1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <linux/sort.h>
44 #include <linux/debugfs.h>
45 #include <trace/events/kmem.h>
51 * 1. slab_mutex (Global Mutex)
52 * 2. node->list_lock (Spinlock)
53 * 3. kmem_cache->cpu_slab->lock (Local lock)
54 * 4. slab_lock(slab) (Only on some arches or for debugging)
55 * 5. object_map_lock (Only for debugging)
59 * The role of the slab_mutex is to protect the list of all the slabs
60 * and to synchronize major metadata changes to slab cache structures.
61 * Also synchronizes memory hotplug callbacks.
65 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * The slab_lock is only used for debugging and on arches that do not
69 * have the ability to do a cmpxchg_double. It only protects:
70 * A. slab->freelist -> List of free objects in a slab
71 * B. slab->inuse -> Number of objects in use
72 * C. slab->objects -> Number of objects in slab
73 * D. slab->frozen -> frozen state
77 * If a slab is frozen then it is exempt from list management. It is not
78 * on any list except per cpu partial list. The processor that froze the
79 * slab is the one who can perform list operations on the slab. Other
80 * processors may put objects onto the freelist but the processor that
81 * froze the slab is the only one that can retrieve the objects from the
86 * The list_lock protects the partial and full list on each node and
87 * the partial slab counter. If taken then no new slabs may be added or
88 * removed from the lists nor make the number of partial slabs be modified.
89 * (Note that the total number of slabs is an atomic value that may be
90 * modified without taking the list lock).
92 * The list_lock is a centralized lock and thus we avoid taking it as
93 * much as possible. As long as SLUB does not have to handle partial
94 * slabs, operations can continue without any centralized lock. F.e.
95 * allocating a long series of objects that fill up slabs does not require
98 * cpu_slab->lock local lock
100 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
101 * except the stat counters. This is a percpu structure manipulated only by
102 * the local cpu, so the lock protects against being preempted or interrupted
103 * by an irq. Fast path operations rely on lockless operations instead.
104 * On PREEMPT_RT, the local lock does not actually disable irqs (and thus
105 * prevent the lockless operations), so fastpath operations also need to take
106 * the lock and are no longer lockless.
110 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
111 * are fully lockless when satisfied from the percpu slab (and when
112 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
113 * They also don't disable preemption or migration or irqs. They rely on
114 * the transaction id (tid) field to detect being preempted or moved to
117 * irq, preemption, migration considerations
119 * Interrupts are disabled as part of list_lock or local_lock operations, or
120 * around the slab_lock operation, in order to make the slab allocator safe
121 * to use in the context of an irq.
123 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
124 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
125 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
126 * doesn't have to be revalidated in each section protected by the local lock.
128 * SLUB assigns one slab for allocation to each processor.
129 * Allocations only occur from these slabs called cpu slabs.
131 * Slabs with free elements are kept on a partial list and during regular
132 * operations no list for full slabs is used. If an object in a full slab is
133 * freed then the slab will show up again on the partial lists.
134 * We track full slabs for debugging purposes though because otherwise we
135 * cannot scan all objects.
137 * Slabs are freed when they become empty. Teardown and setup is
138 * minimal so we rely on the page allocators per cpu caches for
139 * fast frees and allocs.
141 * slab->frozen The slab is frozen and exempt from list processing.
142 * This means that the slab is dedicated to a purpose
143 * such as satisfying allocations for a specific
144 * processor. Objects may be freed in the slab while
145 * it is frozen but slab_free will then skip the usual
146 * list operations. It is up to the processor holding
147 * the slab to integrate the slab into the slab lists
148 * when the slab is no longer needed.
150 * One use of this flag is to mark slabs that are
151 * used for allocations. Then such a slab becomes a cpu
152 * slab. The cpu slab may be equipped with an additional
153 * freelist that allows lockless access to
154 * free objects in addition to the regular freelist
155 * that requires the slab lock.
157 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
158 * options set. This moves slab handling out of
159 * the fast path and disables lockless freelists.
163 * We could simply use migrate_disable()/enable() but as long as it's a
164 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
166 #ifndef CONFIG_PREEMPT_RT
167 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
168 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
170 #define slub_get_cpu_ptr(var) \
175 #define slub_put_cpu_ptr(var) \
182 #ifdef CONFIG_SLUB_DEBUG
183 #ifdef CONFIG_SLUB_DEBUG_ON
184 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
186 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
188 #endif /* CONFIG_SLUB_DEBUG */
190 static inline bool kmem_cache_debug(struct kmem_cache *s)
192 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
195 void *fixup_red_left(struct kmem_cache *s, void *p)
197 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
198 p += s->red_left_pad;
203 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
205 #ifdef CONFIG_SLUB_CPU_PARTIAL
206 return !kmem_cache_debug(s);
213 * Issues still to be resolved:
215 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
217 * - Variable sizing of the per node arrays
220 /* Enable to log cmpxchg failures */
221 #undef SLUB_DEBUG_CMPXCHG
224 * Minimum number of partial slabs. These will be left on the partial
225 * lists even if they are empty. kmem_cache_shrink may reclaim them.
227 #define MIN_PARTIAL 5
230 * Maximum number of desirable partial slabs.
231 * The existence of more partial slabs makes kmem_cache_shrink
232 * sort the partial list by the number of objects in use.
234 #define MAX_PARTIAL 10
236 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
237 SLAB_POISON | SLAB_STORE_USER)
240 * These debug flags cannot use CMPXCHG because there might be consistency
241 * issues when checking or reading debug information
243 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
248 * Debugging flags that require metadata to be stored in the slab. These get
249 * disabled when slub_debug=O is used and a cache's min order increases with
252 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
255 #define OO_MASK ((1 << OO_SHIFT) - 1)
256 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
258 /* Internal SLUB flags */
260 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
261 /* Use cmpxchg_double */
262 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
265 * Tracking user of a slab.
267 #define TRACK_ADDRS_COUNT 16
269 unsigned long addr; /* Called from address */
270 #ifdef CONFIG_STACKDEPOT
271 depot_stack_handle_t handle;
273 int cpu; /* Was running on cpu */
274 int pid; /* Pid context */
275 unsigned long when; /* When did the operation occur */
278 enum track_item { TRACK_ALLOC, TRACK_FREE };
281 static int sysfs_slab_add(struct kmem_cache *);
282 static int sysfs_slab_alias(struct kmem_cache *, const char *);
284 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
285 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
289 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
290 static void debugfs_slab_add(struct kmem_cache *);
292 static inline void debugfs_slab_add(struct kmem_cache *s) { }
295 static inline void stat(const struct kmem_cache *s, enum stat_item si)
297 #ifdef CONFIG_SLUB_STATS
299 * The rmw is racy on a preemptible kernel but this is acceptable, so
300 * avoid this_cpu_add()'s irq-disable overhead.
302 raw_cpu_inc(s->cpu_slab->stat[si]);
307 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
308 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
309 * differ during memory hotplug/hotremove operations.
310 * Protected by slab_mutex.
312 static nodemask_t slab_nodes;
314 /********************************************************************
315 * Core slab cache functions
316 *******************************************************************/
319 * Returns freelist pointer (ptr). With hardening, this is obfuscated
320 * with an XOR of the address where the pointer is held and a per-cache
323 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
324 unsigned long ptr_addr)
326 #ifdef CONFIG_SLAB_FREELIST_HARDENED
328 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
329 * Normally, this doesn't cause any issues, as both set_freepointer()
330 * and get_freepointer() are called with a pointer with the same tag.
331 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
332 * example, when __free_slub() iterates over objects in a cache, it
333 * passes untagged pointers to check_object(). check_object() in turns
334 * calls get_freepointer() with an untagged pointer, which causes the
335 * freepointer to be restored incorrectly.
337 return (void *)((unsigned long)ptr ^ s->random ^
338 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
344 /* Returns the freelist pointer recorded at location ptr_addr. */
345 static inline void *freelist_dereference(const struct kmem_cache *s,
348 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
349 (unsigned long)ptr_addr);
352 static inline void *get_freepointer(struct kmem_cache *s, void *object)
354 object = kasan_reset_tag(object);
355 return freelist_dereference(s, object + s->offset);
358 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
360 prefetchw(object + s->offset);
364 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
365 * pointer value in the case the current thread loses the race for the next
366 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
367 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
368 * KMSAN will still check all arguments of cmpxchg because of imperfect
369 * handling of inline assembly.
370 * To work around this problem, we apply __no_kmsan_checks to ensure that
371 * get_freepointer_safe() returns initialized memory.
374 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
376 unsigned long freepointer_addr;
379 if (!debug_pagealloc_enabled_static())
380 return get_freepointer(s, object);
382 object = kasan_reset_tag(object);
383 freepointer_addr = (unsigned long)object + s->offset;
384 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
385 return freelist_ptr(s, p, freepointer_addr);
388 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
390 unsigned long freeptr_addr = (unsigned long)object + s->offset;
392 #ifdef CONFIG_SLAB_FREELIST_HARDENED
393 BUG_ON(object == fp); /* naive detection of double free or corruption */
396 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
397 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
400 /* Loop over all objects in a slab */
401 #define for_each_object(__p, __s, __addr, __objects) \
402 for (__p = fixup_red_left(__s, __addr); \
403 __p < (__addr) + (__objects) * (__s)->size; \
406 static inline unsigned int order_objects(unsigned int order, unsigned int size)
408 return ((unsigned int)PAGE_SIZE << order) / size;
411 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
414 struct kmem_cache_order_objects x = {
415 (order << OO_SHIFT) + order_objects(order, size)
421 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
423 return x.x >> OO_SHIFT;
426 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
428 return x.x & OO_MASK;
431 #ifdef CONFIG_SLUB_CPU_PARTIAL
432 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
434 unsigned int nr_slabs;
436 s->cpu_partial = nr_objects;
439 * We take the number of objects but actually limit the number of
440 * slabs on the per cpu partial list, in order to limit excessive
441 * growth of the list. For simplicity we assume that the slabs will
444 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
445 s->cpu_partial_slabs = nr_slabs;
449 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
452 #endif /* CONFIG_SLUB_CPU_PARTIAL */
455 * Per slab locking using the pagelock
457 static __always_inline void __slab_lock(struct slab *slab)
459 struct page *page = slab_page(slab);
461 VM_BUG_ON_PAGE(PageTail(page), page);
462 bit_spin_lock(PG_locked, &page->flags);
465 static __always_inline void __slab_unlock(struct slab *slab)
467 struct page *page = slab_page(slab);
469 VM_BUG_ON_PAGE(PageTail(page), page);
470 __bit_spin_unlock(PG_locked, &page->flags);
473 static __always_inline void slab_lock(struct slab *slab, unsigned long *flags)
475 if (IS_ENABLED(CONFIG_PREEMPT_RT))
476 local_irq_save(*flags);
480 static __always_inline void slab_unlock(struct slab *slab, unsigned long *flags)
483 if (IS_ENABLED(CONFIG_PREEMPT_RT))
484 local_irq_restore(*flags);
488 * Interrupts must be disabled (for the fallback code to work right), typically
489 * by an _irqsave() lock variant. Except on PREEMPT_RT where locks are different
490 * so we disable interrupts as part of slab_[un]lock().
492 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
493 void *freelist_old, unsigned long counters_old,
494 void *freelist_new, unsigned long counters_new,
497 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
498 lockdep_assert_irqs_disabled();
499 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
500 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
501 if (s->flags & __CMPXCHG_DOUBLE) {
502 if (cmpxchg_double(&slab->freelist, &slab->counters,
503 freelist_old, counters_old,
504 freelist_new, counters_new))
509 /* init to 0 to prevent spurious warnings */
510 unsigned long flags = 0;
512 slab_lock(slab, &flags);
513 if (slab->freelist == freelist_old &&
514 slab->counters == counters_old) {
515 slab->freelist = freelist_new;
516 slab->counters = counters_new;
517 slab_unlock(slab, &flags);
520 slab_unlock(slab, &flags);
524 stat(s, CMPXCHG_DOUBLE_FAIL);
526 #ifdef SLUB_DEBUG_CMPXCHG
527 pr_info("%s %s: cmpxchg double redo ", n, s->name);
533 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
534 void *freelist_old, unsigned long counters_old,
535 void *freelist_new, unsigned long counters_new,
538 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
539 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
540 if (s->flags & __CMPXCHG_DOUBLE) {
541 if (cmpxchg_double(&slab->freelist, &slab->counters,
542 freelist_old, counters_old,
543 freelist_new, counters_new))
550 local_irq_save(flags);
552 if (slab->freelist == freelist_old &&
553 slab->counters == counters_old) {
554 slab->freelist = freelist_new;
555 slab->counters = counters_new;
557 local_irq_restore(flags);
561 local_irq_restore(flags);
565 stat(s, CMPXCHG_DOUBLE_FAIL);
567 #ifdef SLUB_DEBUG_CMPXCHG
568 pr_info("%s %s: cmpxchg double redo ", n, s->name);
574 #ifdef CONFIG_SLUB_DEBUG
575 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
576 static DEFINE_RAW_SPINLOCK(object_map_lock);
578 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
581 void *addr = slab_address(slab);
584 bitmap_zero(obj_map, slab->objects);
586 for (p = slab->freelist; p; p = get_freepointer(s, p))
587 set_bit(__obj_to_index(s, addr, p), obj_map);
590 #if IS_ENABLED(CONFIG_KUNIT)
591 static bool slab_add_kunit_errors(void)
593 struct kunit_resource *resource;
595 if (likely(!current->kunit_test))
598 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
602 (*(int *)resource->data)++;
603 kunit_put_resource(resource);
607 static inline bool slab_add_kunit_errors(void) { return false; }
611 * Determine a map of objects in use in a slab.
613 * Node listlock must be held to guarantee that the slab does
614 * not vanish from under us.
616 static unsigned long *get_map(struct kmem_cache *s, struct slab *slab)
617 __acquires(&object_map_lock)
619 VM_BUG_ON(!irqs_disabled());
621 raw_spin_lock(&object_map_lock);
623 __fill_map(object_map, s, slab);
628 static void put_map(unsigned long *map) __releases(&object_map_lock)
630 VM_BUG_ON(map != object_map);
631 raw_spin_unlock(&object_map_lock);
634 static inline unsigned int size_from_object(struct kmem_cache *s)
636 if (s->flags & SLAB_RED_ZONE)
637 return s->size - s->red_left_pad;
642 static inline void *restore_red_left(struct kmem_cache *s, void *p)
644 if (s->flags & SLAB_RED_ZONE)
645 p -= s->red_left_pad;
653 #if defined(CONFIG_SLUB_DEBUG_ON)
654 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
656 static slab_flags_t slub_debug;
659 static char *slub_debug_string;
660 static int disable_higher_order_debug;
663 * slub is about to manipulate internal object metadata. This memory lies
664 * outside the range of the allocated object, so accessing it would normally
665 * be reported by kasan as a bounds error. metadata_access_enable() is used
666 * to tell kasan that these accesses are OK.
668 static inline void metadata_access_enable(void)
670 kasan_disable_current();
673 static inline void metadata_access_disable(void)
675 kasan_enable_current();
682 /* Verify that a pointer has an address that is valid within a slab page */
683 static inline int check_valid_pointer(struct kmem_cache *s,
684 struct slab *slab, void *object)
691 base = slab_address(slab);
692 object = kasan_reset_tag(object);
693 object = restore_red_left(s, object);
694 if (object < base || object >= base + slab->objects * s->size ||
695 (object - base) % s->size) {
702 static void print_section(char *level, char *text, u8 *addr,
705 metadata_access_enable();
706 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
707 16, 1, kasan_reset_tag((void *)addr), length, 1);
708 metadata_access_disable();
712 * See comment in calculate_sizes().
714 static inline bool freeptr_outside_object(struct kmem_cache *s)
716 return s->offset >= s->inuse;
720 * Return offset of the end of info block which is inuse + free pointer if
721 * not overlapping with object.
