cache_node *n, struct slab *slab)
1352 if (!(s->flags & SLAB_STORE_USER))
1355 lockdep_assert_held(&n->list_lock);
1356 list_add(&slab->slab_list, &n->full);
1359 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1361 if (!(s->flags & SLAB_STORE_USER))
1364 lockdep_assert_held(&n->list_lock);
1365 list_del(&slab->slab_list);
1368 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1370 return atomic_long_read(&n->nr_slabs);
1373 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1375 struct kmem_cache_node *n = get_node(s, node);
1378 * May be called early in order to allocate a slab for the
1379 * kmem_cache_node structure. Solve the chicken-egg
1380 * dilemma by deferring the increment of the count during
1381 * bootstrap (see early_kmem_cache_node_alloc).
1384 atomic_long_inc(&n->nr_slabs);
1385 atomic_long_add(objects, &n->total_objects);
1388 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1390 struct kmem_cache_node *n = get_node(s, node);
1392 atomic_long_dec(&n->nr_slabs);
1393 atomic_long_sub(objects, &n->total_objects);
1396 /* Object debug checks for alloc/free paths */
1397 static void setup_object_debug(struct kmem_cache *s, void *object)
1399 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1402 init_object(s, object, SLUB_RED_INACTIVE);
1403 init_tracking(s, object);
1407 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1409 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1412 metadata_access_enable();
1413 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1414 metadata_access_disable();
1417 static inline int alloc_consistency_checks(struct kmem_cache *s,
1418 struct slab *slab, void *object)
1420 if (!check_slab(s, slab))
1423 if (!check_valid_pointer(s, slab, object)) {
1424 object_err(s, slab, object, "Freelist Pointer check fails");
1428 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1434 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1435 struct slab *slab, void *object, int orig_size)
1437 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1438 if (!alloc_consistency_checks(s, slab, object))
1442 /* Success. Perform special debug activities for allocs */
1443 trace(s, slab, object, 1);
1444 set_orig_size(s, object, orig_size);
1445 init_object(s, object, SLUB_RED_ACTIVE);
1449 if (folio_test_slab(slab_folio(slab))) {
1451 * If this is a slab page then lets do the best we can
1452 * to avoid issues in the future. Marking all objects
1453 * as used avoids touching the remaining objects.
1455 slab_fix(s, "Marking all objects used");
1456 slab->inuse = slab->objects;
1457 slab->freelist = NULL;
1462 static inline int free_consistency_checks(struct kmem_cache *s,
1463 struct slab *slab, void *object, unsigned long addr)
1465 if (!check_valid_pointer(s, slab, object)) {
1466 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1470 if (on_freelist(s, slab, object)) {
1471 object_err(s, slab, object, "Object already free");
1475 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1478 if (unlikely(s != slab->slab_cache)) {
1479 if (!folio_test_slab(slab_folio(slab))) {
1480 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1482 } else if (!slab->slab_cache) {
1483 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1487 object_err(s, slab, object,
1488 "page slab pointer corrupt.");
1495 * Parse a block of slub_debug options. Blocks are delimited by ';'
1497 * @str: start of block
1498 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1499 * @slabs: return start of list of slabs, or NULL when there's no list
1500 * @init: assume this is initial parsing and not per-kmem-create parsing
1502 * returns the start of next block if there's any, or NULL
1505 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1507 bool higher_order_disable = false;
1509 /* Skip any completely empty blocks */
1510 while (*str && *str == ';')
1515 * No options but restriction on slabs. This means full
1516 * debugging for slabs matching a pattern.
1518 *flags = DEBUG_DEFAULT_FLAGS;
1523 /* Determine which debug features should be switched on */
1524 for (; *str && *str != ',' && *str != ';'; str++) {
1525 switch (tolower(*str)) {
1530 *flags |= SLAB_CONSISTENCY_CHECKS;
1533 *flags |= SLAB_RED_ZONE;
1536 *flags |= SLAB_POISON;
1539 *flags |= SLAB_STORE_USER;
1542 *flags |= SLAB_TRACE;
1545 *flags |= SLAB_FAILSLAB;
1549 * Avoid enabling debugging on caches if its minimum
1550 * order would increase as a result.
1552 higher_order_disable = true;
1556 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1565 /* Skip over the slab list */
1566 while (*str && *str != ';')
1569 /* Skip any completely empty blocks */
1570 while (*str && *str == ';')
1573 if (init && higher_order_disable)
1574 disable_higher_order_debug = 1;
1582 static int __init setup_slub_debug(char *str)
1585 slab_flags_t global_flags;
1588 bool global_slub_debug_changed = false;
1589 bool slab_list_specified = false;
1591 global_flags = DEBUG_DEFAULT_FLAGS;
1592 if (*str++ != '=' || !*str)
1594 * No options specified. Switch on full debugging.
1600 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1603 global_flags = flags;
1604 global_slub_debug_changed = true;
1606 slab_list_specified = true;
1607 if (flags & SLAB_STORE_USER)
1608 stack_depot_request_early_init();
1613 * For backwards compatibility, a single list of flags with list of
1614 * slabs means debugging is only changed for those slabs, so the global
1615 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1616 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1617 * long as there is no option specifying flags without a slab list.
1619 if (slab_list_specified) {
1620 if (!global_slub_debug_changed)
1621 global_flags = slub_debug;
1622 slub_debug_string = saved_str;
1625 slub_debug = global_flags;
1626 if (slub_debug & SLAB_STORE_USER)
1627 stack_depot_request_early_init();
1628 if (slub_debug != 0 || slub_debug_string)
1629 static_branch_enable(&slub_debug_enabled);
1631 static_branch_disable(&slub_debug_enabled);
1632 if ((static_branch_unlikely(&init_on_alloc) ||
1633 static_branch_unlikely(&init_on_free)) &&
1634 (slub_debug & SLAB_POISON))
1635 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1639 __setup("slub_debug", setup_slub_debug);
1642 * kmem_cache_flags - apply debugging options to the cache
1643 * @object_size: the size of an object without meta data
1644 * @flags: flags to set
1645 * @name: name of the cache
1647 * Debug option(s) are applied to @flags. In addition to the debug
1648 * option(s), if a slab name (or multiple) is specified i.e.
1649 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1650 * then only the select slabs will receive the debug option(s).
1652 slab_flags_t kmem_cache_flags(unsigned int object_size,
1653 slab_flags_t flags, const char *name)
1658 slab_flags_t block_flags;
1659 slab_flags_t slub_debug_local = slub_debug;
1661 if (flags & SLAB_NO_USER_FLAGS)
1665 * If the slab cache is for debugging (e.g. kmemleak) then
1666 * don't store user (stack trace) information by default,
1667 * but let the user enable it via the command line below.
1669 if (flags & SLAB_NOLEAKTRACE)
1670 slub_debug_local &= ~SLAB_STORE_USER;
1673 next_block = slub_debug_string;
1674 /* Go through all blocks of debug options, see if any matches our slab's name */
1675 while (next_block) {
1676 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1679 /* Found a block that has a slab list, search it */
1684 end = strchrnul(iter, ',');
1685 if (next_block && next_block < end)
1686 end = next_block - 1;
1688 glob = strnchr(iter, end - iter, '*');
1690 cmplen = glob - iter;
1692 cmplen = max_t(size_t, len, (end - iter));
1694 if (!strncmp(name, iter, cmplen)) {
1695 flags |= block_flags;
1699 if (!*end || *end == ';')
1705 return flags | slub_debug_local;
1707 #else /* !CONFIG_SLUB_DEBUG */
1708 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1710 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1712 static inline bool alloc_debug_processing(struct kmem_cache *s,
1713 struct slab *slab, void *object, int orig_size) { return true; }
1715 static inline bool free_debug_processing(struct kmem_cache *s,
1716 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1717 unsigned long addr, depot_stack_handle_t handle) { return true; }
1719 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1720 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1721 void *object, u8 val) { return 1; }
1722 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1723 static inline void set_track(struct kmem_cache *s, void *object,
1724 enum track_item alloc, unsigned long addr) {}
1725 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1726 struct slab *slab) {}
1727 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1728 struct slab *slab) {}
1729 slab_flags_t kmem_cache_flags(unsigned int object_size,
1730 slab_flags_t flags, const char *name)
1734 #define slub_debug 0
1736 #define disable_higher_order_debug 0
1738 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1740 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1742 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1745 #ifndef CONFIG_SLUB_TINY
1746 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1747 void **freelist, void *nextfree)
1752 #endif /* CONFIG_SLUB_DEBUG */
1755 * Hooks for other subsystems that check memory allocations. In a typical
1756 * production configuration these hooks all should produce no code at all.
1758 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1761 kmemleak_free_recursive(x, s->flags);
1762 kmsan_slab_free(s, x);
1764 debug_check_no_locks_freed(x, s->object_size);
1766 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1767 debug_check_no_obj_freed(x, s->object_size);
1769 /* Use KCSAN to help debug racy use-after-free. */
1770 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1771 __kcsan_check_access(x, s->object_size,
1772 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1775 * As memory initialization might be integrated into KASAN,
1776 * kasan_slab_free and initialization memset's must be
1777 * kept together to avoid discrepancies in behavior.
1779 * The initialization memset's clear the object and the metadata,
1780 * but don't touch the SLAB redzone.
1785 if (!kasan_has_integrated_init())
1786 memset(kasan_reset_tag(x), 0, s->object_size);
1787 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1788 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1789 s->size - s->inuse - rsize);
1791 /* KASAN might put x into memory quarantine, delaying its reuse. */
1792 return kasan_slab_free(s, x, init);
1795 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1796 void **head, void **tail,
1802 void *old_tail = *tail ? *tail : *head;
1804 if (is_kfence_address(next)) {
1805 slab_free_hook(s, next, false);
1809 /* Head and tail of the reconstructed freelist */
1815 next = get_freepointer(s, object);
1817 /* If object's reuse doesn't have to be delayed */
1818 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1819 /* Move object to the new freelist */
1820 set_freepointer(s, object, *head);
1826 * Adjust the reconstructed freelist depth
1827 * accordingly if object's reuse is delayed.
1831 } while (object != old_tail);
1836 return *head != NULL;
1839 static void *setup_object(struct kmem_cache *s, void *object)
1841 setup_object_debug(s, object);
1842 object = kasan_init_slab_obj(s, object);
1843 if (unlikely(s->ctor)) {
1844 kasan_unpoison_object_data(s, object);
1846 kasan_poison_object_data(s, object);
1852 * Slab allocation and freeing
1854 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1855 struct kmem_cache_order_objects oo)
1857 struct folio *folio;
1859 unsigned int order = oo_order(oo);
1861 if (node == NUMA_NO_NODE)
1862 folio = (struct folio *)alloc_pages(flags, order);
1864 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1869 slab = folio_slab(folio);
1870 __folio_set_slab(folio);
1871 /* Make the flag visible before any changes to folio->mapping */
1873 if (folio_is_pfmemalloc(folio))
1874 slab_set_pfmemalloc(slab);
1879 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1880 /* Pre-initialize the random sequence cache */
1881 static int init_cache_random_seq(struct kmem_cache *s)
1883 unsigned int count = oo_objects(s->oo);
1886 /* Bailout if already initialised */
1890 err = cache_random_seq_create(s, count, GFP_KERNEL);
1892 pr_err("SLUB: Unable to initialize free list for %s\n",
1897 /* Transform to an offset on the set of pages */
1898 if (s->random_seq) {
1901 for (i = 0; i < count; i++)
1902 s->random_seq[i] *= s->size;
1907 /* Initialize each random sequence freelist per cache */
1908 static void __init init_freelist_randomization(void)
1910 struct kmem_cache *s;
1912 mutex_lock(&slab_mutex);
1914 list_for_each_entry(s, &slab_caches, list)
1915 init_cache_random_seq(s);
1917 mutex_unlock(&slab_mutex);
1920 /* Get the next entry on the pre-computed freelist randomized */
1921 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1922 unsigned long *pos, void *start,
1923 unsigned long page_limit,
1924 unsigned long freelist_count)
1929 * If the target page allocation failed, the number of objects on the
1930 * page might be smaller than the usual size defined by the cache.
1933 idx = s->random_seq[*pos];
1935 if (*pos >= freelist_count)
1937 } while (unlikely(idx >= page_limit));
1939 return (char *)start + idx;
1942 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1943 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1948 unsigned long idx, pos, page_limit, freelist_count;
1950 if (slab->objects < 2 || !s->random_seq)
1953 freelist_count = oo_objects(s->oo);
1954 pos = get_random_u32_below(freelist_count);
1956 page_limit = slab->objects * s->size;
1957 start = fixup_red_left(s, slab_address(slab));
1959 /* First entry is used as the base of the freelist */
1960 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1962 cur = setup_object(s, cur);
1963 slab->freelist = cur;
1965 for (idx = 1; idx < slab->objects; idx++) {
1966 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1968 next = setup_object(s, next);
1969 set_freepointer(s, cur, next);
1972 set_freepointer(s, cur, NULL);
1977 static inline int init_cache_random_seq(struct kmem_cache *s)
1981 static inline void init_freelist_randomization(void) { }
1982 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1986 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1988 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1991 struct kmem_cache_order_objects oo = s->oo;
1993 void *start, *p, *next;
1997 flags &= gfp_allowed_mask;
1999 flags |= s->allocflags;
2002 * Let the initial higher-order allocation fail under memory pressure
2003 * so we fall-back to the minimum order allocation.
2005 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2006 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2007 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2009 slab = alloc_slab_page(alloc_gfp, node, oo);
2010 if (unlikely(!slab)) {
2014 * Allocation may have failed due to fragmentation.
