1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/stacktrace.h>
38 #include <linux/prefetch.h>
39 #include <linux/memcontrol.h>
40 #include <linux/random.h>
41 #include <kunit/test.h>
42 #include <kunit/test-bug.h>
43 #include <linux/sort.h>
45 #include <linux/debugfs.h>
46 #include <trace/events/kmem.h>
52 * 1. slab_mutex (Global Mutex)
53 * 2. node->list_lock (Spinlock)
54 * 3. kmem_cache->cpu_slab->lock (Local lock)
55 * 4. slab_lock(slab) (Only on some arches)
56 * 5. object_map_lock (Only for debugging)
60 * The role of the slab_mutex is to protect the list of all the slabs
61 * and to synchronize major metadata changes to slab cache structures.
62 * Also synchronizes memory hotplug callbacks.
66 * The slab_lock is a wrapper around the page lock, thus it is a bit
69 * The slab_lock is only used on arches that do not have the ability
70 * to do a cmpxchg_double. It only protects:
72 * A. slab->freelist -> List of free objects in a slab
73 * B. slab->inuse -> Number of objects in use
74 * C. slab->objects -> Number of objects in slab
75 * D. slab->frozen -> frozen state
79 * If a slab is frozen then it is exempt from list management. It is not
80 * on any list except per cpu partial list. The processor that froze the
81 * slab is the one who can perform list operations on the slab. Other
82 * processors may put objects onto the freelist but the processor that
83 * froze the slab is the only one that can retrieve the objects from the
88 * The list_lock protects the partial and full list on each node and
89 * the partial slab counter. If taken then no new slabs may be added or
90 * removed from the lists nor make the number of partial slabs be modified.
91 * (Note that the total number of slabs is an atomic value that may be
92 * modified without taking the list lock).
94 * The list_lock is a centralized lock and thus we avoid taking it as
95 * much as possible. As long as SLUB does not have to handle partial
96 * slabs, operations can continue without any centralized lock. F.e.
97 * allocating a long series of objects that fill up slabs does not require
100 * For debug caches, all allocations are forced to go through a list_lock
101 * protected region to serialize against concurrent validation.
103 * cpu_slab->lock local lock
105 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
106 * except the stat counters. This is a percpu structure manipulated only by
107 * the local cpu, so the lock protects against being preempted or interrupted
108 * by an irq. Fast path operations rely on lockless operations instead.
110 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
111 * which means the lockless fastpath cannot be used as it might interfere with
112 * an in-progress slow path operations. In this case the local lock is always
113 * taken but it still utilizes the freelist for the common operations.
117 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
118 * are fully lockless when satisfied from the percpu slab (and when
119 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
120 * They also don't disable preemption or migration or irqs. They rely on
121 * the transaction id (tid) field to detect being preempted or moved to
124 * irq, preemption, migration considerations
126 * Interrupts are disabled as part of list_lock or local_lock operations, or
127 * around the slab_lock operation, in order to make the slab allocator safe
128 * to use in the context of an irq.
130 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
131 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
132 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
133 * doesn't have to be revalidated in each section protected by the local lock.
135 * SLUB assigns one slab for allocation to each processor.
136 * Allocations only occur from these slabs called cpu slabs.
138 * Slabs with free elements are kept on a partial list and during regular
139 * operations no list for full slabs is used. If an object in a full slab is
140 * freed then the slab will show up again on the partial lists.
141 * We track full slabs for debugging purposes though because otherwise we
142 * cannot scan all objects.
144 * Slabs are freed when they become empty. Teardown and setup is
145 * minimal so we rely on the page allocators per cpu caches for
146 * fast frees and allocs.
148 * slab->frozen The slab is frozen and exempt from list processing.
149 * This means that the slab is dedicated to a purpose
150 * such as satisfying allocations for a specific
151 * processor. Objects may be freed in the slab while
152 * it is frozen but slab_free will then skip the usual
153 * list operations. It is up to the processor holding
154 * the slab to integrate the slab into the slab lists
155 * when the slab is no longer needed.