723 static inline unsigned int get_info_end(struct kmem_cache *s)
725 if (freeptr_outside_object(s))
726 return s->inuse + sizeof(void *);
731 static struct track *get_track(struct kmem_cache *s, void *object,
732 enum track_item alloc)
736 p = object + get_info_end(s);
738 return kasan_reset_tag(p + alloc);
741 #ifdef CONFIG_STACKDEPOT
742 static noinline depot_stack_handle_t set_track_prepare(void)
744 depot_stack_handle_t handle;
745 unsigned long entries[TRACK_ADDRS_COUNT];
746 unsigned int nr_entries;
748 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
749 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
754 static inline depot_stack_handle_t set_track_prepare(void)
760 static void set_track_update(struct kmem_cache *s, void *object,
761 enum track_item alloc, unsigned long addr,
762 depot_stack_handle_t handle)
764 struct track *p = get_track(s, object, alloc);
766 #ifdef CONFIG_STACKDEPOT
770 p->cpu = smp_processor_id();
771 p->pid = current->pid;
775 static __always_inline void set_track(struct kmem_cache *s, void *object,
776 enum track_item alloc, unsigned long addr)
778 depot_stack_handle_t handle = set_track_prepare();
780 set_track_update(s, object, alloc, addr, handle);
783 static void init_tracking(struct kmem_cache *s, void *object)
787 if (!(s->flags & SLAB_STORE_USER))
790 p = get_track(s, object, TRACK_ALLOC);
791 memset(p, 0, 2*sizeof(struct track));
794 static void print_track(const char *s, struct track *t, unsigned long pr_time)
796 depot_stack_handle_t handle __maybe_unused;
801 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
802 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
803 #ifdef CONFIG_STACKDEPOT
804 handle = READ_ONCE(t->handle);
806 stack_depot_print(handle);
808 pr_err("object allocation/free stack trace missing\n");
812 void print_tracking(struct kmem_cache *s, void *object)
814 unsigned long pr_time = jiffies;
815 if (!(s->flags & SLAB_STORE_USER))
818 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
819 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
822 static void print_slab_info(const struct slab *slab)
824 struct folio *folio = (struct folio *)slab_folio(slab);
826 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
827 slab, slab->objects, slab->inuse, slab->freelist,
828 folio_flags(folio, 0));
831 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
833 struct va_format vaf;
839 pr_err("=============================================================================\n");
840 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
841 pr_err("-----------------------------------------------------------------------------\n\n");
846 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
848 struct va_format vaf;
851 if (slab_add_kunit_errors())
857 pr_err("FIX %s: %pV\n", s->name, &vaf);
861 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
863 unsigned int off; /* Offset of last byte */
864 u8 *addr = slab_address(slab);
866 print_tracking(s, p);
868 print_slab_info(slab);
870 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
871 p, p - addr, get_freepointer(s, p));
873 if (s->flags & SLAB_RED_ZONE)
874 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
876 else if (p > addr + 16)
877 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
879 print_section(KERN_ERR, "Object ", p,
880 min_t(unsigned int, s->object_size, PAGE_SIZE));
881 if (s->flags & SLAB_RED_ZONE)
882 print_section(KERN_ERR, "Redzone ", p + s->object_size,
883 s->inuse - s->object_size);
885 off = get_info_end(s);
887 if (s->flags & SLAB_STORE_USER)
888 off += 2 * sizeof(struct track);
890 off += kasan_metadata_size(s);
892 if (off != size_from_object(s))
893 /* Beginning of the filler is the free pointer */
894 print_section(KERN_ERR, "Padding ", p + off,
895 size_from_object(s) - off);
900 static void object_err(struct kmem_cache *s, struct slab *slab,
901 u8 *object, char *reason)
903 if (slab_add_kunit_errors())
906 slab_bug(s, "%s", reason);
907 print_trailer(s, slab, object);
908 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
911 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
912 void **freelist, void *nextfree)
914 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
915 !check_valid_pointer(s, slab, nextfree) && freelist) {
916 object_err(s, slab, *freelist, "Freechain corrupt");
918 slab_fix(s, "Isolate corrupted freechain");
925 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
926 const char *fmt, ...)
931 if (slab_add_kunit_errors())
935 vsnprintf(buf, sizeof(buf), fmt, args);
937 slab_bug(s, "%s", buf);
938 print_slab_info(slab);
940 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
943 static void init_object(struct kmem_cache *s, void *object, u8 val)
945 u8 *p = kasan_reset_tag(object);
947 if (s->flags & SLAB_RED_ZONE)
948 memset(p - s->red_left_pad, val, s->red_left_pad);
950 if (s->flags & __OBJECT_POISON) {
951 memset(p, POISON_FREE, s->object_size - 1);
952 p[s->object_size - 1] = POISON_END;
955 if (s->flags & SLAB_RED_ZONE)
956 memset(p + s->object_size, val, s->inuse - s->object_size);
959 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
960 void *from, void *to)
962 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
963 memset(from, data, to - from);
966 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
967 u8 *object, char *what,
968 u8 *start, unsigned int value, unsigned int bytes)
972 u8 *addr = slab_address(slab);
974 metadata_access_enable();
975 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
976 metadata_access_disable();
981 while (end > fault && end[-1] == value)
984 if (slab_add_kunit_errors())
987 slab_bug(s, "%s overwritten", what);
988 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
989 fault, end - 1, fault - addr,
991 print_trailer(s, slab, object);
992 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
995 restore_bytes(s, what, value, fault, end);
1003 * Bytes of the object to be managed.
1004 * If the freepointer may overlay the object then the free
1005 * pointer is at the middle of the object.
1007 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1010 * object + s->object_size
1011 * Padding to reach word boundary. This is also used for Redzoning.
1012 * Padding is extended by another word if Redzoning is enabled and
1013 * object_size == inuse.
1015 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1016 * 0xcc (RED_ACTIVE) for objects in use.
1019 * Meta data starts here.
1021 * A. Free pointer (if we cannot overwrite object on free)
1022 * B. Tracking data for SLAB_STORE_USER
1023 * C. Padding to reach required alignment boundary or at minimum
1024 * one word if debugging is on to be able to detect writes
1025 * before the word boundary.
1027 * Padding is done using 0x5a (POISON_INUSE)
1030 * Nothing is used beyond s->size.
1032 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1033 * ignored. And therefore no slab options that rely on these boundaries
1034 * may be used with merged slabcaches.
1037 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1039 unsigned long off = get_info_end(s); /* The end of info */
1041 if (s->flags & SLAB_STORE_USER)
1042 /* We also have user information there */
1043 off += 2 * sizeof(struct track);
1045 off += kasan_metadata_size(s);
1047 if (size_from_object(s) == off)
1050 return check_bytes_and_report(s, slab, p, "Object padding",
1051 p + off, POISON_INUSE, size_from_object(s) - off);
1054 /* Check the pad bytes at the end of a slab page */
1055 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1064 if (!(s->flags & SLAB_POISON))
1067 start = slab_address(slab);
1068 length = slab_size(slab);
1069 end = start + length;
1070 remainder = length % s->size;
1074 pad = end - remainder;
1075 metadata_access_enable();
1076 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1077 metadata_access_disable();
1080 while (end > fault && end[-1] == POISON_INUSE)
1083 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1084 fault, end - 1, fault - start);
1085 print_section(KERN_ERR, "Padding ", pad, remainder);
1087 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1090 static int check_object(struct kmem_cache *s, struct slab *slab,
1091 void *object, u8 val)
1094 u8 *endobject = object + s->object_size;
1096 if (s->flags & SLAB_RED_ZONE) {
1097 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1098 object - s->red_left_pad, val, s->red_left_pad))
1101 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1102 endobject, val, s->inuse - s->object_size))
1105 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1106 check_bytes_and_report(s, slab, p, "Alignment padding",
1107 endobject, POISON_INUSE,
1108 s->inuse - s->object_size);
1112 if (s->flags & SLAB_POISON) {
1113 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1114 (!check_bytes_and_report(s, slab, p, "Poison", p,
1115 POISON_FREE, s->object_size - 1) ||
1116 !check_bytes_and_report(s, slab, p, "End Poison",
1117 p + s->object_size - 1, POISON_END, 1)))
1120 * check_pad_bytes cleans up on its own.
1122 check_pad_bytes(s, slab, p);
1125 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1127 * Object and freepointer overlap. Cannot check
1128 * freepointer while object is allocated.
1132 /* Check free pointer validity */
1133 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1134 object_err(s, slab, p, "Freepointer corrupt");
1136 * No choice but to zap it and thus lose the remainder
1137 * of the free objects in this slab. May cause
1138 * another error because the object count is now wrong.
1140 set_freepointer(s, p, NULL);
1146 static int check_slab(struct kmem_cache *s, struct slab *slab)
1150 if (!folio_test_slab(slab_folio(slab))) {
1151 slab_err(s, slab, "Not a valid slab page");
1155 maxobj = order_objects(slab_order(slab), s->size);
1156 if (slab->objects > maxobj) {
1157 slab_err(s, slab, "objects %u > max %u",
1158 slab->objects, maxobj);
1161 if (slab->inuse > slab->objects) {
1162 slab_err(s, slab, "inuse %u > max %u",
1163 slab->inuse, slab->objects);
1166 /* Slab_pad_check fixes things up after itself */
1167 slab_pad_check(s, slab);
1172 * Determine if a certain object in a slab is on the freelist. Must hold the
1173 * slab lock to guarantee that the chains are in a consistent state.
1175 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1179 void *object = NULL;
1182 fp = slab->freelist;
1183 while (fp && nr <= slab->objects) {
1186 if (!check_valid_pointer(s, slab, fp)) {
1188 object_err(s, slab, object,
1189 "Freechain corrupt");
1190 set_freepointer(s, object, NULL);
1192 slab_err(s, slab, "Freepointer corrupt");
1193 slab->freelist = NULL;
1194 slab->inuse = slab->objects;
1195 slab_fix(s, "Freelist cleared");
1201 fp = get_freepointer(s, object);
1205 max_objects = order_objects(slab_order(slab), s->size);
1206 if (max_objects > MAX_OBJS_PER_PAGE)
1207 max_objects = MAX_OBJS_PER_PAGE;
1209 if (slab->objects != max_objects) {
1210 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1211 slab->objects, max_objects);
1212 slab->objects = max_objects;
1213 slab_fix(s, "Number of objects adjusted");
1215 if (slab->inuse != slab->objects - nr) {
1216 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1217 slab->inuse, slab->objects - nr);
1218 slab->inuse = slab->objects - nr;
1219 slab_fix(s, "Object count adjusted");
1221 return search == NULL;
1224 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1227 if (s->flags & SLAB_TRACE) {
1228 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1230 alloc ? "alloc" : "free",
1231 object, slab->inuse,
1235 print_section(KERN_INFO, "Object ", (void *)object,
1243 * Tracking of fully allocated slabs for debugging purposes.
1245 static void add_full(struct kmem_cache *s,
1246 struct kmem_cache_node *n, struct slab *slab)
1248 if (!(s->flags & SLAB_STORE_USER))
1251 lockdep_assert_held(&n->list_lock);
1252 list_add(&slab->slab_list, &n->full);
1255 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1257 if (!(s->flags & SLAB_STORE_USER))
1260 lockdep_assert_held(&n->list_lock);
1261 list_del(&slab->slab_list);
1264 /* Tracking of the number of slabs for debugging purposes */
1265 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1267 struct kmem_cache_node *n = get_node(s, node);
1269 return atomic_long_read(&n->nr_slabs);
1272 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1274 return atomic_long_read(&n->nr_slabs);
1277 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1279 struct kmem_cache_node *n = get_node(s, node);
1282 * May be called early in order to allocate a slab for the
1283 * kmem_cache_node structure. Solve the chicken-egg
1284 * dilemma by deferring the increment of the count during
1285 * bootstrap (see early_kmem_cache_node_alloc).
1288 atomic_long_inc(&n->nr_slabs);
1289 atomic_long_add(objects, &n->total_objects);
1292 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1294 struct kmem_cache_node *n = get_node(s, node);
1296 atomic_long_dec(&n->nr_slabs);
1297 atomic_long_sub(objects, &n->total_objects);
1300 /* Object debug checks for alloc/free paths */
1301 static void setup_object_debug(struct kmem_cache *s, void *object)
1303 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1306 init_object(s, object, SLUB_RED_INACTIVE);
1307 init_tracking(s, object);
1311 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1313 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1316 metadata_access_enable();
1317 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1318 metadata_access_disable();
1321 static inline int alloc_consistency_checks(struct kmem_cache *s,
1322 struct slab *slab, void *object)
1324 if (!check_slab(s, slab))
1327 if (!check_valid_pointer(s, slab, object)) {
1328 object_err(s, slab, object, "Freelist Pointer check fails");
1332 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1338 static noinline int alloc_debug_processing(struct kmem_cache *s,
1340 void *object, unsigned long addr)
1342 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1343 if (!alloc_consistency_checks(s, slab, object))
1347 /* Success perform special debug activities for allocs */
1348 if (s->flags & SLAB_STORE_USER)
1349 set_track(s, object, TRACK_ALLOC, addr);
1350 trace(s, slab, object, 1);
1351 init_object(s, object, SLUB_RED_ACTIVE);
1355 if (folio_test_slab(slab_folio(slab))) {
1357 * If this is a slab page then lets do the best we can
1358 * to avoid issues in the future. Marking all objects
1359 * as used avoids touching the remaining objects.
1361 slab_fix(s, "Marking all objects used");
1362 slab->inuse = slab->objects;
1363 slab->freelist = NULL;
1368 static inline int free_consistency_checks(struct kmem_cache *s,
1369 struct slab *slab, void *object, unsigned long addr)
1371 if (!check_valid_pointer(s, slab, object)) {
1372 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1376 if (on_freelist(s, slab, object)) {
1377 object_err(s, slab, object, "Object already free");
1381 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1384 if (unlikely(s != slab->slab_cache)) {
1385 if (!folio_test_slab(slab_folio(slab))) {
1386 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1388 } else if (!slab->slab_cache) {
1389 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1393 object_err(s, slab, object,
1394 "page slab pointer corrupt.");
1400 /* Supports checking bulk free of a constructed freelist */
1401 static noinline int free_debug_processing(
1402 struct kmem_cache *s, struct slab *slab,
1403 void *head, void *tail, int bulk_cnt,
1406 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
1407 void *object = head;
1409 unsigned long flags, flags2;
1411 depot_stack_handle_t handle = 0;
1413 if (s->flags & SLAB_STORE_USER)
1414 handle = set_track_prepare();
1416 spin_lock_irqsave(&n->list_lock, flags);
1417 slab_lock(slab, &flags2);
1419 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1420 if (!check_slab(s, slab))
1427 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1428 if (!free_consistency_checks(s, slab, object, addr))
1432 if (s->flags & SLAB_STORE_USER)
1433 set_track_update(s, object, TRACK_FREE, addr, handle);
1434 trace(s, slab, object, 0);
1435 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1436 init_object(s, object, SLUB_RED_INACTIVE);
1438 /* Reached end of constructed freelist yet? */
1439 if (object != tail) {
1440 object = get_freepointer(s, object);
1446 if (cnt != bulk_cnt)
1447 slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
1450 slab_unlock(slab, &flags2);
1451 spin_unlock_irqrestore(&n->list_lock, flags);
1453 slab_fix(s, "Object at 0x%p not freed", object);
1458 * Parse a block of slub_debug options. Blocks are delimited by ';'
1460 * @str: start of block
1461 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1462 * @slabs: return start of list of slabs, or NULL when there's no list
1463 * @init: assume this is initial parsing and not per-kmem-create parsing
1465 * returns the start of next block if there's any, or NULL
1468 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1470 bool higher_order_disable = false;
1472 /* Skip any completely empty blocks */
1473 while (*str && *str == ';')
1478 * No options but restriction on slabs. This means full
1479 * debugging for slabs matching a pattern.
1481 *flags = DEBUG_DEFAULT_FLAGS;
1486 /* Determine which debug features should be switched on */
1487 for (; *str && *str != ',' && *str != ';'; str++) {
1488 switch (tolower(*str)) {
1493 *flags |= SLAB_CONSISTENCY_CHECKS;
1496 *flags |= SLAB_RED_ZONE;
1499 *flags |= SLAB_POISON;
1502 *flags |= SLAB_STORE_USER;
1505 *flags |= SLAB_TRACE;
1508 *flags |= SLAB_FAILSLAB;
1512 * Avoid enabling debugging on caches if its minimum
1513 * order would increase as a result.
1515 higher_order_disable = true;
1519 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1528 /* Skip over the slab list */
1529 while (*str && *str != ';')
1532 /* Skip any completely empty blocks */
1533 while (*str && *str == ';')
1536 if (init && higher_order_disable)
1537 disable_higher_order_debug = 1;
1545 static int __init setup_slub_debug(char *str)
1548 slab_flags_t global_flags;
1551 bool global_slub_debug_changed = false;
1552 bool slab_list_specified = false;
1554 global_flags = DEBUG_DEFAULT_FLAGS;
1555 if (*str++ != '=' || !*str)
1557 * No options specified. Switch on full debugging.
1563 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1566 global_flags = flags;
1567 global_slub_debug_changed = true;
1569 slab_list_specified = true;
1570 if (flags & SLAB_STORE_USER)
1571 stack_depot_want_early_init();
1576 * For backwards compatibility, a single list of flags with list of
1577 * slabs means debugging is only changed for those slabs, so the global
1578 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1579 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1580 * long as there is no option specifying flags without a slab list.
1582 if (slab_list_specified) {
1583 if (!global_slub_debug_changed)
1584 global_flags = slub_debug;
1585 slub_debug_string = saved_str;
1588 slub_debug = global_flags;
1589 if (slub_debug & SLAB_STORE_USER)
1590 stack_depot_want_early_init();
1591 if (slub_debug != 0 || slub_debug_string)
1592 static_branch_enable(&slub_debug_enabled);
1594 static_branch_disable(&slub_debug_enabled);
1595 if ((static_branch_unlikely(&init_on_alloc) ||
1596 static_branch_unlikely(&init_on_free)) &&
1597 (slub_debug & SLAB_POISON))
1598 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1602 __setup("slub_debug", setup_slub_debug);
1605 * kmem_cache_flags - apply debugging options to the cache
1606 * @object_size: the size of an object without meta data
1607 * @flags: flags to set
1608 * @name: name of the cache
1610 * Debug option(s) are applied to @flags. In addition to the debug
1611 * option(s), if a slab name (or multiple) is specified i.e.