2015 * Try a lower order alloc if possible
2017 slab = alloc_slab_page(alloc_gfp, node, oo);
2018 if (unlikely(!slab))
2020 stat(s, ORDER_FALLBACK);
2023 slab->objects = oo_objects(oo);
2027 account_slab(slab, oo_order(oo), s, flags);
2029 slab->slab_cache = s;
2031 kasan_poison_slab(slab);
2033 start = slab_address(slab);
2035 setup_slab_debug(s, slab, start);
2037 shuffle = shuffle_freelist(s, slab);
2040 start = fixup_red_left(s, start);
2041 start = setup_object(s, start);
2042 slab->freelist = start;
2043 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2045 next = setup_object(s, next);
2046 set_freepointer(s, p, next);
2049 set_freepointer(s, p, NULL);
2055 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2057 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2058 flags = kmalloc_fix_flags(flags);
2060 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2062 return allocate_slab(s,
2063 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2066 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2068 struct folio *folio = slab_folio(slab);
2069 int order = folio_order(folio);
2070 int pages = 1 << order;
2072 __slab_clear_pfmemalloc(slab);
2073 folio->mapping = NULL;
2074 /* Make the mapping reset visible before clearing the flag */
2076 __folio_clear_slab(folio);
2077 mm_account_reclaimed_pages(pages);
2078 unaccount_slab(slab, order, s);
2079 __free_pages(&folio->page, order);
2082 static void rcu_free_slab(struct rcu_head *h)
2084 struct slab *slab = container_of(h, struct slab, rcu_head);
2086 __free_slab(slab->slab_cache, slab);
2089 static void free_slab(struct kmem_cache *s, struct slab *slab)
2091 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2094 slab_pad_check(s, slab);
2095 for_each_object(p, s, slab_address(slab), slab->objects)
2096 check_object(s, slab, p, SLUB_RED_INACTIVE);
2099 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2100 call_rcu(&slab->rcu_head, rcu_free_slab);
2102 __free_slab(s, slab);
2105 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2107 dec_slabs_node(s, slab_nid(slab), slab->objects);
2112 * Management of partially allocated slabs.
2115 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2118 if (tail == DEACTIVATE_TO_TAIL)
2119 list_add_tail(&slab->slab_list, &n->partial);
2121 list_add(&slab->slab_list, &n->partial);
2124 static inline void add_partial(struct kmem_cache_node *n,
2125 struct slab *slab, int tail)
2127 lockdep_assert_held(&n->list_lock);
2128 __add_partial(n, slab, tail);
2131 static inline void remove_partial(struct kmem_cache_node *n,
2134 lockdep_assert_held(&n->list_lock);
2135 list_del(&slab->slab_list);
2140 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2141 * slab from the n->partial list. Remove only a single object from the slab, do
2142 * the alloc_debug_processing() checks and leave the slab on the list, or move
2143 * it to full list if it was the last free object.
2145 static void *alloc_single_from_partial(struct kmem_cache *s,
2146 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2150 lockdep_assert_held(&n->list_lock);
2152 object = slab->freelist;
2153 slab->freelist = get_freepointer(s, object);
2156 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2157 remove_partial(n, slab);
2161 if (slab->inuse == slab->objects) {
2162 remove_partial(n, slab);
2163 add_full(s, n, slab);
2170 * Called only for kmem_cache_debug() caches to allocate from a freshly
2171 * allocated slab. Allocate a single object instead of whole freelist
2172 * and put the slab to the partial (or full) list.
2174 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2175 struct slab *slab, int orig_size)
2177 int nid = slab_nid(slab);
2178 struct kmem_cache_node *n = get_node(s, nid);
2179 unsigned long flags;
2183 object = slab->freelist;
2184 slab->freelist = get_freepointer(s, object);
2187 if (!alloc_debug_processing(s, slab, object, orig_size))
2189 * It's not really expected that this would fail on a
2190 * freshly allocated slab, but a concurrent memory
2191 * corruption in theory could cause that.
2195 spin_lock_irqsave(&n->list_lock, flags);
2197 if (slab->inuse == slab->objects)
2198 add_full(s, n, slab);
2200 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2202 inc_slabs_node(s, nid, slab->objects);
2203 spin_unlock_irqrestore(&n->list_lock, flags);
2209 * Remove slab from the partial list, freeze it and
2210 * return the pointer to the freelist.
2212 * Returns a list of objects or NULL if it fails.
2214 static inline void *acquire_slab(struct kmem_cache *s,
2215 struct kmem_cache_node *n, struct slab *slab,
2219 unsigned long counters;
2222 lockdep_assert_held(&n->list_lock);
2225 * Zap the freelist and set the frozen bit.
2226 * The old freelist is the list of objects for the
2227 * per cpu allocation list.
2229 freelist = slab->freelist;
2230 counters = slab->counters;
2231 new.counters = counters;
2233 new.inuse = slab->objects;
2234 new.freelist = NULL;
2236 new.freelist = freelist;
2239 VM_BUG_ON(new.frozen);
2242 if (!__slab_update_freelist(s, slab,
2244 new.freelist, new.counters,
2248 remove_partial(n, slab);
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2256 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2259 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2262 * Try to allocate a partial slab from a specific node.
2264 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2265 struct partial_context *pc)
2267 struct slab *slab, *slab2;
2268 void *object = NULL;
2269 unsigned long flags;
2270 unsigned int partial_slabs = 0;
2273 * Racy check. If we mistakenly see no partial slabs then we
2274 * just allocate an empty slab. If we mistakenly try to get a
2275 * partial slab and there is none available then get_partial()
2278 if (!n || !n->nr_partial)
2281 spin_lock_irqsave(&n->list_lock, flags);
2282 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2285 if (!pfmemalloc_match(slab, pc->flags))
2288 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2289 object = alloc_single_from_partial(s, n, slab,
2296 t = acquire_slab(s, n, slab, object == NULL);
2302 stat(s, ALLOC_FROM_PARTIAL);
2305 put_cpu_partial(s, slab, 0);
2306 stat(s, CPU_PARTIAL_NODE);
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 if (!kmem_cache_has_cpu_partial(s)
2311 || partial_slabs > s->cpu_partial_slabs / 2)
2318 spin_unlock_irqrestore(&n->list_lock, flags);
2323 * Get a slab from somewhere. Search in increasing NUMA distances.
2325 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2328 struct zonelist *zonelist;
2331 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2333 unsigned int cpuset_mems_cookie;
2336 * The defrag ratio allows a configuration of the tradeoffs between
2337 * inter node defragmentation and node local allocations. A lower
2338 * defrag_ratio increases the tendency to do local allocations
2339 * instead of attempting to obtain partial slabs from other nodes.
2341 * If the defrag_ratio is set to 0 then kmalloc() always
2342 * returns node local objects. If the ratio is higher then kmalloc()
2343 * may return off node objects because partial slabs are obtained
2344 * from other nodes and filled up.
2346 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2347 * (which makes defrag_ratio = 1000) then every (well almost)
2348 * allocation will first attempt to defrag slab caches on other nodes.
2349 * This means scanning over all nodes to look for partial slabs which
2350 * may be expensive if we do it every time we are trying to find a slab
2351 * with available objects.
2353 if (!s->remote_node_defrag_ratio ||
2354 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2358 cpuset_mems_cookie = read_mems_allowed_begin();
2359 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2360 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2361 struct kmem_cache_node *n;
2363 n = get_node(s, zone_to_nid(zone));
2365 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2366 n->nr_partial > s->min_partial) {
2367 object = get_partial_node(s, n, pc);
2370 * Don't check read_mems_allowed_retry()
2371 * here - if mems_allowed was updated in
2372 * parallel, that was a harmless race
2373 * between allocation and the cpuset
2380 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2381 #endif /* CONFIG_NUMA */
2386 * Get a partial slab, lock it and return it.
2388 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2391 int searchnode = node;
2393 if (node == NUMA_NO_NODE)
2394 searchnode = numa_mem_id();
2396 object = get_partial_node(s, get_node(s, searchnode), pc);
2397 if (object || node != NUMA_NO_NODE)
2400 return get_any_partial(s, pc);
2403 #ifndef CONFIG_SLUB_TINY
2405 #ifdef CONFIG_PREEMPTION
2407 * Calculate the next globally unique transaction for disambiguation
2408 * during cmpxchg. The transactions start with the cpu number and are then
2409 * incremented by CONFIG_NR_CPUS.
2411 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2414 * No preemption supported therefore also no need to check for
2418 #endif /* CONFIG_PREEMPTION */
2420 static inline unsigned long next_tid(unsigned long tid)
2422 return tid + TID_STEP;
2425 #ifdef SLUB_DEBUG_CMPXCHG
2426 static inline unsigned int tid_to_cpu(unsigned long tid)
2428 return tid % TID_STEP;
2431 static inline unsigned long tid_to_event(unsigned long tid)
2433 return tid / TID_STEP;
2437 static inline unsigned int init_tid(int cpu)
2442 static inline void note_cmpxchg_failure(const char *n,
2443 const struct kmem_cache *s, unsigned long tid)
2445 #ifdef SLUB_DEBUG_CMPXCHG
2446 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2448 pr_info("%s %s: cmpxchg redo ", n, s->name);
2450 #ifdef CONFIG_PREEMPTION
2451 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2452 pr_warn("due to cpu change %d -> %d\n",
2453 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2456 if (tid_to_event(tid) != tid_to_event(actual_tid))
2457 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2458 tid_to_event(tid), tid_to_event(actual_tid));
2460 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2461 actual_tid, tid, next_tid(tid));
2463 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2466 static void init_kmem_cache_cpus(struct kmem_cache *s)
2469 struct kmem_cache_cpu *c;
2471 for_each_possible_cpu(cpu) {
2472 c = per_cpu_ptr(s->cpu_slab, cpu);
2473 local_lock_init(&c->lock);
2474 c->tid = init_tid(cpu);
2479 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2480 * unfreezes the slabs and puts it on the proper list.
2481 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2484 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2487 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2488 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2490 enum slab_modes mode = M_NONE;
2491 void *nextfree, *freelist_iter, *freelist_tail;
2492 int tail = DEACTIVATE_TO_HEAD;
2493 unsigned long flags = 0;
2497 if (slab->freelist) {
2498 stat(s, DEACTIVATE_REMOTE_FREES);
2499 tail = DEACTIVATE_TO_TAIL;
2503 * Stage one: Count the objects on cpu's freelist as free_delta and
2504 * remember the last object in freelist_tail for later splicing.
2506 freelist_tail = NULL;
2507 freelist_iter = freelist;
2508 while (freelist_iter) {
2509 nextfree = get_freepointer(s, freelist_iter);
2512 * If 'nextfree' is invalid, it is possible that the object at
2513 * 'freelist_iter' is already corrupted. So isolate all objects
2514 * starting at 'freelist_iter' by skipping them.
2516 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2519 freelist_tail = freelist_iter;
2522 freelist_iter = nextfree;
2526 * Stage two: Unfreeze the slab while splicing the per-cpu
2527 * freelist to the head of slab's freelist.
2529 * Ensure that the slab is unfrozen while the list presence
2530 * reflects the actual number of objects during unfreeze.
2532 * We first perform cmpxchg holding lock and insert to list
2533 * when it succeed. If there is mismatch then the slab is not
2534 * unfrozen and number of objects in the slab may have changed.
2535 * Then release lock and retry cmpxchg again.
2539 old.freelist = READ_ONCE(slab->freelist);
2540 old.counters = READ_ONCE(slab->counters);
2541 VM_BUG_ON(!old.frozen);
2543 /* Determine target state of the slab */
2544 new.counters = old.counters;
2545 if (freelist_tail) {
2546 new.inuse -= free_delta;
2547 set_freepointer(s, freelist_tail, old.freelist);
2548 new.freelist = freelist;
2550 new.freelist = old.freelist;
2554 if (!new.inuse && n->nr_partial >= s->min_partial) {
2556 } else if (new.freelist) {
2559 * Taking the spinlock removes the possibility that
2560 * acquire_slab() will see a slab that is frozen
2562 spin_lock_irqsave(&n->list_lock, flags);
2564 mode = M_FULL_NOLIST;
2568 if (!slab_update_freelist(s, slab,
2569 old.freelist, old.counters,
2570 new.freelist, new.counters,
2571 "unfreezing slab")) {
2572 if (mode == M_PARTIAL)
2573 spin_unlock_irqrestore(&n->list_lock, flags);
2578 if (mode == M_PARTIAL) {
2579 add_partial(n, slab, tail);
2580 spin_unlock_irqrestore(&n->list_lock, flags);
2582 } else if (mode == M_FREE) {
2583 stat(s, DEACTIVATE_EMPTY);
2584 discard_slab(s, slab);
2586 } else if (mode == M_FULL_NOLIST) {
2587 stat(s, DEACTIVATE_FULL);
2591 #ifdef CONFIG_SLUB_CPU_PARTIAL
2592 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2594 struct kmem_cache_node *n = NULL, *n2 = NULL;
2595 struct slab *slab, *slab_to_discard = NULL;
2596 unsigned long flags = 0;
2598 while (partial_slab) {
2602 slab = partial_slab;
2603 partial_slab = slab->next;
2605 n2 = get_node(s, slab_nid(slab));
2608 spin_unlock_irqrestore(&n->list_lock, flags);
2611 spin_lock_irqsave(&n->list_lock, flags);
2616 old.freelist = slab->freelist;
2617 old.counters = slab->counters;
2618 VM_BUG_ON(!old.frozen);
2620 new.counters = old.counters;
2621 new.freelist = old.freelist;
2625 } while (!__slab_update_freelist(s, slab,
2626 old.freelist, old.counters,
2627 new.freelist, new.counters,
2628 "unfreezing slab"));
2630 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2631 slab->next = slab_to_discard;
2632 slab_to_discard = slab;
2634 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2635 stat(s, FREE_ADD_PARTIAL);
2640 spin_unlock_irqrestore(&n->list_lock, flags);
2642 while (slab_to_discard) {
2643 slab = slab_to_discard;
2644 slab_to_discard = slab_to_discard->next;
2646 stat(s, DEACTIVATE_EMPTY);
2647 discard_slab(s, slab);
2653 * Unfreeze all the cpu partial slabs.