157 * One use of this flag is to mark slabs that are
158 * used for allocations. Then such a slab becomes a cpu
159 * slab. The cpu slab may be equipped with an additional
160 * freelist that allows lockless access to
161 * free objects in addition to the regular freelist
162 * that requires the slab lock.
164 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
165 * options set. This moves slab handling out of
166 * the fast path and disables lockless freelists.
170 * We could simply use migrate_disable()/enable() but as long as it's a
171 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
173 #ifndef CONFIG_PREEMPT_RT
174 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
175 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
176 #define USE_LOCKLESS_FAST_PATH() (true)
178 #define slub_get_cpu_ptr(var) \
183 #define slub_put_cpu_ptr(var) \
188 #define USE_LOCKLESS_FAST_PATH() (false)
191 #ifndef CONFIG_SLUB_TINY
192 #define __fastpath_inline __always_inline
194 #define __fastpath_inline
197 #ifdef CONFIG_SLUB_DEBUG
198 #ifdef CONFIG_SLUB_DEBUG_ON
199 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
201 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
203 #endif /* CONFIG_SLUB_DEBUG */
205 /* Structure holding parameters for get_partial() call chain */
206 struct partial_context {
209 unsigned int orig_size;
212 static inline bool kmem_cache_debug(struct kmem_cache *s)
214 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
217 static inline bool slub_debug_orig_size(struct kmem_cache *s)
219 return (kmem_cache_debug_flags(s, SLAB_STORE_USER) &&
220 (s->flags & SLAB_KMALLOC));
223 void *fixup_red_left(struct kmem_cache *s, void *p)
225 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
226 p += s->red_left_pad;
231 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
233 #ifdef CONFIG_SLUB_CPU_PARTIAL
234 return !kmem_cache_debug(s);
241 * Issues still to be resolved:
243 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
245 * - Variable sizing of the per node arrays
248 /* Enable to log cmpxchg failures */
249 #undef SLUB_DEBUG_CMPXCHG
251 #ifndef CONFIG_SLUB_TINY
253 * Minimum number of partial slabs. These will be left on the partial
254 * lists even if they are empty. kmem_cache_shrink may reclaim them.
256 #define MIN_PARTIAL 5
259 * Maximum number of desirable partial slabs.
260 * The existence of more partial slabs makes kmem_cache_shrink
261 * sort the partial list by the number of objects in use.
263 #define MAX_PARTIAL 10
265 #define MIN_PARTIAL 0
266 #define MAX_PARTIAL 0
269 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
270 SLAB_POISON | SLAB_STORE_USER)
273 * These debug flags cannot use CMPXCHG because there might be consistency
274 * issues when checking or reading debug information
276 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
281 * Debugging flags that require metadata to be stored in the slab. These get
282 * disabled when slub_debug=O is used and a cache's min order increases with
285 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
288 #define OO_MASK ((1 << OO_SHIFT) - 1)
289 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
291 /* Internal SLUB flags */
293 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
294 /* Use cmpxchg_double */
295 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
298 * Tracking user of a slab.
300 #define TRACK_ADDRS_COUNT 16
302 unsigned long addr; /* Called from address */
303 #ifdef CONFIG_STACKDEPOT
304 depot_stack_handle_t handle;
306 int cpu; /* Was running on cpu */
307 int pid; /* Pid context */
308 unsigned long when; /* When did the operation occur */
311 enum track_item { TRACK_ALLOC, TRACK_FREE };
313 #ifdef SLAB_SUPPORTS_SYSFS
314 static int sysfs_slab_add(struct kmem_cache *);
315 static int sysfs_slab_alias(struct kmem_cache *, const char *);
317 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
318 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
322 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
323 static void debugfs_slab_add(struct kmem_cache *);
325 static inline void debugfs_slab_add(struct kmem_cache *s) { }
328 static inline void stat(const struct kmem_cache *s, enum stat_item si)
330 #ifdef CONFIG_SLUB_STATS
332 * The rmw is racy on a preemptible kernel but this is acceptable, so
333 * avoid this_cpu_add()'s irq-disable overhead.
