1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/kfence.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
39 #include <kunit/test.h>
41 #include <linux/debugfs.h>
42 #include <trace/events/kmem.h>
48 * 1. slab_mutex (Global Mutex)
50 * 3. slab_lock(page) (Only on some arches and for debugging)
54 * The role of the slab_mutex is to protect the list of all the slabs
55 * and to synchronize major metadata changes to slab cache structures.
57 * The slab_lock is only used for debugging and on arches that do not
58 * have the ability to do a cmpxchg_double. It only protects:
59 * A. page->freelist -> List of object free in a page
60 * B. page->inuse -> Number of objects in use
61 * C. page->objects -> Number of objects in page
62 * D. page->frozen -> frozen state
64 * If a slab is frozen then it is exempt from list management. It is not
65 * on any list except per cpu partial list. The processor that froze the
66 * slab is the one who can perform list operations on the page. Other
67 * processors may put objects onto the freelist but the processor that
68 * froze the slab is the only one that can retrieve the objects from the
71 * The list_lock protects the partial and full list on each node and
72 * the partial slab counter. If taken then no new slabs may be added or
73 * removed from the lists nor make the number of partial slabs be modified.
74 * (Note that the total number of slabs is an atomic value that may be
75 * modified without taking the list lock).
77 * The list_lock is a centralized lock and thus we avoid taking it as
78 * much as possible. As long as SLUB does not have to handle partial
79 * slabs, operations can continue without any centralized lock. F.e.
80 * allocating a long series of objects that fill up slabs does not require
82 * Interrupts are disabled during allocation and deallocation in order to
83 * make the slab allocator safe to use in the context of an irq. In addition
84 * interrupts are disabled to ensure that the processor does not change
85 * while handling per_cpu slabs, due to kernel preemption.
87 * SLUB assigns one slab for allocation to each processor.
88 * Allocations only occur from these slabs called cpu slabs.
90 * Slabs with free elements are kept on a partial list and during regular
91 * operations no list for full slabs is used. If an object in a full slab is
92 * freed then the slab will show up again on the partial lists.
93 * We track full slabs for debugging purposes though because otherwise we
94 * cannot scan all objects.
96 * Slabs are freed when they become empty. Teardown and setup is
97 * minimal so we rely on the page allocators per cpu caches for
98 * fast frees and allocs.
100 * page->frozen The slab is frozen and exempt from list processing.
101 * This means that the slab is dedicated to a purpose
102 * such as satisfying allocations for a specific
103 * processor. Objects may be freed in the slab while
104 * it is frozen but slab_free will then skip the usual
105 * list operations. It is up to the processor holding
106 * the slab to integrate the slab into the slab lists
107 * when the slab is no longer needed.
109 * One use of this flag is to mark slabs that are
110 * used for allocations. Then such a slab becomes a cpu
111 * slab. The cpu slab may be equipped with an additional
112 * freelist that allows lockless access to
113 * free objects in addition to the regular freelist
114 * that requires the slab lock.
116 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
117 * options set. This moves slab handling out of
118 * the fast path and disables lockless freelists.
121 #ifdef CONFIG_SLUB_DEBUG
122 #ifdef CONFIG_SLUB_DEBUG_ON
123 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
125 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
127 #endif /* CONFIG_SLUB_DEBUG */
129 static inline bool kmem_cache_debug(struct kmem_cache *s)
131 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
134 void *fixup_red_left(struct kmem_cache *s, void *p)
136 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
137 p += s->red_left_pad;
142 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
144 #ifdef CONFIG_SLUB_CPU_PARTIAL
145 return !kmem_cache_debug(s);
152 * Issues still to be resolved:
154 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
156 * - Variable sizing of the per node arrays
159 /* Enable to log cmpxchg failures */
160 #undef SLUB_DEBUG_CMPXCHG
163 * Minimum number of partial slabs. These will be left on the partial
164 * lists even if they are empty. kmem_cache_shrink may reclaim them.
166 #define MIN_PARTIAL 5
169 * Maximum number of desirable partial slabs.
170 * The existence of more partial slabs makes kmem_cache_shrink
171 * sort the partial list by the number of objects in use.
173 #define MAX_PARTIAL 10
175 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_STORE_USER)
179 * These debug flags cannot use CMPXCHG because there might be consistency
180 * issues when checking or reading debug information
182 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
187 * Debugging flags that require metadata to be stored in the slab. These get
188 * disabled when slub_debug=O is used and a cache's min order increases with
191 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
194 #define OO_MASK ((1 << OO_SHIFT) - 1)
195 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
197 /* Internal SLUB flags */
199 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
200 /* Use cmpxchg_double */
201 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
204 * Tracking user of a slab.
206 #define TRACK_ADDRS_COUNT 16
208 unsigned long addr; /* Called from address */
209 #ifdef CONFIG_STACKTRACE
210 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
212 int cpu; /* Was running on cpu */
213 int pid; /* Pid context */
214 unsigned long when; /* When did the operation occur */
217 enum track_item { TRACK_ALLOC, TRACK_FREE };
220 static int sysfs_slab_add(struct kmem_cache *);
221 static int sysfs_slab_alias(struct kmem_cache *, const char *);
223 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
224 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
228 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
229 static void debugfs_slab_add(struct kmem_cache *);
231 static inline void debugfs_slab_add(struct kmem_cache *s) { }
234 static inline void stat(const struct kmem_cache *s, enum stat_item si)
236 #ifdef CONFIG_SLUB_STATS
238 * The rmw is racy on a preemptible kernel but this is acceptable, so
239 * avoid this_cpu_add()'s irq-disable overhead.
241 raw_cpu_inc(s->cpu_slab->stat[si]);
246 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
247 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
248 * differ during memory hotplug/hotremove operations.
249 * Protected by slab_mutex.
251 static nodemask_t slab_nodes;
253 /********************************************************************
254 * Core slab cache functions
255 *******************************************************************/
258 * Returns freelist pointer (ptr). With hardening, this is obfuscated
259 * with an XOR of the address where the pointer is held and a per-cache
262 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
263 unsigned long ptr_addr)
265 #ifdef CONFIG_SLAB_FREELIST_HARDENED
267 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
268 * Normally, this doesn't cause any issues, as both set_freepointer()
269 * and get_freepointer() are called with a pointer with the same tag.
270 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
271 * example, when __free_slub() iterates over objects in a cache, it
272 * passes untagged pointers to check_object(). check_object() in turns
273 * calls get_freepointer() with an untagged pointer, which causes the
274 * freepointer to be restored incorrectly.
276 return (void *)((unsigned long)ptr ^ s->random ^
277 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
283 /* Returns the freelist pointer recorded at location ptr_addr. */
284 static inline void *freelist_dereference(const struct kmem_cache *s,
287 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
288 (unsigned long)ptr_addr);
291 static inline void *get_freepointer(struct kmem_cache *s, void *object)
293 object = kasan_reset_tag(object);
294 return freelist_dereference(s, object + s->offset);
297 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
299 prefetch(object + s->offset);
302 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
304 unsigned long freepointer_addr;
307 if (!debug_pagealloc_enabled_static())
308 return get_freepointer(s, object);
310 object = kasan_reset_tag(object);
311 freepointer_addr = (unsigned long)object + s->offset;
312 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
313 return freelist_ptr(s, p, freepointer_addr);
316 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
318 unsigned long freeptr_addr = (unsigned long)object + s->offset;
320 #ifdef CONFIG_SLAB_FREELIST_HARDENED
321 BUG_ON(object == fp); /* naive detection of double free or corruption */
324 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
325 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
328 /* Loop over all objects in a slab */
329 #define for_each_object(__p, __s, __addr, __objects) \
330 for (__p = fixup_red_left(__s, __addr); \
331 __p < (__addr) + (__objects) * (__s)->size; \
334 static inline unsigned int order_objects(unsigned int order, unsigned int size)
336 return ((unsigned int)PAGE_SIZE << order) / size;
339 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
342 struct kmem_cache_order_objects x = {
343 (order << OO_SHIFT) + order_objects(order, size)
349 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
351 return x.x >> OO_SHIFT;
354 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
356 return x.x & OO_MASK;
360 * Per slab locking using the pagelock
362 static __always_inline void slab_lock(struct page *page)
364 VM_BUG_ON_PAGE(PageTail(page), page);
365 bit_spin_lock(PG_locked, &page->flags);
368 static __always_inline void slab_unlock(struct page *page)
370 VM_BUG_ON_PAGE(PageTail(page), page);
371 __bit_spin_unlock(PG_locked, &page->flags);
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 page->counters = counters_new;
403 stat(s, CMPXCHG_DOUBLE_FAIL);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
429 local_irq_save(flags);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 page->counters = counters_new;
436 local_irq_restore(flags);
440 local_irq_restore(flags);
444 stat(s, CMPXCHG_DOUBLE_FAIL);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
453 #ifdef CONFIG_SLUB_DEBUG
454 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
455 static DEFINE_SPINLOCK(object_map_lock);
457 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
460 void *addr = page_address(page);
463 bitmap_zero(obj_map, page->objects);
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(__obj_to_index(s, addr, p), obj_map);
469 #if IS_ENABLED(CONFIG_KUNIT)
470 static bool slab_add_kunit_errors(void)
472 struct kunit_resource *resource;
474 if (likely(!current->kunit_test))
477 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
481 (*(int *)resource->data)++;
482 kunit_put_resource(resource);
486 static inline bool slab_add_kunit_errors(void) { return false; }
490 * Determine a map of object in use on a page.
492 * Node listlock must be held to guarantee that the page does
493 * not vanish from under us.
495 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
496 __acquires(&object_map_lock)
498 VM_BUG_ON(!irqs_disabled());
500 spin_lock(&object_map_lock);
502 __fill_map(object_map, s, page);
507 static void put_map(unsigned long *map) __releases(&object_map_lock)
509 VM_BUG_ON(map != object_map);
510 spin_unlock(&object_map_lock);
513 static inline unsigned int size_from_object(struct kmem_cache *s)
515 if (s->flags & SLAB_RED_ZONE)
516 return s->size - s->red_left_pad;
521 static inline void *restore_red_left(struct kmem_cache *s, void *p)
523 if (s->flags & SLAB_RED_ZONE)
524 p -= s->red_left_pad;
532 #if defined(CONFIG_SLUB_DEBUG_ON)
533 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
535 static slab_flags_t slub_debug;
538 static char *slub_debug_string;
539 static int disable_higher_order_debug;
542 * slub is about to manipulate internal object metadata. This memory lies
543 * outside the range of the allocated object, so accessing it would normally
544 * be reported by kasan as a bounds error. metadata_access_enable() is used
545 * to tell kasan that these accesses are OK.
547 static inline void metadata_access_enable(void)
549 kasan_disable_current();
552 static inline void metadata_access_disable(void)
554 kasan_enable_current();
561 /* Verify that a pointer has an address that is valid within a slab page */
562 static inline int check_valid_pointer(struct kmem_cache *s,
563 struct page *page, void *object)
570 base = page_address(page);
571 object = kasan_reset_tag(object);
572 object = restore_red_left(s, object);
573 if (object < base || object >= base + page->objects * s->size ||
574 (object - base) % s->size) {
581 static void print_section(char *level, char *text, u8 *addr,
584 metadata_access_enable();
585 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
586 16, 1, kasan_reset_tag((void *)addr), length, 1);
587 metadata_access_disable();
591 * See comment in calculate_sizes().
593 static inline bool freeptr_outside_object(struct kmem_cache *s)
595 return s->offset >= s->inuse;
599 * Return offset of the end of info block which is inuse + free pointer if
600 * not overlapping with object.
602 static inline unsigned int get_info_end(struct kmem_cache *s)
604 if (freeptr_outside_object(s))
605 return s->inuse + sizeof(void *);
610 static struct track *get_track(struct kmem_cache *s, void *object,
611 enum track_item alloc)
615 p = object + get_info_end(s);
617 return kasan_reset_tag(p + alloc);
620 static void set_track(struct kmem_cache *s, void *object,
621 enum track_item alloc, unsigned long addr)
623 struct track *p = get_track(s, object, alloc);
626 #ifdef CONFIG_STACKTRACE
627 unsigned int nr_entries;
629 metadata_access_enable();
630 nr_entries = stack_trace_save(kasan_reset_tag(p->addrs),
631 TRACK_ADDRS_COUNT, 3);
632 metadata_access_disable();
634 if (nr_entries < TRACK_ADDRS_COUNT)
635 p->addrs[nr_entries] = 0;
638 p->cpu = smp_processor_id();
639 p->pid = current->pid;
642 memset(p, 0, sizeof(struct track));
646 static void init_tracking(struct kmem_cache *s, void *object)
648 if (!(s->flags & SLAB_STORE_USER))
651 set_track(s, object, TRACK_FREE, 0UL);
652 set_track(s, object, TRACK_ALLOC, 0UL);
655 static void print_track(const char *s, struct track *t, unsigned long pr_time)
660 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
661 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
662 #ifdef CONFIG_STACKTRACE
665 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
667 pr_err("\t%pS\n", (void *)t->addrs[i]);
674 void print_tracking(struct kmem_cache *s, void *object)
676 unsigned long pr_time = jiffies;
677 if (!(s->flags & SLAB_STORE_USER))
680 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
681 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
684 static void print_page_info(struct page *page)
686 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%#lx(%pGp)\n",
687 page, page->objects, page->inuse, page->freelist,
688 page->flags, &page->flags);
692 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
694 struct va_format vaf;
700 pr_err("=============================================================================\n");
701 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
702 pr_err("-----------------------------------------------------------------------------\n\n");
707 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
709 struct va_format vaf;
712 if (slab_add_kunit_errors())
718 pr_err("FIX %s: %pV\n", s->name, &vaf);
722 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
723 void **freelist, void *nextfree)
725 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
726 !check_valid_pointer(s, page, nextfree) && freelist) {
727 object_err(s, page, *freelist, "Freechain corrupt");
729 slab_fix(s, "Isolate corrupted freechain");
736 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
738 unsigned int off; /* Offset of last byte */
739 u8 *addr = page_address(page);
741 print_tracking(s, p);
743 print_page_info(page);
745 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
746 p, p - addr, get_freepointer(s, p));
748 if (s->flags & SLAB_RED_ZONE)
749 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
751 else if (p > addr + 16)
752 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
754 print_section(KERN_ERR, "Object ", p,
755 min_t(unsigned int, s->object_size, PAGE_SIZE));
756 if (s->flags & SLAB_RED_ZONE)
757 print_section(KERN_ERR, "Redzone ", p + s->object_size,
758 s->inuse - s->object_size);
760 off = get_info_end(s);
762 if (s->flags & SLAB_STORE_USER)
763 off += 2 * sizeof(struct track);
765 off += kasan_metadata_size(s);
767 if (off != size_from_object(s))
768 /* Beginning of the filler is the free pointer */
769 print_section(KERN_ERR, "Padding ", p + off,
770 size_from_object(s) - off);
775 void object_err(struct kmem_cache *s, struct page *page,
776 u8 *object, char *reason)
778 if (slab_add_kunit_errors())
781 slab_bug(s, "%s", reason);
782 print_trailer(s, page, object);
783 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
786 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
787 const char *fmt, ...)