2655 static void unfreeze_partials(struct kmem_cache *s)
2657 struct slab *partial_slab;
2658 unsigned long flags;
2660 local_lock_irqsave(&s->cpu_slab->lock, flags);
2661 partial_slab = this_cpu_read(s->cpu_slab->partial);
2662 this_cpu_write(s->cpu_slab->partial, NULL);
2663 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2666 __unfreeze_partials(s, partial_slab);
2669 static void unfreeze_partials_cpu(struct kmem_cache *s,
2670 struct kmem_cache_cpu *c)
2672 struct slab *partial_slab;
2674 partial_slab = slub_percpu_partial(c);
2678 __unfreeze_partials(s, partial_slab);
2682 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2683 * partial slab slot if available.
2685 * If we did not find a slot then simply move all the partials to the
2686 * per node partial list.
2688 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2690 struct slab *oldslab;
2691 struct slab *slab_to_unfreeze = NULL;
2692 unsigned long flags;
2695 local_lock_irqsave(&s->cpu_slab->lock, flags);
2697 oldslab = this_cpu_read(s->cpu_slab->partial);
2700 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2702 * Partial array is full. Move the existing set to the
2703 * per node partial list. Postpone the actual unfreezing
2704 * outside of the critical section.
2706 slab_to_unfreeze = oldslab;
2709 slabs = oldslab->slabs;
2715 slab->slabs = slabs;
2716 slab->next = oldslab;
2718 this_cpu_write(s->cpu_slab->partial, slab);
2720 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2722 if (slab_to_unfreeze) {
2723 __unfreeze_partials(s, slab_to_unfreeze);
2724 stat(s, CPU_PARTIAL_DRAIN);
2728 #else /* CONFIG_SLUB_CPU_PARTIAL */
2730 static inline void unfreeze_partials(struct kmem_cache *s) { }
2731 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2732 struct kmem_cache_cpu *c) { }
2734 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2736 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2738 unsigned long flags;
2742 local_lock_irqsave(&s->cpu_slab->lock, flags);
2745 freelist = c->freelist;
2749 c->tid = next_tid(c->tid);
2751 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2754 deactivate_slab(s, slab, freelist);
2755 stat(s, CPUSLAB_FLUSH);
2759 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2761 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2762 void *freelist = c->freelist;
2763 struct slab *slab = c->slab;
2767 c->tid = next_tid(c->tid);
2770 deactivate_slab(s, slab, freelist);
2771 stat(s, CPUSLAB_FLUSH);
2774 unfreeze_partials_cpu(s, c);
2777 struct slub_flush_work {
2778 struct work_struct work;
2779 struct kmem_cache *s;
2786 * Called from CPU work handler with migration disabled.
2788 static void flush_cpu_slab(struct work_struct *w)
2790 struct kmem_cache *s;
2791 struct kmem_cache_cpu *c;
2792 struct slub_flush_work *sfw;
2794 sfw = container_of(w, struct slub_flush_work, work);
2797 c = this_cpu_ptr(s->cpu_slab);
2802 unfreeze_partials(s);
2805 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2807 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2809 return c->slab || slub_percpu_partial(c);
2812 static DEFINE_MUTEX(flush_lock);
2813 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2815 static void flush_all_cpus_locked(struct kmem_cache *s)
2817 struct slub_flush_work *sfw;
2820 lockdep_assert_cpus_held();
2821 mutex_lock(&flush_lock);
2823 for_each_online_cpu(cpu) {
2824 sfw = &per_cpu(slub_flush, cpu);
2825 if (!has_cpu_slab(cpu, s)) {
2829 INIT_WORK(&sfw->work, flush_cpu_slab);
2832 queue_work_on(cpu, flushwq, &sfw->work);
2835 for_each_online_cpu(cpu) {
2836 sfw = &per_cpu(slub_flush, cpu);
2839 flush_work(&sfw->work);
2842 mutex_unlock(&flush_lock);
2845 static void flush_all(struct kmem_cache *s)
2848 flush_all_cpus_locked(s);
2853 * Use the cpu notifier to insure that the cpu slabs are flushed when
2856 static int slub_cpu_dead(unsigned int cpu)
2858 struct kmem_cache *s;
2860 mutex_lock(&slab_mutex);
2861 list_for_each_entry(s, &slab_caches, list)
2862 __flush_cpu_slab(s, cpu);
2863 mutex_unlock(&slab_mutex);
2867 #else /* CONFIG_SLUB_TINY */
2868 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2869 static inline void flush_all(struct kmem_cache *s) { }
2870 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2871 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2872 #endif /* CONFIG_SLUB_TINY */
2875 * Check if the objects in a per cpu structure fit numa
2876 * locality expectations.
2878 static inline int node_match(struct slab *slab, int node)
2881 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2887 #ifdef CONFIG_SLUB_DEBUG
2888 static int count_free(struct slab *slab)
2890 return slab->objects - slab->inuse;
2893 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2895 return atomic_long_read(&n->total_objects);
2898 /* Supports checking bulk free of a constructed freelist */
2899 static inline bool free_debug_processing(struct kmem_cache *s,
2900 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2901 unsigned long addr, depot_stack_handle_t handle)
2903 bool checks_ok = false;
2904 void *object = head;
2907 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2908 if (!check_slab(s, slab))
2912 if (slab->inuse < *bulk_cnt) {
2913 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2914 slab->inuse, *bulk_cnt);
2920 if (++cnt > *bulk_cnt)
2923 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2924 if (!free_consistency_checks(s, slab, object, addr))
2928 if (s->flags & SLAB_STORE_USER)
2929 set_track_update(s, object, TRACK_FREE, addr, handle);
2930 trace(s, slab, object, 0);
2931 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2932 init_object(s, object, SLUB_RED_INACTIVE);
2934 /* Reached end of constructed freelist yet? */
2935 if (object != tail) {
2936 object = get_freepointer(s, object);
2942 if (cnt != *bulk_cnt) {
2943 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2951 slab_fix(s, "Object at 0x%p not freed", object);
2955 #endif /* CONFIG_SLUB_DEBUG */
2957 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2958 static unsigned long count_partial(struct kmem_cache_node *n,
2959 int (*get_count)(struct slab *))
2961 unsigned long flags;
2962 unsigned long x = 0;
2965 spin_lock_irqsave(&n->list_lock, flags);
2966 list_for_each_entry(slab, &n->partial, slab_list)
2967 x += get_count(slab);
2968 spin_unlock_irqrestore(&n->list_lock, flags);
2971 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2973 #ifdef CONFIG_SLUB_DEBUG
2974 static noinline void
2975 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2977 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2978 DEFAULT_RATELIMIT_BURST);
2980 struct kmem_cache_node *n;
2982 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2985 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2986 nid, gfpflags, &gfpflags);
2987 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2988 s->name, s->object_size, s->size, oo_order(s->oo),
2991 if (oo_order(s->min) > get_order(s->object_size))
2992 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2995 for_each_kmem_cache_node(s, node, n) {
2996 unsigned long nr_slabs;
2997 unsigned long nr_objs;
2998 unsigned long nr_free;
3000 nr_free = count_partial(n, count_free);
3001 nr_slabs = node_nr_slabs(n);
3002 nr_objs = node_nr_objs(n);
3004 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3005 node, nr_slabs, nr_objs, nr_free);
3008 #else /* CONFIG_SLUB_DEBUG */
3010 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3013 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3015 if (unlikely(slab_test_pfmemalloc(slab)))
3016 return gfp_pfmemalloc_allowed(gfpflags);
3021 #ifndef CONFIG_SLUB_TINY
3023 __update_cpu_freelist_fast(struct kmem_cache *s,
3024 void *freelist_old, void *freelist_new,
3027 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3028 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3030 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3031 &old.full, new.full);
3035 * Check the slab->freelist and either transfer the freelist to the
3036 * per cpu freelist or deactivate the slab.
3038 * The slab is still frozen if the return value is not NULL.
3040 * If this function returns NULL then the slab has been unfrozen.
3042 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3045 unsigned long counters;
3048 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3051 freelist = slab->freelist;
3052 counters = slab->counters;
3054 new.counters = counters;
3055 VM_BUG_ON(!new.frozen);
3057 new.inuse = slab->objects;
3058 new.frozen = freelist != NULL;
3060 } while (!__slab_update_freelist(s, slab,
3069 * Slow path. The lockless freelist is empty or we need to perform
3072 * Processing is still very fast if new objects have been freed to the
3073 * regular freelist. In that case we simply take over the regular freelist
3074 * as the lockless freelist and zap the regular freelist.
3076 * If that is not working then we fall back to the partial lists. We take the
3077 * first element of the freelist as the object to allocate now and move the
3078 * rest of the freelist to the lockless freelist.
3080 * And if we were unable to get a new slab from the partial slab lists then
3081 * we need to allocate a new slab. This is the slowest path since it involves
3082 * a call to the page allocator and the setup of a new slab.
3084 * Version of __slab_alloc to use when we know that preemption is
3085 * already disabled (which is the case for bulk allocation).
3087 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3088 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3092 unsigned long flags;
3093 struct partial_context pc;
3095 stat(s, ALLOC_SLOWPATH);
3099 slab = READ_ONCE(c->slab);
3102 * if the node is not online or has no normal memory, just
3103 * ignore the node constraint
3105 if (unlikely(node != NUMA_NO_NODE &&
3106 !node_isset(node, slab_nodes)))
3107 node = NUMA_NO_NODE;
3112 if (unlikely(!node_match(slab, node))) {
3114 * same as above but node_match() being false already
3115 * implies node != NUMA_NO_NODE
3117 if (!node_isset(node, slab_nodes)) {
3118 node = NUMA_NO_NODE;
3120 stat(s, ALLOC_NODE_MISMATCH);
3121 goto deactivate_slab;
3126 * By rights, we should be searching for a slab page that was
3127 * PFMEMALLOC but right now, we are losing the pfmemalloc
3128 * information when the page leaves the per-cpu allocator
3130 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3131 goto deactivate_slab;
3133 /* must check again c->slab in case we got preempted and it changed */
3134 local_lock_irqsave(&s->cpu_slab->lock, flags);
3135 if (unlikely(slab != c->slab)) {
3136 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3139 freelist = c->freelist;
3143 freelist = get_freelist(s, slab);
3147 c->tid = next_tid(c->tid);
3148 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3149 stat(s, DEACTIVATE_BYPASS);
3153 stat(s, ALLOC_REFILL);
3157 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3160 * freelist is pointing to the list of objects to be used.
3161 * slab is pointing to the slab from which the objects are obtained.
3162 * That slab must be frozen for per cpu allocations to work.
3164 VM_BUG_ON(!c->slab->frozen);
3165 c->freelist = get_freepointer(s, freelist);
3166 c->tid = next_tid(c->tid);
3167 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3172 local_lock_irqsave(&s->cpu_slab->lock, flags);
3173 if (slab != c->slab) {
3174 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3177 freelist = c->freelist;
3180 c->tid = next_tid(c->tid);
3181 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3182 deactivate_slab(s, slab, freelist);
3186 if (slub_percpu_partial(c)) {
3187 local_lock_irqsave(&s->cpu_slab->lock, flags);
3188 if (unlikely(c->slab)) {
3189 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3192 if (unlikely(!slub_percpu_partial(c))) {
3193 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3194 /* we were preempted and partial list got empty */
3198 slab = c->slab = slub_percpu_partial(c);
3199 slub_set_percpu_partial(c, slab);
3200 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3201 stat(s, CPU_PARTIAL_ALLOC);
3207 pc.flags = gfpflags;
3209 pc.orig_size = orig_size;
3210 freelist = get_partial(s, node, &pc);
3212 goto check_new_slab;
3214 slub_put_cpu_ptr(s->cpu_slab);
3215 slab = new_slab(s, gfpflags, node);
3216 c = slub_get_cpu_ptr(s->cpu_slab);
3218 if (unlikely(!slab)) {
3219 slab_out_of_memory(s, gfpflags, node);
3223 stat(s, ALLOC_SLAB);
3225 if (kmem_cache_debug(s)) {
3226 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3228 if (unlikely(!freelist))
3231 if (s->flags & SLAB_STORE_USER)
3232 set_track(s, freelist, TRACK_ALLOC, addr);
3238 * No other reference to the slab yet so we can
3239 * muck around with it freely without cmpxchg
3241 freelist = slab->freelist;
3242 slab->freelist = NULL;
3243 slab->inuse = slab->objects;
3246 inc_slabs_node(s, slab_nid(slab), slab->objects);
3250 if (kmem_cache_debug(s)) {
3252 * For debug caches here we had to go through
3253 * alloc_single_from_partial() so just store the tracking info
3254 * and return the object
3256 if (s->flags & SLAB_STORE_USER)
3257 set_track(s, freelist, TRACK_ALLOC, addr);
3262 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3264 * For !pfmemalloc_match() case we don't load freelist so that
3265 * we don't make further mismatched allocations easier.