335 raw_cpu_inc(s->cpu_slab->stat[si]);
340 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
341 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
342 * differ during memory hotplug/hotremove operations.
343 * Protected by slab_mutex.
345 static nodemask_t slab_nodes;
347 #ifndef CONFIG_SLUB_TINY
349 * Workqueue used for flush_cpu_slab().
351 static struct workqueue_struct *flushwq;
354 /********************************************************************
355 * Core slab cache functions
356 *******************************************************************/
359 * Returns freelist pointer (ptr). With hardening, this is obfuscated
360 * with an XOR of the address where the pointer is held and a per-cache
363 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
364 unsigned long ptr_addr)
366 #ifdef CONFIG_SLAB_FREELIST_HARDENED
368 * When CONFIG_KASAN_SW/HW_TAGS is enabled, ptr_addr might be tagged.
369 * Normally, this doesn't cause any issues, as both set_freepointer()
370 * and get_freepointer() are called with a pointer with the same tag.
371 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
372 * example, when __free_slub() iterates over objects in a cache, it
373 * passes untagged pointers to check_object(). check_object() in turns
374 * calls get_freepointer() with an untagged pointer, which causes the
375 * freepointer to be restored incorrectly.
377 return (void *)((unsigned long)ptr ^ s->random ^
378 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
384 /* Returns the freelist pointer recorded at location ptr_addr. */
385 static inline void *freelist_dereference(const struct kmem_cache *s,
388 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
389 (unsigned long)ptr_addr);
392 static inline void *get_freepointer(struct kmem_cache *s, void *object)
394 object = kasan_reset_tag(object);
395 return freelist_dereference(s, object + s->offset);
398 #ifndef CONFIG_SLUB_TINY
399 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
401 prefetchw(object + s->offset);
406 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
407 * pointer value in the case the current thread loses the race for the next
408 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
409 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
410 * KMSAN will still check all arguments of cmpxchg because of imperfect
411 * handling of inline assembly.
412 * To work around this problem, we apply __no_kmsan_checks to ensure that
413 * get_freepointer_safe() returns initialized memory.
416 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
418 unsigned long freepointer_addr;
421 if (!debug_pagealloc_enabled_static())
422 return get_freepointer(s, object);
424 object = kasan_reset_tag(object);
425 freepointer_addr = (unsigned long)object + s->offset;
426 copy_from_kernel_nofault(&p, (void **)freepointer_addr, sizeof(p));
427 return freelist_ptr(s, p, freepointer_addr);
430 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
432 unsigned long freeptr_addr = (unsigned long)object + s->offset;
434 #ifdef CONFIG_SLAB_FREELIST_HARDENED
435 BUG_ON(object == fp); /* naive detection of double free or corruption */
438 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
439 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
442 /* Loop over all objects in a slab */
443 #define for_each_object(__p, __s, __addr, __objects) \
444 for (__p = fixup_red_left(__s, __addr); \
445 __p < (__addr) + (__objects) * (__s)->size; \
448 static inline unsigned int order_objects(unsigned int order, unsigned int size)
450 return ((unsigned int)PAGE_SIZE << order) / size;
453 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
456 struct kmem_cache_order_objects x = {
457 (order << OO_SHIFT) + order_objects(order, size)
463 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
465 return x.x >> OO_SHIFT;
468 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
470 return x.x & OO_MASK;
473 #ifdef CONFIG_SLUB_CPU_PARTIAL
474 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
476 unsigned int nr_slabs;
478 s->cpu_partial = nr_objects;
481 * We take the number of objects but actually limit the number of
482 * slabs on the per cpu partial list, in order to limit excessive
483 * growth of the list. For simplicity we assume that the slabs will
486 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
487 s->cpu_partial_slabs = nr_slabs;
491 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
494 #endif /* CONFIG_SLUB_CPU_PARTIAL */
497 * Per slab locking using the pagelock
499 static __always_inline void slab_lock(struct slab *slab)
501 struct page *page = slab_page(slab);
503 VM_BUG_ON_PAGE(PageTail(page), page);
504 bit_spin_lock(PG_locked, &page->flags);
507 static __always_inline void slab_unlock(struct slab *slab)
509 struct page *page = slab_page(slab);
511 VM_BUG_ON_PAGE(PageTail(page), page);
512 __bit_spin_unlock(PG_locked, &page->flags);
516 * Interrupts must be disabled (for the fallback code to work right), typically
517 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
518 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
519 * allocation/ free operation in hardirq context. Therefore nothing can
520 * interrupt the operation.