792 if (slab_add_kunit_errors())
796 vsnprintf(buf, sizeof(buf), fmt, args);
798 slab_bug(s, "%s", buf);
799 print_page_info(page);
801 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
804 static void init_object(struct kmem_cache *s, void *object, u8 val)
806 u8 *p = kasan_reset_tag(object);
808 if (s->flags & SLAB_RED_ZONE)
809 memset(p - s->red_left_pad, val, s->red_left_pad);
811 if (s->flags & __OBJECT_POISON) {
812 memset(p, POISON_FREE, s->object_size - 1);
813 p[s->object_size - 1] = POISON_END;
816 if (s->flags & SLAB_RED_ZONE)
817 memset(p + s->object_size, val, s->inuse - s->object_size);
820 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
821 void *from, void *to)
823 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
824 memset(from, data, to - from);
827 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
828 u8 *object, char *what,
829 u8 *start, unsigned int value, unsigned int bytes)
833 u8 *addr = page_address(page);
835 metadata_access_enable();
836 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
837 metadata_access_disable();
842 while (end > fault && end[-1] == value)
845 if (slab_add_kunit_errors())
848 slab_bug(s, "%s overwritten", what);
849 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
850 fault, end - 1, fault - addr,
852 print_trailer(s, page, object);
853 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
856 restore_bytes(s, what, value, fault, end);
864 * Bytes of the object to be managed.
865 * If the freepointer may overlay the object then the free
866 * pointer is at the middle of the object.
868 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
871 * object + s->object_size
872 * Padding to reach word boundary. This is also used for Redzoning.
873 * Padding is extended by another word if Redzoning is enabled and
874 * object_size == inuse.
876 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
877 * 0xcc (RED_ACTIVE) for objects in use.
880 * Meta data starts here.
882 * A. Free pointer (if we cannot overwrite object on free)
883 * B. Tracking data for SLAB_STORE_USER
884 * C. Padding to reach required alignment boundary or at minimum
885 * one word if debugging is on to be able to detect writes
886 * before the word boundary.
888 * Padding is done using 0x5a (POISON_INUSE)
891 * Nothing is used beyond s->size.
893 * If slabcaches are merged then the object_size and inuse boundaries are mostly
894 * ignored. And therefore no slab options that rely on these boundaries
895 * may be used with merged slabcaches.
898 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
900 unsigned long off = get_info_end(s); /* The end of info */
902 if (s->flags & SLAB_STORE_USER)
903 /* We also have user information there */
904 off += 2 * sizeof(struct track);
906 off += kasan_metadata_size(s);
908 if (size_from_object(s) == off)
911 return check_bytes_and_report(s, page, p, "Object padding",
912 p + off, POISON_INUSE, size_from_object(s) - off);
915 /* Check the pad bytes at the end of a slab page */
916 static int slab_pad_check(struct kmem_cache *s, struct page *page)
925 if (!(s->flags & SLAB_POISON))
928 start = page_address(page);
929 length = page_size(page);
930 end = start + length;
931 remainder = length % s->size;
935 pad = end - remainder;
936 metadata_access_enable();
937 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
938 metadata_access_disable();
941 while (end > fault && end[-1] == POISON_INUSE)
944 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
945 fault, end - 1, fault - start);
946 print_section(KERN_ERR, "Padding ", pad, remainder);
948 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
952 static int check_object(struct kmem_cache *s, struct page *page,
953 void *object, u8 val)
956 u8 *endobject = object + s->object_size;
958 if (s->flags & SLAB_RED_ZONE) {
959 if (!check_bytes_and_report(s, page, object, "Left Redzone",
960 object - s->red_left_pad, val, s->red_left_pad))
963 if (!check_bytes_and_report(s, page, object, "Right Redzone",
964 endobject, val, s->inuse - s->object_size))
967 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
968 check_bytes_and_report(s, page, p, "Alignment padding",
969 endobject, POISON_INUSE,
970 s->inuse - s->object_size);
974 if (s->flags & SLAB_POISON) {
975 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
976 (!check_bytes_and_report(s, page, p, "Poison", p,
977 POISON_FREE, s->object_size - 1) ||
978 !check_bytes_and_report(s, page, p, "End Poison",
979 p + s->object_size - 1, POISON_END, 1)))
982 * check_pad_bytes cleans up on its own.
984 check_pad_bytes(s, page, p);
987 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
989 * Object and freepointer overlap. Cannot check
990 * freepointer while object is allocated.
994 /* Check free pointer validity */
995 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
996 object_err(s, page, p, "Freepointer corrupt");
998 * No choice but to zap it and thus lose the remainder
999 * of the free objects in this slab. May cause
1000 * another error because the object count is now wrong.
1002 set_freepointer(s, p, NULL);
1008 static int check_slab(struct kmem_cache *s, struct page *page)
1012 VM_BUG_ON(!irqs_disabled());
1014 if (!PageSlab(page)) {
1015 slab_err(s, page, "Not a valid slab page");
1019 maxobj = order_objects(compound_order(page), s->size);
1020 if (page->objects > maxobj) {
1021 slab_err(s, page, "objects %u > max %u",
1022 page->objects, maxobj);
1025 if (page->inuse > page->objects) {
1026 slab_err(s, page, "inuse %u > max %u",
1027 page->inuse, page->objects);
1030 /* Slab_pad_check fixes things up after itself */
1031 slab_pad_check(s, page);
1036 * Determine if a certain object on a page is on the freelist. Must hold the
1037 * slab lock to guarantee that the chains are in a consistent state.
1039 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
1043 void *object = NULL;
1046 fp = page->freelist;
1047 while (fp && nr <= page->objects) {
1050 if (!check_valid_pointer(s, page, fp)) {
1052 object_err(s, page, object,
1053 "Freechain corrupt");
1054 set_freepointer(s, object, NULL);
1056 slab_err(s, page, "Freepointer corrupt");
1057 page->freelist = NULL;
1058 page->inuse = page->objects;
1059 slab_fix(s, "Freelist cleared");
1065 fp = get_freepointer(s, object);
1069 max_objects = order_objects(compound_order(page), s->size);
1070 if (max_objects > MAX_OBJS_PER_PAGE)
1071 max_objects = MAX_OBJS_PER_PAGE;
1073 if (page->objects != max_objects) {
1074 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1075 page->objects, max_objects);
1076 page->objects = max_objects;
1077 slab_fix(s, "Number of objects adjusted");
1079 if (page->inuse != page->objects - nr) {
1080 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1081 page->inuse, page->objects - nr);
1082 page->inuse = page->objects - nr;
1083 slab_fix(s, "Object count adjusted");
1085 return search == NULL;
1088 static void trace(struct kmem_cache *s, struct page *page, void *object,
1091 if (s->flags & SLAB_TRACE) {
1092 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1094 alloc ? "alloc" : "free",
1095 object, page->inuse,
1099 print_section(KERN_INFO, "Object ", (void *)object,
1107 * Tracking of fully allocated slabs for debugging purposes.
1109 static void add_full(struct kmem_cache *s,
1110 struct kmem_cache_node *n, struct page *page)
1112 if (!(s->flags & SLAB_STORE_USER))
1115 lockdep_assert_held(&n->list_lock);
1116 list_add(&page->slab_list, &n->full);
1119 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1121 if (!(s->flags & SLAB_STORE_USER))
1124 lockdep_assert_held(&n->list_lock);
1125 list_del(&page->slab_list);
1128 /* Tracking of the number of slabs for debugging purposes */
1129 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1131 struct kmem_cache_node *n = get_node(s, node);
1133 return atomic_long_read(&n->nr_slabs);
1136 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1138 return atomic_long_read(&n->nr_slabs);
1141 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1143 struct kmem_cache_node *n = get_node(s, node);
1146 * May be called early in order to allocate a slab for the
1147 * kmem_cache_node structure. Solve the chicken-egg
1148 * dilemma by deferring the increment of the count during
1149 * bootstrap (see early_kmem_cache_node_alloc).
1152 atomic_long_inc(&n->nr_slabs);
1153 atomic_long_add(objects, &n->total_objects);
1156 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1158 struct kmem_cache_node *n = get_node(s, node);
1160 atomic_long_dec(&n->nr_slabs);
1161 atomic_long_sub(objects, &n->total_objects);
1164 /* Object debug checks for alloc/free paths */
1165 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1168 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1171 init_object(s, object, SLUB_RED_INACTIVE);
1172 init_tracking(s, object);
1176 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1178 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1181 metadata_access_enable();
1182 memset(kasan_reset_tag(addr), POISON_INUSE, page_size(page));
1183 metadata_access_disable();
1186 static inline int alloc_consistency_checks(struct kmem_cache *s,
1187 struct page *page, void *object)
1189 if (!check_slab(s, page))
1192 if (!check_valid_pointer(s, page, object)) {
1193 object_err(s, page, object, "Freelist Pointer check fails");
1197 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1203 static noinline int alloc_debug_processing(struct kmem_cache *s,
1205 void *object, unsigned long addr)
1207 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1208 if (!alloc_consistency_checks(s, page, object))
1212 /* Success perform special debug activities for allocs */
1213 if (s->flags & SLAB_STORE_USER)
1214 set_track(s, object, TRACK_ALLOC, addr);
1215 trace(s, page, object, 1);
1216 init_object(s, object, SLUB_RED_ACTIVE);
1220 if (PageSlab(page)) {
1222 * If this is a slab page then lets do the best we can
1223 * to avoid issues in the future. Marking all objects
1224 * as used avoids touching the remaining objects.
1226 slab_fix(s, "Marking all objects used");
1227 page->inuse = page->objects;
1228 page->freelist = NULL;
1233 static inline int free_consistency_checks(struct kmem_cache *s,
1234 struct page *page, void *object, unsigned long addr)
1236 if (!check_valid_pointer(s, page, object)) {
1237 slab_err(s, page, "Invalid object pointer 0x%p", object);
1241 if (on_freelist(s, page, object)) {
1242 object_err(s, page, object, "Object already free");
1246 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1249 if (unlikely(s != page->slab_cache)) {
1250 if (!PageSlab(page)) {
1251 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1253 } else if (!page->slab_cache) {
1254 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1258 object_err(s, page, object,
1259 "page slab pointer corrupt.");
1265 /* Supports checking bulk free of a constructed freelist */
1266 static noinline int free_debug_processing(
1267 struct kmem_cache *s, struct page *page,
1268 void *head, void *tail, int bulk_cnt,
1271 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1272 void *object = head;
1274 unsigned long flags;
1277 spin_lock_irqsave(&n->list_lock, flags);
1280 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1281 if (!check_slab(s, page))
1288 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1289 if (!free_consistency_checks(s, page, object, addr))
1293 if (s->flags & SLAB_STORE_USER)
1294 set_track(s, object, TRACK_FREE, addr);
1295 trace(s, page, object, 0);
1296 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1297 init_object(s, object, SLUB_RED_INACTIVE);
1299 /* Reached end of constructed freelist yet? */
1300 if (object != tail) {
1301 object = get_freepointer(s, object);
1307 if (cnt != bulk_cnt)
1308 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1312 spin_unlock_irqrestore(&n->list_lock, flags);
1314 slab_fix(s, "Object at 0x%p not freed", object);
1319 * Parse a block of slub_debug options. Blocks are delimited by ';'
1321 * @str: start of block
1322 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1323 * @slabs: return start of list of slabs, or NULL when there's no list
1324 * @init: assume this is initial parsing and not per-kmem-create parsing
1326 * returns the start of next block if there's any, or NULL
1329 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1331 bool higher_order_disable = false;
1333 /* Skip any completely empty blocks */
1334 while (*str && *str == ';')
1339 * No options but restriction on slabs. This means full
1340 * debugging for slabs matching a pattern.
1342 *flags = DEBUG_DEFAULT_FLAGS;
1347 /* Determine which debug features should be switched on */
1348 for (; *str && *str != ',' && *str != ';'; str++) {
1349 switch (tolower(*str)) {
1354 *flags |= SLAB_CONSISTENCY_CHECKS;
1357 *flags |= SLAB_RED_ZONE;
1360 *flags |= SLAB_POISON;
1363 *flags |= SLAB_STORE_USER;
1366 *flags |= SLAB_TRACE;
1369 *flags |= SLAB_FAILSLAB;
1373 * Avoid enabling debugging on caches if its minimum
1374 * order would increase as a result.
1376 higher_order_disable = true;
1380 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1389 /* Skip over the slab list */
1390 while (*str && *str != ';')
1393 /* Skip any completely empty blocks */
1394 while (*str && *str == ';')
1397 if (init && higher_order_disable)
1398 disable_higher_order_debug = 1;
1406 static int __init setup_slub_debug(char *str)
1409 slab_flags_t global_flags;
1412 bool global_slub_debug_changed = false;
1413 bool slab_list_specified = false;
1415 global_flags = DEBUG_DEFAULT_FLAGS;
1416 if (*str++ != '=' || !*str)
1418 * No options specified. Switch on full debugging.
1424 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1427 global_flags = flags;
1428 global_slub_debug_changed = true;
1430 slab_list_specified = true;
1435 * For backwards compatibility, a single list of flags with list of
1436 * slabs means debugging is only changed for those slabs, so the global
1437 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1438 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1439 * long as there is no option specifying flags without a slab list.
1441 if (slab_list_specified) {
1442 if (!global_slub_debug_changed)
1443 global_flags = slub_debug;
1444 slub_debug_string = saved_str;
1447 slub_debug = global_flags;
1448 if (slub_debug != 0 || slub_debug_string)
1449 static_branch_enable(&slub_debug_enabled);
1451 static_branch_disable(&slub_debug_enabled);
1452 if ((static_branch_unlikely(&init_on_alloc) ||
1453 static_branch_unlikely(&init_on_free)) &&
1454 (slub_debug & SLAB_POISON))
1455 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1459 __setup("slub_debug", setup_slub_debug);
1462 * kmem_cache_flags - apply debugging options to the cache
1463 * @object_size: the size of an object without meta data
1464 * @flags: flags to set
1465 * @name: name of the cache
1467 * Debug option(s) are applied to @flags. In addition to the debug
1468 * option(s), if a slab name (or multiple) is specified i.e.
1469 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1470 * then only the select slabs will receive the debug option(s).
1472 slab_flags_t kmem_cache_flags(unsigned int object_size,
1473 slab_flags_t flags, const char *name)
1478 slab_flags_t block_flags;
1479 slab_flags_t slub_debug_local = slub_debug;
1482 * If the slab cache is for debugging (e.g. kmemleak) then
1483 * don't store user (stack trace) information by default,
1484 * but let the user enable it via the command line below.
1486 if (flags & SLAB_NOLEAKTRACE)
1487 slub_debug_local &= ~SLAB_STORE_USER;
1490 next_block = slub_debug_string;
1491 /* Go through all blocks of debug options, see if any matches our slab's name */
1492 while (next_block) {
1493 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1496 /* Found a block that has a slab list, search it */
1501 end = strchrnul(iter, ',');
1502 if (next_block && next_block < end)
1503 end = next_block - 1;
1505 glob = strnchr(iter, end - iter, '*');
1507 cmplen = glob - iter;
1509 cmplen = max_t(size_t, len, (end - iter));
1511 if (!strncmp(name, iter, cmplen)) {
1512 flags |= block_flags;
1516 if (!*end || *end == ';')
1522 return flags | slub_debug_local;
1524 #else /* !CONFIG_SLUB_DEBUG */
1525 static inline void setup_object_debug(struct kmem_cache *s,
1526 struct page *page, void *object) {}
1528 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1530 static inline int alloc_debug_processing(struct kmem_cache *s,
1531 struct page *page, void *object, unsigned long addr) { return 0; }
1533 static inline int free_debug_processing(
1534 struct kmem_cache *s, struct page *page,
1535 void *head, void *tail, int bulk_cnt,
1536 unsigned long addr) { return 0; }
1538 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1540 static inline int check_object(struct kmem_cache *s, struct page *page,
1541 void *object, u8 val) { return 1; }
1542 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1543 struct page *page) {}
1544 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1545 struct page *page) {}
1546 slab_flags_t kmem_cache_flags(unsigned int object_size,
1547 slab_flags_t flags, const char *name)
1551 #define slub_debug 0
1553 #define disable_higher_order_debug 0
1555 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1557 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1559 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1561 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1564 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1565 void **freelist, void *nextfree)
1569 #endif /* CONFIG_SLUB_DEBUG */
1572 * Hooks for other subsystems that check memory allocations. In a typical
1573 * production configuration these hooks all should produce no code at all.