3267 deactivate_slab(s, slab, get_freepointer(s, freelist));
3273 local_lock_irqsave(&s->cpu_slab->lock, flags);
3274 if (unlikely(c->slab)) {
3275 void *flush_freelist = c->freelist;
3276 struct slab *flush_slab = c->slab;
3280 c->tid = next_tid(c->tid);
3282 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3284 deactivate_slab(s, flush_slab, flush_freelist);
3286 stat(s, CPUSLAB_FLUSH);
3288 goto retry_load_slab;
3296 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3297 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3300 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3301 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3305 #ifdef CONFIG_PREEMPT_COUNT
3307 * We may have been preempted and rescheduled on a different
3308 * cpu before disabling preemption. Need to reload cpu area
3311 c = slub_get_cpu_ptr(s->cpu_slab);
3314 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3315 #ifdef CONFIG_PREEMPT_COUNT
3316 slub_put_cpu_ptr(s->cpu_slab);
3321 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3322 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3324 struct kmem_cache_cpu *c;
3331 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3332 * enabled. We may switch back and forth between cpus while
3333 * reading from one cpu area. That does not matter as long
3334 * as we end up on the original cpu again when doing the cmpxchg.
3336 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3337 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3338 * the tid. If we are preempted and switched to another cpu between the
3339 * two reads, it's OK as the two are still associated with the same cpu
3340 * and cmpxchg later will validate the cpu.
3342 c = raw_cpu_ptr(s->cpu_slab);
3343 tid = READ_ONCE(c->tid);
3346 * Irqless object alloc/free algorithm used here depends on sequence
3347 * of fetching cpu_slab's data. tid should be fetched before anything
3348 * on c to guarantee that object and slab associated with previous tid
3349 * won't be used with current tid. If we fetch tid first, object and
3350 * slab could be one associated with next tid and our alloc/free
3351 * request will be failed. In this case, we will retry. So, no problem.
3356 * The transaction ids are globally unique per cpu and per operation on
3357 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3358 * occurs on the right processor and that there was no operation on the
3359 * linked list in between.
3362 object = c->freelist;
3365 if (!USE_LOCKLESS_FAST_PATH() ||
3366 unlikely(!object || !slab || !node_match(slab, node))) {
3367 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3369 void *next_object = get_freepointer_safe(s, object);
3372 * The cmpxchg will only match if there was no additional
3373 * operation and if we are on the right processor.
3375 * The cmpxchg does the following atomically (without lock
3377 * 1. Relocate first pointer to the current per cpu area.
3378 * 2. Verify that tid and freelist have not been changed
3379 * 3. If they were not changed replace tid and freelist
3381 * Since this is without lock semantics the protection is only
3382 * against code executing on this cpu *not* from access by
3385 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
3386 note_cmpxchg_failure("slab_alloc", s, tid);
3389 prefetch_freepointer(s, next_object);
3390 stat(s, ALLOC_FASTPATH);
3395 #else /* CONFIG_SLUB_TINY */
3396 static void *__slab_alloc_node(struct kmem_cache *s,
3397 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3399 struct partial_context pc;
3403 pc.flags = gfpflags;
3405 pc.orig_size = orig_size;
3406 object = get_partial(s, node, &pc);
3411 slab = new_slab(s, gfpflags, node);
3412 if (unlikely(!slab)) {
3413 slab_out_of_memory(s, gfpflags, node);
3417 object = alloc_single_from_new_slab(s, slab, orig_size);
3421 #endif /* CONFIG_SLUB_TINY */
3424 * If the object has been wiped upon free, make sure it's fully initialized by
3425 * zeroing out freelist pointer.
3427 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3430 if (unlikely(slab_want_init_on_free(s)) && obj)
3431 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3436 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3437 * have the fastpath folded into their functions. So no function call
3438 * overhead for requests that can be satisfied on the fastpath.
3440 * The fastpath works by first checking if the lockless freelist can be used.
3441 * If not then __slab_alloc is called for slow processing.
3443 * Otherwise we can simply pick the next object from the lockless free list.
3445 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3446 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3449 struct obj_cgroup *objcg = NULL;
3452 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3456 object = kfence_alloc(s, orig_size, gfpflags);
3457 if (unlikely(object))
3460 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3462 maybe_wipe_obj_freeptr(s, object);
3463 init = slab_want_init_on_alloc(gfpflags, s);
3467 * When init equals 'true', like for kzalloc() family, only
3468 * @orig_size bytes might be zeroed instead of s->object_size
3470 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3475 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3476 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3478 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3481 static __fastpath_inline
3482 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3485 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3487 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3492 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3494 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3496 EXPORT_SYMBOL(kmem_cache_alloc);
3498 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3501 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3503 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3505 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3506 int node, size_t orig_size,
3507 unsigned long caller)
3509 return slab_alloc_node(s, NULL, gfpflags, node,
3513 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3515 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3517 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3521 EXPORT_SYMBOL(kmem_cache_alloc_node);
3523 static noinline void free_to_partial_list(
3524 struct kmem_cache *s, struct slab *slab,
3525 void *head, void *tail, int bulk_cnt,
3528 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3529 struct slab *slab_free = NULL;
3531 unsigned long flags;
3532 depot_stack_handle_t handle = 0;
3534 if (s->flags & SLAB_STORE_USER)
3535 handle = set_track_prepare();
3537 spin_lock_irqsave(&n->list_lock, flags);
3539 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3540 void *prior = slab->freelist;
3542 /* Perform the actual freeing while we still hold the locks */
3544 set_freepointer(s, tail, prior);
3545 slab->freelist = head;
3548 * If the slab is empty, and node's partial list is full,
3549 * it should be discarded anyway no matter it's on full or
3552 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3556 /* was on full list */
3557 remove_full(s, n, slab);
3559 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3560 stat(s, FREE_ADD_PARTIAL);
3562 } else if (slab_free) {
3563 remove_partial(n, slab);
3564 stat(s, FREE_REMOVE_PARTIAL);
3570 * Update the counters while still holding n->list_lock to
3571 * prevent spurious validation warnings
3573 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3576 spin_unlock_irqrestore(&n->list_lock, flags);
3580 free_slab(s, slab_free);
3585 * Slow path handling. This may still be called frequently since objects
3586 * have a longer lifetime than the cpu slabs in most processing loads.
3588 * So we still attempt to reduce cache line usage. Just take the slab
3589 * lock and free the item. If there is no additional partial slab
3590 * handling required then we can return immediately.
3592 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3593 void *head, void *tail, int cnt,
3600 unsigned long counters;
3601 struct kmem_cache_node *n = NULL;
3602 unsigned long flags;
3604 stat(s, FREE_SLOWPATH);
3606 if (kfence_free(head))
3609 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3610 free_to_partial_list(s, slab, head, tail, cnt, addr);
3616 spin_unlock_irqrestore(&n->list_lock, flags);
3619 prior = slab->freelist;
3620 counters = slab->counters;
3621 set_freepointer(s, tail, prior);
3622 new.counters = counters;
3623 was_frozen = new.frozen;
3625 if ((!new.inuse || !prior) && !was_frozen) {
3627 if (kmem_cache_has_cpu_partial(s) && !prior) {
3630 * Slab was on no list before and will be
3632 * We can defer the list move and instead
3637 } else { /* Needs to be taken off a list */
3639 n = get_node(s, slab_nid(slab));
3641 * Speculatively acquire the list_lock.
3642 * If the cmpxchg does not succeed then we may
3643 * drop the list_lock without any processing.
3645 * Otherwise the list_lock will synchronize with
3646 * other processors updating the list of slabs.
3648 spin_lock_irqsave(&n->list_lock, flags);
3653 } while (!slab_update_freelist(s, slab,
3660 if (likely(was_frozen)) {
3662 * The list lock was not taken therefore no list
3663 * activity can be necessary.
3665 stat(s, FREE_FROZEN);
3666 } else if (new.frozen) {
3668 * If we just froze the slab then put it onto the
3669 * per cpu partial list.
3671 put_cpu_partial(s, slab, 1);
3672 stat(s, CPU_PARTIAL_FREE);
3678 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3682 * Objects left in the slab. If it was not on the partial list before
3685 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3686 remove_full(s, n, slab);
3687 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3688 stat(s, FREE_ADD_PARTIAL);
3690 spin_unlock_irqrestore(&n->list_lock, flags);
3696 * Slab on the partial list.
3698 remove_partial(n, slab);
3699 stat(s, FREE_REMOVE_PARTIAL);
3701 /* Slab must be on the full list */
3702 remove_full(s, n, slab);
3705 spin_unlock_irqrestore(&n->list_lock, flags);
3707 discard_slab(s, slab);
3710 #ifndef CONFIG_SLUB_TINY
3712 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3713 * can perform fastpath freeing without additional function calls.
3715 * The fastpath is only possible if we are freeing to the current cpu slab
3716 * of this processor. This typically the case if we have just allocated
3719 * If fastpath is not possible then fall back to __slab_free where we deal
3720 * with all sorts of special processing.
3722 * Bulk free of a freelist with several objects (all pointing to the
3723 * same slab) possible by specifying head and tail ptr, plus objects
3724 * count (cnt). Bulk free indicated by tail pointer being set.
3726 static __always_inline void do_slab_free(struct kmem_cache *s,
3727 struct slab *slab, void *head, void *tail,
3728 int cnt, unsigned long addr)
3730 void *tail_obj = tail ? : head;
3731 struct kmem_cache_cpu *c;
3737 * Determine the currently cpus per cpu slab.
3738 * The cpu may change afterward. However that does not matter since
3739 * data is retrieved via this pointer. If we are on the same cpu
3740 * during the cmpxchg then the free will succeed.
3742 c = raw_cpu_ptr(s->cpu_slab);
3743 tid = READ_ONCE(c->tid);
3745 /* Same with comment on barrier() in slab_alloc_node() */
3748 if (unlikely(slab != c->slab)) {
3749 __slab_free(s, slab, head, tail_obj, cnt, addr);
3753 if (USE_LOCKLESS_FAST_PATH()) {
3754 freelist = READ_ONCE(c->freelist);
3756 set_freepointer(s, tail_obj, freelist);
3758 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
3759 note_cmpxchg_failure("slab_free", s, tid);
3763 /* Update the free list under the local lock */
3764 local_lock(&s->cpu_slab->lock);
3765 c = this_cpu_ptr(s->cpu_slab);
3766 if (unlikely(slab != c->slab)) {
3767 local_unlock(&s->cpu_slab->lock);
3771 freelist = c->freelist;
3773 set_freepointer(s, tail_obj, freelist);
3775 c->tid = next_tid(tid);
3777 local_unlock(&s->cpu_slab->lock);
3779 stat(s, FREE_FASTPATH);
3781 #else /* CONFIG_SLUB_TINY */
3782 static void do_slab_free(struct kmem_cache *s,
3783 struct slab *slab, void *head, void *tail,
3784 int cnt, unsigned long addr)
3786 void *tail_obj = tail ? : head;
3788 __slab_free(s, slab, head, tail_obj, cnt, addr);
3790 #endif /* CONFIG_SLUB_TINY */
3792 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3793 void *head, void *tail, void **p, int cnt,
3796 memcg_slab_free_hook(s, slab, p, cnt);
3798 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3799 * to remove objects, whose reuse must be delayed.
3801 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3802 do_slab_free(s, slab, head, tail, cnt, addr);
3805 #ifdef CONFIG_KASAN_GENERIC
3806 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3808 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3812 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3814 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3817 void kmem_cache_free(struct kmem_cache *s, void *x)
3819 s = cache_from_obj(s, x);
3822 trace_kmem_cache_free(_RET_IP_, x, s);
3823 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3825 EXPORT_SYMBOL(kmem_cache_free);
3827 struct detached_freelist {
3832 struct kmem_cache *s;
3836 * This function progressively scans the array with free objects (with
3837 * a limited look ahead) and extract objects belonging to the same
3838 * slab. It builds a detached freelist directly within the given
3839 * slab/objects. This can happen without any need for
3840 * synchronization, because the objects are owned by running process.
3841 * The freelist is build up as a single linked list in the objects.
3842 * The idea is, that this detached freelist can then be bulk
3843 * transferred to the real freelist(s), but only requiring a single
3844 * synchronization primitive. Look ahead in the array is limited due
3845 * to performance reasons.
3848 int build_detached_freelist(struct kmem_cache *s, size_t size,
3849 void **p, struct detached_freelist *df)
3853 struct folio *folio;
3857 folio = virt_to_folio(object);
3859 /* Handle kalloc'ed objects */
3860 if (unlikely(!folio_test_slab(folio))) {
3861 free_large_kmalloc(folio, object);
3865 /* Derive kmem_cache from object */
3866 df->slab = folio_slab(folio);
3867 df->s = df->slab->slab_cache;
3869 df->slab = folio_slab(folio);
3870 df->s = cache_from_obj(s, object); /* Support for memcg */
3873 /* Start new detached freelist */
3875 df->freelist = object;
3878 if (is_kfence_address(object))
3881 set_freepointer(df->s, object, NULL);
3886 /* df->slab is always set at this point */
3887 if (df->slab == virt_to_slab(object)) {
3888 /* Opportunity build freelist */
3889 set_freepointer(df->s, object, df->freelist);
3890 df->freelist = object;
3894 swap(p[size], p[same]);
3898 /* Limit look ahead search */
3906 /* Note that interrupts must be enabled when calling this function. */
3907 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3913 struct detached_freelist df;
3915 size = build_detached_freelist(s, size, p, &df);
3919 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3921 } while (likely(size));
3923 EXPORT_SYMBOL(kmem_cache_free_bulk);
3925 #ifndef CONFIG_SLUB_TINY
3926 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3927 size_t size, void **p, struct obj_cgroup *objcg)
3929 struct kmem_cache_cpu *c;
3930 unsigned long irqflags;
3934 * Drain objects in the per cpu slab, while disabling local
3935 * IRQs, which protects against PREEMPT and interrupts
3936 * handlers invoking normal fastpath.