1612 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1613 * then only the select slabs will receive the debug option(s).
1615 slab_flags_t kmem_cache_flags(unsigned int object_size,
1616 slab_flags_t flags, const char *name)
1621 slab_flags_t block_flags;
1622 slab_flags_t slub_debug_local = slub_debug;
1624 if (flags & SLAB_NO_USER_FLAGS)
1628 * If the slab cache is for debugging (e.g. kmemleak) then
1629 * don't store user (stack trace) information by default,
1630 * but let the user enable it via the command line below.
1632 if (flags & SLAB_NOLEAKTRACE)
1633 slub_debug_local &= ~SLAB_STORE_USER;
1636 next_block = slub_debug_string;
1637 /* Go through all blocks of debug options, see if any matches our slab's name */
1638 while (next_block) {
1639 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1642 /* Found a block that has a slab list, search it */
1647 end = strchrnul(iter, ',');
1648 if (next_block && next_block < end)
1649 end = next_block - 1;
1651 glob = strnchr(iter, end - iter, '*');
1653 cmplen = glob - iter;
1655 cmplen = max_t(size_t, len, (end - iter));
1657 if (!strncmp(name, iter, cmplen)) {
1658 flags |= block_flags;
1662 if (!*end || *end == ';')
1668 return flags | slub_debug_local;
1670 #else /* !CONFIG_SLUB_DEBUG */
1671 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1673 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1675 static inline int alloc_debug_processing(struct kmem_cache *s,
1676 struct slab *slab, void *object, unsigned long addr) { return 0; }
1678 static inline int free_debug_processing(
1679 struct kmem_cache *s, struct slab *slab,
1680 void *head, void *tail, int bulk_cnt,
1681 unsigned long addr) { return 0; }
1683 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1684 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1685 void *object, u8 val) { return 1; }
1686 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1687 struct slab *slab) {}
1688 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1689 struct slab *slab) {}
1690 slab_flags_t kmem_cache_flags(unsigned int object_size,
1691 slab_flags_t flags, const char *name)
1695 #define slub_debug 0
1697 #define disable_higher_order_debug 0
1699 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1701 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1703 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1705 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1708 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1709 void **freelist, void *nextfree)
1713 #endif /* CONFIG_SLUB_DEBUG */
1716 * Hooks for other subsystems that check memory allocations. In a typical
1717 * production configuration these hooks all should produce no code at all.
1719 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1721 ptr = kasan_kmalloc_large(ptr, size, flags);
1722 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1723 kmemleak_alloc(ptr, size, 1, flags);
1724 kmsan_kmalloc_large(ptr, size, flags);
1728 static __always_inline void kfree_hook(void *x)
1731 kasan_kfree_large(x);
1732 kmsan_kfree_large(x);
1735 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1738 kmemleak_free_recursive(x, s->flags);
1739 kmsan_slab_free(s, x);
1741 debug_check_no_locks_freed(x, s->object_size);
1743 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1744 debug_check_no_obj_freed(x, s->object_size);
1746 /* Use KCSAN to help debug racy use-after-free. */
1747 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1748 __kcsan_check_access(x, s->object_size,
1749 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1752 * As memory initialization might be integrated into KASAN,
1753 * kasan_slab_free and initialization memset's must be
1754 * kept together to avoid discrepancies in behavior.
1756 * The initialization memset's clear the object and the metadata,
1757 * but don't touch the SLAB redzone.
1762 if (!kasan_has_integrated_init())
1763 memset(kasan_reset_tag(x), 0, s->object_size);
1764 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1765 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1766 s->size - s->inuse - rsize);
1768 /* KASAN might put x into memory quarantine, delaying its reuse. */
1769 return kasan_slab_free(s, x, init);
1772 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1773 void **head, void **tail,
1779 void *old_tail = *tail ? *tail : *head;
1781 if (is_kfence_address(next)) {
1782 slab_free_hook(s, next, false);
1786 /* Head and tail of the reconstructed freelist */
1792 next = get_freepointer(s, object);
1794 /* If object's reuse doesn't have to be delayed */
1795 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1796 /* Move object to the new freelist */
1797 set_freepointer(s, object, *head);
1803 * Adjust the reconstructed freelist depth
1804 * accordingly if object's reuse is delayed.
1808 } while (object != old_tail);
1813 return *head != NULL;
1816 static void *setup_object(struct kmem_cache *s, void *object)
1818 setup_object_debug(s, object);
1819 object = kasan_init_slab_obj(s, object);
1820 if (unlikely(s->ctor)) {
1821 kasan_unpoison_object_data(s, object);
1823 kasan_poison_object_data(s, object);
1829 * Slab allocation and freeing
1831 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1832 struct kmem_cache_order_objects oo)
1834 struct folio *folio;
1836 unsigned int order = oo_order(oo);
1838 if (node == NUMA_NO_NODE)
1839 folio = (struct folio *)alloc_pages(flags, order);
1841 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1846 slab = folio_slab(folio);
1847 __folio_set_slab(folio);
1848 if (page_is_pfmemalloc(folio_page(folio, 0)))
1849 slab_set_pfmemalloc(slab);
1854 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1855 /* Pre-initialize the random sequence cache */
1856 static int init_cache_random_seq(struct kmem_cache *s)
1858 unsigned int count = oo_objects(s->oo);
1861 /* Bailout if already initialised */
1865 err = cache_random_seq_create(s, count, GFP_KERNEL);
1867 pr_err("SLUB: Unable to initialize free list for %s\n",
1872 /* Transform to an offset on the set of pages */
1873 if (s->random_seq) {
1876 for (i = 0; i < count; i++)
1877 s->random_seq[i] *= s->size;
1882 /* Initialize each random sequence freelist per cache */
1883 static void __init init_freelist_randomization(void)
1885 struct kmem_cache *s;
1887 mutex_lock(&slab_mutex);
1889 list_for_each_entry(s, &slab_caches, list)
1890 init_cache_random_seq(s);
1892 mutex_unlock(&slab_mutex);
1895 /* Get the next entry on the pre-computed freelist randomized */
1896 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1897 unsigned long *pos, void *start,
1898 unsigned long page_limit,
1899 unsigned long freelist_count)
1904 * If the target page allocation failed, the number of objects on the
1905 * page might be smaller than the usual size defined by the cache.
1908 idx = s->random_seq[*pos];
1910 if (*pos >= freelist_count)
1912 } while (unlikely(idx >= page_limit));
1914 return (char *)start + idx;
1917 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1918 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1923 unsigned long idx, pos, page_limit, freelist_count;
1925 if (slab->objects < 2 || !s->random_seq)
1928 freelist_count = oo_objects(s->oo);
1929 pos = get_random_int() % freelist_count;
1931 page_limit = slab->objects * s->size;
1932 start = fixup_red_left(s, slab_address(slab));
1934 /* First entry is used as the base of the freelist */
1935 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1937 cur = setup_object(s, cur);
1938 slab->freelist = cur;
1940 for (idx = 1; idx < slab->objects; idx++) {
1941 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1943 next = setup_object(s, next);
1944 set_freepointer(s, cur, next);
1947 set_freepointer(s, cur, NULL);
1952 static inline int init_cache_random_seq(struct kmem_cache *s)
1956 static inline void init_freelist_randomization(void) { }
1957 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1961 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1963 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1966 struct kmem_cache_order_objects oo = s->oo;
1968 void *start, *p, *next;
1972 flags &= gfp_allowed_mask;
1974 flags |= s->allocflags;
1977 * Let the initial higher-order allocation fail under memory pressure
1978 * so we fall-back to the minimum order allocation.
1980 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1981 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1982 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1984 slab = alloc_slab_page(alloc_gfp, node, oo);
1985 if (unlikely(!slab)) {
1989 * Allocation may have failed due to fragmentation.
1990 * Try a lower order alloc if possible
1992 slab = alloc_slab_page(alloc_gfp, node, oo);
1993 if (unlikely(!slab))
1995 stat(s, ORDER_FALLBACK);
1998 slab->objects = oo_objects(oo);
2000 account_slab(slab, oo_order(oo), s, flags);
2002 slab->slab_cache = s;
2004 kasan_poison_slab(slab);
2006 start = slab_address(slab);
2008 setup_slab_debug(s, slab, start);
2010 shuffle = shuffle_freelist(s, slab);
2013 start = fixup_red_left(s, start);
2014 start = setup_object(s, start);
2015 slab->freelist = start;
2016 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2018 next = setup_object(s, next);
2019 set_freepointer(s, p, next);
2022 set_freepointer(s, p, NULL);
2025 slab->inuse = slab->objects;
2032 inc_slabs_node(s, slab_nid(slab), slab->objects);
2037 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2039 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2040 flags = kmalloc_fix_flags(flags);
2042 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2044 return allocate_slab(s,
2045 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2048 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2050 struct folio *folio = slab_folio(slab);
2051 int order = folio_order(folio);
2052 int pages = 1 << order;
2054 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2057 slab_pad_check(s, slab);
2058 for_each_object(p, s, slab_address(slab), slab->objects)
2059 check_object(s, slab, p, SLUB_RED_INACTIVE);
2062 __slab_clear_pfmemalloc(slab);
2063 __folio_clear_slab(folio);
2064 folio->mapping = NULL;
2065 if (current->reclaim_state)
2066 current->reclaim_state->reclaimed_slab += pages;
2067 unaccount_slab(slab, order, s);
2068 __free_pages(folio_page(folio, 0), order);
2071 static void rcu_free_slab(struct rcu_head *h)
2073 struct slab *slab = container_of(h, struct slab, rcu_head);
2075 __free_slab(slab->slab_cache, slab);
2078 static void free_slab(struct kmem_cache *s, struct slab *slab)
2080 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
2081 call_rcu(&slab->rcu_head, rcu_free_slab);
2083 __free_slab(s, slab);
2086 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2088 dec_slabs_node(s, slab_nid(slab), slab->objects);
2093 * Management of partially allocated slabs.
2096 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2099 if (tail == DEACTIVATE_TO_TAIL)
2100 list_add_tail(&slab->slab_list, &n->partial);
2102 list_add(&slab->slab_list, &n->partial);
2105 static inline void add_partial(struct kmem_cache_node *n,
2106 struct slab *slab, int tail)
2108 lockdep_assert_held(&n->list_lock);
2109 __add_partial(n, slab, tail);
2112 static inline void remove_partial(struct kmem_cache_node *n,
2115 lockdep_assert_held(&n->list_lock);
2116 list_del(&slab->slab_list);
2121 * Remove slab from the partial list, freeze it and
2122 * return the pointer to the freelist.
2124 * Returns a list of objects or NULL if it fails.
2126 static inline void *acquire_slab(struct kmem_cache *s,
2127 struct kmem_cache_node *n, struct slab *slab,
2131 unsigned long counters;
2134 lockdep_assert_held(&n->list_lock);
2137 * Zap the freelist and set the frozen bit.
2138 * The old freelist is the list of objects for the
2139 * per cpu allocation list.
2141 freelist = slab->freelist;
2142 counters = slab->counters;
2143 new.counters = counters;
2145 new.inuse = slab->objects;
2146 new.freelist = NULL;
2148 new.freelist = freelist;
2151 VM_BUG_ON(new.frozen);
2154 if (!__cmpxchg_double_slab(s, slab,
2156 new.freelist, new.counters,
2160 remove_partial(n, slab);
2165 #ifdef CONFIG_SLUB_CPU_PARTIAL
2166 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2168 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2171 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2174 * Try to allocate a partial slab from a specific node.
2176 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2177 struct slab **ret_slab, gfp_t gfpflags)
2179 struct slab *slab, *slab2;
2180 void *object = NULL;
2181 unsigned long flags;
2182 unsigned int partial_slabs = 0;
2185 * Racy check. If we mistakenly see no partial slabs then we
2186 * just allocate an empty slab. If we mistakenly try to get a
2187 * partial slab and there is none available then get_partial()
2190 if (!n || !n->nr_partial)
2193 spin_lock_irqsave(&n->list_lock, flags);
2194 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2197 if (!pfmemalloc_match(slab, gfpflags))
2200 t = acquire_slab(s, n, slab, object == NULL);
2206 stat(s, ALLOC_FROM_PARTIAL);
2209 put_cpu_partial(s, slab, 0);
2210 stat(s, CPU_PARTIAL_NODE);
2213 #ifdef CONFIG_SLUB_CPU_PARTIAL
2214 if (!kmem_cache_has_cpu_partial(s)
2215 || partial_slabs > s->cpu_partial_slabs / 2)
2222 spin_unlock_irqrestore(&n->list_lock, flags);
2227 * Get a slab from somewhere. Search in increasing NUMA distances.
2229 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2230 struct slab **ret_slab)
2233 struct zonelist *zonelist;
2236 enum zone_type highest_zoneidx = gfp_zone(flags);
2238 unsigned int cpuset_mems_cookie;
2241 * The defrag ratio allows a configuration of the tradeoffs between
2242 * inter node defragmentation and node local allocations. A lower
2243 * defrag_ratio increases the tendency to do local allocations
2244 * instead of attempting to obtain partial slabs from other nodes.
2246 * If the defrag_ratio is set to 0 then kmalloc() always
2247 * returns node local objects. If the ratio is higher then kmalloc()
2248 * may return off node objects because partial slabs are obtained
2249 * from other nodes and filled up.
2251 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2252 * (which makes defrag_ratio = 1000) then every (well almost)
2253 * allocation will first attempt to defrag slab caches on other nodes.
2254 * This means scanning over all nodes to look for partial slabs which
2255 * may be expensive if we do it every time we are trying to find a slab
2256 * with available objects.
2258 if (!s->remote_node_defrag_ratio ||
2259 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2263 cpuset_mems_cookie = read_mems_allowed_begin();
2264 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2265 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2266 struct kmem_cache_node *n;
2268 n = get_node(s, zone_to_nid(zone));
2270 if (n && cpuset_zone_allowed(zone, flags) &&
2271 n->nr_partial > s->min_partial) {
2272 object = get_partial_node(s, n, ret_slab, flags);
2275 * Don't check read_mems_allowed_retry()
2276 * here - if mems_allowed was updated in
2277 * parallel, that was a harmless race
2278 * between allocation and the cpuset
2285 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2286 #endif /* CONFIG_NUMA */
2291 * Get a partial slab, lock it and return it.
2293 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2294 struct slab **ret_slab)
2297 int searchnode = node;
2299 if (node == NUMA_NO_NODE)
2300 searchnode = numa_mem_id();
2302 object = get_partial_node(s, get_node(s, searchnode), ret_slab, flags);
2303 if (object || node != NUMA_NO_NODE)
2306 return get_any_partial(s, flags, ret_slab);
2309 #ifdef CONFIG_PREEMPTION
2311 * Calculate the next globally unique transaction for disambiguation
2312 * during cmpxchg. The transactions start with the cpu number and are then
2313 * incremented by CONFIG_NR_CPUS.
2315 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2318 * No preemption supported therefore also no need to check for
2324 static inline unsigned long next_tid(unsigned long tid)
2326 return tid + TID_STEP;
2329 #ifdef SLUB_DEBUG_CMPXCHG
2330 static inline unsigned int tid_to_cpu(unsigned long tid)
2332 return tid % TID_STEP;
2335 static inline unsigned long tid_to_event(unsigned long tid)
2337 return tid / TID_STEP;
2341 static inline unsigned int init_tid(int cpu)
2346 static inline void note_cmpxchg_failure(const char *n,
2347 const struct kmem_cache *s, unsigned long tid)
2349 #ifdef SLUB_DEBUG_CMPXCHG
2350 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2352 pr_info("%s %s: cmpxchg redo ", n, s->name);
2354 #ifdef CONFIG_PREEMPTION
2355 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2356 pr_warn("due to cpu change %d -> %d\n",
2357 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2360 if (tid_to_event(tid) != tid_to_event(actual_tid))
2361 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2362 tid_to_event(tid), tid_to_event(actual_tid));
2364 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2365 actual_tid, tid, next_tid(tid));
2367 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2370 static void init_kmem_cache_cpus(struct kmem_cache *s)
2373 struct kmem_cache_cpu *c;
2375 for_each_possible_cpu(cpu) {
2376 c = per_cpu_ptr(s->cpu_slab, cpu);
2377 local_lock_init(&c->lock);
2378 c->tid = init_tid(cpu);
2383 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2384 * unfreezes the slabs and puts it on the proper list.
2385 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2388 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2391 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE, M_FULL_NOLIST };
2392 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2394 enum slab_modes mode = M_NONE;
2395 void *nextfree, *freelist_iter, *freelist_tail;
2396 int tail = DEACTIVATE_TO_HEAD;
2397 unsigned long flags = 0;
2401 if (slab->freelist) {
2402 stat(s, DEACTIVATE_REMOTE_FREES);
2403 tail = DEACTIVATE_TO_TAIL;
2407 * Stage one: Count the objects on cpu's freelist as free_delta and
2408 * remember the last object in freelist_tail for later splicing.