1575 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1577 ptr = kasan_kmalloc_large(ptr, size, flags);
1578 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1579 kmemleak_alloc(ptr, size, 1, flags);
1583 static __always_inline void kfree_hook(void *x)
1586 kasan_kfree_large(x);
1589 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1592 kmemleak_free_recursive(x, s->flags);
1594 debug_check_no_locks_freed(x, s->object_size);
1596 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1597 debug_check_no_obj_freed(x, s->object_size);
1599 /* Use KCSAN to help debug racy use-after-free. */
1600 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1601 __kcsan_check_access(x, s->object_size,
1602 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1605 * As memory initialization might be integrated into KASAN,
1606 * kasan_slab_free and initialization memset's must be
1607 * kept together to avoid discrepancies in behavior.
1609 * The initialization memset's clear the object and the metadata,
1610 * but don't touch the SLAB redzone.
1615 if (!kasan_has_integrated_init())
1616 memset(kasan_reset_tag(x), 0, s->object_size);
1617 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1618 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1619 s->size - s->inuse - rsize);
1621 /* KASAN might put x into memory quarantine, delaying its reuse. */
1622 return kasan_slab_free(s, x, init);
1625 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1626 void **head, void **tail)
1631 void *old_tail = *tail ? *tail : *head;
1633 if (is_kfence_address(next)) {
1634 slab_free_hook(s, next, false);
1638 /* Head and tail of the reconstructed freelist */
1644 next = get_freepointer(s, object);
1646 /* If object's reuse doesn't have to be delayed */
1647 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1648 /* Move object to the new freelist */
1649 set_freepointer(s, object, *head);
1654 } while (object != old_tail);
1659 return *head != NULL;
1662 static void *setup_object(struct kmem_cache *s, struct page *page,
1665 setup_object_debug(s, page, object);
1666 object = kasan_init_slab_obj(s, object);
1667 if (unlikely(s->ctor)) {
1668 kasan_unpoison_object_data(s, object);
1670 kasan_poison_object_data(s, object);
1676 * Slab allocation and freeing
1678 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1679 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1682 unsigned int order = oo_order(oo);
1684 if (node == NUMA_NO_NODE)
1685 page = alloc_pages(flags, order);
1687 page = __alloc_pages_node(node, flags, order);
1692 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1693 /* Pre-initialize the random sequence cache */
1694 static int init_cache_random_seq(struct kmem_cache *s)
1696 unsigned int count = oo_objects(s->oo);
1699 /* Bailout if already initialised */
1703 err = cache_random_seq_create(s, count, GFP_KERNEL);
1705 pr_err("SLUB: Unable to initialize free list for %s\n",
1710 /* Transform to an offset on the set of pages */
1711 if (s->random_seq) {
1714 for (i = 0; i < count; i++)
1715 s->random_seq[i] *= s->size;
1720 /* Initialize each random sequence freelist per cache */
1721 static void __init init_freelist_randomization(void)
1723 struct kmem_cache *s;
1725 mutex_lock(&slab_mutex);
1727 list_for_each_entry(s, &slab_caches, list)
1728 init_cache_random_seq(s);
1730 mutex_unlock(&slab_mutex);
1733 /* Get the next entry on the pre-computed freelist randomized */
1734 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1735 unsigned long *pos, void *start,
1736 unsigned long page_limit,
1737 unsigned long freelist_count)
1742 * If the target page allocation failed, the number of objects on the
1743 * page might be smaller than the usual size defined by the cache.
1746 idx = s->random_seq[*pos];
1748 if (*pos >= freelist_count)
1750 } while (unlikely(idx >= page_limit));
1752 return (char *)start + idx;
1755 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1756 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1761 unsigned long idx, pos, page_limit, freelist_count;
1763 if (page->objects < 2 || !s->random_seq)
1766 freelist_count = oo_objects(s->oo);
1767 pos = get_random_int() % freelist_count;
1769 page_limit = page->objects * s->size;
1770 start = fixup_red_left(s, page_address(page));
1772 /* First entry is used as the base of the freelist */
1773 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1775 cur = setup_object(s, page, cur);
1776 page->freelist = cur;
1778 for (idx = 1; idx < page->objects; idx++) {
1779 next = next_freelist_entry(s, page, &pos, start, page_limit,
1781 next = setup_object(s, page, next);
1782 set_freepointer(s, cur, next);
1785 set_freepointer(s, cur, NULL);
1790 static inline int init_cache_random_seq(struct kmem_cache *s)
1794 static inline void init_freelist_randomization(void) { }
1795 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1799 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1801 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1804 struct kmem_cache_order_objects oo = s->oo;
1806 void *start, *p, *next;
1810 flags &= gfp_allowed_mask;
1812 if (gfpflags_allow_blocking(flags))
1815 flags |= s->allocflags;
1818 * Let the initial higher-order allocation fail under memory pressure
1819 * so we fall-back to the minimum order allocation.
1821 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1822 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1823 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1825 page = alloc_slab_page(s, alloc_gfp, node, oo);
1826 if (unlikely(!page)) {
1830 * Allocation may have failed due to fragmentation.
1831 * Try a lower order alloc if possible
1833 page = alloc_slab_page(s, alloc_gfp, node, oo);
1834 if (unlikely(!page))
1836 stat(s, ORDER_FALLBACK);
1839 page->objects = oo_objects(oo);
1841 account_slab_page(page, oo_order(oo), s, flags);
1843 page->slab_cache = s;
1844 __SetPageSlab(page);
1845 if (page_is_pfmemalloc(page))
1846 SetPageSlabPfmemalloc(page);
1848 kasan_poison_slab(page);
1850 start = page_address(page);
1852 setup_page_debug(s, page, start);
1854 shuffle = shuffle_freelist(s, page);
1857 start = fixup_red_left(s, start);
1858 start = setup_object(s, page, start);
1859 page->freelist = start;
1860 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1862 next = setup_object(s, page, next);
1863 set_freepointer(s, p, next);
1866 set_freepointer(s, p, NULL);
1869 page->inuse = page->objects;
1873 if (gfpflags_allow_blocking(flags))
1874 local_irq_disable();
1878 inc_slabs_node(s, page_to_nid(page), page->objects);
1883 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1885 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1886 flags = kmalloc_fix_flags(flags);
1888 return allocate_slab(s,
1889 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1892 static void __free_slab(struct kmem_cache *s, struct page *page)
1894 int order = compound_order(page);
1895 int pages = 1 << order;
1897 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
1900 slab_pad_check(s, page);
1901 for_each_object(p, s, page_address(page),
1903 check_object(s, page, p, SLUB_RED_INACTIVE);
1906 __ClearPageSlabPfmemalloc(page);
1907 __ClearPageSlab(page);
1908 /* In union with page->mapping where page allocator expects NULL */
1909 page->slab_cache = NULL;
1910 if (current->reclaim_state)
1911 current->reclaim_state->reclaimed_slab += pages;
1912 unaccount_slab_page(page, order, s);
1913 __free_pages(page, order);
1916 static void rcu_free_slab(struct rcu_head *h)
1918 struct page *page = container_of(h, struct page, rcu_head);
1920 __free_slab(page->slab_cache, page);
1923 static void free_slab(struct kmem_cache *s, struct page *page)
1925 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1926 call_rcu(&page->rcu_head, rcu_free_slab);
1928 __free_slab(s, page);
1931 static void discard_slab(struct kmem_cache *s, struct page *page)
1933 dec_slabs_node(s, page_to_nid(page), page->objects);
1938 * Management of partially allocated slabs.
1941 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1944 if (tail == DEACTIVATE_TO_TAIL)
1945 list_add_tail(&page->slab_list, &n->partial);
1947 list_add(&page->slab_list, &n->partial);
1950 static inline void add_partial(struct kmem_cache_node *n,
1951 struct page *page, int tail)
1953 lockdep_assert_held(&n->list_lock);
1954 __add_partial(n, page, tail);
1957 static inline void remove_partial(struct kmem_cache_node *n,
1960 lockdep_assert_held(&n->list_lock);
1961 list_del(&page->slab_list);
1966 * Remove slab from the partial list, freeze it and
1967 * return the pointer to the freelist.
1969 * Returns a list of objects or NULL if it fails.
1971 static inline void *acquire_slab(struct kmem_cache *s,
1972 struct kmem_cache_node *n, struct page *page,
1973 int mode, int *objects)
1976 unsigned long counters;
1979 lockdep_assert_held(&n->list_lock);
1982 * Zap the freelist and set the frozen bit.
1983 * The old freelist is the list of objects for the
1984 * per cpu allocation list.
1986 freelist = page->freelist;
1987 counters = page->counters;
1988 new.counters = counters;
1989 *objects = new.objects - new.inuse;
1991 new.inuse = page->objects;
1992 new.freelist = NULL;
1994 new.freelist = freelist;
1997 VM_BUG_ON(new.frozen);
2000 if (!__cmpxchg_double_slab(s, page,
2002 new.freelist, new.counters,
2006 remove_partial(n, page);
2011 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
2012 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
2015 * Try to allocate a partial slab from a specific node.
2017 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2018 struct kmem_cache_cpu *c, gfp_t flags)
2020 struct page *page, *page2;
2021 void *object = NULL;
2022 unsigned int available = 0;
2026 * Racy check. If we mistakenly see no partial slabs then we
2027 * just allocate an empty slab. If we mistakenly try to get a
2028 * partial slab and there is none available then get_partial()
2031 if (!n || !n->nr_partial)
2034 spin_lock(&n->list_lock);
2035 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
2038 if (!pfmemalloc_match(page, flags))
2041 t = acquire_slab(s, n, page, object == NULL, &objects);
2045 available += objects;
2048 stat(s, ALLOC_FROM_PARTIAL);
2051 put_cpu_partial(s, page, 0);
2052 stat(s, CPU_PARTIAL_NODE);
2054 if (!kmem_cache_has_cpu_partial(s)
2055 || available > slub_cpu_partial(s) / 2)
2059 spin_unlock(&n->list_lock);
2064 * Get a page from somewhere. Search in increasing NUMA distances.
2066 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
2067 struct kmem_cache_cpu *c)
2070 struct zonelist *zonelist;
2073 enum zone_type highest_zoneidx = gfp_zone(flags);
2075 unsigned int cpuset_mems_cookie;
2078 * The defrag ratio allows a configuration of the tradeoffs between
2079 * inter node defragmentation and node local allocations. A lower
2080 * defrag_ratio increases the tendency to do local allocations
2081 * instead of attempting to obtain partial slabs from other nodes.
2083 * If the defrag_ratio is set to 0 then kmalloc() always
2084 * returns node local objects. If the ratio is higher then kmalloc()
2085 * may return off node objects because partial slabs are obtained
2086 * from other nodes and filled up.
2088 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2089 * (which makes defrag_ratio = 1000) then every (well almost)
2090 * allocation will first attempt to defrag slab caches on other nodes.
2091 * This means scanning over all nodes to look for partial slabs which
2092 * may be expensive if we do it every time we are trying to find a slab
2093 * with available objects.
2095 if (!s->remote_node_defrag_ratio ||
2096 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2100 cpuset_mems_cookie = read_mems_allowed_begin();
2101 zonelist = node_zonelist(mempolicy_slab_node(), flags);
2102 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2103 struct kmem_cache_node *n;
2105 n = get_node(s, zone_to_nid(zone));
2107 if (n && cpuset_zone_allowed(zone, flags) &&
2108 n->nr_partial > s->min_partial) {
2109 object = get_partial_node(s, n, c, flags);
2112 * Don't check read_mems_allowed_retry()
2113 * here - if mems_allowed was updated in
2114 * parallel, that was a harmless race
2115 * between allocation and the cpuset
2122 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2123 #endif /* CONFIG_NUMA */
2128 * Get a partial page, lock it and return it.
2130 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
2131 struct kmem_cache_cpu *c)
2134 int searchnode = node;
2136 if (node == NUMA_NO_NODE)
2137 searchnode = numa_mem_id();
2139 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2140 if (object || node != NUMA_NO_NODE)
2143 return get_any_partial(s, flags, c);
2146 #ifdef CONFIG_PREEMPTION
2148 * Calculate the next globally unique transaction for disambiguation
2149 * during cmpxchg. The transactions start with the cpu number and are then
2150 * incremented by CONFIG_NR_CPUS.
2152 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2155 * No preemption supported therefore also no need to check for
2161 static inline unsigned long next_tid(unsigned long tid)
2163 return tid + TID_STEP;
2166 #ifdef SLUB_DEBUG_CMPXCHG
2167 static inline unsigned int tid_to_cpu(unsigned long tid)
2169 return tid % TID_STEP;
2172 static inline unsigned long tid_to_event(unsigned long tid)
2174 return tid / TID_STEP;
2178 static inline unsigned int init_tid(int cpu)
2183 static inline void note_cmpxchg_failure(const char *n,
2184 const struct kmem_cache *s, unsigned long tid)
2186 #ifdef SLUB_DEBUG_CMPXCHG
2187 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2189 pr_info("%s %s: cmpxchg redo ", n, s->name);
2191 #ifdef CONFIG_PREEMPTION
2192 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2193 pr_warn("due to cpu change %d -> %d\n",
2194 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2197 if (tid_to_event(tid) != tid_to_event(actual_tid))
2198 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2199 tid_to_event(tid), tid_to_event(actual_tid));
2201 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2202 actual_tid, tid, next_tid(tid));
2204 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2207 static void init_kmem_cache_cpus(struct kmem_cache *s)
2211 for_each_possible_cpu(cpu)
2212 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2216 * Remove the cpu slab
2218 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2219 void *freelist, struct kmem_cache_cpu *c)
2221 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2222 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2223 int lock = 0, free_delta = 0;
2224 enum slab_modes l = M_NONE, m = M_NONE;
2225 void *nextfree, *freelist_iter, *freelist_tail;
2226 int tail = DEACTIVATE_TO_HEAD;
2230 if (page->freelist) {
2231 stat(s, DEACTIVATE_REMOTE_FREES);
2232 tail = DEACTIVATE_TO_TAIL;
2236 * Stage one: Count the objects on cpu's freelist as free_delta and
2237 * remember the last object in freelist_tail for later splicing.
2239 freelist_tail = NULL;
2240 freelist_iter = freelist;
2241 while (freelist_iter) {
2242 nextfree = get_freepointer(s, freelist_iter);
2245 * If 'nextfree' is invalid, it is possible that the object at
2246 * 'freelist_iter' is already corrupted. So isolate all objects
2247 * starting at 'freelist_iter' by skipping them.
2249 if (freelist_corrupted(s, page, &freelist_iter, nextfree))
2252 freelist_tail = freelist_iter;
2255 freelist_iter = nextfree;
2259 * Stage two: Unfreeze the page while splicing the per-cpu
2260 * freelist to the head of page's freelist.
2262 * Ensure that the page is unfrozen while the list presence
2263 * reflects the actual number of objects during unfreeze.
2265 * We setup the list membership and then perform a cmpxchg
2266 * with the count. If there is a mismatch then the page
2267 * is not unfrozen but the page is on the wrong list.