3938 c = slub_get_cpu_ptr(s->cpu_slab);
3939 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3941 for (i = 0; i < size; i++) {
3942 void *object = kfence_alloc(s, s->object_size, flags);
3944 if (unlikely(object)) {
3949 object = c->freelist;
3950 if (unlikely(!object)) {
3952 * We may have removed an object from c->freelist using
3953 * the fastpath in the previous iteration; in that case,
3954 * c->tid has not been bumped yet.
3955 * Since ___slab_alloc() may reenable interrupts while
3956 * allocating memory, we should bump c->tid now.
3958 c->tid = next_tid(c->tid);
3960 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3963 * Invoking slow path likely have side-effect
3964 * of re-populating per CPU c->freelist
3966 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3967 _RET_IP_, c, s->object_size);
3968 if (unlikely(!p[i]))
3971 c = this_cpu_ptr(s->cpu_slab);
3972 maybe_wipe_obj_freeptr(s, p[i]);
3974 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3976 continue; /* goto for-loop */
3978 c->freelist = get_freepointer(s, object);
3980 maybe_wipe_obj_freeptr(s, p[i]);
3982 c->tid = next_tid(c->tid);
3983 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3984 slub_put_cpu_ptr(s->cpu_slab);
3989 slub_put_cpu_ptr(s->cpu_slab);
3990 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3991 kmem_cache_free_bulk(s, i, p);
3995 #else /* CONFIG_SLUB_TINY */
3996 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3997 size_t size, void **p, struct obj_cgroup *objcg)
4001 for (i = 0; i < size; i++) {
4002 void *object = kfence_alloc(s, s->object_size, flags);
4004 if (unlikely(object)) {
4009 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
4010 _RET_IP_, s->object_size);
4011 if (unlikely(!p[i]))
4014 maybe_wipe_obj_freeptr(s, p[i]);
4020 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4021 kmem_cache_free_bulk(s, i, p);
4024 #endif /* CONFIG_SLUB_TINY */
4026 /* Note that interrupts must be enabled when calling this function. */
4027 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4031 struct obj_cgroup *objcg = NULL;
4036 /* memcg and kmem_cache debug support */
4037 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4041 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4044 * memcg and kmem_cache debug support and memory initialization.
4045 * Done outside of the IRQ disabled fastpath loop.
4048 slab_post_alloc_hook(s, objcg, flags, size, p,
4049 slab_want_init_on_alloc(flags, s), s->object_size);
4052 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4056 * Object placement in a slab is made very easy because we always start at
4057 * offset 0. If we tune the size of the object to the alignment then we can
4058 * get the required alignment by putting one properly sized object after
4061 * Notice that the allocation order determines the sizes of the per cpu
4062 * caches. Each processor has always one slab available for allocations.
4063 * Increasing the allocation order reduces the number of times that slabs
4064 * must be moved on and off the partial lists and is therefore a factor in
4069 * Minimum / Maximum order of slab pages. This influences locking overhead
4070 * and slab fragmentation. A higher order reduces the number of partial slabs
4071 * and increases the number of allocations possible without having to
4072 * take the list_lock.
4074 static unsigned int slub_min_order;
4075 static unsigned int slub_max_order =
4076 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4077 static unsigned int slub_min_objects;
4080 * Calculate the order of allocation given an slab object size.
4082 * The order of allocation has significant impact on performance and other
4083 * system components. Generally order 0 allocations should be preferred since
4084 * order 0 does not cause fragmentation in the page allocator. Larger objects
4085 * be problematic to put into order 0 slabs because there may be too much
4086 * unused space left. We go to a higher order if more than 1/16th of the slab
4089 * In order to reach satisfactory performance we must ensure that a minimum
4090 * number of objects is in one slab. Otherwise we may generate too much
4091 * activity on the partial lists which requires taking the list_lock. This is
4092 * less a concern for large slabs though which are rarely used.
4094 * slub_max_order specifies the order where we begin to stop considering the
4095 * number of objects in a slab as critical. If we reach slub_max_order then
4096 * we try to keep the page order as low as possible. So we accept more waste
4097 * of space in favor of a small page order.
4099 * Higher order allocations also allow the placement of more objects in a
4100 * slab and thereby reduce object handling overhead. If the user has
4101 * requested a higher minimum order then we start with that one instead of
4102 * the smallest order which will fit the object.
4104 static inline unsigned int calc_slab_order(unsigned int size,
4105 unsigned int min_objects, unsigned int max_order,
4106 unsigned int fract_leftover)
4108 unsigned int min_order = slub_min_order;
4111 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4112 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4114 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4115 order <= max_order; order++) {
4117 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4120 rem = slab_size % size;
4122 if (rem <= slab_size / fract_leftover)
4129 static inline int calculate_order(unsigned int size)
4132 unsigned int min_objects;
4133 unsigned int max_objects;
4134 unsigned int nr_cpus;
4137 * Attempt to find best configuration for a slab. This
4138 * works by first attempting to generate a layout with
4139 * the best configuration and backing off gradually.
4141 * First we increase the acceptable waste in a slab. Then
4142 * we reduce the minimum objects required in a slab.
4144 min_objects = slub_min_objects;
4147 * Some architectures will only update present cpus when
4148 * onlining them, so don't trust the number if it's just 1. But
4149 * we also don't want to use nr_cpu_ids always, as on some other
4150 * architectures, there can be many possible cpus, but never
4151 * onlined. Here we compromise between trying to avoid too high
4152 * order on systems that appear larger than they are, and too
4153 * low order on systems that appear smaller than they are.
4155 nr_cpus = num_present_cpus();
4157 nr_cpus = nr_cpu_ids;
4158 min_objects = 4 * (fls(nr_cpus) + 1);
4160 max_objects = order_objects(slub_max_order, size);
4161 min_objects = min(min_objects, max_objects);
4163 while (min_objects > 1) {
4164 unsigned int fraction;
4167 while (fraction >= 4) {
4168 order = calc_slab_order(size, min_objects,
4169 slub_max_order, fraction);
4170 if (order <= slub_max_order)
4178 * We were unable to place multiple objects in a slab. Now
4179 * lets see if we can place a single object there.
4181 order = calc_slab_order(size, 1, slub_max_order, 1);
4182 if (order <= slub_max_order)
4186 * Doh this slab cannot be placed using slub_max_order.
4188 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4189 if (order <= MAX_ORDER)
4195 init_kmem_cache_node(struct kmem_cache_node *n)
4198 spin_lock_init(&n->list_lock);
4199 INIT_LIST_HEAD(&n->partial);
4200 #ifdef CONFIG_SLUB_DEBUG
4201 atomic_long_set(&n->nr_slabs, 0);
4202 atomic_long_set(&n->total_objects, 0);
4203 INIT_LIST_HEAD(&n->full);
4207 #ifndef CONFIG_SLUB_TINY
4208 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4210 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4211 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4212 sizeof(struct kmem_cache_cpu));
4215 * Must align to double word boundary for the double cmpxchg
4216 * instructions to work; see __pcpu_double_call_return_bool().
4218 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4219 2 * sizeof(void *));
4224 init_kmem_cache_cpus(s);
4229 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4233 #endif /* CONFIG_SLUB_TINY */
4235 static struct kmem_cache *kmem_cache_node;
4238 * No kmalloc_node yet so do it by hand. We know that this is the first
4239 * slab on the node for this slabcache. There are no concurrent accesses
4242 * Note that this function only works on the kmem_cache_node
4243 * when allocating for the kmem_cache_node. This is used for bootstrapping
4244 * memory on a fresh node that has no slab structures yet.
4246 static void early_kmem_cache_node_alloc(int node)
4249 struct kmem_cache_node *n;
4251 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4253 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4256 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4257 if (slab_nid(slab) != node) {
4258 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4259 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4264 #ifdef CONFIG_SLUB_DEBUG
4265 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4266 init_tracking(kmem_cache_node, n);
4268 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4269 slab->freelist = get_freepointer(kmem_cache_node, n);
4271 kmem_cache_node->node[node] = n;
4272 init_kmem_cache_node(n);
4273 inc_slabs_node(kmem_cache_node, node, slab->objects);
4276 * No locks need to be taken here as it has just been
4277 * initialized and there is no concurrent access.
4279 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4282 static void free_kmem_cache_nodes(struct kmem_cache *s)
4285 struct kmem_cache_node *n;
4287 for_each_kmem_cache_node(s, node, n) {
4288 s->node[node] = NULL;
4289 kmem_cache_free(kmem_cache_node, n);
4293 void __kmem_cache_release(struct kmem_cache *s)
4295 cache_random_seq_destroy(s);
4296 #ifndef CONFIG_SLUB_TINY
4297 free_percpu(s->cpu_slab);
4299 free_kmem_cache_nodes(s);
4302 static int init_kmem_cache_nodes(struct kmem_cache *s)
4306 for_each_node_mask(node, slab_nodes) {
4307 struct kmem_cache_node *n;
4309 if (slab_state == DOWN) {
4310 early_kmem_cache_node_alloc(node);
4313 n = kmem_cache_alloc_node(kmem_cache_node,
4317 free_kmem_cache_nodes(s);
4321 init_kmem_cache_node(n);
4327 static void set_cpu_partial(struct kmem_cache *s)
4329 #ifdef CONFIG_SLUB_CPU_PARTIAL
4330 unsigned int nr_objects;
4333 * cpu_partial determined the maximum number of objects kept in the
4334 * per cpu partial lists of a processor.
4336 * Per cpu partial lists mainly contain slabs that just have one
4337 * object freed. If they are used for allocation then they can be
4338 * filled up again with minimal effort. The slab will never hit the
4339 * per node partial lists and therefore no locking will be required.
4341 * For backwards compatibility reasons, this is determined as number
4342 * of objects, even though we now limit maximum number of pages, see
4343 * slub_set_cpu_partial()
4345 if (!kmem_cache_has_cpu_partial(s))
4347 else if (s->size >= PAGE_SIZE)
4349 else if (s->size >= 1024)
4351 else if (s->size >= 256)
4356 slub_set_cpu_partial(s, nr_objects);
4361 * calculate_sizes() determines the order and the distribution of data within
4364 static int calculate_sizes(struct kmem_cache *s)
4366 slab_flags_t flags = s->flags;
4367 unsigned int size = s->object_size;
4371 * Round up object size to the next word boundary. We can only
4372 * place the free pointer at word boundaries and this determines
4373 * the possible location of the free pointer.
4375 size = ALIGN(size, sizeof(void *));
4377 #ifdef CONFIG_SLUB_DEBUG
4379 * Determine if we can poison the object itself. If the user of
4380 * the slab may touch the object after free or before allocation
4381 * then we should never poison the object itself.
4383 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4385 s->flags |= __OBJECT_POISON;
4387 s->flags &= ~__OBJECT_POISON;
4391 * If we are Redzoning then check if there is some space between the
4392 * end of the object and the free pointer. If not then add an
4393 * additional word to have some bytes to store Redzone information.
4395 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4396 size += sizeof(void *);
4400 * With that we have determined the number of bytes in actual use
4401 * by the object and redzoning.
4405 if (slub_debug_orig_size(s) ||
4406 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4407 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4410 * Relocate free pointer after the object if it is not
4411 * permitted to overwrite the first word of the object on
4414 * This is the case if we do RCU, have a constructor or
4415 * destructor, are poisoning the objects, or are
4416 * redzoning an object smaller than sizeof(void *).
4418 * The assumption that s->offset >= s->inuse means free
4419 * pointer is outside of the object is used in the
4420 * freeptr_outside_object() function. If that is no
4421 * longer true, the function needs to be modified.
4424 size += sizeof(void *);
4427 * Store freelist pointer near middle of object to keep
4428 * it away from the edges of the object to avoid small
4429 * sized over/underflows from neighboring allocations.
4431 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4434 #ifdef CONFIG_SLUB_DEBUG
4435 if (flags & SLAB_STORE_USER) {
4437 * Need to store information about allocs and frees after
4440 size += 2 * sizeof(struct track);
4442 /* Save the original kmalloc request size */
4443 if (flags & SLAB_KMALLOC)
4444 size += sizeof(unsigned int);
4448 kasan_cache_create(s, &size, &s->flags);
4449 #ifdef CONFIG_SLUB_DEBUG
4450 if (flags & SLAB_RED_ZONE) {
4452 * Add some empty padding so that we can catch
4453 * overwrites from earlier objects rather than let
4454 * tracking information or the free pointer be
4455 * corrupted if a user writes before the start
4458 size += sizeof(void *);
4460 s->red_left_pad = sizeof(void *);
4461 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4462 size += s->red_left_pad;
4467 * SLUB stores one object immediately after another beginning from
4468 * offset 0. In order to align the objects we have to simply size
4469 * each object to conform to the alignment.