2410 freelist_tail = NULL;
2411 freelist_iter = freelist;
2412 while (freelist_iter) {
2413 nextfree = get_freepointer(s, freelist_iter);
2416 * If 'nextfree' is invalid, it is possible that the object at
2417 * 'freelist_iter' is already corrupted. So isolate all objects
2418 * starting at 'freelist_iter' by skipping them.
2420 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2423 freelist_tail = freelist_iter;
2426 freelist_iter = nextfree;
2430 * Stage two: Unfreeze the slab while splicing the per-cpu
2431 * freelist to the head of slab's freelist.
2433 * Ensure that the slab is unfrozen while the list presence
2434 * reflects the actual number of objects during unfreeze.
2436 * We first perform cmpxchg holding lock and insert to list
2437 * when it succeed. If there is mismatch then the slab is not
2438 * unfrozen and number of objects in the slab may have changed.
2439 * Then release lock and retry cmpxchg again.
2443 old.freelist = READ_ONCE(slab->freelist);
2444 old.counters = READ_ONCE(slab->counters);
2445 VM_BUG_ON(!old.frozen);
2447 /* Determine target state of the slab */
2448 new.counters = old.counters;
2449 if (freelist_tail) {
2450 new.inuse -= free_delta;
2451 set_freepointer(s, freelist_tail, old.freelist);
2452 new.freelist = freelist;
2454 new.freelist = old.freelist;
2458 if (!new.inuse && n->nr_partial >= s->min_partial) {
2460 } else if (new.freelist) {
2463 * Taking the spinlock removes the possibility that
2464 * acquire_slab() will see a slab that is frozen
2466 spin_lock_irqsave(&n->list_lock, flags);
2467 } else if (kmem_cache_debug_flags(s, SLAB_STORE_USER)) {
2470 * This also ensures that the scanning of full
2471 * slabs from diagnostic functions will not see
2474 spin_lock_irqsave(&n->list_lock, flags);
2476 mode = M_FULL_NOLIST;
2480 if (!cmpxchg_double_slab(s, slab,
2481 old.freelist, old.counters,
2482 new.freelist, new.counters,
2483 "unfreezing slab")) {
2484 if (mode == M_PARTIAL || mode == M_FULL)
2485 spin_unlock_irqrestore(&n->list_lock, flags);
2490 if (mode == M_PARTIAL) {
2491 add_partial(n, slab, tail);
2492 spin_unlock_irqrestore(&n->list_lock, flags);
2494 } else if (mode == M_FREE) {
2495 stat(s, DEACTIVATE_EMPTY);
2496 discard_slab(s, slab);
2498 } else if (mode == M_FULL) {
2499 add_full(s, n, slab);
2500 spin_unlock_irqrestore(&n->list_lock, flags);
2501 stat(s, DEACTIVATE_FULL);
2502 } else if (mode == M_FULL_NOLIST) {
2503 stat(s, DEACTIVATE_FULL);
2507 #ifdef CONFIG_SLUB_CPU_PARTIAL
2508 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2510 struct kmem_cache_node *n = NULL, *n2 = NULL;
2511 struct slab *slab, *slab_to_discard = NULL;
2512 unsigned long flags = 0;
2514 while (partial_slab) {
2518 slab = partial_slab;
2519 partial_slab = slab->next;
2521 n2 = get_node(s, slab_nid(slab));
2524 spin_unlock_irqrestore(&n->list_lock, flags);
2527 spin_lock_irqsave(&n->list_lock, flags);
2532 old.freelist = slab->freelist;
2533 old.counters = slab->counters;
2534 VM_BUG_ON(!old.frozen);
2536 new.counters = old.counters;
2537 new.freelist = old.freelist;
2541 } while (!__cmpxchg_double_slab(s, slab,
2542 old.freelist, old.counters,
2543 new.freelist, new.counters,
2544 "unfreezing slab"));
2546 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2547 slab->next = slab_to_discard;
2548 slab_to_discard = slab;
2550 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2551 stat(s, FREE_ADD_PARTIAL);
2556 spin_unlock_irqrestore(&n->list_lock, flags);
2558 while (slab_to_discard) {
2559 slab = slab_to_discard;
2560 slab_to_discard = slab_to_discard->next;
2562 stat(s, DEACTIVATE_EMPTY);
2563 discard_slab(s, slab);
2569 * Unfreeze all the cpu partial slabs.
2571 static void unfreeze_partials(struct kmem_cache *s)
2573 struct slab *partial_slab;
2574 unsigned long flags;
2576 local_lock_irqsave(&s->cpu_slab->lock, flags);
2577 partial_slab = this_cpu_read(s->cpu_slab->partial);
2578 this_cpu_write(s->cpu_slab->partial, NULL);
2579 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2582 __unfreeze_partials(s, partial_slab);
2585 static void unfreeze_partials_cpu(struct kmem_cache *s,
2586 struct kmem_cache_cpu *c)
2588 struct slab *partial_slab;
2590 partial_slab = slub_percpu_partial(c);
2594 __unfreeze_partials(s, partial_slab);
2598 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2599 * partial slab slot if available.
2601 * If we did not find a slot then simply move all the partials to the
2602 * per node partial list.
2604 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2606 struct slab *oldslab;
2607 struct slab *slab_to_unfreeze = NULL;
2608 unsigned long flags;
2611 local_lock_irqsave(&s->cpu_slab->lock, flags);
2613 oldslab = this_cpu_read(s->cpu_slab->partial);
2616 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2618 * Partial array is full. Move the existing set to the
2619 * per node partial list. Postpone the actual unfreezing
2620 * outside of the critical section.
2622 slab_to_unfreeze = oldslab;
2625 slabs = oldslab->slabs;
2631 slab->slabs = slabs;
2632 slab->next = oldslab;
2634 this_cpu_write(s->cpu_slab->partial, slab);
2636 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2638 if (slab_to_unfreeze) {
2639 __unfreeze_partials(s, slab_to_unfreeze);
2640 stat(s, CPU_PARTIAL_DRAIN);
2644 #else /* CONFIG_SLUB_CPU_PARTIAL */
2646 static inline void unfreeze_partials(struct kmem_cache *s) { }
2647 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2648 struct kmem_cache_cpu *c) { }
2650 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2652 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2654 unsigned long flags;
2658 local_lock_irqsave(&s->cpu_slab->lock, flags);
2661 freelist = c->freelist;
2665 c->tid = next_tid(c->tid);
2667 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2670 deactivate_slab(s, slab, freelist);
2671 stat(s, CPUSLAB_FLUSH);
2675 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2677 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2678 void *freelist = c->freelist;
2679 struct slab *slab = c->slab;
2683 c->tid = next_tid(c->tid);
2686 deactivate_slab(s, slab, freelist);
2687 stat(s, CPUSLAB_FLUSH);
2690 unfreeze_partials_cpu(s, c);
2693 struct slub_flush_work {
2694 struct work_struct work;
2695 struct kmem_cache *s;
2702 * Called from CPU work handler with migration disabled.
2704 static void flush_cpu_slab(struct work_struct *w)
2706 struct kmem_cache *s;
2707 struct kmem_cache_cpu *c;
2708 struct slub_flush_work *sfw;
2710 sfw = container_of(w, struct slub_flush_work, work);
2713 c = this_cpu_ptr(s->cpu_slab);
2718 unfreeze_partials(s);
2721 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2723 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2725 return c->slab || slub_percpu_partial(c);
2728 static DEFINE_MUTEX(flush_lock);
2729 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2731 static void flush_all_cpus_locked(struct kmem_cache *s)
2733 struct slub_flush_work *sfw;
2736 lockdep_assert_cpus_held();
2737 mutex_lock(&flush_lock);
2739 for_each_online_cpu(cpu) {
2740 sfw = &per_cpu(slub_flush, cpu);
2741 if (!has_cpu_slab(cpu, s)) {
2745 INIT_WORK(&sfw->work, flush_cpu_slab);
2748 schedule_work_on(cpu, &sfw->work);
2751 for_each_online_cpu(cpu) {
2752 sfw = &per_cpu(slub_flush, cpu);
2755 flush_work(&sfw->work);
2758 mutex_unlock(&flush_lock);
2761 static void flush_all(struct kmem_cache *s)
2764 flush_all_cpus_locked(s);
2769 * Use the cpu notifier to insure that the cpu slabs are flushed when
2772 static int slub_cpu_dead(unsigned int cpu)
2774 struct kmem_cache *s;
2776 mutex_lock(&slab_mutex);
2777 list_for_each_entry(s, &slab_caches, list)
2778 __flush_cpu_slab(s, cpu);
2779 mutex_unlock(&slab_mutex);
2784 * Check if the objects in a per cpu structure fit numa
2785 * locality expectations.
2787 static inline int node_match(struct slab *slab, int node)
2790 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2796 #ifdef CONFIG_SLUB_DEBUG
2797 static int count_free(struct slab *slab)
2799 return slab->objects - slab->inuse;
2802 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2804 return atomic_long_read(&n->total_objects);
2806 #endif /* CONFIG_SLUB_DEBUG */
2808 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2809 static unsigned long count_partial(struct kmem_cache_node *n,
2810 int (*get_count)(struct slab *))
2812 unsigned long flags;
2813 unsigned long x = 0;
2816 spin_lock_irqsave(&n->list_lock, flags);
2817 list_for_each_entry(slab, &n->partial, slab_list)
2818 x += get_count(slab);
2819 spin_unlock_irqrestore(&n->list_lock, flags);
2822 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2824 static noinline void
2825 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2827 #ifdef CONFIG_SLUB_DEBUG
2828 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2829 DEFAULT_RATELIMIT_BURST);
2831 struct kmem_cache_node *n;
2833 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2836 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2837 nid, gfpflags, &gfpflags);
2838 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2839 s->name, s->object_size, s->size, oo_order(s->oo),
2842 if (oo_order(s->min) > get_order(s->object_size))
2843 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2846 for_each_kmem_cache_node(s, node, n) {
2847 unsigned long nr_slabs;
2848 unsigned long nr_objs;
2849 unsigned long nr_free;
2851 nr_free = count_partial(n, count_free);
2852 nr_slabs = node_nr_slabs(n);
2853 nr_objs = node_nr_objs(n);
2855 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2856 node, nr_slabs, nr_objs, nr_free);
2861 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
2863 if (unlikely(slab_test_pfmemalloc(slab)))
2864 return gfp_pfmemalloc_allowed(gfpflags);
2870 * Check the slab->freelist and either transfer the freelist to the
2871 * per cpu freelist or deactivate the slab.
2873 * The slab is still frozen if the return value is not NULL.
2875 * If this function returns NULL then the slab has been unfrozen.
2877 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
2880 unsigned long counters;
2883 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2886 freelist = slab->freelist;
2887 counters = slab->counters;
2889 new.counters = counters;
2890 VM_BUG_ON(!new.frozen);
2892 new.inuse = slab->objects;
2893 new.frozen = freelist != NULL;
2895 } while (!__cmpxchg_double_slab(s, slab,
2904 * Slow path. The lockless freelist is empty or we need to perform
2907 * Processing is still very fast if new objects have been freed to the
2908 * regular freelist. In that case we simply take over the regular freelist
2909 * as the lockless freelist and zap the regular freelist.
2911 * If that is not working then we fall back to the partial lists. We take the
2912 * first element of the freelist as the object to allocate now and move the
2913 * rest of the freelist to the lockless freelist.
2915 * And if we were unable to get a new slab from the partial slab lists then
2916 * we need to allocate a new slab. This is the slowest path since it involves
2917 * a call to the page allocator and the setup of a new slab.
2919 * Version of __slab_alloc to use when we know that preemption is
2920 * already disabled (which is the case for bulk allocation).
2922 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2923 unsigned long addr, struct kmem_cache_cpu *c)
2927 unsigned long flags;
2929 stat(s, ALLOC_SLOWPATH);
2933 slab = READ_ONCE(c->slab);
2936 * if the node is not online or has no normal memory, just
2937 * ignore the node constraint
2939 if (unlikely(node != NUMA_NO_NODE &&
2940 !node_isset(node, slab_nodes)))
2941 node = NUMA_NO_NODE;
2946 if (unlikely(!node_match(slab, node))) {
2948 * same as above but node_match() being false already
2949 * implies node != NUMA_NO_NODE
2951 if (!node_isset(node, slab_nodes)) {
2952 node = NUMA_NO_NODE;
2954 stat(s, ALLOC_NODE_MISMATCH);
2955 goto deactivate_slab;
2960 * By rights, we should be searching for a slab page that was
2961 * PFMEMALLOC but right now, we are losing the pfmemalloc
2962 * information when the page leaves the per-cpu allocator
2964 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
2965 goto deactivate_slab;
2967 /* must check again c->slab in case we got preempted and it changed */
2968 local_lock_irqsave(&s->cpu_slab->lock, flags);
2969 if (unlikely(slab != c->slab)) {
2970 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2973 freelist = c->freelist;
2977 freelist = get_freelist(s, slab);
2981 c->tid = next_tid(c->tid);
2982 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2983 stat(s, DEACTIVATE_BYPASS);
2987 stat(s, ALLOC_REFILL);
2991 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
2994 * freelist is pointing to the list of objects to be used.
2995 * slab is pointing to the slab from which the objects are obtained.
2996 * That slab must be frozen for per cpu allocations to work.
2998 VM_BUG_ON(!c->slab->frozen);
2999 c->freelist = get_freepointer(s, freelist);
3000 c->tid = next_tid(c->tid);
3001 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3006 local_lock_irqsave(&s->cpu_slab->lock, flags);
3007 if (slab != c->slab) {
3008 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3011 freelist = c->freelist;
3014 c->tid = next_tid(c->tid);
3015 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3016 deactivate_slab(s, slab, freelist);
3020 if (slub_percpu_partial(c)) {
3021 local_lock_irqsave(&s->cpu_slab->lock, flags);
3022 if (unlikely(c->slab)) {
3023 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3026 if (unlikely(!slub_percpu_partial(c))) {
3027 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3028 /* we were preempted and partial list got empty */
3032 slab = c->slab = slub_percpu_partial(c);
3033 slub_set_percpu_partial(c, slab);
3034 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3035 stat(s, CPU_PARTIAL_ALLOC);
3041 freelist = get_partial(s, gfpflags, node, &slab);
3043 goto check_new_slab;
3045 slub_put_cpu_ptr(s->cpu_slab);
3046 slab = new_slab(s, gfpflags, node);
3047 c = slub_get_cpu_ptr(s->cpu_slab);
3049 if (unlikely(!slab)) {
3050 slab_out_of_memory(s, gfpflags, node);
3055 * No other reference to the slab yet so we can
3056 * muck around with it freely without cmpxchg
3058 freelist = slab->freelist;
3059 slab->freelist = NULL;
3061 stat(s, ALLOC_SLAB);
3065 if (kmem_cache_debug(s)) {
3066 if (!alloc_debug_processing(s, slab, freelist, addr)) {
3067 /* Slab failed checks. Next slab needed */
3071 * For debug case, we don't load freelist so that all
3072 * allocations go through alloc_debug_processing()
3078 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3080 * For !pfmemalloc_match() case we don't load freelist so that
3081 * we don't make further mismatched allocations easier.
3087 local_lock_irqsave(&s->cpu_slab->lock, flags);
3088 if (unlikely(c->slab)) {
3089 void *flush_freelist = c->freelist;
3090 struct slab *flush_slab = c->slab;
3094 c->tid = next_tid(c->tid);
3096 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3098 deactivate_slab(s, flush_slab, flush_freelist);
3100 stat(s, CPUSLAB_FLUSH);
3102 goto retry_load_slab;
3110 deactivate_slab(s, slab, get_freepointer(s, freelist));
3115 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3116 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3119 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3120 unsigned long addr, struct kmem_cache_cpu *c)
3124 #ifdef CONFIG_PREEMPT_COUNT
3126 * We may have been preempted and rescheduled on a different
3127 * cpu before disabling preemption. Need to reload cpu area
3130 c = slub_get_cpu_ptr(s->cpu_slab);
3133 p = ___slab_alloc(s, gfpflags, node, addr, c);
3134 #ifdef CONFIG_PREEMPT_COUNT
3135 slub_put_cpu_ptr(s->cpu_slab);
3141 * If the object has been wiped upon free, make sure it's fully initialized by
3142 * zeroing out freelist pointer.
3144 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3147 if (unlikely(slab_want_init_on_free(s)) && obj)
3148 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3153 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3154 * have the fastpath folded into their functions. So no function call
3155 * overhead for requests that can be satisfied on the fastpath.
3157 * The fastpath works by first checking if the lockless freelist can be used.
3158 * If not then __slab_alloc is called for slow processing.
3160 * Otherwise we can simply pick the next object from the lockless free list.