2269 * Then we restart the process which may have to remove
2270 * the page from the list that we just put it on again
2271 * because the number of objects in the slab may have
2276 old.freelist = READ_ONCE(page->freelist);
2277 old.counters = READ_ONCE(page->counters);
2278 VM_BUG_ON(!old.frozen);
2280 /* Determine target state of the slab */
2281 new.counters = old.counters;
2282 if (freelist_tail) {
2283 new.inuse -= free_delta;
2284 set_freepointer(s, freelist_tail, old.freelist);
2285 new.freelist = freelist;
2287 new.freelist = old.freelist;
2291 if (!new.inuse && n->nr_partial >= s->min_partial)
2293 else if (new.freelist) {
2298 * Taking the spinlock removes the possibility
2299 * that acquire_slab() will see a slab page that
2302 spin_lock(&n->list_lock);
2306 if (kmem_cache_debug_flags(s, SLAB_STORE_USER) && !lock) {
2309 * This also ensures that the scanning of full
2310 * slabs from diagnostic functions will not see
2313 spin_lock(&n->list_lock);
2319 remove_partial(n, page);
2320 else if (l == M_FULL)
2321 remove_full(s, n, page);
2324 add_partial(n, page, tail);
2325 else if (m == M_FULL)
2326 add_full(s, n, page);
2330 if (!__cmpxchg_double_slab(s, page,
2331 old.freelist, old.counters,
2332 new.freelist, new.counters,
2337 spin_unlock(&n->list_lock);
2341 else if (m == M_FULL)
2342 stat(s, DEACTIVATE_FULL);
2343 else if (m == M_FREE) {
2344 stat(s, DEACTIVATE_EMPTY);
2345 discard_slab(s, page);
2354 * Unfreeze all the cpu partial slabs.
2356 * This function must be called with interrupts disabled
2357 * for the cpu using c (or some other guarantee must be there
2358 * to guarantee no concurrent accesses).
2360 static void unfreeze_partials(struct kmem_cache *s,
2361 struct kmem_cache_cpu *c)
2363 #ifdef CONFIG_SLUB_CPU_PARTIAL
2364 struct kmem_cache_node *n = NULL, *n2 = NULL;
2365 struct page *page, *discard_page = NULL;
2367 while ((page = slub_percpu_partial(c))) {
2371 slub_set_percpu_partial(c, page);
2373 n2 = get_node(s, page_to_nid(page));
2376 spin_unlock(&n->list_lock);
2379 spin_lock(&n->list_lock);
2384 old.freelist = page->freelist;
2385 old.counters = page->counters;
2386 VM_BUG_ON(!old.frozen);
2388 new.counters = old.counters;
2389 new.freelist = old.freelist;
2393 } while (!__cmpxchg_double_slab(s, page,
2394 old.freelist, old.counters,
2395 new.freelist, new.counters,
2396 "unfreezing slab"));
2398 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2399 page->next = discard_page;
2400 discard_page = page;
2402 add_partial(n, page, DEACTIVATE_TO_TAIL);
2403 stat(s, FREE_ADD_PARTIAL);
2408 spin_unlock(&n->list_lock);
2410 while (discard_page) {
2411 page = discard_page;
2412 discard_page = discard_page->next;
2414 stat(s, DEACTIVATE_EMPTY);
2415 discard_slab(s, page);
2418 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2422 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2423 * partial page slot if available.
2425 * If we did not find a slot then simply move all the partials to the
2426 * per node partial list.
2428 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2430 #ifdef CONFIG_SLUB_CPU_PARTIAL
2431 struct page *oldpage;
2439 oldpage = this_cpu_read(s->cpu_slab->partial);
2442 pobjects = oldpage->pobjects;
2443 pages = oldpage->pages;
2444 if (drain && pobjects > slub_cpu_partial(s)) {
2445 unsigned long flags;
2447 * partial array is full. Move the existing
2448 * set to the per node partial list.
2450 local_irq_save(flags);
2451 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2452 local_irq_restore(flags);
2456 stat(s, CPU_PARTIAL_DRAIN);
2461 pobjects += page->objects - page->inuse;
2463 page->pages = pages;
2464 page->pobjects = pobjects;
2465 page->next = oldpage;
2467 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2470 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2473 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2475 stat(s, CPUSLAB_FLUSH);
2476 deactivate_slab(s, c->page, c->freelist, c);
2478 c->tid = next_tid(c->tid);
2484 * Called from IPI handler with interrupts disabled.
2486 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2488 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2493 unfreeze_partials(s, c);
2496 static void flush_cpu_slab(void *d)
2498 struct kmem_cache *s = d;
2500 __flush_cpu_slab(s, smp_processor_id());
2503 static bool has_cpu_slab(int cpu, void *info)
2505 struct kmem_cache *s = info;
2506 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2508 return c->page || slub_percpu_partial(c);
2511 static void flush_all(struct kmem_cache *s)
2513 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2517 * Use the cpu notifier to insure that the cpu slabs are flushed when
2520 static int slub_cpu_dead(unsigned int cpu)
2522 struct kmem_cache *s;
2523 unsigned long flags;
2525 mutex_lock(&slab_mutex);
2526 list_for_each_entry(s, &slab_caches, list) {
2527 local_irq_save(flags);
2528 __flush_cpu_slab(s, cpu);
2529 local_irq_restore(flags);
2531 mutex_unlock(&slab_mutex);
2536 * Check if the objects in a per cpu structure fit numa
2537 * locality expectations.
2539 static inline int node_match(struct page *page, int node)
2542 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2548 #ifdef CONFIG_SLUB_DEBUG
2549 static int count_free(struct page *page)
2551 return page->objects - page->inuse;
2554 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2556 return atomic_long_read(&n->total_objects);
2558 #endif /* CONFIG_SLUB_DEBUG */
2560 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2561 static unsigned long count_partial(struct kmem_cache_node *n,
2562 int (*get_count)(struct page *))
2564 unsigned long flags;
2565 unsigned long x = 0;
2568 spin_lock_irqsave(&n->list_lock, flags);
2569 list_for_each_entry(page, &n->partial, slab_list)
2570 x += get_count(page);
2571 spin_unlock_irqrestore(&n->list_lock, flags);
2574 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2576 static noinline void
2577 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2579 #ifdef CONFIG_SLUB_DEBUG
2580 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2581 DEFAULT_RATELIMIT_BURST);
2583 struct kmem_cache_node *n;
2585 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2588 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2589 nid, gfpflags, &gfpflags);
2590 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2591 s->name, s->object_size, s->size, oo_order(s->oo),
2594 if (oo_order(s->min) > get_order(s->object_size))
2595 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2598 for_each_kmem_cache_node(s, node, n) {
2599 unsigned long nr_slabs;
2600 unsigned long nr_objs;
2601 unsigned long nr_free;
2603 nr_free = count_partial(n, count_free);
2604 nr_slabs = node_nr_slabs(n);
2605 nr_objs = node_nr_objs(n);
2607 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2608 node, nr_slabs, nr_objs, nr_free);
2613 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2614 int node, struct kmem_cache_cpu **pc)
2616 void *freelist = NULL;
2617 struct kmem_cache_cpu *c = *pc;
2620 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2622 page = new_slab(s, flags, node);
2624 c = raw_cpu_ptr(s->cpu_slab);
2629 * No other reference to the page yet so we can
2630 * muck around with it freely without cmpxchg
2632 freelist = page->freelist;
2633 page->freelist = NULL;
2635 stat(s, ALLOC_SLAB);
2643 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2645 if (unlikely(PageSlabPfmemalloc(page)))
2646 return gfp_pfmemalloc_allowed(gfpflags);
2652 * Check the page->freelist of a page and either transfer the freelist to the
2653 * per cpu freelist or deactivate the page.
2655 * The page is still frozen if the return value is not NULL.
2657 * If this function returns NULL then the page has been unfrozen.
2659 * This function must be called with interrupt disabled.
2661 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2664 unsigned long counters;
2668 freelist = page->freelist;
2669 counters = page->counters;
2671 new.counters = counters;
2672 VM_BUG_ON(!new.frozen);
2674 new.inuse = page->objects;
2675 new.frozen = freelist != NULL;
2677 } while (!__cmpxchg_double_slab(s, page,
2686 * Slow path. The lockless freelist is empty or we need to perform
2689 * Processing is still very fast if new objects have been freed to the
2690 * regular freelist. In that case we simply take over the regular freelist
2691 * as the lockless freelist and zap the regular freelist.
2693 * If that is not working then we fall back to the partial lists. We take the
2694 * first element of the freelist as the object to allocate now and move the
2695 * rest of the freelist to the lockless freelist.
2697 * And if we were unable to get a new slab from the partial slab lists then
2698 * we need to allocate a new slab. This is the slowest path since it involves
2699 * a call to the page allocator and the setup of a new slab.
2701 * Version of __slab_alloc to use when we know that interrupts are
2702 * already disabled (which is the case for bulk allocation).
2704 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2705 unsigned long addr, struct kmem_cache_cpu *c)
2710 stat(s, ALLOC_SLOWPATH);
2715 * if the node is not online or has no normal memory, just
2716 * ignore the node constraint
2718 if (unlikely(node != NUMA_NO_NODE &&
2719 !node_isset(node, slab_nodes)))
2720 node = NUMA_NO_NODE;
2725 if (unlikely(!node_match(page, node))) {
2727 * same as above but node_match() being false already
2728 * implies node != NUMA_NO_NODE
2730 if (!node_isset(node, slab_nodes)) {
2731 node = NUMA_NO_NODE;
2734 stat(s, ALLOC_NODE_MISMATCH);
2735 deactivate_slab(s, page, c->freelist, c);
2741 * By rights, we should be searching for a slab page that was
2742 * PFMEMALLOC but right now, we are losing the pfmemalloc
2743 * information when the page leaves the per-cpu allocator
2745 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2746 deactivate_slab(s, page, c->freelist, c);
2750 /* must check again c->freelist in case of cpu migration or IRQ */
2751 freelist = c->freelist;
2755 freelist = get_freelist(s, page);
2759 stat(s, DEACTIVATE_BYPASS);
2763 stat(s, ALLOC_REFILL);
2767 * freelist is pointing to the list of objects to be used.
2768 * page is pointing to the page from which the objects are obtained.
2769 * That page must be frozen for per cpu allocations to work.
2771 VM_BUG_ON(!c->page->frozen);
2772 c->freelist = get_freepointer(s, freelist);
2773 c->tid = next_tid(c->tid);
2778 if (slub_percpu_partial(c)) {
2779 page = c->page = slub_percpu_partial(c);
2780 slub_set_percpu_partial(c, page);
2781 stat(s, CPU_PARTIAL_ALLOC);
2785 freelist = get_partial(s, gfpflags, node, c);
2787 goto check_new_page;
2789 freelist = new_slab_objects(s, gfpflags, node, &c);
2791 if (unlikely(!freelist)) {
2792 slab_out_of_memory(s, gfpflags, node);
2798 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2801 /* Only entered in the debug case */
2802 if (kmem_cache_debug(s) &&
2803 !alloc_debug_processing(s, page, freelist, addr))
2804 goto new_slab; /* Slab failed checks. Next slab needed */
2806 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2811 * Another one that disabled interrupt and compensates for possible
2812 * cpu changes by refetching the per cpu area pointer.
2814 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2815 unsigned long addr, struct kmem_cache_cpu *c)
2818 unsigned long flags;
2820 local_irq_save(flags);
2821 #ifdef CONFIG_PREEMPTION
2823 * We may have been preempted and rescheduled on a different
2824 * cpu before disabling interrupts. Need to reload cpu area
2827 c = this_cpu_ptr(s->cpu_slab);
2830 p = ___slab_alloc(s, gfpflags, node, addr, c);
2831 local_irq_restore(flags);
2836 * If the object has been wiped upon free, make sure it's fully initialized by
2837 * zeroing out freelist pointer.
2839 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2842 if (unlikely(slab_want_init_on_free(s)) && obj)
2843 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
2848 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2849 * have the fastpath folded into their functions. So no function call
2850 * overhead for requests that can be satisfied on the fastpath.
2852 * The fastpath works by first checking if the lockless freelist can be used.
2853 * If not then __slab_alloc is called for slow processing.
2855 * Otherwise we can simply pick the next object from the lockless free list.
2857 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2858 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
2861 struct kmem_cache_cpu *c;
2864 struct obj_cgroup *objcg = NULL;
2867 s = slab_pre_alloc_hook(s, &objcg, 1, gfpflags);
2871 object = kfence_alloc(s, orig_size, gfpflags);
2872 if (unlikely(object))
2877 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2878 * enabled. We may switch back and forth between cpus while
2879 * reading from one cpu area. That does not matter as long
2880 * as we end up on the original cpu again when doing the cmpxchg.
2882 * We should guarantee that tid and kmem_cache are retrieved on
2883 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2884 * to check if it is matched or not.
2887 tid = this_cpu_read(s->cpu_slab->tid);
2888 c = raw_cpu_ptr(s->cpu_slab);
2889 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2890 unlikely(tid != READ_ONCE(c->tid)));
2893 * Irqless object alloc/free algorithm used here depends on sequence
2894 * of fetching cpu_slab's data. tid should be fetched before anything
2895 * on c to guarantee that object and page associated with previous tid
2896 * won't be used with current tid. If we fetch tid first, object and
2897 * page could be one associated with next tid and our alloc/free
2898 * request will be failed. In this case, we will retry. So, no problem.
2903 * The transaction ids are globally unique per cpu and per operation on
2904 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2905 * occurs on the right processor and that there was no operation on the
2906 * linked list in between.
2909 object = c->freelist;
2911 if (unlikely(!object || !page || !node_match(page, node))) {
2912 object = __slab_alloc(s, gfpflags, node, addr, c);
2914 void *next_object = get_freepointer_safe(s, object);
2917 * The cmpxchg will only match if there was no additional
2918 * operation and if we are on the right processor.
2920 * The cmpxchg does the following atomically (without lock
2922 * 1. Relocate first pointer to the current per cpu area.
2923 * 2. Verify that tid and freelist have not been changed
2924 * 3. If they were not changed replace tid and freelist
2926 * Since this is without lock semantics the protection is only
2927 * against code executing on this cpu *not* from access by
2930 if (unlikely(!this_cpu_cmpxchg_double(
2931 s->cpu_slab->freelist, s->cpu_slab->tid,
2933 next_object, next_tid(tid)))) {
2935 note_cmpxchg_failure("slab_alloc", s, tid);
2938 prefetch_freepointer(s, next_object);
2939 stat(s, ALLOC_FASTPATH);
2942 maybe_wipe_obj_freeptr(s, object);
2943 init = slab_want_init_on_alloc(gfpflags, s);
2946 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init);
2951 static __always_inline void *slab_alloc(struct kmem_cache *s,
2952 gfp_t gfpflags, unsigned long addr, size_t orig_size)
2954 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr, orig_size);
2957 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2959 void *ret = slab_alloc(s, gfpflags, _RET_IP_, s->object_size);
2961 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2966 EXPORT_SYMBOL(kmem_cache_alloc);
2968 #ifdef CONFIG_TRACING
2969 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2971 void *ret = slab_alloc(s, gfpflags, _RET_IP_, size);
2972 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2973 ret = kasan_kmalloc(s, ret, size, gfpflags);
2976 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2980 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2982 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, s->object_size);
2984 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2985 s->object_size, s->size, gfpflags, node);
2989 EXPORT_SYMBOL(kmem_cache_alloc_node);
2991 #ifdef CONFIG_TRACING
2992 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2994 int node, size_t size)
2996 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_, size);
2998 trace_kmalloc_node(_RET_IP_, ret,
2999 size, s->size, gfpflags, node);
3001 ret = kasan_kmalloc(s, ret, size, gfpflags);
3004 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3006 #endif /* CONFIG_NUMA */
3009 * Slow path handling. This may still be called frequently since objects
3010 * have a longer lifetime than the cpu slabs in most processing loads.