522 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
523 void *freelist_old, unsigned long counters_old,
524 void *freelist_new, unsigned long counters_new,
527 if (USE_LOCKLESS_FAST_PATH())
528 lockdep_assert_irqs_disabled();
529 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
530 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
531 if (s->flags & __CMPXCHG_DOUBLE) {
532 if (cmpxchg_double(&slab->freelist, &slab->counters,
533 freelist_old, counters_old,
534 freelist_new, counters_new))
540 if (slab->freelist == freelist_old &&
541 slab->counters == counters_old) {
542 slab->freelist = freelist_new;
543 slab->counters = counters_new;
551 stat(s, CMPXCHG_DOUBLE_FAIL);
553 #ifdef SLUB_DEBUG_CMPXCHG
554 pr_info("%s %s: cmpxchg double redo ", n, s->name);
560 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct slab *slab,
561 void *freelist_old, unsigned long counters_old,
562 void *freelist_new, unsigned long counters_new,
565 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
566 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
567 if (s->flags & __CMPXCHG_DOUBLE) {
568 if (cmpxchg_double(&slab->freelist, &slab->counters,
569 freelist_old, counters_old,
570 freelist_new, counters_new))
577 local_irq_save(flags);
579 if (slab->freelist == freelist_old &&
580 slab->counters == counters_old) {
581 slab->freelist = freelist_new;
582 slab->counters = counters_new;
584 local_irq_restore(flags);
588 local_irq_restore(flags);
592 stat(s, CMPXCHG_DOUBLE_FAIL);
594 #ifdef SLUB_DEBUG_CMPXCHG
595 pr_info("%s %s: cmpxchg double redo ", n, s->name);
601 #ifdef CONFIG_SLUB_DEBUG
602 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
603 static DEFINE_SPINLOCK(object_map_lock);
605 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
608 void *addr = slab_address(slab);
611 bitmap_zero(obj_map, slab->objects);
613 for (p = slab->freelist; p; p = get_freepointer(s, p))
614 set_bit(__obj_to_index(s, addr, p), obj_map);
617 #if IS_ENABLED(CONFIG_KUNIT)
618 static bool slab_add_kunit_errors(void)
620 struct kunit_resource *resource;
622 if (!kunit_get_current_test())
625 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
629 (*(int *)resource->data)++;
630 kunit_put_resource(resource);
634 static inline bool slab_add_kunit_errors(void) { return false; }
637 static inline unsigned int size_from_object(struct kmem_cache *s)
639 if (s->flags & SLAB_RED_ZONE)
640 return s->size - s->red_left_pad;
645 static inline void *restore_red_left(struct kmem_cache *s, void *p)
647 if (s->flags & SLAB_RED_ZONE)
648 p -= s->red_left_pad;
656 #if defined(CONFIG_SLUB_DEBUG_ON)
657 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
659 static slab_flags_t slub_debug;
662 static char *slub_debug_string;
663 static int disable_higher_order_debug;
666 * slub is about to manipulate internal object metadata. This memory lies
667 * outside the range of the allocated object, so accessing it would normally
668 * be reported by kasan as a bounds error. metadata_access_enable() is used
669 * to tell kasan that these accesses are OK.