3162 static __always_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3163 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3166 struct kmem_cache_cpu *c;
3169 struct obj_cgroup *objcg = NULL;
3172 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3176 object = kfence_alloc(s, orig_size, gfpflags);
3177 if (unlikely(object))
3182 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3183 * enabled. We may switch back and forth between cpus while
3184 * reading from one cpu area. That does not matter as long
3185 * as we end up on the original cpu again when doing the cmpxchg.
3187 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3188 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3189 * the tid. If we are preempted and switched to another cpu between the
3190 * two reads, it's OK as the two are still associated with the same cpu
3191 * and cmpxchg later will validate the cpu.
3193 c = raw_cpu_ptr(s->cpu_slab);
3194 tid = READ_ONCE(c->tid);
3197 * Irqless object alloc/free algorithm used here depends on sequence
3198 * of fetching cpu_slab's data. tid should be fetched before anything
3199 * on c to guarantee that object and slab associated with previous tid
3200 * won't be used with current tid. If we fetch tid first, object and
3201 * slab could be one associated with next tid and our alloc/free
3202 * request will be failed. In this case, we will retry. So, no problem.
3207 * The transaction ids are globally unique per cpu and per operation on
3208 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3209 * occurs on the right processor and that there was no operation on the
3210 * linked list in between.
3213 object = c->freelist;
3216 * We cannot use the lockless fastpath on PREEMPT_RT because if a
3217 * slowpath has taken the local_lock_irqsave(), it is not protected
3218 * against a fast path operation in an irq handler. So we need to take
3219 * the slow path which uses local_lock. It is still relatively fast if
3220 * there is a suitable cpu freelist.
3222 if (IS_ENABLED(CONFIG_PREEMPT_RT) ||
3223 unlikely(!object || !slab || !node_match(slab, node))) {
3224 object = __slab_alloc(s, gfpflags, node, addr, c);
3226 void *next_object = get_freepointer_safe(s, object);
3229 * The cmpxchg will only match if there was no additional
3230 * operation and if we are on the right processor.
3232 * The cmpxchg does the following atomically (without lock
3234 * 1. Relocate first pointer to the current per cpu area.
3235 * 2. Verify that tid and freelist have not been changed
3236 * 3. If they were not changed replace tid and freelist
3238 * Since this is without lock semantics the protection is only
3239 * against code executing on this cpu *not* from access by
3242 if (unlikely(!this_cpu_cmpxchg_double(
3243 s->cpu_slab->freelist, s->cpu_slab->tid,
3245 next_object, next_tid(tid)))) {
3247 note_cmpxchg_failure("slab_alloc", s, tid);
3250 prefetch_freepointer(s, next_object);
3251 stat(s, ALLOC_FASTPATH);
3254 maybe_wipe_obj_freeptr(s, object);
3255 init = slab_want_init_on_alloc(gfpflags, s);
3258 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
3263 static __always_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3264 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3266 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3269 static __always_inline
3270 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3273 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3275 trace_kmem_cache_alloc(_RET_IP_, ret, s, s->object_size,
3281 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3283 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3285 EXPORT_SYMBOL(kmem_cache_alloc);
3287 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3290 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3292 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3294 #ifdef CONFIG_TRACING
3295 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
3297 void *ret = slab_alloc(s, NULL, gfpflags, _RET_IP_, size);
3298 trace_kmalloc(_RET_IP_, ret, s, size, s->size, gfpflags);
3299 ret = kasan_kmalloc(s, ret, size, gfpflags);
3302 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3306 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3308 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3310 trace_kmem_cache_alloc_node(_RET_IP_, ret, s,
3311 s->object_size, s->size, gfpflags, node);
3315 EXPORT_SYMBOL(kmem_cache_alloc_node);
3317 #ifdef CONFIG_TRACING
3318 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
3320 int node, size_t size)
3322 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
3324 trace_kmalloc_node(_RET_IP_, ret, s,
3325 size, s->size, gfpflags, node);
3327 ret = kasan_kmalloc(s, ret, size, gfpflags);
3330 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3332 #endif /* CONFIG_NUMA */
3335 * Slow path handling. This may still be called frequently since objects
3336 * have a longer lifetime than the cpu slabs in most processing loads.
3338 * So we still attempt to reduce cache line usage. Just take the slab
3339 * lock and free the item. If there is no additional partial slab
3340 * handling required then we can return immediately.
3342 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3343 void *head, void *tail, int cnt,
3350 unsigned long counters;
3351 struct kmem_cache_node *n = NULL;
3352 unsigned long flags;
3354 stat(s, FREE_SLOWPATH);
3356 if (kfence_free(head))
3359 if (kmem_cache_debug(s) &&
3360 !free_debug_processing(s, slab, head, tail, cnt, addr))
3365 spin_unlock_irqrestore(&n->list_lock, flags);
3368 prior = slab->freelist;
3369 counters = slab->counters;
3370 set_freepointer(s, tail, prior);
3371 new.counters = counters;
3372 was_frozen = new.frozen;
3374 if ((!new.inuse || !prior) && !was_frozen) {
3376 if (kmem_cache_has_cpu_partial(s) && !prior) {
3379 * Slab was on no list before and will be
3381 * We can defer the list move and instead
3386 } else { /* Needs to be taken off a list */
3388 n = get_node(s, slab_nid(slab));
3390 * Speculatively acquire the list_lock.
3391 * If the cmpxchg does not succeed then we may
3392 * drop the list_lock without any processing.
3394 * Otherwise the list_lock will synchronize with
3395 * other processors updating the list of slabs.
3397 spin_lock_irqsave(&n->list_lock, flags);
3402 } while (!cmpxchg_double_slab(s, slab,
3409 if (likely(was_frozen)) {
3411 * The list lock was not taken therefore no list
3412 * activity can be necessary.
3414 stat(s, FREE_FROZEN);
3415 } else if (new.frozen) {
3417 * If we just froze the slab then put it onto the
3418 * per cpu partial list.
3420 put_cpu_partial(s, slab, 1);
3421 stat(s, CPU_PARTIAL_FREE);
3427 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3431 * Objects left in the slab. If it was not on the partial list before
3434 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3435 remove_full(s, n, slab);
3436 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3437 stat(s, FREE_ADD_PARTIAL);
3439 spin_unlock_irqrestore(&n->list_lock, flags);
3445 * Slab on the partial list.
3447 remove_partial(n, slab);
3448 stat(s, FREE_REMOVE_PARTIAL);
3450 /* Slab must be on the full list */
3451 remove_full(s, n, slab);
3454 spin_unlock_irqrestore(&n->list_lock, flags);
3456 discard_slab(s, slab);
3460 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3461 * can perform fastpath freeing without additional function calls.
3463 * The fastpath is only possible if we are freeing to the current cpu slab
3464 * of this processor. This typically the case if we have just allocated
3467 * If fastpath is not possible then fall back to __slab_free where we deal
3468 * with all sorts of special processing.
3470 * Bulk free of a freelist with several objects (all pointing to the
3471 * same slab) possible by specifying head and tail ptr, plus objects
3472 * count (cnt). Bulk free indicated by tail pointer being set.
3474 static __always_inline void do_slab_free(struct kmem_cache *s,
3475 struct slab *slab, void *head, void *tail,
3476 int cnt, unsigned long addr)
3478 void *tail_obj = tail ? : head;
3479 struct kmem_cache_cpu *c;
3484 * Determine the currently cpus per cpu slab.
3485 * The cpu may change afterward. However that does not matter since
3486 * data is retrieved via this pointer. If we are on the same cpu
3487 * during the cmpxchg then the free will succeed.
3489 c = raw_cpu_ptr(s->cpu_slab);
3490 tid = READ_ONCE(c->tid);
3492 /* Same with comment on barrier() in slab_alloc_node() */
3495 if (likely(slab == c->slab)) {
3496 #ifndef CONFIG_PREEMPT_RT
3497 void **freelist = READ_ONCE(c->freelist);
3499 set_freepointer(s, tail_obj, freelist);
3501 if (unlikely(!this_cpu_cmpxchg_double(
3502 s->cpu_slab->freelist, s->cpu_slab->tid,
3504 head, next_tid(tid)))) {
3506 note_cmpxchg_failure("slab_free", s, tid);
3509 #else /* CONFIG_PREEMPT_RT */
3511 * We cannot use the lockless fastpath on PREEMPT_RT because if
3512 * a slowpath has taken the local_lock_irqsave(), it is not
3513 * protected against a fast path operation in an irq handler. So
3514 * we need to take the local_lock. We shouldn't simply defer to
3515 * __slab_free() as that wouldn't use the cpu freelist at all.
3519 local_lock(&s->cpu_slab->lock);
3520 c = this_cpu_ptr(s->cpu_slab);
3521 if (unlikely(slab != c->slab)) {
3522 local_unlock(&s->cpu_slab->lock);
3526 freelist = c->freelist;
3528 set_freepointer(s, tail_obj, freelist);
3530 c->tid = next_tid(tid);
3532 local_unlock(&s->cpu_slab->lock);
3534 stat(s, FREE_FASTPATH);
3536 __slab_free(s, slab, head, tail_obj, cnt, addr);
3540 static __always_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3541 void *head, void *tail, void **p, int cnt,
3544 memcg_slab_free_hook(s, slab, p, cnt);
3546 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3547 * to remove objects, whose reuse must be delayed.
3549 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3550 do_slab_free(s, slab, head, tail, cnt, addr);
3553 #ifdef CONFIG_KASAN_GENERIC
3554 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3556 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3560 void kmem_cache_free(struct kmem_cache *s, void *x)
3562 s = cache_from_obj(s, x);
3565 trace_kmem_cache_free(_RET_IP_, x, s->name);
3566 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3568 EXPORT_SYMBOL(kmem_cache_free);
3570 struct detached_freelist {
3575 struct kmem_cache *s;
3578 static inline void free_large_kmalloc(struct folio *folio, void *object)
3580 unsigned int order = folio_order(folio);
3582 if (WARN_ON_ONCE(order == 0))
3583 pr_warn_once("object pointer: 0x%p\n", object);
3586 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
3587 -(PAGE_SIZE << order));
3588 __free_pages(folio_page(folio, 0), order);
3592 * This function progressively scans the array with free objects (with
3593 * a limited look ahead) and extract objects belonging to the same
3594 * slab. It builds a detached freelist directly within the given
3595 * slab/objects. This can happen without any need for
3596 * synchronization, because the objects are owned by running process.
3597 * The freelist is build up as a single linked list in the objects.
3598 * The idea is, that this detached freelist can then be bulk
3599 * transferred to the real freelist(s), but only requiring a single
3600 * synchronization primitive. Look ahead in the array is limited due
3601 * to performance reasons.
3604 int build_detached_freelist(struct kmem_cache *s, size_t size,
3605 void **p, struct detached_freelist *df)
3609 struct folio *folio;
3613 folio = virt_to_folio(object);
3615 /* Handle kalloc'ed objects */
3616 if (unlikely(!folio_test_slab(folio))) {
3617 free_large_kmalloc(folio, object);
3621 /* Derive kmem_cache from object */
3622 df->slab = folio_slab(folio);
3623 df->s = df->slab->slab_cache;
3625 df->slab = folio_slab(folio);
3626 df->s = cache_from_obj(s, object); /* Support for memcg */
3629 /* Start new detached freelist */
3631 df->freelist = object;
3634 if (is_kfence_address(object))
3637 set_freepointer(df->s, object, NULL);
3642 /* df->slab is always set at this point */
3643 if (df->slab == virt_to_slab(object)) {
3644 /* Opportunity build freelist */
3645 set_freepointer(df->s, object, df->freelist);
3646 df->freelist = object;
3650 swap(p[size], p[same]);
3654 /* Limit look ahead search */
3662 /* Note that interrupts must be enabled when calling this function. */
3663 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3669 struct detached_freelist df;
3671 size = build_detached_freelist(s, size, p, &df);
3675 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3677 } while (likely(size));
3679 EXPORT_SYMBOL(kmem_cache_free_bulk);
3681 /* Note that interrupts must be enabled when calling this function. */
3682 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3685 struct kmem_cache_cpu *c;
3687 struct obj_cgroup *objcg = NULL;
3689 /* memcg and kmem_cache debug support */
3690 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
3694 * Drain objects in the per cpu slab, while disabling local
3695 * IRQs, which protects against PREEMPT and interrupts
3696 * handlers invoking normal fastpath.
3698 c = slub_get_cpu_ptr(s->cpu_slab);
3699 local_lock_irq(&s->cpu_slab->lock);
3701 for (i = 0; i < size; i++) {
3702 void *object = kfence_alloc(s, s->object_size, flags);
3704 if (unlikely(object)) {
3709 object = c->freelist;
3710 if (unlikely(!object)) {
3712 * We may have removed an object from c->freelist using
3713 * the fastpath in the previous iteration; in that case,
3714 * c->tid has not been bumped yet.
3715 * Since ___slab_alloc() may reenable interrupts while
3716 * allocating memory, we should bump c->tid now.
3718 c->tid = next_tid(c->tid);
3720 local_unlock_irq(&s->cpu_slab->lock);
3723 * Invoking slow path likely have side-effect
3724 * of re-populating per CPU c->freelist
3726 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3728 if (unlikely(!p[i]))
3731 c = this_cpu_ptr(s->cpu_slab);
3732 maybe_wipe_obj_freeptr(s, p[i]);
3734 local_lock_irq(&s->cpu_slab->lock);
3736 continue; /* goto for-loop */
3738 c->freelist = get_freepointer(s, object);
3740 maybe_wipe_obj_freeptr(s, p[i]);
3742 c->tid = next_tid(c->tid);
3743 local_unlock_irq(&s->cpu_slab->lock);
3744 slub_put_cpu_ptr(s->cpu_slab);
3747 * memcg and kmem_cache debug support and memory initialization.
3748 * Done outside of the IRQ disabled fastpath loop.
3750 slab_post_alloc_hook(s, objcg, flags, size, p,
3751 slab_want_init_on_alloc(flags, s));
3754 slub_put_cpu_ptr(s->cpu_slab);
3755 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3756 kmem_cache_free_bulk(s, i, p);
3759 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3763 * Object placement in a slab is made very easy because we always start at
3764 * offset 0. If we tune the size of the object to the alignment then we can
3765 * get the required alignment by putting one properly sized object after
3768 * Notice that the allocation order determines the sizes of the per cpu
3769 * caches. Each processor has always one slab available for allocations.
3770 * Increasing the allocation order reduces the number of times that slabs
3771 * must be moved on and off the partial lists and is therefore a factor in
3776 * Minimum / Maximum order of slab pages. This influences locking overhead
3777 * and slab fragmentation. A higher order reduces the number of partial slabs
3778 * and increases the number of allocations possible without having to
3779 * take the list_lock.
3781 static unsigned int slub_min_order;
3782 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3783 static unsigned int slub_min_objects;
3786 * Calculate the order of allocation given an slab object size.
3788 * The order of allocation has significant impact on performance and other
3789 * system components. Generally order 0 allocations should be preferred since
3790 * order 0 does not cause fragmentation in the page allocator. Larger objects
3791 * be problematic to put into order 0 slabs because there may be too much
3792 * unused space left. We go to a higher order if more than 1/16th of the slab
3795 * In order to reach satisfactory performance we must ensure that a minimum
3796 * number of objects is in one slab. Otherwise we may generate too much
3797 * activity on the partial lists which requires taking the list_lock. This is
3798 * less a concern for large slabs though which are rarely used.
3800 * slub_max_order specifies the order where we begin to stop considering the
3801 * number of objects in a slab as critical. If we reach slub_max_order then
3802 * we try to keep the page order as low as possible. So we accept more waste
3803 * of space in favor of a small page order.
3805 * Higher order allocations also allow the placement of more objects in a
3806 * slab and thereby reduce object handling overhead. If the user has
3807 * requested a higher minimum order then we start with that one instead of
3808 * the smallest order which will fit the object.
3810 static inline unsigned int calc_slab_order(unsigned int size,
3811 unsigned int min_objects, unsigned int max_order,
3812 unsigned int fract_leftover)
3814 unsigned int min_order = slub_min_order;
3817 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3818 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3820 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3821 order <= max_order; order++) {
3823 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3826 rem = slab_size % size;
3828 if (rem <= slab_size / fract_leftover)
3835 static inline int calculate_order(unsigned int size)
3838 unsigned int min_objects;
3839 unsigned int max_objects;
3840 unsigned int nr_cpus;
3843 * Attempt to find best configuration for a slab. This
3844 * works by first attempting to generate a layout with
3845 * the best configuration and backing off gradually.
3847 * First we increase the acceptable waste in a slab. Then
3848 * we reduce the minimum objects required in a slab.
3850 min_objects = slub_min_objects;
3853 * Some architectures will only update present cpus when
3854 * onlining them, so don't trust the number if it's just 1. But
3855 * we also don't want to use nr_cpu_ids always, as on some other
3856 * architectures, there can be many possible cpus, but never
3857 * onlined. Here we compromise between trying to avoid too high
3858 * order on systems that appear larger than they are, and too
3859 * low order on systems that appear smaller than they are.