3012 * So we still attempt to reduce cache line usage. Just take the slab
3013 * lock and free the item. If there is no additional partial page
3014 * handling required then we can return immediately.
3016 static void __slab_free(struct kmem_cache *s, struct page *page,
3017 void *head, void *tail, int cnt,
3024 unsigned long counters;
3025 struct kmem_cache_node *n = NULL;
3026 unsigned long flags;
3028 stat(s, FREE_SLOWPATH);
3030 if (kfence_free(head))
3033 if (kmem_cache_debug(s) &&
3034 !free_debug_processing(s, page, head, tail, cnt, addr))
3039 spin_unlock_irqrestore(&n->list_lock, flags);
3042 prior = page->freelist;
3043 counters = page->counters;
3044 set_freepointer(s, tail, prior);
3045 new.counters = counters;
3046 was_frozen = new.frozen;
3048 if ((!new.inuse || !prior) && !was_frozen) {
3050 if (kmem_cache_has_cpu_partial(s) && !prior) {
3053 * Slab was on no list before and will be
3055 * We can defer the list move and instead
3060 } else { /* Needs to be taken off a list */
3062 n = get_node(s, page_to_nid(page));
3064 * Speculatively acquire the list_lock.
3065 * If the cmpxchg does not succeed then we may
3066 * drop the list_lock without any processing.
3068 * Otherwise the list_lock will synchronize with
3069 * other processors updating the list of slabs.
3071 spin_lock_irqsave(&n->list_lock, flags);
3076 } while (!cmpxchg_double_slab(s, page,
3083 if (likely(was_frozen)) {
3085 * The list lock was not taken therefore no list
3086 * activity can be necessary.
3088 stat(s, FREE_FROZEN);
3089 } else if (new.frozen) {
3091 * If we just froze the page then put it onto the
3092 * per cpu partial list.
3094 put_cpu_partial(s, page, 1);
3095 stat(s, CPU_PARTIAL_FREE);
3101 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3105 * Objects left in the slab. If it was not on the partial list before
3108 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3109 remove_full(s, n, page);
3110 add_partial(n, page, DEACTIVATE_TO_TAIL);
3111 stat(s, FREE_ADD_PARTIAL);
3113 spin_unlock_irqrestore(&n->list_lock, flags);
3119 * Slab on the partial list.
3121 remove_partial(n, page);
3122 stat(s, FREE_REMOVE_PARTIAL);
3124 /* Slab must be on the full list */
3125 remove_full(s, n, page);
3128 spin_unlock_irqrestore(&n->list_lock, flags);
3130 discard_slab(s, page);
3134 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3135 * can perform fastpath freeing without additional function calls.
3137 * The fastpath is only possible if we are freeing to the current cpu slab
3138 * of this processor. This typically the case if we have just allocated
3141 * If fastpath is not possible then fall back to __slab_free where we deal
3142 * with all sorts of special processing.
3144 * Bulk free of a freelist with several objects (all pointing to the
3145 * same page) possible by specifying head and tail ptr, plus objects
3146 * count (cnt). Bulk free indicated by tail pointer being set.
3148 static __always_inline void do_slab_free(struct kmem_cache *s,
3149 struct page *page, void *head, void *tail,
3150 int cnt, unsigned long addr)
3152 void *tail_obj = tail ? : head;
3153 struct kmem_cache_cpu *c;
3156 memcg_slab_free_hook(s, &head, 1);
3159 * Determine the currently cpus per cpu slab.
3160 * The cpu may change afterward. However that does not matter since
3161 * data is retrieved via this pointer. If we are on the same cpu
3162 * during the cmpxchg then the free will succeed.
3165 tid = this_cpu_read(s->cpu_slab->tid);
3166 c = raw_cpu_ptr(s->cpu_slab);
3167 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3168 unlikely(tid != READ_ONCE(c->tid)));
3170 /* Same with comment on barrier() in slab_alloc_node() */
3173 if (likely(page == c->page)) {
3174 void **freelist = READ_ONCE(c->freelist);
3176 set_freepointer(s, tail_obj, freelist);
3178 if (unlikely(!this_cpu_cmpxchg_double(
3179 s->cpu_slab->freelist, s->cpu_slab->tid,
3181 head, next_tid(tid)))) {
3183 note_cmpxchg_failure("slab_free", s, tid);
3186 stat(s, FREE_FASTPATH);
3188 __slab_free(s, page, head, tail_obj, cnt, addr);
3192 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3193 void *head, void *tail, int cnt,
3197 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3198 * to remove objects, whose reuse must be delayed.
3200 if (slab_free_freelist_hook(s, &head, &tail))
3201 do_slab_free(s, page, head, tail, cnt, addr);
3204 #ifdef CONFIG_KASAN_GENERIC
3205 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3207 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3211 void kmem_cache_free(struct kmem_cache *s, void *x)
3213 s = cache_from_obj(s, x);
3216 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3217 trace_kmem_cache_free(_RET_IP_, x, s->name);
3219 EXPORT_SYMBOL(kmem_cache_free);
3221 struct detached_freelist {
3226 struct kmem_cache *s;
3229 static inline void free_nonslab_page(struct page *page, void *object)
3231 unsigned int order = compound_order(page);
3233 VM_BUG_ON_PAGE(!PageCompound(page), page);
3235 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, -(PAGE_SIZE << order));
3236 __free_pages(page, order);
3240 * This function progressively scans the array with free objects (with
3241 * a limited look ahead) and extract objects belonging to the same
3242 * page. It builds a detached freelist directly within the given
3243 * page/objects. This can happen without any need for
3244 * synchronization, because the objects are owned by running process.
3245 * The freelist is build up as a single linked list in the objects.
3246 * The idea is, that this detached freelist can then be bulk
3247 * transferred to the real freelist(s), but only requiring a single
3248 * synchronization primitive. Look ahead in the array is limited due
3249 * to performance reasons.
3252 int build_detached_freelist(struct kmem_cache *s, size_t size,
3253 void **p, struct detached_freelist *df)
3255 size_t first_skipped_index = 0;
3260 /* Always re-init detached_freelist */
3265 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3266 } while (!object && size);
3271 page = virt_to_head_page(object);
3273 /* Handle kalloc'ed objects */
3274 if (unlikely(!PageSlab(page))) {
3275 free_nonslab_page(page, object);
3276 p[size] = NULL; /* mark object processed */
3279 /* Derive kmem_cache from object */
3280 df->s = page->slab_cache;
3282 df->s = cache_from_obj(s, object); /* Support for memcg */
3285 if (is_kfence_address(object)) {
3286 slab_free_hook(df->s, object, false);
3287 __kfence_free(object);
3288 p[size] = NULL; /* mark object processed */
3292 /* Start new detached freelist */
3294 set_freepointer(df->s, object, NULL);
3296 df->freelist = object;
3297 p[size] = NULL; /* mark object processed */
3303 continue; /* Skip processed objects */
3305 /* df->page is always set at this point */
3306 if (df->page == virt_to_head_page(object)) {
3307 /* Opportunity build freelist */
3308 set_freepointer(df->s, object, df->freelist);
3309 df->freelist = object;
3311 p[size] = NULL; /* mark object processed */
3316 /* Limit look ahead search */
3320 if (!first_skipped_index)
3321 first_skipped_index = size + 1;
3324 return first_skipped_index;
3327 /* Note that interrupts must be enabled when calling this function. */
3328 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3333 memcg_slab_free_hook(s, p, size);
3335 struct detached_freelist df;
3337 size = build_detached_freelist(s, size, p, &df);
3341 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt, _RET_IP_);
3342 } while (likely(size));
3344 EXPORT_SYMBOL(kmem_cache_free_bulk);
3346 /* Note that interrupts must be enabled when calling this function. */
3347 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3350 struct kmem_cache_cpu *c;
3352 struct obj_cgroup *objcg = NULL;
3354 /* memcg and kmem_cache debug support */
3355 s = slab_pre_alloc_hook(s, &objcg, size, flags);
3359 * Drain objects in the per cpu slab, while disabling local
3360 * IRQs, which protects against PREEMPT and interrupts
3361 * handlers invoking normal fastpath.
3363 local_irq_disable();
3364 c = this_cpu_ptr(s->cpu_slab);
3366 for (i = 0; i < size; i++) {
3367 void *object = kfence_alloc(s, s->object_size, flags);
3369 if (unlikely(object)) {
3374 object = c->freelist;
3375 if (unlikely(!object)) {
3377 * We may have removed an object from c->freelist using
3378 * the fastpath in the previous iteration; in that case,
3379 * c->tid has not been bumped yet.
3380 * Since ___slab_alloc() may reenable interrupts while
3381 * allocating memory, we should bump c->tid now.
3383 c->tid = next_tid(c->tid);
3386 * Invoking slow path likely have side-effect
3387 * of re-populating per CPU c->freelist
3389 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3391 if (unlikely(!p[i]))
3394 c = this_cpu_ptr(s->cpu_slab);
3395 maybe_wipe_obj_freeptr(s, p[i]);
3397 continue; /* goto for-loop */
3399 c->freelist = get_freepointer(s, object);
3401 maybe_wipe_obj_freeptr(s, p[i]);
3403 c->tid = next_tid(c->tid);
3407 * memcg and kmem_cache debug support and memory initialization.
3408 * Done outside of the IRQ disabled fastpath loop.
3410 slab_post_alloc_hook(s, objcg, flags, size, p,
3411 slab_want_init_on_alloc(flags, s));
3415 slab_post_alloc_hook(s, objcg, flags, i, p, false);
3416 __kmem_cache_free_bulk(s, i, p);
3419 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3423 * Object placement in a slab is made very easy because we always start at
3424 * offset 0. If we tune the size of the object to the alignment then we can
3425 * get the required alignment by putting one properly sized object after
3428 * Notice that the allocation order determines the sizes of the per cpu
3429 * caches. Each processor has always one slab available for allocations.
3430 * Increasing the allocation order reduces the number of times that slabs
3431 * must be moved on and off the partial lists and is therefore a factor in
3436 * Minimum / Maximum order of slab pages. This influences locking overhead
3437 * and slab fragmentation. A higher order reduces the number of partial slabs
3438 * and increases the number of allocations possible without having to
3439 * take the list_lock.
3441 static unsigned int slub_min_order;
3442 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3443 static unsigned int slub_min_objects;
3446 * Calculate the order of allocation given an slab object size.
3448 * The order of allocation has significant impact on performance and other
3449 * system components. Generally order 0 allocations should be preferred since
3450 * order 0 does not cause fragmentation in the page allocator. Larger objects
3451 * be problematic to put into order 0 slabs because there may be too much
3452 * unused space left. We go to a higher order if more than 1/16th of the slab
3455 * In order to reach satisfactory performance we must ensure that a minimum
3456 * number of objects is in one slab. Otherwise we may generate too much
3457 * activity on the partial lists which requires taking the list_lock. This is
3458 * less a concern for large slabs though which are rarely used.
3460 * slub_max_order specifies the order where we begin to stop considering the
3461 * number of objects in a slab as critical. If we reach slub_max_order then
3462 * we try to keep the page order as low as possible. So we accept more waste
3463 * of space in favor of a small page order.
3465 * Higher order allocations also allow the placement of more objects in a
3466 * slab and thereby reduce object handling overhead. If the user has
3467 * requested a higher minimum order then we start with that one instead of
3468 * the smallest order which will fit the object.
3470 static inline unsigned int slab_order(unsigned int size,
3471 unsigned int min_objects, unsigned int max_order,
3472 unsigned int fract_leftover)
3474 unsigned int min_order = slub_min_order;
3477 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3478 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3480 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3481 order <= max_order; order++) {
3483 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3486 rem = slab_size % size;
3488 if (rem <= slab_size / fract_leftover)
3495 static inline int calculate_order(unsigned int size)
3498 unsigned int min_objects;
3499 unsigned int max_objects;
3500 unsigned int nr_cpus;
3503 * Attempt to find best configuration for a slab. This
3504 * works by first attempting to generate a layout with
3505 * the best configuration and backing off gradually.
3507 * First we increase the acceptable waste in a slab. Then
3508 * we reduce the minimum objects required in a slab.
3510 min_objects = slub_min_objects;
3513 * Some architectures will only update present cpus when
3514 * onlining them, so don't trust the number if it's just 1. But
3515 * we also don't want to use nr_cpu_ids always, as on some other
3516 * architectures, there can be many possible cpus, but never
3517 * onlined. Here we compromise between trying to avoid too high
3518 * order on systems that appear larger than they are, and too
3519 * low order on systems that appear smaller than they are.
3521 nr_cpus = num_present_cpus();
3523 nr_cpus = nr_cpu_ids;
3524 min_objects = 4 * (fls(nr_cpus) + 1);
3526 max_objects = order_objects(slub_max_order, size);
3527 min_objects = min(min_objects, max_objects);
3529 while (min_objects > 1) {
3530 unsigned int fraction;
3533 while (fraction >= 4) {
3534 order = slab_order(size, min_objects,
3535 slub_max_order, fraction);
3536 if (order <= slub_max_order)
3544 * We were unable to place multiple objects in a slab. Now
3545 * lets see if we can place a single object there.
3547 order = slab_order(size, 1, slub_max_order, 1);
3548 if (order <= slub_max_order)
3552 * Doh this slab cannot be placed using slub_max_order.
3554 order = slab_order(size, 1, MAX_ORDER, 1);
3555 if (order < MAX_ORDER)
3561 init_kmem_cache_node(struct kmem_cache_node *n)
3564 spin_lock_init(&n->list_lock);
3565 INIT_LIST_HEAD(&n->partial);
3566 #ifdef CONFIG_SLUB_DEBUG
3567 atomic_long_set(&n->nr_slabs, 0);
3568 atomic_long_set(&n->total_objects, 0);
3569 INIT_LIST_HEAD(&n->full);
3573 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3575 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3576 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3579 * Must align to double word boundary for the double cmpxchg
3580 * instructions to work; see __pcpu_double_call_return_bool().
3582 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3583 2 * sizeof(void *));
3588 init_kmem_cache_cpus(s);
3593 static struct kmem_cache *kmem_cache_node;
3596 * No kmalloc_node yet so do it by hand. We know that this is the first
3597 * slab on the node for this slabcache. There are no concurrent accesses
3600 * Note that this function only works on the kmem_cache_node
3601 * when allocating for the kmem_cache_node. This is used for bootstrapping
3602 * memory on a fresh node that has no slab structures yet.
3604 static void early_kmem_cache_node_alloc(int node)
3607 struct kmem_cache_node *n;
3609 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3611 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3614 if (page_to_nid(page) != node) {
3615 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3616 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3621 #ifdef CONFIG_SLUB_DEBUG
3622 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3623 init_tracking(kmem_cache_node, n);
3625 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
3626 page->freelist = get_freepointer(kmem_cache_node, n);
3629 kmem_cache_node->node[node] = n;
3630 init_kmem_cache_node(n);
3631 inc_slabs_node(kmem_cache_node, node, page->objects);
3634 * No locks need to be taken here as it has just been
3635 * initialized and there is no concurrent access.