4471 size = ALIGN(size, s->align);
4473 s->reciprocal_size = reciprocal_value(size);
4474 order = calculate_order(size);
4481 s->allocflags |= __GFP_COMP;
4483 if (s->flags & SLAB_CACHE_DMA)
4484 s->allocflags |= GFP_DMA;
4486 if (s->flags & SLAB_CACHE_DMA32)
4487 s->allocflags |= GFP_DMA32;
4489 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4490 s->allocflags |= __GFP_RECLAIMABLE;
4493 * Determine the number of objects per slab
4495 s->oo = oo_make(order, size);
4496 s->min = oo_make(get_order(size), size);
4498 return !!oo_objects(s->oo);
4501 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4503 s->flags = kmem_cache_flags(s->size, flags, s->name);
4504 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4505 s->random = get_random_long();
4508 if (!calculate_sizes(s))
4510 if (disable_higher_order_debug) {
4512 * Disable debugging flags that store metadata if the min slab
4515 if (get_order(s->size) > get_order(s->object_size)) {
4516 s->flags &= ~DEBUG_METADATA_FLAGS;
4518 if (!calculate_sizes(s))
4523 #ifdef system_has_freelist_aba
4524 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
4525 /* Enable fast mode */
4526 s->flags |= __CMPXCHG_DOUBLE;
4531 * The larger the object size is, the more slabs we want on the partial
4532 * list to avoid pounding the page allocator excessively.
4534 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4535 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4540 s->remote_node_defrag_ratio = 1000;
4543 /* Initialize the pre-computed randomized freelist if slab is up */
4544 if (slab_state >= UP) {
4545 if (init_cache_random_seq(s))
4549 if (!init_kmem_cache_nodes(s))
4552 if (alloc_kmem_cache_cpus(s))
4556 __kmem_cache_release(s);
4560 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4563 #ifdef CONFIG_SLUB_DEBUG
4564 void *addr = slab_address(slab);
4567 slab_err(s, slab, text, s->name);
4569 spin_lock(&object_map_lock);
4570 __fill_map(object_map, s, slab);
4572 for_each_object(p, s, addr, slab->objects) {
4574 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4575 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4576 print_tracking(s, p);
4579 spin_unlock(&object_map_lock);
4584 * Attempt to free all partial slabs on a node.
4585 * This is called from __kmem_cache_shutdown(). We must take list_lock
4586 * because sysfs file might still access partial list after the shutdowning.
4588 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4591 struct slab *slab, *h;
4593 BUG_ON(irqs_disabled());
4594 spin_lock_irq(&n->list_lock);
4595 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4597 remove_partial(n, slab);
4598 list_add(&slab->slab_list, &discard);
4600 list_slab_objects(s, slab,
4601 "Objects remaining in %s on __kmem_cache_shutdown()");
4604 spin_unlock_irq(&n->list_lock);
4606 list_for_each_entry_safe(slab, h, &discard, slab_list)
4607 discard_slab(s, slab);
4610 bool __kmem_cache_empty(struct kmem_cache *s)
4613 struct kmem_cache_node *n;
4615 for_each_kmem_cache_node(s, node, n)
4616 if (n->nr_partial || node_nr_slabs(n))
4622 * Release all resources used by a slab cache.
4624 int __kmem_cache_shutdown(struct kmem_cache *s)
4627 struct kmem_cache_node *n;
4629 flush_all_cpus_locked(s);
4630 /* Attempt to free all objects */
4631 for_each_kmem_cache_node(s, node, n) {
4633 if (n->nr_partial || node_nr_slabs(n))
4639 #ifdef CONFIG_PRINTK
4640 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4643 int __maybe_unused i;
4647 struct kmem_cache *s = slab->slab_cache;
4648 struct track __maybe_unused *trackp;
4650 kpp->kp_ptr = object;
4651 kpp->kp_slab = slab;
4652 kpp->kp_slab_cache = s;
4653 base = slab_address(slab);
4654 objp0 = kasan_reset_tag(object);
4655 #ifdef CONFIG_SLUB_DEBUG
4656 objp = restore_red_left(s, objp0);
4660 objnr = obj_to_index(s, slab, objp);
4661 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4662 objp = base + s->size * objnr;
4663 kpp->kp_objp = objp;
4664 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4665 || (objp - base) % s->size) ||
4666 !(s->flags & SLAB_STORE_USER))
4668 #ifdef CONFIG_SLUB_DEBUG
4669 objp = fixup_red_left(s, objp);
4670 trackp = get_track(s, objp, TRACK_ALLOC);
4671 kpp->kp_ret = (void *)trackp->addr;
4672 #ifdef CONFIG_STACKDEPOT
4674 depot_stack_handle_t handle;
4675 unsigned long *entries;
4676 unsigned int nr_entries;
4678 handle = READ_ONCE(trackp->handle);
4680 nr_entries = stack_depot_fetch(handle, &entries);
4681 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4682 kpp->kp_stack[i] = (void *)entries[i];
4685 trackp = get_track(s, objp, TRACK_FREE);
4686 handle = READ_ONCE(trackp->handle);
4688 nr_entries = stack_depot_fetch(handle, &entries);
4689 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4690 kpp->kp_free_stack[i] = (void *)entries[i];
4698 /********************************************************************
4700 *******************************************************************/
4702 static int __init setup_slub_min_order(char *str)
4704 get_option(&str, (int *)&slub_min_order);
4709 __setup("slub_min_order=", setup_slub_min_order);
4711 static int __init setup_slub_max_order(char *str)
4713 get_option(&str, (int *)&slub_max_order);
4714 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4719 __setup("slub_max_order=", setup_slub_max_order);
4721 static int __init setup_slub_min_objects(char *str)
4723 get_option(&str, (int *)&slub_min_objects);
4728 __setup("slub_min_objects=", setup_slub_min_objects);
4730 #ifdef CONFIG_HARDENED_USERCOPY
4732 * Rejects incorrectly sized objects and objects that are to be copied
4733 * to/from userspace but do not fall entirely within the containing slab
4734 * cache's usercopy region.
4736 * Returns NULL if check passes, otherwise const char * to name of cache
4737 * to indicate an error.
4739 void __check_heap_object(const void *ptr, unsigned long n,
4740 const struct slab *slab, bool to_user)
4742 struct kmem_cache *s;
4743 unsigned int offset;
4744 bool is_kfence = is_kfence_address(ptr);
4746 ptr = kasan_reset_tag(ptr);
4748 /* Find object and usable object size. */
4749 s = slab->slab_cache;
4751 /* Reject impossible pointers. */
4752 if (ptr < slab_address(slab))
4753 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4756 /* Find offset within object. */
4758 offset = ptr - kfence_object_start(ptr);
4760 offset = (ptr - slab_address(slab)) % s->size;
4762 /* Adjust for redzone and reject if within the redzone. */
4763 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4764 if (offset < s->red_left_pad)
4765 usercopy_abort("SLUB object in left red zone",
4766 s->name, to_user, offset, n);
4767 offset -= s->red_left_pad;
4770 /* Allow address range falling entirely within usercopy region. */
4771 if (offset >= s->useroffset &&
4772 offset - s->useroffset <= s->usersize &&
4773 n <= s->useroffset - offset + s->usersize)
4776 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4778 #endif /* CONFIG_HARDENED_USERCOPY */
4780 #define SHRINK_PROMOTE_MAX 32
4783 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4784 * up most to the head of the partial lists. New allocations will then
4785 * fill those up and thus they can be removed from the partial lists.
4787 * The slabs with the least items are placed last. This results in them
4788 * being allocated from last increasing the chance that the last objects
4789 * are freed in them.
4791 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4795 struct kmem_cache_node *n;
4798 struct list_head discard;
4799 struct list_head promote[SHRINK_PROMOTE_MAX];
4800 unsigned long flags;
4803 for_each_kmem_cache_node(s, node, n) {
4804 INIT_LIST_HEAD(&discard);
4805 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4806 INIT_LIST_HEAD(promote + i);
4808 spin_lock_irqsave(&n->list_lock, flags);
4811 * Build lists of slabs to discard or promote.
4813 * Note that concurrent frees may occur while we hold the
4814 * list_lock. slab->inuse here is the upper limit.
4816 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4817 int free = slab->objects - slab->inuse;
4819 /* Do not reread slab->inuse */
4822 /* We do not keep full slabs on the list */
4825 if (free == slab->objects) {
4826 list_move(&slab->slab_list, &discard);
4828 dec_slabs_node(s, node, slab->objects);
4829 } else if (free <= SHRINK_PROMOTE_MAX)
4830 list_move(&slab->slab_list, promote + free - 1);
4834 * Promote the slabs filled up most to the head of the
4837 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4838 list_splice(promote + i, &n->partial);
4840 spin_unlock_irqrestore(&n->list_lock, flags);
4842 /* Release empty slabs */
4843 list_for_each_entry_safe(slab, t, &discard, slab_list)
4846 if (node_nr_slabs(n))
4853 int __kmem_cache_shrink(struct kmem_cache *s)
4856 return __kmem_cache_do_shrink(s);
4859 static int slab_mem_going_offline_callback(void *arg)
4861 struct kmem_cache *s;
4863 mutex_lock(&slab_mutex);
4864 list_for_each_entry(s, &slab_caches, list) {
4865 flush_all_cpus_locked(s);
4866 __kmem_cache_do_shrink(s);
4868 mutex_unlock(&slab_mutex);
4873 static void slab_mem_offline_callback(void *arg)
4875 struct memory_notify *marg = arg;
4878 offline_node = marg->status_change_nid_normal;
4881 * If the node still has available memory. we need kmem_cache_node
4884 if (offline_node < 0)
4887 mutex_lock(&slab_mutex);
4888 node_clear(offline_node, slab_nodes);
4890 * We no longer free kmem_cache_node structures here, as it would be
4891 * racy with all get_node() users, and infeasible to protect them with
4894 mutex_unlock(&slab_mutex);
4897 static int slab_mem_going_online_callback(void *arg)
4899 struct kmem_cache_node *n;
4900 struct kmem_cache *s;
4901 struct memory_notify *marg = arg;
4902 int nid = marg->status_change_nid_normal;
4906 * If the node's memory is already available, then kmem_cache_node is
4907 * already created. Nothing to do.
4913 * We are bringing a node online. No memory is available yet. We must
4914 * allocate a kmem_cache_node structure in order to bring the node
4917 mutex_lock(&slab_mutex);
4918 list_for_each_entry(s, &slab_caches, list) {
4920 * The structure may already exist if the node was previously
4921 * onlined and offlined.
4923 if (get_node(s, nid))
4926 * XXX: kmem_cache_alloc_node will fallback to other nodes
4927 * since memory is not yet available from the node that
4930 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4935 init_kmem_cache_node(n);
4939 * Any cache created after this point will also have kmem_cache_node
4940 * initialized for the new node.
4942 node_set(nid, slab_nodes);
4944 mutex_unlock(&slab_mutex);
4948 static int slab_memory_callback(struct notifier_block *self,
4949 unsigned long action, void *arg)
4954 case MEM_GOING_ONLINE:
4955 ret = slab_mem_going_online_callback(arg);
4957 case MEM_GOING_OFFLINE:
4958 ret = slab_mem_going_offline_callback(arg);
4961 case MEM_CANCEL_ONLINE:
4962 slab_mem_offline_callback(arg);
4965 case MEM_CANCEL_OFFLINE:
4969 ret = notifier_from_errno(ret);
4975 /********************************************************************
4976 * Basic setup of slabs
4977 *******************************************************************/
4980 * Used for early kmem_cache structures that were allocated using
4981 * the page allocator. Allocate them properly then fix up the pointers
4982 * that may be pointing to the wrong kmem_cache structure.
4985 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4988 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4989 struct kmem_cache_node *n;
4991 memcpy(s, static_cache, kmem_cache->object_size);
4994 * This runs very early, and only the boot processor is supposed to be
4995 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4998 __flush_cpu_slab(s, smp_processor_id());
4999 for_each_kmem_cache_node(s, node, n) {
5002 list_for_each_entry(p, &n->partial, slab_list)
5005 #ifdef CONFIG_SLUB_DEBUG
5006 list_for_each_entry(p, &n->full, slab_list)
5010 list_add(&s->list, &slab_caches);
5014 void __init kmem_cache_init(void)
5016 static __initdata struct kmem_cache boot_kmem_cache,
5017 boot_kmem_cache_node;
5020 if (debug_guardpage_minorder())
5023 /* Print slub debugging pointers without hashing */
5024 if (__slub_debug_enabled())
5025 no_hash_pointers_enable(NULL);
5027 kmem_cache_node = &boot_kmem_cache_node;
5028 kmem_cache = &boot_kmem_cache;
5031 * Initialize the nodemask for which we will allocate per node
5032 * structures. Here we don't need taking slab_mutex yet.
5034 for_each_node_state(node, N_NORMAL_MEMORY)
5035 node_set(node, slab_nodes);
5037 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5038 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5040 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5042 /* Able to allocate the per node structures */
5043 slab_state = PARTIAL;
5045 create_boot_cache(kmem_cache, "kmem_cache",
5046 offsetof(struct kmem_cache, node) +
5047 nr_node_ids * sizeof(struct kmem_cache_node *),
5048 SLAB_HWCACHE_ALIGN, 0, 0);
5050 kmem_cache = bootstrap(&boot_kmem_cache);
5051 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5053 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5054 setup_kmalloc_cache_index_table();
5055 create_kmalloc_caches(0);
5057 /* Setup random freelists for each cache */
5058 init_freelist_randomization();
5060 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5063 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5065 slub_min_order, slub_max_order, slub_min_objects,
5066 nr_cpu_ids, nr_node_ids);
5069 void __init kmem_cache_init_late(void)
5071 #ifndef CONFIG_SLUB_TINY
5072 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5078 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5079 slab_flags_t flags, void (*ctor)(void *))
5081 struct kmem_cache *s;
5083 s = find_mergeable(size, align, flags, name, ctor);
5085 if (sysfs_slab_alias(s, name))
5091 * Adjust the object sizes so that we clear
5092 * the complete object on kzalloc.