3861 nr_cpus = num_present_cpus();
3863 nr_cpus = nr_cpu_ids;
3864 min_objects = 4 * (fls(nr_cpus) + 1);
3866 max_objects = order_objects(slub_max_order, size);
3867 min_objects = min(min_objects, max_objects);
3869 while (min_objects > 1) {
3870 unsigned int fraction;
3873 while (fraction >= 4) {
3874 order = calc_slab_order(size, min_objects,
3875 slub_max_order, fraction);
3876 if (order <= slub_max_order)
3884 * We were unable to place multiple objects in a slab. Now
3885 * lets see if we can place a single object there.
3887 order = calc_slab_order(size, 1, slub_max_order, 1);
3888 if (order <= slub_max_order)
3892 * Doh this slab cannot be placed using slub_max_order.
3894 order = calc_slab_order(size, 1, MAX_ORDER, 1);
3895 if (order < MAX_ORDER)
3901 init_kmem_cache_node(struct kmem_cache_node *n)
3904 spin_lock_init(&n->list_lock);
3905 INIT_LIST_HEAD(&n->partial);
3906 #ifdef CONFIG_SLUB_DEBUG
3907 atomic_long_set(&n->nr_slabs, 0);
3908 atomic_long_set(&n->total_objects, 0);
3909 INIT_LIST_HEAD(&n->full);
3913 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3915 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3916 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3919 * Must align to double word boundary for the double cmpxchg
3920 * instructions to work; see __pcpu_double_call_return_bool().
3922 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3923 2 * sizeof(void *));
3928 init_kmem_cache_cpus(s);
3933 static struct kmem_cache *kmem_cache_node;
3936 * No kmalloc_node yet so do it by hand. We know that this is the first
3937 * slab on the node for this slabcache. There are no concurrent accesses
3940 * Note that this function only works on the kmem_cache_node
3941 * when allocating for the kmem_cache_node. This is used for bootstrapping
3942 * memory on a fresh node that has no slab structures yet.
3944 static void early_kmem_cache_node_alloc(int node)
3947 struct kmem_cache_node *n;
3949 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3951 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3954 if (slab_nid(slab) != node) {
3955 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3956 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3961 #ifdef CONFIG_SLUB_DEBUG
3962 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3963 init_tracking(kmem_cache_node, n);
3965 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3966 slab->freelist = get_freepointer(kmem_cache_node, n);
3969 kmem_cache_node->node[node] = n;
3970 init_kmem_cache_node(n);
3971 inc_slabs_node(kmem_cache_node, node, slab->objects);
3974 * No locks need to be taken here as it has just been
3975 * initialized and there is no concurrent access.
3977 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
3980 static void free_kmem_cache_nodes(struct kmem_cache *s)
3983 struct kmem_cache_node *n;
3985 for_each_kmem_cache_node(s, node, n) {
3986 s->node[node] = NULL;
3987 kmem_cache_free(kmem_cache_node, n);
3991 void __kmem_cache_release(struct kmem_cache *s)
3993 cache_random_seq_destroy(s);
3994 free_percpu(s->cpu_slab);
3995 free_kmem_cache_nodes(s);
3998 static int init_kmem_cache_nodes(struct kmem_cache *s)
4002 for_each_node_mask(node, slab_nodes) {
4003 struct kmem_cache_node *n;
4005 if (slab_state == DOWN) {
4006 early_kmem_cache_node_alloc(node);
4009 n = kmem_cache_alloc_node(kmem_cache_node,
4013 free_kmem_cache_nodes(s);
4017 init_kmem_cache_node(n);
4023 static void set_cpu_partial(struct kmem_cache *s)
4025 #ifdef CONFIG_SLUB_CPU_PARTIAL
4026 unsigned int nr_objects;
4029 * cpu_partial determined the maximum number of objects kept in the
4030 * per cpu partial lists of a processor.
4032 * Per cpu partial lists mainly contain slabs that just have one
4033 * object freed. If they are used for allocation then they can be
4034 * filled up again with minimal effort. The slab will never hit the
4035 * per node partial lists and therefore no locking will be required.
4037 * For backwards compatibility reasons, this is determined as number
4038 * of objects, even though we now limit maximum number of pages, see
4039 * slub_set_cpu_partial()
4041 if (!kmem_cache_has_cpu_partial(s))
4043 else if (s->size >= PAGE_SIZE)
4045 else if (s->size >= 1024)
4047 else if (s->size >= 256)
4052 slub_set_cpu_partial(s, nr_objects);
4057 * calculate_sizes() determines the order and the distribution of data within
4060 static int calculate_sizes(struct kmem_cache *s)
4062 slab_flags_t flags = s->flags;
4063 unsigned int size = s->object_size;
4067 * Round up object size to the next word boundary. We can only
4068 * place the free pointer at word boundaries and this determines
4069 * the possible location of the free pointer.
4071 size = ALIGN(size, sizeof(void *));
4073 #ifdef CONFIG_SLUB_DEBUG
4075 * Determine if we can poison the object itself. If the user of
4076 * the slab may touch the object after free or before allocation
4077 * then we should never poison the object itself.
4079 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4081 s->flags |= __OBJECT_POISON;
4083 s->flags &= ~__OBJECT_POISON;
4087 * If we are Redzoning then check if there is some space between the
4088 * end of the object and the free pointer. If not then add an
4089 * additional word to have some bytes to store Redzone information.
4091 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4092 size += sizeof(void *);
4096 * With that we have determined the number of bytes in actual use
4097 * by the object and redzoning.
4101 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4102 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4105 * Relocate free pointer after the object if it is not
4106 * permitted to overwrite the first word of the object on
4109 * This is the case if we do RCU, have a constructor or
4110 * destructor, are poisoning the objects, or are
4111 * redzoning an object smaller than sizeof(void *).
4113 * The assumption that s->offset >= s->inuse means free
4114 * pointer is outside of the object is used in the
4115 * freeptr_outside_object() function. If that is no
4116 * longer true, the function needs to be modified.
4119 size += sizeof(void *);
4122 * Store freelist pointer near middle of object to keep
4123 * it away from the edges of the object to avoid small
4124 * sized over/underflows from neighboring allocations.
4126 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4129 #ifdef CONFIG_SLUB_DEBUG
4130 if (flags & SLAB_STORE_USER)
4132 * Need to store information about allocs and frees after
4135 size += 2 * sizeof(struct track);
4138 kasan_cache_create(s, &size, &s->flags);
4139 #ifdef CONFIG_SLUB_DEBUG
4140 if (flags & SLAB_RED_ZONE) {
4142 * Add some empty padding so that we can catch
4143 * overwrites from earlier objects rather than let
4144 * tracking information or the free pointer be
4145 * corrupted if a user writes before the start
4148 size += sizeof(void *);
4150 s->red_left_pad = sizeof(void *);
4151 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4152 size += s->red_left_pad;
4157 * SLUB stores one object immediately after another beginning from
4158 * offset 0. In order to align the objects we have to simply size
4159 * each object to conform to the alignment.
4161 size = ALIGN(size, s->align);
4163 s->reciprocal_size = reciprocal_value(size);
4164 order = calculate_order(size);
4171 s->allocflags |= __GFP_COMP;
4173 if (s->flags & SLAB_CACHE_DMA)
4174 s->allocflags |= GFP_DMA;
4176 if (s->flags & SLAB_CACHE_DMA32)
4177 s->allocflags |= GFP_DMA32;
4179 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4180 s->allocflags |= __GFP_RECLAIMABLE;
4183 * Determine the number of objects per slab
4185 s->oo = oo_make(order, size);
4186 s->min = oo_make(get_order(size), size);
4188 return !!oo_objects(s->oo);
4191 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4193 s->flags = kmem_cache_flags(s->size, flags, s->name);
4194 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4195 s->random = get_random_long();
4198 if (!calculate_sizes(s))
4200 if (disable_higher_order_debug) {
4202 * Disable debugging flags that store metadata if the min slab
4205 if (get_order(s->size) > get_order(s->object_size)) {
4206 s->flags &= ~DEBUG_METADATA_FLAGS;
4208 if (!calculate_sizes(s))
4213 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4214 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4215 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4216 /* Enable fast mode */
4217 s->flags |= __CMPXCHG_DOUBLE;
4221 * The larger the object size is, the more slabs we want on the partial
4222 * list to avoid pounding the page allocator excessively.
4224 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4225 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4230 s->remote_node_defrag_ratio = 1000;
4233 /* Initialize the pre-computed randomized freelist if slab is up */
4234 if (slab_state >= UP) {
4235 if (init_cache_random_seq(s))
4239 if (!init_kmem_cache_nodes(s))
4242 if (alloc_kmem_cache_cpus(s))
4246 __kmem_cache_release(s);
4250 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4253 #ifdef CONFIG_SLUB_DEBUG
4254 void *addr = slab_address(slab);
4255 unsigned long flags;
4259 slab_err(s, slab, text, s->name);
4260 slab_lock(slab, &flags);
4262 map = get_map(s, slab);
4263 for_each_object(p, s, addr, slab->objects) {
4265 if (!test_bit(__obj_to_index(s, addr, p), map)) {
4266 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4267 print_tracking(s, p);
4271 slab_unlock(slab, &flags);
4276 * Attempt to free all partial slabs on a node.
4277 * This is called from __kmem_cache_shutdown(). We must take list_lock
4278 * because sysfs file might still access partial list after the shutdowning.
4280 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4283 struct slab *slab, *h;
4285 BUG_ON(irqs_disabled());
4286 spin_lock_irq(&n->list_lock);
4287 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4289 remove_partial(n, slab);
4290 list_add(&slab->slab_list, &discard);
4292 list_slab_objects(s, slab,
4293 "Objects remaining in %s on __kmem_cache_shutdown()");
4296 spin_unlock_irq(&n->list_lock);
4298 list_for_each_entry_safe(slab, h, &discard, slab_list)
4299 discard_slab(s, slab);
4302 bool __kmem_cache_empty(struct kmem_cache *s)
4305 struct kmem_cache_node *n;
4307 for_each_kmem_cache_node(s, node, n)
4308 if (n->nr_partial || slabs_node(s, node))
4314 * Release all resources used by a slab cache.
4316 int __kmem_cache_shutdown(struct kmem_cache *s)
4319 struct kmem_cache_node *n;
4321 flush_all_cpus_locked(s);
4322 /* Attempt to free all objects */
4323 for_each_kmem_cache_node(s, node, n) {
4325 if (n->nr_partial || slabs_node(s, node))
4331 #ifdef CONFIG_PRINTK
4332 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4335 int __maybe_unused i;
4339 struct kmem_cache *s = slab->slab_cache;
4340 struct track __maybe_unused *trackp;
4342 kpp->kp_ptr = object;
4343 kpp->kp_slab = slab;
4344 kpp->kp_slab_cache = s;
4345 base = slab_address(slab);
4346 objp0 = kasan_reset_tag(object);
4347 #ifdef CONFIG_SLUB_DEBUG
4348 objp = restore_red_left(s, objp0);
4352 objnr = obj_to_index(s, slab, objp);
4353 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4354 objp = base + s->size * objnr;
4355 kpp->kp_objp = objp;
4356 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4357 || (objp - base) % s->size) ||
4358 !(s->flags & SLAB_STORE_USER))
4360 #ifdef CONFIG_SLUB_DEBUG
4361 objp = fixup_red_left(s, objp);
4362 trackp = get_track(s, objp, TRACK_ALLOC);
4363 kpp->kp_ret = (void *)trackp->addr;
4364 #ifdef CONFIG_STACKDEPOT
4366 depot_stack_handle_t handle;
4367 unsigned long *entries;
4368 unsigned int nr_entries;
4370 handle = READ_ONCE(trackp->handle);
4372 nr_entries = stack_depot_fetch(handle, &entries);
4373 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4374 kpp->kp_stack[i] = (void *)entries[i];
4377 trackp = get_track(s, objp, TRACK_FREE);
4378 handle = READ_ONCE(trackp->handle);
4380 nr_entries = stack_depot_fetch(handle, &entries);
4381 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4382 kpp->kp_free_stack[i] = (void *)entries[i];
4390 /********************************************************************
4392 *******************************************************************/
4394 static int __init setup_slub_min_order(char *str)
4396 get_option(&str, (int *)&slub_min_order);
4401 __setup("slub_min_order=", setup_slub_min_order);
4403 static int __init setup_slub_max_order(char *str)
4405 get_option(&str, (int *)&slub_max_order);
4406 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4411 __setup("slub_max_order=", setup_slub_max_order);
4413 static int __init setup_slub_min_objects(char *str)
4415 get_option(&str, (int *)&slub_min_objects);
4420 __setup("slub_min_objects=", setup_slub_min_objects);
4422 void *__kmalloc(size_t size, gfp_t flags)
4424 struct kmem_cache *s;
4427 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4428 return kmalloc_large(size, flags);
4430 s = kmalloc_slab(size, flags);
4432 if (unlikely(ZERO_OR_NULL_PTR(s)))
4435 ret = slab_alloc(s, NULL, flags, _RET_IP_, size);
4437 trace_kmalloc(_RET_IP_, ret, s, size, s->size, flags);
4439 ret = kasan_kmalloc(s, ret, size, flags);
4443 EXPORT_SYMBOL(__kmalloc);
4446 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4450 unsigned int order = get_order(size);
4452 flags |= __GFP_COMP;
4453 page = alloc_pages_node(node, flags, order);
4455 ptr = page_address(page);
4456 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4457 PAGE_SIZE << order);
4460 return kmalloc_large_node_hook(ptr, size, flags);
4463 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4465 struct kmem_cache *s;
4468 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4469 ret = kmalloc_large_node(size, flags, node);
4471 trace_kmalloc_node(_RET_IP_, ret, NULL,
4472 size, PAGE_SIZE << get_order(size),
4478 s = kmalloc_slab(size, flags);
4480 if (unlikely(ZERO_OR_NULL_PTR(s)))
4483 ret = slab_alloc_node(s, NULL, flags, node, _RET_IP_, size);
4485 trace_kmalloc_node(_RET_IP_, ret, s, size, s->size, flags, node);
4487 ret = kasan_kmalloc(s, ret, size, flags);
4491 EXPORT_SYMBOL(__kmalloc_node);
4492 #endif /* CONFIG_NUMA */
4494 #ifdef CONFIG_HARDENED_USERCOPY
4496 * Rejects incorrectly sized objects and objects that are to be copied
4497 * to/from userspace but do not fall entirely within the containing slab
4498 * cache's usercopy region.
4500 * Returns NULL if check passes, otherwise const char * to name of cache
4501 * to indicate an error.
4503 void __check_heap_object(const void *ptr, unsigned long n,
4504 const struct slab *slab, bool to_user)
4506 struct kmem_cache *s;
4507 unsigned int offset;
4508 bool is_kfence = is_kfence_address(ptr);
4510 ptr = kasan_reset_tag(ptr);
4512 /* Find object and usable object size. */
4513 s = slab->slab_cache;
4515 /* Reject impossible pointers. */
4516 if (ptr < slab_address(slab))
4517 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4520 /* Find offset within object. */
4522 offset = ptr - kfence_object_start(ptr);
4524 offset = (ptr - slab_address(slab)) % s->size;
4526 /* Adjust for redzone and reject if within the redzone. */
4527 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4528 if (offset < s->red_left_pad)
4529 usercopy_abort("SLUB object in left red zone",
4530 s->name, to_user, offset, n);
4531 offset -= s->red_left_pad;
4534 /* Allow address range falling entirely within usercopy region. */
4535 if (offset >= s->useroffset &&
4536 offset - s->useroffset <= s->usersize &&
4537 n <= s->useroffset - offset + s->usersize)
4540 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4542 #endif /* CONFIG_HARDENED_USERCOPY */
4544 size_t __ksize(const void *object)
4546 struct folio *folio;
4548 if (unlikely(object == ZERO_SIZE_PTR))
4551 folio = virt_to_folio(object);
4553 if (unlikely(!folio_test_slab(folio)))
4554 return folio_size(folio);
4556 return slab_ksize(folio_slab(folio)->slab_cache);
4558 EXPORT_SYMBOL(__ksize);
4560 void kfree(const void *x)
4562 struct folio *folio;
4564 void *object = (void *)x;
4566 trace_kfree(_RET_IP_, x);
4568 if (unlikely(ZERO_OR_NULL_PTR(x)))
4571 folio = virt_to_folio(x);
4572 if (unlikely(!folio_test_slab(folio))) {
4573 free_large_kmalloc(folio, object);
4576 slab = folio_slab(folio);
4577 slab_free(slab->slab_cache, slab, object, NULL, &object, 1, _RET_IP_);
4579 EXPORT_SYMBOL(kfree);
4581 #define SHRINK_PROMOTE_MAX 32
4584 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4585 * up most to the head of the partial lists. New allocations will then
4586 * fill those up and thus they can be removed from the partial lists.
4588 * The slabs with the least items are placed last. This results in them
4589 * being allocated from last increasing the chance that the last objects
4590 * are freed in them.