3637 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3640 static void free_kmem_cache_nodes(struct kmem_cache *s)
3643 struct kmem_cache_node *n;
3645 for_each_kmem_cache_node(s, node, n) {
3646 s->node[node] = NULL;
3647 kmem_cache_free(kmem_cache_node, n);
3651 void __kmem_cache_release(struct kmem_cache *s)
3653 cache_random_seq_destroy(s);
3654 free_percpu(s->cpu_slab);
3655 free_kmem_cache_nodes(s);
3658 static int init_kmem_cache_nodes(struct kmem_cache *s)
3662 for_each_node_mask(node, slab_nodes) {
3663 struct kmem_cache_node *n;
3665 if (slab_state == DOWN) {
3666 early_kmem_cache_node_alloc(node);
3669 n = kmem_cache_alloc_node(kmem_cache_node,
3673 free_kmem_cache_nodes(s);
3677 init_kmem_cache_node(n);
3683 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3685 if (min < MIN_PARTIAL)
3687 else if (min > MAX_PARTIAL)
3689 s->min_partial = min;
3692 static void set_cpu_partial(struct kmem_cache *s)
3694 #ifdef CONFIG_SLUB_CPU_PARTIAL
3696 * cpu_partial determined the maximum number of objects kept in the
3697 * per cpu partial lists of a processor.
3699 * Per cpu partial lists mainly contain slabs that just have one
3700 * object freed. If they are used for allocation then they can be
3701 * filled up again with minimal effort. The slab will never hit the
3702 * per node partial lists and therefore no locking will be required.
3704 * This setting also determines
3706 * A) The number of objects from per cpu partial slabs dumped to the
3707 * per node list when we reach the limit.
3708 * B) The number of objects in cpu partial slabs to extract from the
3709 * per node list when we run out of per cpu objects. We only fetch
3710 * 50% to keep some capacity around for frees.
3712 if (!kmem_cache_has_cpu_partial(s))
3713 slub_set_cpu_partial(s, 0);
3714 else if (s->size >= PAGE_SIZE)
3715 slub_set_cpu_partial(s, 2);
3716 else if (s->size >= 1024)
3717 slub_set_cpu_partial(s, 6);
3718 else if (s->size >= 256)
3719 slub_set_cpu_partial(s, 13);
3721 slub_set_cpu_partial(s, 30);
3726 * calculate_sizes() determines the order and the distribution of data within
3729 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3731 slab_flags_t flags = s->flags;
3732 unsigned int size = s->object_size;
3736 * Round up object size to the next word boundary. We can only
3737 * place the free pointer at word boundaries and this determines
3738 * the possible location of the free pointer.
3740 size = ALIGN(size, sizeof(void *));
3742 #ifdef CONFIG_SLUB_DEBUG
3744 * Determine if we can poison the object itself. If the user of
3745 * the slab may touch the object after free or before allocation
3746 * then we should never poison the object itself.
3748 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3750 s->flags |= __OBJECT_POISON;
3752 s->flags &= ~__OBJECT_POISON;
3756 * If we are Redzoning then check if there is some space between the
3757 * end of the object and the free pointer. If not then add an
3758 * additional word to have some bytes to store Redzone information.
3760 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3761 size += sizeof(void *);
3765 * With that we have determined the number of bytes in actual use
3766 * by the object and redzoning.
3770 if ((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3771 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
3774 * Relocate free pointer after the object if it is not
3775 * permitted to overwrite the first word of the object on
3778 * This is the case if we do RCU, have a constructor or
3779 * destructor, are poisoning the objects, or are
3780 * redzoning an object smaller than sizeof(void *).
3782 * The assumption that s->offset >= s->inuse means free
3783 * pointer is outside of the object is used in the
3784 * freeptr_outside_object() function. If that is no
3785 * longer true, the function needs to be modified.
3788 size += sizeof(void *);
3791 * Store freelist pointer near middle of object to keep
3792 * it away from the edges of the object to avoid small
3793 * sized over/underflows from neighboring allocations.
3795 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
3798 #ifdef CONFIG_SLUB_DEBUG
3799 if (flags & SLAB_STORE_USER)
3801 * Need to store information about allocs and frees after
3804 size += 2 * sizeof(struct track);
3807 kasan_cache_create(s, &size, &s->flags);
3808 #ifdef CONFIG_SLUB_DEBUG
3809 if (flags & SLAB_RED_ZONE) {
3811 * Add some empty padding so that we can catch
3812 * overwrites from earlier objects rather than let
3813 * tracking information or the free pointer be
3814 * corrupted if a user writes before the start
3817 size += sizeof(void *);
3819 s->red_left_pad = sizeof(void *);
3820 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3821 size += s->red_left_pad;
3826 * SLUB stores one object immediately after another beginning from
3827 * offset 0. In order to align the objects we have to simply size
3828 * each object to conform to the alignment.
3830 size = ALIGN(size, s->align);
3832 s->reciprocal_size = reciprocal_value(size);
3833 if (forced_order >= 0)
3834 order = forced_order;
3836 order = calculate_order(size);
3843 s->allocflags |= __GFP_COMP;
3845 if (s->flags & SLAB_CACHE_DMA)
3846 s->allocflags |= GFP_DMA;
3848 if (s->flags & SLAB_CACHE_DMA32)
3849 s->allocflags |= GFP_DMA32;
3851 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3852 s->allocflags |= __GFP_RECLAIMABLE;
3855 * Determine the number of objects per slab
3857 s->oo = oo_make(order, size);
3858 s->min = oo_make(get_order(size), size);
3859 if (oo_objects(s->oo) > oo_objects(s->max))
3862 return !!oo_objects(s->oo);
3865 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3867 s->flags = kmem_cache_flags(s->size, flags, s->name);
3868 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3869 s->random = get_random_long();
3872 if (!calculate_sizes(s, -1))
3874 if (disable_higher_order_debug) {
3876 * Disable debugging flags that store metadata if the min slab
3879 if (get_order(s->size) > get_order(s->object_size)) {
3880 s->flags &= ~DEBUG_METADATA_FLAGS;
3882 if (!calculate_sizes(s, -1))
3887 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3888 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3889 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3890 /* Enable fast mode */
3891 s->flags |= __CMPXCHG_DOUBLE;
3895 * The larger the object size is, the more pages we want on the partial
3896 * list to avoid pounding the page allocator excessively.
3898 set_min_partial(s, ilog2(s->size) / 2);
3903 s->remote_node_defrag_ratio = 1000;
3906 /* Initialize the pre-computed randomized freelist if slab is up */
3907 if (slab_state >= UP) {
3908 if (init_cache_random_seq(s))
3912 if (!init_kmem_cache_nodes(s))
3915 if (alloc_kmem_cache_cpus(s))
3918 free_kmem_cache_nodes(s);
3923 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3926 #ifdef CONFIG_SLUB_DEBUG
3927 void *addr = page_address(page);
3931 slab_err(s, page, text, s->name);
3934 map = get_map(s, page);
3935 for_each_object(p, s, addr, page->objects) {
3937 if (!test_bit(__obj_to_index(s, addr, p), map)) {
3938 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
3939 print_tracking(s, p);
3948 * Attempt to free all partial slabs on a node.
3949 * This is called from __kmem_cache_shutdown(). We must take list_lock
3950 * because sysfs file might still access partial list after the shutdowning.
3952 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3955 struct page *page, *h;
3957 BUG_ON(irqs_disabled());
3958 spin_lock_irq(&n->list_lock);
3959 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3961 remove_partial(n, page);
3962 list_add(&page->slab_list, &discard);
3964 list_slab_objects(s, page,
3965 "Objects remaining in %s on __kmem_cache_shutdown()");
3968 spin_unlock_irq(&n->list_lock);
3970 list_for_each_entry_safe(page, h, &discard, slab_list)
3971 discard_slab(s, page);
3974 bool __kmem_cache_empty(struct kmem_cache *s)
3977 struct kmem_cache_node *n;
3979 for_each_kmem_cache_node(s, node, n)
3980 if (n->nr_partial || slabs_node(s, node))
3986 * Release all resources used by a slab cache.
3988 int __kmem_cache_shutdown(struct kmem_cache *s)
3991 struct kmem_cache_node *n;
3994 /* Attempt to free all objects */
3995 for_each_kmem_cache_node(s, node, n) {
3997 if (n->nr_partial || slabs_node(s, node))
4003 #ifdef CONFIG_PRINTK
4004 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
4007 int __maybe_unused i;
4011 struct kmem_cache *s = page->slab_cache;
4012 struct track __maybe_unused *trackp;
4014 kpp->kp_ptr = object;
4015 kpp->kp_page = page;
4016 kpp->kp_slab_cache = s;
4017 base = page_address(page);
4018 objp0 = kasan_reset_tag(object);
4019 #ifdef CONFIG_SLUB_DEBUG
4020 objp = restore_red_left(s, objp0);
4024 objnr = obj_to_index(s, page, objp);
4025 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4026 objp = base + s->size * objnr;
4027 kpp->kp_objp = objp;
4028 if (WARN_ON_ONCE(objp < base || objp >= base + page->objects * s->size || (objp - base) % s->size) ||
4029 !(s->flags & SLAB_STORE_USER))
4031 #ifdef CONFIG_SLUB_DEBUG
4032 objp = fixup_red_left(s, objp);
4033 trackp = get_track(s, objp, TRACK_ALLOC);
4034 kpp->kp_ret = (void *)trackp->addr;
4035 #ifdef CONFIG_STACKTRACE
4036 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4037 kpp->kp_stack[i] = (void *)trackp->addrs[i];
4038 if (!kpp->kp_stack[i])
4042 trackp = get_track(s, objp, TRACK_FREE);
4043 for (i = 0; i < KS_ADDRS_COUNT && i < TRACK_ADDRS_COUNT; i++) {
4044 kpp->kp_free_stack[i] = (void *)trackp->addrs[i];
4045 if (!kpp->kp_free_stack[i])
4053 /********************************************************************
4055 *******************************************************************/
4057 static int __init setup_slub_min_order(char *str)
4059 get_option(&str, (int *)&slub_min_order);
4064 __setup("slub_min_order=", setup_slub_min_order);
4066 static int __init setup_slub_max_order(char *str)
4068 get_option(&str, (int *)&slub_max_order);
4069 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
4074 __setup("slub_max_order=", setup_slub_max_order);
4076 static int __init setup_slub_min_objects(char *str)
4078 get_option(&str, (int *)&slub_min_objects);
4083 __setup("slub_min_objects=", setup_slub_min_objects);
4085 void *__kmalloc(size_t size, gfp_t flags)
4087 struct kmem_cache *s;
4090 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4091 return kmalloc_large(size, flags);
4093 s = kmalloc_slab(size, flags);
4095 if (unlikely(ZERO_OR_NULL_PTR(s)))
4098 ret = slab_alloc(s, flags, _RET_IP_, size);
4100 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
4102 ret = kasan_kmalloc(s, ret, size, flags);
4106 EXPORT_SYMBOL(__kmalloc);
4109 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
4113 unsigned int order = get_order(size);
4115 flags |= __GFP_COMP;
4116 page = alloc_pages_node(node, flags, order);
4118 ptr = page_address(page);
4119 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
4120 PAGE_SIZE << order);
4123 return kmalloc_large_node_hook(ptr, size, flags);
4126 void *__kmalloc_node(size_t size, gfp_t flags, int node)
4128 struct kmem_cache *s;
4131 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4132 ret = kmalloc_large_node(size, flags, node);
4134 trace_kmalloc_node(_RET_IP_, ret,
4135 size, PAGE_SIZE << get_order(size),
4141 s = kmalloc_slab(size, flags);
4143 if (unlikely(ZERO_OR_NULL_PTR(s)))
4146 ret = slab_alloc_node(s, flags, node, _RET_IP_, size);
4148 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
4150 ret = kasan_kmalloc(s, ret, size, flags);
4154 EXPORT_SYMBOL(__kmalloc_node);
4155 #endif /* CONFIG_NUMA */
4157 #ifdef CONFIG_HARDENED_USERCOPY
4159 * Rejects incorrectly sized objects and objects that are to be copied
4160 * to/from userspace but do not fall entirely within the containing slab
4161 * cache's usercopy region.
4163 * Returns NULL if check passes, otherwise const char * to name of cache
4164 * to indicate an error.
4166 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4169 struct kmem_cache *s;
4170 unsigned int offset;
4172 bool is_kfence = is_kfence_address(ptr);
4174 ptr = kasan_reset_tag(ptr);
4176 /* Find object and usable object size. */
4177 s = page->slab_cache;
4179 /* Reject impossible pointers. */
4180 if (ptr < page_address(page))
4181 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4184 /* Find offset within object. */
4186 offset = ptr - kfence_object_start(ptr);
4188 offset = (ptr - page_address(page)) % s->size;
4190 /* Adjust for redzone and reject if within the redzone. */
4191 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4192 if (offset < s->red_left_pad)
4193 usercopy_abort("SLUB object in left red zone",
4194 s->name, to_user, offset, n);
4195 offset -= s->red_left_pad;
4198 /* Allow address range falling entirely within usercopy region. */
4199 if (offset >= s->useroffset &&
4200 offset - s->useroffset <= s->usersize &&
4201 n <= s->useroffset - offset + s->usersize)
4205 * If the copy is still within the allocated object, produce
4206 * a warning instead of rejecting the copy. This is intended
4207 * to be a temporary method to find any missing usercopy
4210 object_size = slab_ksize(s);
4211 if (usercopy_fallback &&
4212 offset <= object_size && n <= object_size - offset) {
4213 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4217 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4219 #endif /* CONFIG_HARDENED_USERCOPY */
4221 size_t __ksize(const void *object)
4225 if (unlikely(object == ZERO_SIZE_PTR))
4228 page = virt_to_head_page(object);
4230 if (unlikely(!PageSlab(page))) {
4231 WARN_ON(!PageCompound(page));
4232 return page_size(page);
4235 return slab_ksize(page->slab_cache);
4237 EXPORT_SYMBOL(__ksize);
4239 void kfree(const void *x)
4242 void *object = (void *)x;
4244 trace_kfree(_RET_IP_, x);
4246 if (unlikely(ZERO_OR_NULL_PTR(x)))
4249 page = virt_to_head_page(x);
4250 if (unlikely(!PageSlab(page))) {
4251 free_nonslab_page(page, object);
4254 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4256 EXPORT_SYMBOL(kfree);
4258 #define SHRINK_PROMOTE_MAX 32
4261 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4262 * up most to the head of the partial lists. New allocations will then
4263 * fill those up and thus they can be removed from the partial lists.
4265 * The slabs with the least items are placed last. This results in them
4266 * being allocated from last increasing the chance that the last objects
4267 * are freed in them.
4269 int __kmem_cache_shrink(struct kmem_cache *s)
4273 struct kmem_cache_node *n;
4276 struct list_head discard;
4277 struct list_head promote[SHRINK_PROMOTE_MAX];
4278 unsigned long flags;
4282 for_each_kmem_cache_node(s, node, n) {
4283 INIT_LIST_HEAD(&discard);
4284 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4285 INIT_LIST_HEAD(promote + i);
4287 spin_lock_irqsave(&n->list_lock, flags);
4290 * Build lists of slabs to discard or promote.
4292 * Note that concurrent frees may occur while we hold the
4293 * list_lock. page->inuse here is the upper limit.