5094 s->object_size = max(s->object_size, size);
5095 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5101 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5105 err = kmem_cache_open(s, flags);
5109 /* Mutex is not taken during early boot */
5110 if (slab_state <= UP)
5113 err = sysfs_slab_add(s);
5115 __kmem_cache_release(s);
5119 if (s->flags & SLAB_STORE_USER)
5120 debugfs_slab_add(s);
5125 #ifdef SLAB_SUPPORTS_SYSFS
5126 static int count_inuse(struct slab *slab)
5131 static int count_total(struct slab *slab)
5133 return slab->objects;
5137 #ifdef CONFIG_SLUB_DEBUG
5138 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5139 unsigned long *obj_map)
5142 void *addr = slab_address(slab);
5144 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5147 /* Now we know that a valid freelist exists */
5148 __fill_map(obj_map, s, slab);
5149 for_each_object(p, s, addr, slab->objects) {
5150 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5151 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5153 if (!check_object(s, slab, p, val))
5158 static int validate_slab_node(struct kmem_cache *s,
5159 struct kmem_cache_node *n, unsigned long *obj_map)
5161 unsigned long count = 0;
5163 unsigned long flags;
5165 spin_lock_irqsave(&n->list_lock, flags);
5167 list_for_each_entry(slab, &n->partial, slab_list) {
5168 validate_slab(s, slab, obj_map);
5171 if (count != n->nr_partial) {
5172 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5173 s->name, count, n->nr_partial);
5174 slab_add_kunit_errors();
5177 if (!(s->flags & SLAB_STORE_USER))
5180 list_for_each_entry(slab, &n->full, slab_list) {
5181 validate_slab(s, slab, obj_map);
5184 if (count != node_nr_slabs(n)) {
5185 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5186 s->name, count, node_nr_slabs(n));
5187 slab_add_kunit_errors();
5191 spin_unlock_irqrestore(&n->list_lock, flags);
5195 long validate_slab_cache(struct kmem_cache *s)
5198 unsigned long count = 0;
5199 struct kmem_cache_node *n;
5200 unsigned long *obj_map;
5202 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5207 for_each_kmem_cache_node(s, node, n)
5208 count += validate_slab_node(s, n, obj_map);
5210 bitmap_free(obj_map);
5214 EXPORT_SYMBOL(validate_slab_cache);
5216 #ifdef CONFIG_DEBUG_FS
5218 * Generate lists of code addresses where slabcache objects are allocated
5223 depot_stack_handle_t handle;
5224 unsigned long count;
5226 unsigned long waste;
5232 DECLARE_BITMAP(cpus, NR_CPUS);
5238 unsigned long count;
5239 struct location *loc;
5243 static struct dentry *slab_debugfs_root;
5245 static void free_loc_track(struct loc_track *t)
5248 free_pages((unsigned long)t->loc,
5249 get_order(sizeof(struct location) * t->max));
5252 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5257 order = get_order(sizeof(struct location) * max);
5259 l = (void *)__get_free_pages(flags, order);
5264 memcpy(l, t->loc, sizeof(struct location) * t->count);
5272 static int add_location(struct loc_track *t, struct kmem_cache *s,
5273 const struct track *track,
5274 unsigned int orig_size)
5276 long start, end, pos;
5278 unsigned long caddr, chandle, cwaste;
5279 unsigned long age = jiffies - track->when;
5280 depot_stack_handle_t handle = 0;
5281 unsigned int waste = s->object_size - orig_size;
5283 #ifdef CONFIG_STACKDEPOT
5284 handle = READ_ONCE(track->handle);
5290 pos = start + (end - start + 1) / 2;
5293 * There is nothing at "end". If we end up there
5294 * we need to add something to before end.
5301 chandle = l->handle;
5303 if ((track->addr == caddr) && (handle == chandle) &&
5304 (waste == cwaste)) {
5309 if (age < l->min_time)
5311 if (age > l->max_time)
5314 if (track->pid < l->min_pid)
5315 l->min_pid = track->pid;
5316 if (track->pid > l->max_pid)
5317 l->max_pid = track->pid;
5319 cpumask_set_cpu(track->cpu,
5320 to_cpumask(l->cpus));
5322 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5326 if (track->addr < caddr)
5328 else if (track->addr == caddr && handle < chandle)
5330 else if (track->addr == caddr && handle == chandle &&
5338 * Not found. Insert new tracking element.
5340 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5346 (t->count - pos) * sizeof(struct location));
5349 l->addr = track->addr;
5353 l->min_pid = track->pid;
5354 l->max_pid = track->pid;
5357 cpumask_clear(to_cpumask(l->cpus));
5358 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5359 nodes_clear(l->nodes);
5360 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5364 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5365 struct slab *slab, enum track_item alloc,
5366 unsigned long *obj_map)
5368 void *addr = slab_address(slab);
5369 bool is_alloc = (alloc == TRACK_ALLOC);
5372 __fill_map(obj_map, s, slab);
5374 for_each_object(p, s, addr, slab->objects)
5375 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5376 add_location(t, s, get_track(s, p, alloc),
5377 is_alloc ? get_orig_size(s, p) :
5380 #endif /* CONFIG_DEBUG_FS */
5381 #endif /* CONFIG_SLUB_DEBUG */
5383 #ifdef SLAB_SUPPORTS_SYSFS
5384 enum slab_stat_type {
5385 SL_ALL, /* All slabs */
5386 SL_PARTIAL, /* Only partially allocated slabs */
5387 SL_CPU, /* Only slabs used for cpu caches */
5388 SL_OBJECTS, /* Determine allocated objects not slabs */
5389 SL_TOTAL /* Determine object capacity not slabs */
5392 #define SO_ALL (1 << SL_ALL)
5393 #define SO_PARTIAL (1 << SL_PARTIAL)
5394 #define SO_CPU (1 << SL_CPU)
5395 #define SO_OBJECTS (1 << SL_OBJECTS)
5396 #define SO_TOTAL (1 << SL_TOTAL)
5398 static ssize_t show_slab_objects(struct kmem_cache *s,
5399 char *buf, unsigned long flags)
5401 unsigned long total = 0;
5404 unsigned long *nodes;
5407 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5411 if (flags & SO_CPU) {
5414 for_each_possible_cpu(cpu) {
5415 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5420 slab = READ_ONCE(c->slab);
5424 node = slab_nid(slab);
5425 if (flags & SO_TOTAL)
5427 else if (flags & SO_OBJECTS)
5435 #ifdef CONFIG_SLUB_CPU_PARTIAL
5436 slab = slub_percpu_partial_read_once(c);
5438 node = slab_nid(slab);
5439 if (flags & SO_TOTAL)
5441 else if (flags & SO_OBJECTS)
5453 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5454 * already held which will conflict with an existing lock order:
5456 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5458 * We don't really need mem_hotplug_lock (to hold off
5459 * slab_mem_going_offline_callback) here because slab's memory hot
5460 * unplug code doesn't destroy the kmem_cache->node[] data.
5463 #ifdef CONFIG_SLUB_DEBUG
5464 if (flags & SO_ALL) {
5465 struct kmem_cache_node *n;
5467 for_each_kmem_cache_node(s, node, n) {
5469 if (flags & SO_TOTAL)
5470 x = node_nr_objs(n);
5471 else if (flags & SO_OBJECTS)
5472 x = node_nr_objs(n) - count_partial(n, count_free);
5474 x = node_nr_slabs(n);
5481 if (flags & SO_PARTIAL) {
5482 struct kmem_cache_node *n;
5484 for_each_kmem_cache_node(s, node, n) {
5485 if (flags & SO_TOTAL)
5486 x = count_partial(n, count_total);
5487 else if (flags & SO_OBJECTS)
5488 x = count_partial(n, count_inuse);
5496 len += sysfs_emit_at(buf, len, "%lu", total);
5498 for (node = 0; node < nr_node_ids; node++) {
5500 len += sysfs_emit_at(buf, len, " N%d=%lu",
5504 len += sysfs_emit_at(buf, len, "\n");
5510 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5511 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5513 struct slab_attribute {
5514 struct attribute attr;
5515 ssize_t (*show)(struct kmem_cache *s, char *buf);
5516 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5519 #define SLAB_ATTR_RO(_name) \
5520 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5522 #define SLAB_ATTR(_name) \
5523 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5525 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5527 return sysfs_emit(buf, "%u\n", s->size);
5529 SLAB_ATTR_RO(slab_size);
5531 static ssize_t align_show(struct kmem_cache *s, char *buf)
5533 return sysfs_emit(buf, "%u\n", s->align);
5535 SLAB_ATTR_RO(align);
5537 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5539 return sysfs_emit(buf, "%u\n", s->object_size);
5541 SLAB_ATTR_RO(object_size);
5543 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5545 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5547 SLAB_ATTR_RO(objs_per_slab);
5549 static ssize_t order_show(struct kmem_cache *s, char *buf)
5551 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5553 SLAB_ATTR_RO(order);
5555 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5557 return sysfs_emit(buf, "%lu\n", s->min_partial);
5560 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5566 err = kstrtoul(buf, 10, &min);
5570 s->min_partial = min;
5573 SLAB_ATTR(min_partial);
5575 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5577 unsigned int nr_partial = 0;
5578 #ifdef CONFIG_SLUB_CPU_PARTIAL
5579 nr_partial = s->cpu_partial;
5582 return sysfs_emit(buf, "%u\n", nr_partial);
5585 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5588 unsigned int objects;
5591 err = kstrtouint(buf, 10, &objects);
5594 if (objects && !kmem_cache_has_cpu_partial(s))
5597 slub_set_cpu_partial(s, objects);
5601 SLAB_ATTR(cpu_partial);
5603 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5607 return sysfs_emit(buf, "%pS\n", s->ctor);
5611 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5613 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5615 SLAB_ATTR_RO(aliases);
5617 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5619 return show_slab_objects(s, buf, SO_PARTIAL);
5621 SLAB_ATTR_RO(partial);
5623 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5625 return show_slab_objects(s, buf, SO_CPU);
5627 SLAB_ATTR_RO(cpu_slabs);
5629 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5631 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5633 SLAB_ATTR_RO(objects_partial);
5635 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5639 int cpu __maybe_unused;
5642 #ifdef CONFIG_SLUB_CPU_PARTIAL
5643 for_each_online_cpu(cpu) {
5646 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5649 slabs += slab->slabs;
5653 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5654 objects = (slabs * oo_objects(s->oo)) / 2;
5655 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5657 #ifdef CONFIG_SLUB_CPU_PARTIAL
5658 for_each_online_cpu(cpu) {
5661 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5663 slabs = READ_ONCE(slab->slabs);
5664 objects = (slabs * oo_objects(s->oo)) / 2;
5665 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5666 cpu, objects, slabs);
5670 len += sysfs_emit_at(buf, len, "\n");
5674 SLAB_ATTR_RO(slabs_cpu_partial);
5676 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5678 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5680 SLAB_ATTR_RO(reclaim_account);
5682 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5684 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5686 SLAB_ATTR_RO(hwcache_align);
5688 #ifdef CONFIG_ZONE_DMA
5689 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5691 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5693 SLAB_ATTR_RO(cache_dma);
5696 #ifdef CONFIG_HARDENED_USERCOPY
5697 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5699 return sysfs_emit(buf, "%u\n", s->usersize);
5701 SLAB_ATTR_RO(usersize);
5704 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5706 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5708 SLAB_ATTR_RO(destroy_by_rcu);
5710 #ifdef CONFIG_SLUB_DEBUG
5711 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5713 return show_slab_objects(s, buf, SO_ALL);
5715 SLAB_ATTR_RO(slabs);
5717 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5719 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5721 SLAB_ATTR_RO(total_objects);
5723 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5725 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5727 SLAB_ATTR_RO(objects);
5729 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5731 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5733 SLAB_ATTR_RO(sanity_checks);
5735 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5737 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5739 SLAB_ATTR_RO(trace);
5741 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5743 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5746 SLAB_ATTR_RO(red_zone);
5748 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5750 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5753 SLAB_ATTR_RO(poison);
5755 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5757 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5760 SLAB_ATTR_RO(store_user);
5762 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5767 static ssize_t validate_store(struct kmem_cache *s,
5768 const char *buf, size_t length)
5772 if (buf[0] == '1' && kmem_cache_debug(s)) {
5773 ret = validate_slab_cache(s);
5779 SLAB_ATTR(validate);
5781 #endif /* CONFIG_SLUB_DEBUG */
5783 #ifdef CONFIG_FAILSLAB
5784 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5786 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5789 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5792 if (s->refcount > 1)
5796 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5798 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5802 SLAB_ATTR(failslab);
5805 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5810 static ssize_t shrink_store(struct kmem_cache *s,
5811 const char *buf, size_t length)
5814 kmem_cache_shrink(s);
5822 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5824 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5827 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5828 const char *buf, size_t length)
5833 err = kstrtouint(buf, 10, &ratio);
5839 s->remote_node_defrag_ratio = ratio * 10;
5843 SLAB_ATTR(remote_node_defrag_ratio);
5846 #ifdef CONFIG_SLUB_STATS
5847 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5849 unsigned long sum = 0;