4592 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4596 struct kmem_cache_node *n;
4599 struct list_head discard;
4600 struct list_head promote[SHRINK_PROMOTE_MAX];
4601 unsigned long flags;
4604 for_each_kmem_cache_node(s, node, n) {
4605 INIT_LIST_HEAD(&discard);
4606 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4607 INIT_LIST_HEAD(promote + i);
4609 spin_lock_irqsave(&n->list_lock, flags);
4612 * Build lists of slabs to discard or promote.
4614 * Note that concurrent frees may occur while we hold the
4615 * list_lock. slab->inuse here is the upper limit.
4617 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4618 int free = slab->objects - slab->inuse;
4620 /* Do not reread slab->inuse */
4623 /* We do not keep full slabs on the list */
4626 if (free == slab->objects) {
4627 list_move(&slab->slab_list, &discard);
4629 } else if (free <= SHRINK_PROMOTE_MAX)
4630 list_move(&slab->slab_list, promote + free - 1);
4634 * Promote the slabs filled up most to the head of the
4637 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4638 list_splice(promote + i, &n->partial);
4640 spin_unlock_irqrestore(&n->list_lock, flags);
4642 /* Release empty slabs */
4643 list_for_each_entry_safe(slab, t, &discard, slab_list)
4644 discard_slab(s, slab);
4646 if (slabs_node(s, node))
4653 int __kmem_cache_shrink(struct kmem_cache *s)
4656 return __kmem_cache_do_shrink(s);
4659 static int slab_mem_going_offline_callback(void *arg)
4661 struct kmem_cache *s;
4663 mutex_lock(&slab_mutex);
4664 list_for_each_entry(s, &slab_caches, list) {
4665 flush_all_cpus_locked(s);
4666 __kmem_cache_do_shrink(s);
4668 mutex_unlock(&slab_mutex);
4673 static void slab_mem_offline_callback(void *arg)
4675 struct memory_notify *marg = arg;
4678 offline_node = marg->status_change_nid_normal;
4681 * If the node still has available memory. we need kmem_cache_node
4684 if (offline_node < 0)
4687 mutex_lock(&slab_mutex);
4688 node_clear(offline_node, slab_nodes);
4690 * We no longer free kmem_cache_node structures here, as it would be
4691 * racy with all get_node() users, and infeasible to protect them with
4694 mutex_unlock(&slab_mutex);
4697 static int slab_mem_going_online_callback(void *arg)
4699 struct kmem_cache_node *n;
4700 struct kmem_cache *s;
4701 struct memory_notify *marg = arg;
4702 int nid = marg->status_change_nid_normal;
4706 * If the node's memory is already available, then kmem_cache_node is
4707 * already created. Nothing to do.
4713 * We are bringing a node online. No memory is available yet. We must
4714 * allocate a kmem_cache_node structure in order to bring the node
4717 mutex_lock(&slab_mutex);
4718 list_for_each_entry(s, &slab_caches, list) {
4720 * The structure may already exist if the node was previously
4721 * onlined and offlined.
4723 if (get_node(s, nid))
4726 * XXX: kmem_cache_alloc_node will fallback to other nodes
4727 * since memory is not yet available from the node that
4730 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4735 init_kmem_cache_node(n);
4739 * Any cache created after this point will also have kmem_cache_node
4740 * initialized for the new node.
4742 node_set(nid, slab_nodes);
4744 mutex_unlock(&slab_mutex);
4748 static int slab_memory_callback(struct notifier_block *self,
4749 unsigned long action, void *arg)
4754 case MEM_GOING_ONLINE:
4755 ret = slab_mem_going_online_callback(arg);
4757 case MEM_GOING_OFFLINE:
4758 ret = slab_mem_going_offline_callback(arg);
4761 case MEM_CANCEL_ONLINE:
4762 slab_mem_offline_callback(arg);
4765 case MEM_CANCEL_OFFLINE:
4769 ret = notifier_from_errno(ret);
4775 static struct notifier_block slab_memory_callback_nb = {
4776 .notifier_call = slab_memory_callback,
4777 .priority = SLAB_CALLBACK_PRI,
4780 /********************************************************************
4781 * Basic setup of slabs
4782 *******************************************************************/
4785 * Used for early kmem_cache structures that were allocated using
4786 * the page allocator. Allocate them properly then fix up the pointers
4787 * that may be pointing to the wrong kmem_cache structure.
4790 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4793 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4794 struct kmem_cache_node *n;
4796 memcpy(s, static_cache, kmem_cache->object_size);
4799 * This runs very early, and only the boot processor is supposed to be
4800 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4803 __flush_cpu_slab(s, smp_processor_id());
4804 for_each_kmem_cache_node(s, node, n) {
4807 list_for_each_entry(p, &n->partial, slab_list)
4810 #ifdef CONFIG_SLUB_DEBUG
4811 list_for_each_entry(p, &n->full, slab_list)
4815 list_add(&s->list, &slab_caches);
4819 void __init kmem_cache_init(void)
4821 static __initdata struct kmem_cache boot_kmem_cache,
4822 boot_kmem_cache_node;
4825 if (debug_guardpage_minorder())
4828 /* Print slub debugging pointers without hashing */
4829 if (__slub_debug_enabled())
4830 no_hash_pointers_enable(NULL);
4832 kmem_cache_node = &boot_kmem_cache_node;
4833 kmem_cache = &boot_kmem_cache;
4836 * Initialize the nodemask for which we will allocate per node
4837 * structures. Here we don't need taking slab_mutex yet.
4839 for_each_node_state(node, N_NORMAL_MEMORY)
4840 node_set(node, slab_nodes);
4842 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4843 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4845 register_hotmemory_notifier(&slab_memory_callback_nb);
4847 /* Able to allocate the per node structures */
4848 slab_state = PARTIAL;
4850 create_boot_cache(kmem_cache, "kmem_cache",
4851 offsetof(struct kmem_cache, node) +
4852 nr_node_ids * sizeof(struct kmem_cache_node *),
4853 SLAB_HWCACHE_ALIGN, 0, 0);
4855 kmem_cache = bootstrap(&boot_kmem_cache);
4856 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4858 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4859 setup_kmalloc_cache_index_table();
4860 create_kmalloc_caches(0);
4862 /* Setup random freelists for each cache */
4863 init_freelist_randomization();
4865 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4868 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4870 slub_min_order, slub_max_order, slub_min_objects,
4871 nr_cpu_ids, nr_node_ids);
4874 void __init kmem_cache_init_late(void)
4879 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4880 slab_flags_t flags, void (*ctor)(void *))
4882 struct kmem_cache *s;
4884 s = find_mergeable(size, align, flags, name, ctor);
4886 if (sysfs_slab_alias(s, name))
4892 * Adjust the object sizes so that we clear
4893 * the complete object on kzalloc.
4895 s->object_size = max(s->object_size, size);
4896 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4902 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4906 err = kmem_cache_open(s, flags);
4910 /* Mutex is not taken during early boot */
4911 if (slab_state <= UP)
4914 err = sysfs_slab_add(s);
4916 __kmem_cache_release(s);
4920 if (s->flags & SLAB_STORE_USER)
4921 debugfs_slab_add(s);
4926 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4928 struct kmem_cache *s;
4931 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4932 return kmalloc_large(size, gfpflags);
4934 s = kmalloc_slab(size, gfpflags);
4936 if (unlikely(ZERO_OR_NULL_PTR(s)))
4939 ret = slab_alloc(s, NULL, gfpflags, caller, size);
4941 /* Honor the call site pointer we received. */
4942 trace_kmalloc(caller, ret, s, size, s->size, gfpflags);
4946 EXPORT_SYMBOL(__kmalloc_track_caller);
4949 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4950 int node, unsigned long caller)
4952 struct kmem_cache *s;
4955 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4956 ret = kmalloc_large_node(size, gfpflags, node);
4958 trace_kmalloc_node(caller, ret, NULL,
4959 size, PAGE_SIZE << get_order(size),
4965 s = kmalloc_slab(size, gfpflags);
4967 if (unlikely(ZERO_OR_NULL_PTR(s)))
4970 ret = slab_alloc_node(s, NULL, gfpflags, node, caller, size);
4972 /* Honor the call site pointer we received. */
4973 trace_kmalloc_node(caller, ret, s, size, s->size, gfpflags, node);
4977 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4981 static int count_inuse(struct slab *slab)
4986 static int count_total(struct slab *slab)
4988 return slab->objects;
4992 #ifdef CONFIG_SLUB_DEBUG
4993 static void validate_slab(struct kmem_cache *s, struct slab *slab,
4994 unsigned long *obj_map)
4997 void *addr = slab_address(slab);
4998 unsigned long flags;
5000 slab_lock(slab, &flags);
5002 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5005 /* Now we know that a valid freelist exists */
5006 __fill_map(obj_map, s, slab);
5007 for_each_object(p, s, addr, slab->objects) {
5008 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5009 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5011 if (!check_object(s, slab, p, val))
5015 slab_unlock(slab, &flags);
5018 static int validate_slab_node(struct kmem_cache *s,
5019 struct kmem_cache_node *n, unsigned long *obj_map)
5021 unsigned long count = 0;
5023 unsigned long flags;
5025 spin_lock_irqsave(&n->list_lock, flags);
5027 list_for_each_entry(slab, &n->partial, slab_list) {
5028 validate_slab(s, slab, obj_map);
5031 if (count != n->nr_partial) {
5032 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5033 s->name, count, n->nr_partial);
5034 slab_add_kunit_errors();
5037 if (!(s->flags & SLAB_STORE_USER))
5040 list_for_each_entry(slab, &n->full, slab_list) {
5041 validate_slab(s, slab, obj_map);
5044 if (count != atomic_long_read(&n->nr_slabs)) {
5045 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5046 s->name, count, atomic_long_read(&n->nr_slabs));
5047 slab_add_kunit_errors();
5051 spin_unlock_irqrestore(&n->list_lock, flags);
5055 long validate_slab_cache(struct kmem_cache *s)
5058 unsigned long count = 0;
5059 struct kmem_cache_node *n;
5060 unsigned long *obj_map;
5062 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5067 for_each_kmem_cache_node(s, node, n)
5068 count += validate_slab_node(s, n, obj_map);
5070 bitmap_free(obj_map);
5074 EXPORT_SYMBOL(validate_slab_cache);
5076 #ifdef CONFIG_DEBUG_FS
5078 * Generate lists of code addresses where slabcache objects are allocated
5083 depot_stack_handle_t handle;
5084 unsigned long count;
5091 DECLARE_BITMAP(cpus, NR_CPUS);
5097 unsigned long count;
5098 struct location *loc;
5102 static struct dentry *slab_debugfs_root;
5104 static void free_loc_track(struct loc_track *t)
5107 free_pages((unsigned long)t->loc,
5108 get_order(sizeof(struct location) * t->max));
5111 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5116 order = get_order(sizeof(struct location) * max);
5118 l = (void *)__get_free_pages(flags, order);
5123 memcpy(l, t->loc, sizeof(struct location) * t->count);
5131 static int add_location(struct loc_track *t, struct kmem_cache *s,
5132 const struct track *track)
5134 long start, end, pos;
5136 unsigned long caddr, chandle;
5137 unsigned long age = jiffies - track->when;
5138 depot_stack_handle_t handle = 0;
5140 #ifdef CONFIG_STACKDEPOT
5141 handle = READ_ONCE(track->handle);
5147 pos = start + (end - start + 1) / 2;
5150 * There is nothing at "end". If we end up there
5151 * we need to add something to before end.
5156 caddr = t->loc[pos].addr;
5157 chandle = t->loc[pos].handle;
5158 if ((track->addr == caddr) && (handle == chandle)) {
5164 if (age < l->min_time)
5166 if (age > l->max_time)
5169 if (track->pid < l->min_pid)
5170 l->min_pid = track->pid;
5171 if (track->pid > l->max_pid)
5172 l->max_pid = track->pid;
5174 cpumask_set_cpu(track->cpu,
5175 to_cpumask(l->cpus));
5177 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5181 if (track->addr < caddr)
5183 else if (track->addr == caddr && handle < chandle)
5190 * Not found. Insert new tracking element.
5192 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5198 (t->count - pos) * sizeof(struct location));
5201 l->addr = track->addr;
5205 l->min_pid = track->pid;
5206 l->max_pid = track->pid;
5208 cpumask_clear(to_cpumask(l->cpus));
5209 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5210 nodes_clear(l->nodes);
5211 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5215 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5216 struct slab *slab, enum track_item alloc,
5217 unsigned long *obj_map)
5219 void *addr = slab_address(slab);
5222 __fill_map(obj_map, s, slab);
5224 for_each_object(p, s, addr, slab->objects)
5225 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5226 add_location(t, s, get_track(s, p, alloc));
5228 #endif /* CONFIG_DEBUG_FS */
5229 #endif /* CONFIG_SLUB_DEBUG */
5232 enum slab_stat_type {
5233 SL_ALL, /* All slabs */
5234 SL_PARTIAL, /* Only partially allocated slabs */
5235 SL_CPU, /* Only slabs used for cpu caches */
5236 SL_OBJECTS, /* Determine allocated objects not slabs */
5237 SL_TOTAL /* Determine object capacity not slabs */
5240 #define SO_ALL (1 << SL_ALL)
5241 #define SO_PARTIAL (1 << SL_PARTIAL)
5242 #define SO_CPU (1 << SL_CPU)
5243 #define SO_OBJECTS (1 << SL_OBJECTS)
5244 #define SO_TOTAL (1 << SL_TOTAL)
5246 static ssize_t show_slab_objects(struct kmem_cache *s,
5247 char *buf, unsigned long flags)
5249 unsigned long total = 0;
5252 unsigned long *nodes;
5255 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5259 if (flags & SO_CPU) {
5262 for_each_possible_cpu(cpu) {
5263 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5268 slab = READ_ONCE(c->slab);
5272 node = slab_nid(slab);
5273 if (flags & SO_TOTAL)
5275 else if (flags & SO_OBJECTS)
5283 #ifdef CONFIG_SLUB_CPU_PARTIAL
5284 slab = slub_percpu_partial_read_once(c);
5286 node = slab_nid(slab);
5287 if (flags & SO_TOTAL)
5289 else if (flags & SO_OBJECTS)
5301 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5302 * already held which will conflict with an existing lock order:
5304 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5306 * We don't really need mem_hotplug_lock (to hold off
5307 * slab_mem_going_offline_callback) here because slab's memory hot
5308 * unplug code doesn't destroy the kmem_cache->node[] data.