4295 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4296 int free = page->objects - page->inuse;
4298 /* Do not reread page->inuse */
4301 /* We do not keep full slabs on the list */
4304 if (free == page->objects) {
4305 list_move(&page->slab_list, &discard);
4307 } else if (free <= SHRINK_PROMOTE_MAX)
4308 list_move(&page->slab_list, promote + free - 1);
4312 * Promote the slabs filled up most to the head of the
4315 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4316 list_splice(promote + i, &n->partial);
4318 spin_unlock_irqrestore(&n->list_lock, flags);
4320 /* Release empty slabs */
4321 list_for_each_entry_safe(page, t, &discard, slab_list)
4322 discard_slab(s, page);
4324 if (slabs_node(s, node))
4331 static int slab_mem_going_offline_callback(void *arg)
4333 struct kmem_cache *s;
4335 mutex_lock(&slab_mutex);
4336 list_for_each_entry(s, &slab_caches, list)
4337 __kmem_cache_shrink(s);
4338 mutex_unlock(&slab_mutex);
4343 static void slab_mem_offline_callback(void *arg)
4345 struct memory_notify *marg = arg;
4348 offline_node = marg->status_change_nid_normal;
4351 * If the node still has available memory. we need kmem_cache_node
4354 if (offline_node < 0)
4357 mutex_lock(&slab_mutex);
4358 node_clear(offline_node, slab_nodes);
4360 * We no longer free kmem_cache_node structures here, as it would be
4361 * racy with all get_node() users, and infeasible to protect them with
4364 mutex_unlock(&slab_mutex);
4367 static int slab_mem_going_online_callback(void *arg)
4369 struct kmem_cache_node *n;
4370 struct kmem_cache *s;
4371 struct memory_notify *marg = arg;
4372 int nid = marg->status_change_nid_normal;
4376 * If the node's memory is already available, then kmem_cache_node is
4377 * already created. Nothing to do.
4383 * We are bringing a node online. No memory is available yet. We must
4384 * allocate a kmem_cache_node structure in order to bring the node
4387 mutex_lock(&slab_mutex);
4388 list_for_each_entry(s, &slab_caches, list) {
4390 * The structure may already exist if the node was previously
4391 * onlined and offlined.
4393 if (get_node(s, nid))
4396 * XXX: kmem_cache_alloc_node will fallback to other nodes
4397 * since memory is not yet available from the node that
4400 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4405 init_kmem_cache_node(n);
4409 * Any cache created after this point will also have kmem_cache_node
4410 * initialized for the new node.
4412 node_set(nid, slab_nodes);
4414 mutex_unlock(&slab_mutex);
4418 static int slab_memory_callback(struct notifier_block *self,
4419 unsigned long action, void *arg)
4424 case MEM_GOING_ONLINE:
4425 ret = slab_mem_going_online_callback(arg);
4427 case MEM_GOING_OFFLINE:
4428 ret = slab_mem_going_offline_callback(arg);
4431 case MEM_CANCEL_ONLINE:
4432 slab_mem_offline_callback(arg);
4435 case MEM_CANCEL_OFFLINE:
4439 ret = notifier_from_errno(ret);
4445 static struct notifier_block slab_memory_callback_nb = {
4446 .notifier_call = slab_memory_callback,
4447 .priority = SLAB_CALLBACK_PRI,
4450 /********************************************************************
4451 * Basic setup of slabs
4452 *******************************************************************/
4455 * Used for early kmem_cache structures that were allocated using
4456 * the page allocator. Allocate them properly then fix up the pointers
4457 * that may be pointing to the wrong kmem_cache structure.
4460 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4463 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4464 struct kmem_cache_node *n;
4466 memcpy(s, static_cache, kmem_cache->object_size);
4469 * This runs very early, and only the boot processor is supposed to be
4470 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4473 __flush_cpu_slab(s, smp_processor_id());
4474 for_each_kmem_cache_node(s, node, n) {
4477 list_for_each_entry(p, &n->partial, slab_list)
4480 #ifdef CONFIG_SLUB_DEBUG
4481 list_for_each_entry(p, &n->full, slab_list)
4485 list_add(&s->list, &slab_caches);
4489 void __init kmem_cache_init(void)
4491 static __initdata struct kmem_cache boot_kmem_cache,
4492 boot_kmem_cache_node;
4495 if (debug_guardpage_minorder())
4498 /* Print slub debugging pointers without hashing */
4499 if (__slub_debug_enabled())
4500 no_hash_pointers_enable(NULL);
4502 kmem_cache_node = &boot_kmem_cache_node;
4503 kmem_cache = &boot_kmem_cache;
4506 * Initialize the nodemask for which we will allocate per node
4507 * structures. Here we don't need taking slab_mutex yet.
4509 for_each_node_state(node, N_NORMAL_MEMORY)
4510 node_set(node, slab_nodes);
4512 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4513 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4515 register_hotmemory_notifier(&slab_memory_callback_nb);
4517 /* Able to allocate the per node structures */
4518 slab_state = PARTIAL;
4520 create_boot_cache(kmem_cache, "kmem_cache",
4521 offsetof(struct kmem_cache, node) +
4522 nr_node_ids * sizeof(struct kmem_cache_node *),
4523 SLAB_HWCACHE_ALIGN, 0, 0);
4525 kmem_cache = bootstrap(&boot_kmem_cache);
4526 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4528 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4529 setup_kmalloc_cache_index_table();
4530 create_kmalloc_caches(0);
4532 /* Setup random freelists for each cache */
4533 init_freelist_randomization();
4535 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4538 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4540 slub_min_order, slub_max_order, slub_min_objects,
4541 nr_cpu_ids, nr_node_ids);
4544 void __init kmem_cache_init_late(void)
4549 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4550 slab_flags_t flags, void (*ctor)(void *))
4552 struct kmem_cache *s;
4554 s = find_mergeable(size, align, flags, name, ctor);
4559 * Adjust the object sizes so that we clear
4560 * the complete object on kzalloc.
4562 s->object_size = max(s->object_size, size);
4563 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4565 if (sysfs_slab_alias(s, name)) {
4574 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4578 err = kmem_cache_open(s, flags);
4582 /* Mutex is not taken during early boot */
4583 if (slab_state <= UP)
4586 err = sysfs_slab_add(s);
4588 __kmem_cache_release(s);
4590 if (s->flags & SLAB_STORE_USER)
4591 debugfs_slab_add(s);
4596 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4598 struct kmem_cache *s;
4601 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4602 return kmalloc_large(size, gfpflags);
4604 s = kmalloc_slab(size, gfpflags);
4606 if (unlikely(ZERO_OR_NULL_PTR(s)))
4609 ret = slab_alloc(s, gfpflags, caller, size);
4611 /* Honor the call site pointer we received. */
4612 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4616 EXPORT_SYMBOL(__kmalloc_track_caller);
4619 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4620 int node, unsigned long caller)
4622 struct kmem_cache *s;
4625 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4626 ret = kmalloc_large_node(size, gfpflags, node);
4628 trace_kmalloc_node(caller, ret,
4629 size, PAGE_SIZE << get_order(size),
4635 s = kmalloc_slab(size, gfpflags);
4637 if (unlikely(ZERO_OR_NULL_PTR(s)))
4640 ret = slab_alloc_node(s, gfpflags, node, caller, size);
4642 /* Honor the call site pointer we received. */
4643 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4647 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4651 static int count_inuse(struct page *page)
4656 static int count_total(struct page *page)
4658 return page->objects;
4662 #ifdef CONFIG_SLUB_DEBUG
4663 static void validate_slab(struct kmem_cache *s, struct page *page,
4664 unsigned long *obj_map)
4667 void *addr = page_address(page);
4671 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4674 /* Now we know that a valid freelist exists */
4675 __fill_map(obj_map, s, page);
4676 for_each_object(p, s, addr, page->objects) {
4677 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
4678 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4680 if (!check_object(s, page, p, val))
4687 static int validate_slab_node(struct kmem_cache *s,
4688 struct kmem_cache_node *n, unsigned long *obj_map)
4690 unsigned long count = 0;
4692 unsigned long flags;
4694 spin_lock_irqsave(&n->list_lock, flags);
4696 list_for_each_entry(page, &n->partial, slab_list) {
4697 validate_slab(s, page, obj_map);
4700 if (count != n->nr_partial) {
4701 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4702 s->name, count, n->nr_partial);
4703 slab_add_kunit_errors();
4706 if (!(s->flags & SLAB_STORE_USER))
4709 list_for_each_entry(page, &n->full, slab_list) {
4710 validate_slab(s, page, obj_map);
4713 if (count != atomic_long_read(&n->nr_slabs)) {
4714 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4715 s->name, count, atomic_long_read(&n->nr_slabs));
4716 slab_add_kunit_errors();
4720 spin_unlock_irqrestore(&n->list_lock, flags);
4724 long validate_slab_cache(struct kmem_cache *s)
4727 unsigned long count = 0;
4728 struct kmem_cache_node *n;
4729 unsigned long *obj_map;
4731 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
4736 for_each_kmem_cache_node(s, node, n)
4737 count += validate_slab_node(s, n, obj_map);
4739 bitmap_free(obj_map);
4743 EXPORT_SYMBOL(validate_slab_cache);
4745 #ifdef CONFIG_DEBUG_FS
4747 * Generate lists of code addresses where slabcache objects are allocated
4752 unsigned long count;
4759 DECLARE_BITMAP(cpus, NR_CPUS);
4765 unsigned long count;
4766 struct location *loc;
4769 static struct dentry *slab_debugfs_root;
4771 static void free_loc_track(struct loc_track *t)
4774 free_pages((unsigned long)t->loc,
4775 get_order(sizeof(struct location) * t->max));
4778 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4783 order = get_order(sizeof(struct location) * max);
4785 l = (void *)__get_free_pages(flags, order);
4790 memcpy(l, t->loc, sizeof(struct location) * t->count);
4798 static int add_location(struct loc_track *t, struct kmem_cache *s,
4799 const struct track *track)
4801 long start, end, pos;
4803 unsigned long caddr;
4804 unsigned long age = jiffies - track->when;
4810 pos = start + (end - start + 1) / 2;
4813 * There is nothing at "end". If we end up there
4814 * we need to add something to before end.
4819 caddr = t->loc[pos].addr;
4820 if (track->addr == caddr) {
4826 if (age < l->min_time)
4828 if (age > l->max_time)
4831 if (track->pid < l->min_pid)
4832 l->min_pid = track->pid;
4833 if (track->pid > l->max_pid)
4834 l->max_pid = track->pid;
4836 cpumask_set_cpu(track->cpu,
4837 to_cpumask(l->cpus));
4839 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4843 if (track->addr < caddr)
4850 * Not found. Insert new tracking element.
4852 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4858 (t->count - pos) * sizeof(struct location));
4861 l->addr = track->addr;
4865 l->min_pid = track->pid;
4866 l->max_pid = track->pid;
4867 cpumask_clear(to_cpumask(l->cpus));
4868 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4869 nodes_clear(l->nodes);
4870 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4874 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4875 struct page *page, enum track_item alloc,
4876 unsigned long *obj_map)
4878 void *addr = page_address(page);
4881 __fill_map(obj_map, s, page);
4883 for_each_object(p, s, addr, page->objects)
4884 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
4885 add_location(t, s, get_track(s, p, alloc));
4887 #endif /* CONFIG_DEBUG_FS */
4888 #endif /* CONFIG_SLUB_DEBUG */
4891 enum slab_stat_type {
4892 SL_ALL, /* All slabs */
4893 SL_PARTIAL, /* Only partially allocated slabs */
4894 SL_CPU, /* Only slabs used for cpu caches */
4895 SL_OBJECTS, /* Determine allocated objects not slabs */
4896 SL_TOTAL /* Determine object capacity not slabs */
4899 #define SO_ALL (1 << SL_ALL)
4900 #define SO_PARTIAL (1 << SL_PARTIAL)
4901 #define SO_CPU (1 << SL_CPU)
4902 #define SO_OBJECTS (1 << SL_OBJECTS)
4903 #define SO_TOTAL (1 << SL_TOTAL)
4905 static ssize_t show_slab_objects(struct kmem_cache *s,
4906 char *buf, unsigned long flags)
4908 unsigned long total = 0;
4911 unsigned long *nodes;
4914 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4918 if (flags & SO_CPU) {
4921 for_each_possible_cpu(cpu) {
4922 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4927 page = READ_ONCE(c->page);
4931 node = page_to_nid(page);
4932 if (flags & SO_TOTAL)
4934 else if (flags & SO_OBJECTS)
4942 page = slub_percpu_partial_read_once(c);
4944 node = page_to_nid(page);
4945 if (flags & SO_TOTAL)
4947 else if (flags & SO_OBJECTS)
4958 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4959 * already held which will conflict with an existing lock order:
4961 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4963 * We don't really need mem_hotplug_lock (to hold off
4964 * slab_mem_going_offline_callback) here because slab's memory hot
4965 * unplug code doesn't destroy the kmem_cache->node[] data.