5852 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5857 for_each_online_cpu(cpu) {
5858 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5864 len += sysfs_emit_at(buf, len, "%lu", sum);
5867 for_each_online_cpu(cpu) {
5869 len += sysfs_emit_at(buf, len, " C%d=%u",
5874 len += sysfs_emit_at(buf, len, "\n");
5879 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5883 for_each_online_cpu(cpu)
5884 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5887 #define STAT_ATTR(si, text) \
5888 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5890 return show_stat(s, buf, si); \
5892 static ssize_t text##_store(struct kmem_cache *s, \
5893 const char *buf, size_t length) \
5895 if (buf[0] != '0') \
5897 clear_stat(s, si); \
5902 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5903 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5904 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5905 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5906 STAT_ATTR(FREE_FROZEN, free_frozen);
5907 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5908 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5909 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5910 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5911 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5912 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5913 STAT_ATTR(FREE_SLAB, free_slab);
5914 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5915 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5916 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5917 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5918 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5919 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5920 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5921 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5922 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5923 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5924 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5925 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5926 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5927 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5928 #endif /* CONFIG_SLUB_STATS */
5930 #ifdef CONFIG_KFENCE
5931 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5933 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5936 static ssize_t skip_kfence_store(struct kmem_cache *s,
5937 const char *buf, size_t length)
5942 s->flags &= ~SLAB_SKIP_KFENCE;
5943 else if (buf[0] == '1')
5944 s->flags |= SLAB_SKIP_KFENCE;
5950 SLAB_ATTR(skip_kfence);
5953 static struct attribute *slab_attrs[] = {
5954 &slab_size_attr.attr,
5955 &object_size_attr.attr,
5956 &objs_per_slab_attr.attr,
5958 &min_partial_attr.attr,
5959 &cpu_partial_attr.attr,
5960 &objects_partial_attr.attr,
5962 &cpu_slabs_attr.attr,
5966 &hwcache_align_attr.attr,
5967 &reclaim_account_attr.attr,
5968 &destroy_by_rcu_attr.attr,
5970 &slabs_cpu_partial_attr.attr,
5971 #ifdef CONFIG_SLUB_DEBUG
5972 &total_objects_attr.attr,
5975 &sanity_checks_attr.attr,
5977 &red_zone_attr.attr,
5979 &store_user_attr.attr,
5980 &validate_attr.attr,
5982 #ifdef CONFIG_ZONE_DMA
5983 &cache_dma_attr.attr,
5986 &remote_node_defrag_ratio_attr.attr,
5988 #ifdef CONFIG_SLUB_STATS
5989 &alloc_fastpath_attr.attr,
5990 &alloc_slowpath_attr.attr,
5991 &free_fastpath_attr.attr,
5992 &free_slowpath_attr.attr,
5993 &free_frozen_attr.attr,
5994 &free_add_partial_attr.attr,
5995 &free_remove_partial_attr.attr,
5996 &alloc_from_partial_attr.attr,
5997 &alloc_slab_attr.attr,
5998 &alloc_refill_attr.attr,
5999 &alloc_node_mismatch_attr.attr,
6000 &free_slab_attr.attr,
6001 &cpuslab_flush_attr.attr,
6002 &deactivate_full_attr.attr,
6003 &deactivate_empty_attr.attr,
6004 &deactivate_to_head_attr.attr,
6005 &deactivate_to_tail_attr.attr,
6006 &deactivate_remote_frees_attr.attr,
6007 &deactivate_bypass_attr.attr,
6008 &order_fallback_attr.attr,
6009 &cmpxchg_double_fail_attr.attr,
6010 &cmpxchg_double_cpu_fail_attr.attr,
6011 &cpu_partial_alloc_attr.attr,
6012 &cpu_partial_free_attr.attr,
6013 &cpu_partial_node_attr.attr,
6014 &cpu_partial_drain_attr.attr,
6016 #ifdef CONFIG_FAILSLAB
6017 &failslab_attr.attr,
6019 #ifdef CONFIG_HARDENED_USERCOPY
6020 &usersize_attr.attr,
6022 #ifdef CONFIG_KFENCE
6023 &skip_kfence_attr.attr,
6029 static const struct attribute_group slab_attr_group = {
6030 .attrs = slab_attrs,
6033 static ssize_t slab_attr_show(struct kobject *kobj,
6034 struct attribute *attr,
6037 struct slab_attribute *attribute;
6038 struct kmem_cache *s;
6040 attribute = to_slab_attr(attr);
6043 if (!attribute->show)
6046 return attribute->show(s, buf);
6049 static ssize_t slab_attr_store(struct kobject *kobj,
6050 struct attribute *attr,
6051 const char *buf, size_t len)
6053 struct slab_attribute *attribute;
6054 struct kmem_cache *s;
6056 attribute = to_slab_attr(attr);
6059 if (!attribute->store)
6062 return attribute->store(s, buf, len);
6065 static void kmem_cache_release(struct kobject *k)
6067 slab_kmem_cache_release(to_slab(k));
6070 static const struct sysfs_ops slab_sysfs_ops = {
6071 .show = slab_attr_show,
6072 .store = slab_attr_store,
6075 static const struct kobj_type slab_ktype = {
6076 .sysfs_ops = &slab_sysfs_ops,
6077 .release = kmem_cache_release,
6080 static struct kset *slab_kset;
6082 static inline struct kset *cache_kset(struct kmem_cache *s)
6087 #define ID_STR_LENGTH 32
6089 /* Create a unique string id for a slab cache:
6091 * Format :[flags-]size
6093 static char *create_unique_id(struct kmem_cache *s)
6095 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6099 return ERR_PTR(-ENOMEM);
6103 * First flags affecting slabcache operations. We will only
6104 * get here for aliasable slabs so we do not need to support
6105 * too many flags. The flags here must cover all flags that
6106 * are matched during merging to guarantee that the id is
6109 if (s->flags & SLAB_CACHE_DMA)
6111 if (s->flags & SLAB_CACHE_DMA32)
6113 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6115 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6117 if (s->flags & SLAB_ACCOUNT)
6121 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6123 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6125 return ERR_PTR(-EINVAL);
6127 kmsan_unpoison_memory(name, p - name);
6131 static int sysfs_slab_add(struct kmem_cache *s)
6135 struct kset *kset = cache_kset(s);
6136 int unmergeable = slab_unmergeable(s);
6138 if (!unmergeable && disable_higher_order_debug &&
6139 (slub_debug & DEBUG_METADATA_FLAGS))
6144 * Slabcache can never be merged so we can use the name proper.
6145 * This is typically the case for debug situations. In that
6146 * case we can catch duplicate names easily.
6148 sysfs_remove_link(&slab_kset->kobj, s->name);
6152 * Create a unique name for the slab as a target
6155 name = create_unique_id(s);
6157 return PTR_ERR(name);
6160 s->kobj.kset = kset;
6161 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6165 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6170 /* Setup first alias */
6171 sysfs_slab_alias(s, s->name);
6178 kobject_del(&s->kobj);
6182 void sysfs_slab_unlink(struct kmem_cache *s)
6184 if (slab_state >= FULL)
6185 kobject_del(&s->kobj);
6188 void sysfs_slab_release(struct kmem_cache *s)
6190 if (slab_state >= FULL)
6191 kobject_put(&s->kobj);
6195 * Need to buffer aliases during bootup until sysfs becomes
6196 * available lest we lose that information.
6198 struct saved_alias {
6199 struct kmem_cache *s;
6201 struct saved_alias *next;
6204 static struct saved_alias *alias_list;
6206 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6208 struct saved_alias *al;
6210 if (slab_state == FULL) {
6212 * If we have a leftover link then remove it.
6214 sysfs_remove_link(&slab_kset->kobj, name);
6215 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6218 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6224 al->next = alias_list;
6226 kmsan_unpoison_memory(al, sizeof(*al));
6230 static int __init slab_sysfs_init(void)
6232 struct kmem_cache *s;
6235 mutex_lock(&slab_mutex);
6237 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6239 mutex_unlock(&slab_mutex);
6240 pr_err("Cannot register slab subsystem.\n");
6246 list_for_each_entry(s, &slab_caches, list) {
6247 err = sysfs_slab_add(s);
6249 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6253 while (alias_list) {
6254 struct saved_alias *al = alias_list;
6256 alias_list = alias_list->next;
6257 err = sysfs_slab_alias(al->s, al->name);
6259 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6264 mutex_unlock(&slab_mutex);
6267 late_initcall(slab_sysfs_init);
6268 #endif /* SLAB_SUPPORTS_SYSFS */
6270 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6271 static int slab_debugfs_show(struct seq_file *seq, void *v)
6273 struct loc_track *t = seq->private;
6277 idx = (unsigned long) t->idx;
6278 if (idx < t->count) {
6281 seq_printf(seq, "%7ld ", l->count);
6284 seq_printf(seq, "%pS", (void *)l->addr);
6286 seq_puts(seq, "<not-available>");
6289 seq_printf(seq, " waste=%lu/%lu",
6290 l->count * l->waste, l->waste);
6292 if (l->sum_time != l->min_time) {
6293 seq_printf(seq, " age=%ld/%llu/%ld",
6294 l->min_time, div_u64(l->sum_time, l->count),
6297 seq_printf(seq, " age=%ld", l->min_time);
6299 if (l->min_pid != l->max_pid)
6300 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6302 seq_printf(seq, " pid=%ld",
6305 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6306 seq_printf(seq, " cpus=%*pbl",
6307 cpumask_pr_args(to_cpumask(l->cpus)));
6309 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6310 seq_printf(seq, " nodes=%*pbl",
6311 nodemask_pr_args(&l->nodes));
6313 #ifdef CONFIG_STACKDEPOT
6315 depot_stack_handle_t handle;
6316 unsigned long *entries;
6317 unsigned int nr_entries, j;
6319 handle = READ_ONCE(l->handle);
6321 nr_entries = stack_depot_fetch(handle, &entries);
6322 seq_puts(seq, "\n");
6323 for (j = 0; j < nr_entries; j++)
6324 seq_printf(seq, " %pS\n", (void *)entries[j]);
6328 seq_puts(seq, "\n");
6331 if (!idx && !t->count)
6332 seq_puts(seq, "No data\n");
6337 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6341 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6343 struct loc_track *t = seq->private;
6346 if (*ppos <= t->count)
6352 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6354 struct location *loc1 = (struct location *)a;
6355 struct location *loc2 = (struct location *)b;
6357 if (loc1->count > loc2->count)
6363 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6365 struct loc_track *t = seq->private;
6371 static const struct seq_operations slab_debugfs_sops = {
6372 .start = slab_debugfs_start,
6373 .next = slab_debugfs_next,
6374 .stop = slab_debugfs_stop,
6375 .show = slab_debugfs_show,
6378 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6381 struct kmem_cache_node *n;
6382 enum track_item alloc;
6384 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6385 sizeof(struct loc_track));
6386 struct kmem_cache *s = file_inode(filep)->i_private;
6387 unsigned long *obj_map;
6392 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6394 seq_release_private(inode, filep);
6398 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6399 alloc = TRACK_ALLOC;
6403 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6404 bitmap_free(obj_map);
6405 seq_release_private(inode, filep);
6409 for_each_kmem_cache_node(s, node, n) {
6410 unsigned long flags;
6413 if (!node_nr_slabs(n))
6416 spin_lock_irqsave(&n->list_lock, flags);
6417 list_for_each_entry(slab, &n->partial, slab_list)
6418 process_slab(t, s, slab, alloc, obj_map);
6419 list_for_each_entry(slab, &n->full, slab_list)
6420 process_slab(t, s, slab, alloc, obj_map);
6421 spin_unlock_irqrestore(&n->list_lock, flags);
6424 /* Sort locations by count */
6425 sort_r(t->loc, t->count, sizeof(struct location),
6426 cmp_loc_by_count, NULL, NULL);
6428 bitmap_free(obj_map);
6432 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6434 struct seq_file *seq = file->private_data;
6435 struct loc_track *t = seq->private;
6438 return seq_release_private(inode, file);
6441 static const struct file_operations slab_debugfs_fops = {
6442 .open = slab_debug_trace_open,
6444 .llseek = seq_lseek,
6445 .release = slab_debug_trace_release,
6448 static void debugfs_slab_add(struct kmem_cache *s)
6450 struct dentry *slab_cache_dir;
6452 if (unlikely(!slab_debugfs_root))
6455 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6457 debugfs_create_file("alloc_traces", 0400,
6458 slab_cache_dir, s, &slab_debugfs_fops);
6460 debugfs_create_file("free_traces", 0400,
6461 slab_cache_dir, s, &slab_debugfs_fops);
6464 void debugfs_slab_release(struct kmem_cache *s)
6466 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6469 static int __init slab_debugfs_init(void)
6471 struct kmem_cache *s;
6473 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6475 list_for_each_entry(s, &slab_caches, list)
6476 if (s->flags & SLAB_STORE_USER)
6477 debugfs_slab_add(s);
6482 __initcall(slab_debugfs_init);
6485 * The /proc/slabinfo ABI
6487 #ifdef CONFIG_SLUB_DEBUG
6488 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6490 unsigned long nr_slabs = 0;
6491 unsigned long nr_objs = 0;
6492 unsigned long nr_free = 0;
6494 struct kmem_cache_node *n;
6496 for_each_kmem_cache_node(s, node, n) {
6497 nr_slabs += node_nr_slabs(n);
6498 nr_objs += node_nr_objs(n);
6499 nr_free += count_partial(n, count_free);
6502 sinfo->active_objs = nr_objs - nr_free;
6503 sinfo->num_objs = nr_objs;
6504 sinfo->active_slabs = nr_slabs;
6505 sinfo->num_slabs = nr_slabs;
6506 sinfo->objects_per_slab = oo_objects(s->oo);
6507 sinfo->cache_order = oo_order(s->oo);
6510 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6514 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6515 size_t count, loff_t *ppos)
6519 #endif /* CONFIG_SLUB_DEBUG */