5311 #ifdef CONFIG_SLUB_DEBUG
5312 if (flags & SO_ALL) {
5313 struct kmem_cache_node *n;
5315 for_each_kmem_cache_node(s, node, n) {
5317 if (flags & SO_TOTAL)
5318 x = atomic_long_read(&n->total_objects);
5319 else if (flags & SO_OBJECTS)
5320 x = atomic_long_read(&n->total_objects) -
5321 count_partial(n, count_free);
5323 x = atomic_long_read(&n->nr_slabs);
5330 if (flags & SO_PARTIAL) {
5331 struct kmem_cache_node *n;
5333 for_each_kmem_cache_node(s, node, n) {
5334 if (flags & SO_TOTAL)
5335 x = count_partial(n, count_total);
5336 else if (flags & SO_OBJECTS)
5337 x = count_partial(n, count_inuse);
5345 len += sysfs_emit_at(buf, len, "%lu", total);
5347 for (node = 0; node < nr_node_ids; node++) {
5349 len += sysfs_emit_at(buf, len, " N%d=%lu",
5353 len += sysfs_emit_at(buf, len, "\n");
5359 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5360 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5362 struct slab_attribute {
5363 struct attribute attr;
5364 ssize_t (*show)(struct kmem_cache *s, char *buf);
5365 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5368 #define SLAB_ATTR_RO(_name) \
5369 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5371 #define SLAB_ATTR(_name) \
5372 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5374 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5376 return sysfs_emit(buf, "%u\n", s->size);
5378 SLAB_ATTR_RO(slab_size);
5380 static ssize_t align_show(struct kmem_cache *s, char *buf)
5382 return sysfs_emit(buf, "%u\n", s->align);
5384 SLAB_ATTR_RO(align);
5386 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5388 return sysfs_emit(buf, "%u\n", s->object_size);
5390 SLAB_ATTR_RO(object_size);
5392 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5394 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5396 SLAB_ATTR_RO(objs_per_slab);
5398 static ssize_t order_show(struct kmem_cache *s, char *buf)
5400 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5402 SLAB_ATTR_RO(order);
5404 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5406 return sysfs_emit(buf, "%lu\n", s->min_partial);
5409 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5415 err = kstrtoul(buf, 10, &min);
5419 s->min_partial = min;
5422 SLAB_ATTR(min_partial);
5424 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5426 unsigned int nr_partial = 0;
5427 #ifdef CONFIG_SLUB_CPU_PARTIAL
5428 nr_partial = s->cpu_partial;
5431 return sysfs_emit(buf, "%u\n", nr_partial);
5434 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5437 unsigned int objects;
5440 err = kstrtouint(buf, 10, &objects);
5443 if (objects && !kmem_cache_has_cpu_partial(s))
5446 slub_set_cpu_partial(s, objects);
5450 SLAB_ATTR(cpu_partial);
5452 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5456 return sysfs_emit(buf, "%pS\n", s->ctor);
5460 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5462 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5464 SLAB_ATTR_RO(aliases);
5466 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5468 return show_slab_objects(s, buf, SO_PARTIAL);
5470 SLAB_ATTR_RO(partial);
5472 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5474 return show_slab_objects(s, buf, SO_CPU);
5476 SLAB_ATTR_RO(cpu_slabs);
5478 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5480 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5482 SLAB_ATTR_RO(objects);
5484 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5486 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5488 SLAB_ATTR_RO(objects_partial);
5490 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5494 int cpu __maybe_unused;
5497 #ifdef CONFIG_SLUB_CPU_PARTIAL
5498 for_each_online_cpu(cpu) {
5501 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5504 slabs += slab->slabs;
5508 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5509 objects = (slabs * oo_objects(s->oo)) / 2;
5510 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5512 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5513 for_each_online_cpu(cpu) {
5516 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5518 slabs = READ_ONCE(slab->slabs);
5519 objects = (slabs * oo_objects(s->oo)) / 2;
5520 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5521 cpu, objects, slabs);
5525 len += sysfs_emit_at(buf, len, "\n");
5529 SLAB_ATTR_RO(slabs_cpu_partial);
5531 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5533 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5535 SLAB_ATTR_RO(reclaim_account);
5537 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5539 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5541 SLAB_ATTR_RO(hwcache_align);
5543 #ifdef CONFIG_ZONE_DMA
5544 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5546 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5548 SLAB_ATTR_RO(cache_dma);
5551 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5553 return sysfs_emit(buf, "%u\n", s->usersize);
5555 SLAB_ATTR_RO(usersize);
5557 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5559 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5561 SLAB_ATTR_RO(destroy_by_rcu);
5563 #ifdef CONFIG_SLUB_DEBUG
5564 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5566 return show_slab_objects(s, buf, SO_ALL);
5568 SLAB_ATTR_RO(slabs);
5570 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5572 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5574 SLAB_ATTR_RO(total_objects);
5576 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5578 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5580 SLAB_ATTR_RO(sanity_checks);
5582 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5584 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5586 SLAB_ATTR_RO(trace);
5588 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5590 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5593 SLAB_ATTR_RO(red_zone);
5595 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5597 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5600 SLAB_ATTR_RO(poison);
5602 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5604 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5607 SLAB_ATTR_RO(store_user);
5609 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5614 static ssize_t validate_store(struct kmem_cache *s,
5615 const char *buf, size_t length)
5619 if (buf[0] == '1') {
5620 ret = validate_slab_cache(s);
5626 SLAB_ATTR(validate);
5628 #endif /* CONFIG_SLUB_DEBUG */
5630 #ifdef CONFIG_FAILSLAB
5631 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5633 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5635 SLAB_ATTR_RO(failslab);
5638 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5643 static ssize_t shrink_store(struct kmem_cache *s,
5644 const char *buf, size_t length)
5647 kmem_cache_shrink(s);
5655 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5657 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5660 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5661 const char *buf, size_t length)
5666 err = kstrtouint(buf, 10, &ratio);
5672 s->remote_node_defrag_ratio = ratio * 10;
5676 SLAB_ATTR(remote_node_defrag_ratio);
5679 #ifdef CONFIG_SLUB_STATS
5680 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5682 unsigned long sum = 0;
5685 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5690 for_each_online_cpu(cpu) {
5691 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5697 len += sysfs_emit_at(buf, len, "%lu", sum);
5700 for_each_online_cpu(cpu) {
5702 len += sysfs_emit_at(buf, len, " C%d=%u",
5707 len += sysfs_emit_at(buf, len, "\n");
5712 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5716 for_each_online_cpu(cpu)
5717 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5720 #define STAT_ATTR(si, text) \
5721 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5723 return show_stat(s, buf, si); \
5725 static ssize_t text##_store(struct kmem_cache *s, \
5726 const char *buf, size_t length) \
5728 if (buf[0] != '0') \
5730 clear_stat(s, si); \
5735 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5736 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5737 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5738 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5739 STAT_ATTR(FREE_FROZEN, free_frozen);
5740 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5741 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5742 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5743 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5744 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5745 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5746 STAT_ATTR(FREE_SLAB, free_slab);
5747 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5748 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5749 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5750 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5751 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5752 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5753 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5754 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5755 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5756 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5757 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5758 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5759 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5760 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5761 #endif /* CONFIG_SLUB_STATS */
5763 #ifdef CONFIG_KFENCE
5764 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5766 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5769 static ssize_t skip_kfence_store(struct kmem_cache *s,
5770 const char *buf, size_t length)
5775 s->flags &= ~SLAB_SKIP_KFENCE;
5776 else if (buf[0] == '1')
5777 s->flags |= SLAB_SKIP_KFENCE;
5783 SLAB_ATTR(skip_kfence);
5786 static struct attribute *slab_attrs[] = {
5787 &slab_size_attr.attr,
5788 &object_size_attr.attr,
5789 &objs_per_slab_attr.attr,
5791 &min_partial_attr.attr,
5792 &cpu_partial_attr.attr,
5794 &objects_partial_attr.attr,
5796 &cpu_slabs_attr.attr,
5800 &hwcache_align_attr.attr,
5801 &reclaim_account_attr.attr,
5802 &destroy_by_rcu_attr.attr,
5804 &slabs_cpu_partial_attr.attr,
5805 #ifdef CONFIG_SLUB_DEBUG
5806 &total_objects_attr.attr,
5808 &sanity_checks_attr.attr,
5810 &red_zone_attr.attr,
5812 &store_user_attr.attr,
5813 &validate_attr.attr,
5815 #ifdef CONFIG_ZONE_DMA
5816 &cache_dma_attr.attr,
5819 &remote_node_defrag_ratio_attr.attr,
5821 #ifdef CONFIG_SLUB_STATS
5822 &alloc_fastpath_attr.attr,
5823 &alloc_slowpath_attr.attr,
5824 &free_fastpath_attr.attr,
5825 &free_slowpath_attr.attr,
5826 &free_frozen_attr.attr,
5827 &free_add_partial_attr.attr,
5828 &free_remove_partial_attr.attr,
5829 &alloc_from_partial_attr.attr,
5830 &alloc_slab_attr.attr,
5831 &alloc_refill_attr.attr,
5832 &alloc_node_mismatch_attr.attr,
5833 &free_slab_attr.attr,
5834 &cpuslab_flush_attr.attr,
5835 &deactivate_full_attr.attr,
5836 &deactivate_empty_attr.attr,
5837 &deactivate_to_head_attr.attr,
5838 &deactivate_to_tail_attr.attr,
5839 &deactivate_remote_frees_attr.attr,
5840 &deactivate_bypass_attr.attr,
5841 &order_fallback_attr.attr,
5842 &cmpxchg_double_fail_attr.attr,
5843 &cmpxchg_double_cpu_fail_attr.attr,
5844 &cpu_partial_alloc_attr.attr,
5845 &cpu_partial_free_attr.attr,
5846 &cpu_partial_node_attr.attr,
5847 &cpu_partial_drain_attr.attr,
5849 #ifdef CONFIG_FAILSLAB
5850 &failslab_attr.attr,
5852 &usersize_attr.attr,
5853 #ifdef CONFIG_KFENCE
5854 &skip_kfence_attr.attr,
5860 static const struct attribute_group slab_attr_group = {
5861 .attrs = slab_attrs,
5864 static ssize_t slab_attr_show(struct kobject *kobj,
5865 struct attribute *attr,
5868 struct slab_attribute *attribute;
5869 struct kmem_cache *s;
5872 attribute = to_slab_attr(attr);
5875 if (!attribute->show)
5878 err = attribute->show(s, buf);
5883 static ssize_t slab_attr_store(struct kobject *kobj,
5884 struct attribute *attr,
5885 const char *buf, size_t len)
5887 struct slab_attribute *attribute;
5888 struct kmem_cache *s;
5891 attribute = to_slab_attr(attr);
5894 if (!attribute->store)
5897 err = attribute->store(s, buf, len);
5901 static void kmem_cache_release(struct kobject *k)
5903 slab_kmem_cache_release(to_slab(k));
5906 static const struct sysfs_ops slab_sysfs_ops = {
5907 .show = slab_attr_show,
5908 .store = slab_attr_store,
5911 static struct kobj_type slab_ktype = {
5912 .sysfs_ops = &slab_sysfs_ops,
5913 .release = kmem_cache_release,
5916 static struct kset *slab_kset;
5918 static inline struct kset *cache_kset(struct kmem_cache *s)
5923 #define ID_STR_LENGTH 64
5925 /* Create a unique string id for a slab cache:
5927 * Format :[flags-]size
5929 static char *create_unique_id(struct kmem_cache *s)
5931 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5938 * First flags affecting slabcache operations. We will only
5939 * get here for aliasable slabs so we do not need to support
5940 * too many flags. The flags here must cover all flags that
5941 * are matched during merging to guarantee that the id is
5944 if (s->flags & SLAB_CACHE_DMA)
5946 if (s->flags & SLAB_CACHE_DMA32)
5948 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5950 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5952 if (s->flags & SLAB_ACCOUNT)
5956 p += sprintf(p, "%07u", s->size);
5958 BUG_ON(p > name + ID_STR_LENGTH - 1);
5959 kmsan_unpoison_memory(name, p - name);
5963 static int sysfs_slab_add(struct kmem_cache *s)
5967 struct kset *kset = cache_kset(s);
5968 int unmergeable = slab_unmergeable(s);
5971 kobject_init(&s->kobj, &slab_ktype);
5975 if (!unmergeable && disable_higher_order_debug &&
5976 (slub_debug & DEBUG_METADATA_FLAGS))
5981 * Slabcache can never be merged so we can use the name proper.
5982 * This is typically the case for debug situations. In that
5983 * case we can catch duplicate names easily.
5985 sysfs_remove_link(&slab_kset->kobj, s->name);
5989 * Create a unique name for the slab as a target
5992 name = create_unique_id(s);
5995 s->kobj.kset = kset;
5996 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6000 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6005 /* Setup first alias */
6006 sysfs_slab_alias(s, s->name);
6013 kobject_del(&s->kobj);
6017 void sysfs_slab_unlink(struct kmem_cache *s)
6019 if (slab_state >= FULL)
6020 kobject_del(&s->kobj);
6023 void sysfs_slab_release(struct kmem_cache *s)
6025 if (slab_state >= FULL)
6026 kobject_put(&s->kobj);
6030 * Need to buffer aliases during bootup until sysfs becomes
6031 * available lest we lose that information.
6033 struct saved_alias {
6034 struct kmem_cache *s;
6036 struct saved_alias *next;
6039 static struct saved_alias *alias_list;
6041 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6043 struct saved_alias *al;
6045 if (slab_state == FULL) {
6047 * If we have a leftover link then remove it.
6049 sysfs_remove_link(&slab_kset->kobj, name);
6050 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6053 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6059 al->next = alias_list;
6061 kmsan_unpoison_memory(al, sizeof(*al));
6065 static int __init slab_sysfs_init(void)
6067 struct kmem_cache *s;
6070 mutex_lock(&slab_mutex);
6072 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6074 mutex_unlock(&slab_mutex);
6075 pr_err("Cannot register slab subsystem.\n");
6081 list_for_each_entry(s, &slab_caches, list) {
6082 err = sysfs_slab_add(s);
6084 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6088 while (alias_list) {
6089 struct saved_alias *al = alias_list;
6091 alias_list = alias_list->next;
6092 err = sysfs_slab_alias(al->s, al->name);
6094 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6099 mutex_unlock(&slab_mutex);
6103 __initcall(slab_sysfs_init);
6104 #endif /* CONFIG_SYSFS */
6106 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6107 static int slab_debugfs_show(struct seq_file *seq, void *v)
6109 struct loc_track *t = seq->private;
6113 idx = (unsigned long) t->idx;
6114 if (idx < t->count) {
6117 seq_printf(seq, "%7ld ", l->count);
6120 seq_printf(seq, "%pS", (void *)l->addr);
6122 seq_puts(seq, "<not-available>");
6124 if (l->sum_time != l->min_time) {
6125 seq_printf(seq, " age=%ld/%llu/%ld",
6126 l->min_time, div_u64(l->sum_time, l->count),
6129 seq_printf(seq, " age=%ld", l->min_time);
6131 if (l->min_pid != l->max_pid)
6132 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6134 seq_printf(seq, " pid=%ld",
6137 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6138 seq_printf(seq, " cpus=%*pbl",
6139 cpumask_pr_args(to_cpumask(l->cpus)));
6141 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6142 seq_printf(seq, " nodes=%*pbl",
6143 nodemask_pr_args(&l->nodes));
6145 #ifdef CONFIG_STACKDEPOT
6147 depot_stack_handle_t handle;
6148 unsigned long *entries;
6149 unsigned int nr_entries, j;
6151 handle = READ_ONCE(l->handle);
6153 nr_entries = stack_depot_fetch(handle, &entries);
6154 seq_puts(seq, "\n");
6155 for (j = 0; j < nr_entries; j++)
6156 seq_printf(seq, " %pS\n", (void *)entries[j]);
6160 seq_puts(seq, "\n");
6163 if (!idx && !t->count)
6164 seq_puts(seq, "No data\n");
6169 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6173 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6175 struct loc_track *t = seq->private;
6178 if (*ppos <= t->count)
6184 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6186 struct location *loc1 = (struct location *)a;
6187 struct location *loc2 = (struct location *)b;
6189 if (loc1->count > loc2->count)
6195 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6197 struct loc_track *t = seq->private;
6203 static const struct seq_operations slab_debugfs_sops = {
6204 .start = slab_debugfs_start,
6205 .next = slab_debugfs_next,
6206 .stop = slab_debugfs_stop,
6207 .show = slab_debugfs_show,
6210 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6213 struct kmem_cache_node *n;
6214 enum track_item alloc;
6216 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6217 sizeof(struct loc_track));
6218 struct kmem_cache *s = file_inode(filep)->i_private;
6219 unsigned long *obj_map;
6224 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6226 seq_release_private(inode, filep);
6230 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6231 alloc = TRACK_ALLOC;
6235 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6236 bitmap_free(obj_map);
6237 seq_release_private(inode, filep);
6241 for_each_kmem_cache_node(s, node, n) {
6242 unsigned long flags;
6245 if (!atomic_long_read(&n->nr_slabs))
6248 spin_lock_irqsave(&n->list_lock, flags);
6249 list_for_each_entry(slab, &n->partial, slab_list)
6250 process_slab(t, s, slab, alloc, obj_map);
6251 list_for_each_entry(slab, &n->full, slab_list)
6252 process_slab(t, s, slab, alloc, obj_map);
6253 spin_unlock_irqrestore(&n->list_lock, flags);
6256 /* Sort locations by count */
6257 sort_r(t->loc, t->count, sizeof(struct location),
6258 cmp_loc_by_count, NULL, NULL);
6260 bitmap_free(obj_map);
6264 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6266 struct seq_file *seq = file->private_data;
6267 struct loc_track *t = seq->private;
6270 return seq_release_private(inode, file);
6273 static const struct file_operations slab_debugfs_fops = {
6274 .open = slab_debug_trace_open,
6276 .llseek = seq_lseek,
6277 .release = slab_debug_trace_release,
6280 static void debugfs_slab_add(struct kmem_cache *s)
6282 struct dentry *slab_cache_dir;
6284 if (unlikely(!slab_debugfs_root))
6287 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6289 debugfs_create_file("alloc_traces", 0400,
6290 slab_cache_dir, s, &slab_debugfs_fops);
6292 debugfs_create_file("free_traces", 0400,
6293 slab_cache_dir, s, &slab_debugfs_fops);
6296 void debugfs_slab_release(struct kmem_cache *s)
6298 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
6301 static int __init slab_debugfs_init(void)
6303 struct kmem_cache *s;
6305 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6307 list_for_each_entry(s, &slab_caches, list)
6308 if (s->flags & SLAB_STORE_USER)
6309 debugfs_slab_add(s);
6314 __initcall(slab_debugfs_init);
6317 * The /proc/slabinfo ABI
6319 #ifdef CONFIG_SLUB_DEBUG
6320 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6322 unsigned long nr_slabs = 0;
6323 unsigned long nr_objs = 0;
6324 unsigned long nr_free = 0;
6326 struct kmem_cache_node *n;
6328 for_each_kmem_cache_node(s, node, n) {
6329 nr_slabs += node_nr_slabs(n);
6330 nr_objs += node_nr_objs(n);
6331 nr_free += count_partial(n, count_free);
6334 sinfo->active_objs = nr_objs - nr_free;
6335 sinfo->num_objs = nr_objs;
6336 sinfo->active_slabs = nr_slabs;
6337 sinfo->num_slabs = nr_slabs;
6338 sinfo->objects_per_slab = oo_objects(s->oo);
6339 sinfo->cache_order = oo_order(s->oo);
6342 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6346 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6347 size_t count, loff_t *ppos)
6351 #endif /* CONFIG_SLUB_DEBUG */