4968 #ifdef CONFIG_SLUB_DEBUG
4969 if (flags & SO_ALL) {
4970 struct kmem_cache_node *n;
4972 for_each_kmem_cache_node(s, node, n) {
4974 if (flags & SO_TOTAL)
4975 x = atomic_long_read(&n->total_objects);
4976 else if (flags & SO_OBJECTS)
4977 x = atomic_long_read(&n->total_objects) -
4978 count_partial(n, count_free);
4980 x = atomic_long_read(&n->nr_slabs);
4987 if (flags & SO_PARTIAL) {
4988 struct kmem_cache_node *n;
4990 for_each_kmem_cache_node(s, node, n) {
4991 if (flags & SO_TOTAL)
4992 x = count_partial(n, count_total);
4993 else if (flags & SO_OBJECTS)
4994 x = count_partial(n, count_inuse);
5002 len += sysfs_emit_at(buf, len, "%lu", total);
5004 for (node = 0; node < nr_node_ids; node++) {
5006 len += sysfs_emit_at(buf, len, " N%d=%lu",
5010 len += sysfs_emit_at(buf, len, "\n");
5016 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5017 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5019 struct slab_attribute {
5020 struct attribute attr;
5021 ssize_t (*show)(struct kmem_cache *s, char *buf);
5022 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5025 #define SLAB_ATTR_RO(_name) \
5026 static struct slab_attribute _name##_attr = \
5027 __ATTR(_name, 0400, _name##_show, NULL)
5029 #define SLAB_ATTR(_name) \
5030 static struct slab_attribute _name##_attr = \
5031 __ATTR(_name, 0600, _name##_show, _name##_store)
5033 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5035 return sysfs_emit(buf, "%u\n", s->size);
5037 SLAB_ATTR_RO(slab_size);
5039 static ssize_t align_show(struct kmem_cache *s, char *buf)
5041 return sysfs_emit(buf, "%u\n", s->align);
5043 SLAB_ATTR_RO(align);
5045 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5047 return sysfs_emit(buf, "%u\n", s->object_size);
5049 SLAB_ATTR_RO(object_size);
5051 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5053 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5055 SLAB_ATTR_RO(objs_per_slab);
5057 static ssize_t order_show(struct kmem_cache *s, char *buf)
5059 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5061 SLAB_ATTR_RO(order);
5063 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5065 return sysfs_emit(buf, "%lu\n", s->min_partial);
5068 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5074 err = kstrtoul(buf, 10, &min);
5078 set_min_partial(s, min);
5081 SLAB_ATTR(min_partial);
5083 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5085 return sysfs_emit(buf, "%u\n", slub_cpu_partial(s));
5088 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5091 unsigned int objects;
5094 err = kstrtouint(buf, 10, &objects);
5097 if (objects && !kmem_cache_has_cpu_partial(s))
5100 slub_set_cpu_partial(s, objects);
5104 SLAB_ATTR(cpu_partial);
5106 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5110 return sysfs_emit(buf, "%pS\n", s->ctor);
5114 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5116 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5118 SLAB_ATTR_RO(aliases);
5120 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5122 return show_slab_objects(s, buf, SO_PARTIAL);
5124 SLAB_ATTR_RO(partial);
5126 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5128 return show_slab_objects(s, buf, SO_CPU);
5130 SLAB_ATTR_RO(cpu_slabs);
5132 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5134 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5136 SLAB_ATTR_RO(objects);
5138 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5140 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5142 SLAB_ATTR_RO(objects_partial);
5144 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5151 for_each_online_cpu(cpu) {
5154 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5157 pages += page->pages;
5158 objects += page->pobjects;
5162 len += sysfs_emit_at(buf, len, "%d(%d)", objects, pages);
5165 for_each_online_cpu(cpu) {
5168 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5170 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5171 cpu, page->pobjects, page->pages);
5174 len += sysfs_emit_at(buf, len, "\n");
5178 SLAB_ATTR_RO(slabs_cpu_partial);
5180 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5182 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5184 SLAB_ATTR_RO(reclaim_account);
5186 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5188 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5190 SLAB_ATTR_RO(hwcache_align);
5192 #ifdef CONFIG_ZONE_DMA
5193 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5195 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5197 SLAB_ATTR_RO(cache_dma);
5200 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5202 return sysfs_emit(buf, "%u\n", s->usersize);
5204 SLAB_ATTR_RO(usersize);
5206 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5208 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5210 SLAB_ATTR_RO(destroy_by_rcu);
5212 #ifdef CONFIG_SLUB_DEBUG
5213 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5215 return show_slab_objects(s, buf, SO_ALL);
5217 SLAB_ATTR_RO(slabs);
5219 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5221 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5223 SLAB_ATTR_RO(total_objects);
5225 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5227 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5229 SLAB_ATTR_RO(sanity_checks);
5231 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5233 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5235 SLAB_ATTR_RO(trace);
5237 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5239 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5242 SLAB_ATTR_RO(red_zone);
5244 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5246 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5249 SLAB_ATTR_RO(poison);
5251 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5253 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5256 SLAB_ATTR_RO(store_user);
5258 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5263 static ssize_t validate_store(struct kmem_cache *s,
5264 const char *buf, size_t length)
5268 if (buf[0] == '1') {
5269 ret = validate_slab_cache(s);
5275 SLAB_ATTR(validate);
5277 #endif /* CONFIG_SLUB_DEBUG */
5279 #ifdef CONFIG_FAILSLAB
5280 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5282 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5284 SLAB_ATTR_RO(failslab);
5287 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5292 static ssize_t shrink_store(struct kmem_cache *s,
5293 const char *buf, size_t length)
5296 kmem_cache_shrink(s);
5304 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5306 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5309 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5310 const char *buf, size_t length)
5315 err = kstrtouint(buf, 10, &ratio);
5321 s->remote_node_defrag_ratio = ratio * 10;
5325 SLAB_ATTR(remote_node_defrag_ratio);
5328 #ifdef CONFIG_SLUB_STATS
5329 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5331 unsigned long sum = 0;
5334 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5339 for_each_online_cpu(cpu) {
5340 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5346 len += sysfs_emit_at(buf, len, "%lu", sum);
5349 for_each_online_cpu(cpu) {
5351 len += sysfs_emit_at(buf, len, " C%d=%u",
5356 len += sysfs_emit_at(buf, len, "\n");
5361 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5365 for_each_online_cpu(cpu)
5366 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5369 #define STAT_ATTR(si, text) \
5370 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5372 return show_stat(s, buf, si); \
5374 static ssize_t text##_store(struct kmem_cache *s, \
5375 const char *buf, size_t length) \
5377 if (buf[0] != '0') \
5379 clear_stat(s, si); \
5384 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5385 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5386 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5387 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5388 STAT_ATTR(FREE_FROZEN, free_frozen);
5389 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5390 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5391 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5392 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5393 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5394 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5395 STAT_ATTR(FREE_SLAB, free_slab);
5396 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5397 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5398 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5399 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5400 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5401 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5402 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5403 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5404 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5405 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5406 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5407 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5408 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5409 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5410 #endif /* CONFIG_SLUB_STATS */
5412 static struct attribute *slab_attrs[] = {
5413 &slab_size_attr.attr,
5414 &object_size_attr.attr,
5415 &objs_per_slab_attr.attr,
5417 &min_partial_attr.attr,
5418 &cpu_partial_attr.attr,
5420 &objects_partial_attr.attr,
5422 &cpu_slabs_attr.attr,
5426 &hwcache_align_attr.attr,
5427 &reclaim_account_attr.attr,
5428 &destroy_by_rcu_attr.attr,
5430 &slabs_cpu_partial_attr.attr,
5431 #ifdef CONFIG_SLUB_DEBUG
5432 &total_objects_attr.attr,
5434 &sanity_checks_attr.attr,
5436 &red_zone_attr.attr,
5438 &store_user_attr.attr,
5439 &validate_attr.attr,
5441 #ifdef CONFIG_ZONE_DMA
5442 &cache_dma_attr.attr,
5445 &remote_node_defrag_ratio_attr.attr,
5447 #ifdef CONFIG_SLUB_STATS
5448 &alloc_fastpath_attr.attr,
5449 &alloc_slowpath_attr.attr,
5450 &free_fastpath_attr.attr,
5451 &free_slowpath_attr.attr,
5452 &free_frozen_attr.attr,
5453 &free_add_partial_attr.attr,
5454 &free_remove_partial_attr.attr,
5455 &alloc_from_partial_attr.attr,
5456 &alloc_slab_attr.attr,
5457 &alloc_refill_attr.attr,
5458 &alloc_node_mismatch_attr.attr,
5459 &free_slab_attr.attr,
5460 &cpuslab_flush_attr.attr,
5461 &deactivate_full_attr.attr,
5462 &deactivate_empty_attr.attr,
5463 &deactivate_to_head_attr.attr,
5464 &deactivate_to_tail_attr.attr,
5465 &deactivate_remote_frees_attr.attr,
5466 &deactivate_bypass_attr.attr,
5467 &order_fallback_attr.attr,
5468 &cmpxchg_double_fail_attr.attr,
5469 &cmpxchg_double_cpu_fail_attr.attr,
5470 &cpu_partial_alloc_attr.attr,
5471 &cpu_partial_free_attr.attr,
5472 &cpu_partial_node_attr.attr,
5473 &cpu_partial_drain_attr.attr,
5475 #ifdef CONFIG_FAILSLAB
5476 &failslab_attr.attr,
5478 &usersize_attr.attr,
5483 static const struct attribute_group slab_attr_group = {
5484 .attrs = slab_attrs,
5487 static ssize_t slab_attr_show(struct kobject *kobj,
5488 struct attribute *attr,
5491 struct slab_attribute *attribute;
5492 struct kmem_cache *s;
5495 attribute = to_slab_attr(attr);
5498 if (!attribute->show)
5501 err = attribute->show(s, buf);
5506 static ssize_t slab_attr_store(struct kobject *kobj,
5507 struct attribute *attr,
5508 const char *buf, size_t len)
5510 struct slab_attribute *attribute;
5511 struct kmem_cache *s;
5514 attribute = to_slab_attr(attr);
5517 if (!attribute->store)
5520 err = attribute->store(s, buf, len);
5524 static void kmem_cache_release(struct kobject *k)
5526 slab_kmem_cache_release(to_slab(k));
5529 static const struct sysfs_ops slab_sysfs_ops = {
5530 .show = slab_attr_show,
5531 .store = slab_attr_store,
5534 static struct kobj_type slab_ktype = {
5535 .sysfs_ops = &slab_sysfs_ops,
5536 .release = kmem_cache_release,
5539 static struct kset *slab_kset;
5541 static inline struct kset *cache_kset(struct kmem_cache *s)
5546 #define ID_STR_LENGTH 64
5548 /* Create a unique string id for a slab cache:
5550 * Format :[flags-]size
5552 static char *create_unique_id(struct kmem_cache *s)
5554 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5561 * First flags affecting slabcache operations. We will only
5562 * get here for aliasable slabs so we do not need to support
5563 * too many flags. The flags here must cover all flags that
5564 * are matched during merging to guarantee that the id is
5567 if (s->flags & SLAB_CACHE_DMA)
5569 if (s->flags & SLAB_CACHE_DMA32)
5571 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5573 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5575 if (s->flags & SLAB_ACCOUNT)
5579 p += sprintf(p, "%07u", s->size);
5581 BUG_ON(p > name + ID_STR_LENGTH - 1);
5585 static int sysfs_slab_add(struct kmem_cache *s)
5589 struct kset *kset = cache_kset(s);
5590 int unmergeable = slab_unmergeable(s);
5593 kobject_init(&s->kobj, &slab_ktype);
5597 if (!unmergeable && disable_higher_order_debug &&
5598 (slub_debug & DEBUG_METADATA_FLAGS))
5603 * Slabcache can never be merged so we can use the name proper.
5604 * This is typically the case for debug situations. In that
5605 * case we can catch duplicate names easily.
5607 sysfs_remove_link(&slab_kset->kobj, s->name);
5611 * Create a unique name for the slab as a target
5614 name = create_unique_id(s);
5617 s->kobj.kset = kset;
5618 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5622 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5627 /* Setup first alias */
5628 sysfs_slab_alias(s, s->name);
5635 kobject_del(&s->kobj);
5639 void sysfs_slab_unlink(struct kmem_cache *s)
5641 if (slab_state >= FULL)
5642 kobject_del(&s->kobj);
5645 void sysfs_slab_release(struct kmem_cache *s)
5647 if (slab_state >= FULL)
5648 kobject_put(&s->kobj);
5652 * Need to buffer aliases during bootup until sysfs becomes
5653 * available lest we lose that information.
5655 struct saved_alias {
5656 struct kmem_cache *s;
5658 struct saved_alias *next;
5661 static struct saved_alias *alias_list;
5663 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5665 struct saved_alias *al;
5667 if (slab_state == FULL) {
5669 * If we have a leftover link then remove it.
5671 sysfs_remove_link(&slab_kset->kobj, name);
5672 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5675 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5681 al->next = alias_list;
5686 static int __init slab_sysfs_init(void)
5688 struct kmem_cache *s;
5691 mutex_lock(&slab_mutex);
5693 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5695 mutex_unlock(&slab_mutex);
5696 pr_err("Cannot register slab subsystem.\n");
5702 list_for_each_entry(s, &slab_caches, list) {
5703 err = sysfs_slab_add(s);
5705 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5709 while (alias_list) {
5710 struct saved_alias *al = alias_list;
5712 alias_list = alias_list->next;
5713 err = sysfs_slab_alias(al->s, al->name);
5715 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5720 mutex_unlock(&slab_mutex);
5724 __initcall(slab_sysfs_init);
5725 #endif /* CONFIG_SYSFS */
5727 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
5728 static int slab_debugfs_show(struct seq_file *seq, void *v)
5732 unsigned int idx = *(unsigned int *)v;
5733 struct loc_track *t = seq->private;
5735 if (idx < t->count) {
5738 seq_printf(seq, "%7ld ", l->count);
5741 seq_printf(seq, "%pS", (void *)l->addr);
5743 seq_puts(seq, "<not-available>");
5745 if (l->sum_time != l->min_time) {
5746 seq_printf(seq, " age=%ld/%llu/%ld",
5747 l->min_time, div_u64(l->sum_time, l->count),
5750 seq_printf(seq, " age=%ld", l->min_time);
5752 if (l->min_pid != l->max_pid)
5753 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
5755 seq_printf(seq, " pid=%ld",
5758 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
5759 seq_printf(seq, " cpus=%*pbl",
5760 cpumask_pr_args(to_cpumask(l->cpus)));
5762 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
5763 seq_printf(seq, " nodes=%*pbl",
5764 nodemask_pr_args(&l->nodes));
5766 seq_puts(seq, "\n");
5769 if (!idx && !t->count)
5770 seq_puts(seq, "No data\n");
5775 static void slab_debugfs_stop(struct seq_file *seq, void *v)
5779 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
5781 struct loc_track *t = seq->private;
5785 if (*ppos <= t->count)
5791 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
5796 static const struct seq_operations slab_debugfs_sops = {
5797 .start = slab_debugfs_start,
5798 .next = slab_debugfs_next,
5799 .stop = slab_debugfs_stop,
5800 .show = slab_debugfs_show,
5803 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
5806 struct kmem_cache_node *n;
5807 enum track_item alloc;
5809 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
5810 sizeof(struct loc_track));
5811 struct kmem_cache *s = file_inode(filep)->i_private;
5812 unsigned long *obj_map;
5814 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5818 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
5819 alloc = TRACK_ALLOC;
5823 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
5824 bitmap_free(obj_map);
5828 for_each_kmem_cache_node(s, node, n) {
5829 unsigned long flags;
5832 if (!atomic_long_read(&n->nr_slabs))
5835 spin_lock_irqsave(&n->list_lock, flags);
5836 list_for_each_entry(page, &n->partial, slab_list)
5837 process_slab(t, s, page, alloc, obj_map);
5838 list_for_each_entry(page, &n->full, slab_list)
5839 process_slab(t, s, page, alloc, obj_map);
5840 spin_unlock_irqrestore(&n->list_lock, flags);
5843 bitmap_free(obj_map);
5847 static int slab_debug_trace_release(struct inode *inode, struct file *file)
5849 struct seq_file *seq = file->private_data;
5850 struct loc_track *t = seq->private;
5853 return seq_release_private(inode, file);
5856 static const struct file_operations slab_debugfs_fops = {
5857 .open = slab_debug_trace_open,
5859 .llseek = seq_lseek,
5860 .release = slab_debug_trace_release,
5863 static void debugfs_slab_add(struct kmem_cache *s)
5865 struct dentry *slab_cache_dir;
5867 if (unlikely(!slab_debugfs_root))
5870 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
5872 debugfs_create_file("alloc_traces", 0400,
5873 slab_cache_dir, s, &slab_debugfs_fops);
5875 debugfs_create_file("free_traces", 0400,
5876 slab_cache_dir, s, &slab_debugfs_fops);
5879 void debugfs_slab_release(struct kmem_cache *s)
5881 debugfs_remove_recursive(debugfs_lookup(s->name, slab_debugfs_root));
5884 static int __init slab_debugfs_init(void)
5886 struct kmem_cache *s;
5888 slab_debugfs_root = debugfs_create_dir("slab", NULL);
5890 list_for_each_entry(s, &slab_caches, list)
5891 if (s->flags & SLAB_STORE_USER)
5892 debugfs_slab_add(s);
5897 __initcall(slab_debugfs_init);
5900 * The /proc/slabinfo ABI
5902 #ifdef CONFIG_SLUB_DEBUG
5903 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5905 unsigned long nr_slabs = 0;
5906 unsigned long nr_objs = 0;
5907 unsigned long nr_free = 0;
5909 struct kmem_cache_node *n;
5911 for_each_kmem_cache_node(s, node, n) {
5912 nr_slabs += node_nr_slabs(n);
5913 nr_objs += node_nr_objs(n);
5914 nr_free += count_partial(n, count_free);
5917 sinfo->active_objs = nr_objs - nr_free;
5918 sinfo->num_objs = nr_objs;
5919 sinfo->active_slabs = nr_slabs;
5920 sinfo->num_slabs = nr_slabs;
5921 sinfo->objects_per_slab = oo_objects(s->oo);
5922 sinfo->cache_order = oo_order(s->oo);
5925 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5929 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5930 size_t count, loff_t *ppos)
5934 #endif /* CONFIG_SLUB_DEBUG */