671 static inline void metadata_access_enable(void)
673 kasan_disable_current();
676 static inline void metadata_access_disable(void)
678 kasan_enable_current();
685 /* Verify that a pointer has an address that is valid within a slab page */
686 static inline int check_valid_pointer(struct kmem_cache *s,
687 struct slab *slab, void *object)
694 base = slab_address(slab);
695 object = kasan_reset_tag(object);
696 object = restore_red_left(s, object);
697 if (object < base || object >= base + slab->objects * s->size ||
698 (object - base) % s->size) {
705 static void print_section(char *level, char *text, u8 *addr,
708 metadata_access_enable();
709 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
710 16, 1, kasan_reset_tag((void *)addr), length, 1);
711 metadata_access_disable();
715 * See comment in calculate_sizes().
717 static inline bool freeptr_outside_object(struct kmem_cache *s)
719 return s->offset >= s->inuse;
723 * Return offset of the end of info block which is inuse + free pointer if
724 * not overlapping with object.
726 static inline unsigned int get_info_end(struct kmem_cache *s)
728 if (freeptr_outside_object(s))
729 return s->inuse + sizeof(void *);
734 static struct track *get_track(struct kmem_cache *s, void *object,
735 enum track_item alloc)
739 p = object + get_info_end(s);
741 return kasan_reset_tag(p + alloc);
744 #ifdef CONFIG_STACKDEPOT
745 static noinline depot_stack_handle_t set_track_prepare(void)
747 depot_stack_handle_t handle;
748 unsigned long entries[TRACK_ADDRS_COUNT];
749 unsigned int nr_entries;
751 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
752 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
757 static inline depot_stack_handle_t set_track_prepare(void)
763 static void set_track_update(struct kmem_cache *s, void *object,
764 enum track_item alloc, unsigned long addr,
765 depot_stack_handle_t handle)
767 struct track *p = get_track(s, object, alloc);
769 #ifdef CONFIG_STACKDEPOT
773 p->cpu = smp_processor_id();
774 p->pid = current->pid;
778 static __always_inline void set_track(struct kmem_cache *s, void *object,
779 enum track_item alloc, unsigned long addr)
781 depot_stack_handle_t handle = set_track_prepare();
783 set_track_update(s, object, alloc, addr, handle);
786 static void init_tracking(struct kmem_cache *s, void *object)
790 if (!(s->flags & SLAB_STORE_USER))
793 p = get_track(s, object, TRACK_ALLOC);
794 memset(p, 0, 2*sizeof(struct track));
797 static void print_track(const char *s, struct track *t, unsigned long pr_time)
799 depot_stack_handle_t handle __maybe_unused;
804 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
805 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
806 #ifdef CONFIG_STACKDEPOT
807 handle = READ_ONCE(t->handle);
809 stack_depot_print(handle);
811 pr_err("object allocation/free stack trace missing\n");
815 void print_tracking(struct kmem_cache *s, void *object)
817 unsigned long pr_time = jiffies;
818 if (!(s->flags & SLAB_STORE_USER))
821 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
822 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
825 static void print_slab_info(const struct slab *slab)
827 struct folio *folio = (struct folio *)slab_folio(slab);
829 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
830 slab, slab->objects, slab->inuse, slab->freelist,
831 folio_flags(folio, 0));
835 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
836 * family will round up the real request size to these fixed ones, so
837 * there could be an extra area than what is requested. Save the original
838 * request size in the meta data area, for better debug and sanity check.
840 static inline void set_orig_size(struct kmem_cache *s,
841 void *object, unsigned int orig_size)
843 void *p = kasan_reset_tag(object);
845 if (!slub_debug_orig_size(s))
848 #ifdef CONFIG_KASAN_GENERIC
850 * KASAN could save its free meta data in object's data area at
851 * offset 0, if the size is larger than 'orig_size', it will
852 * overlap the data redzone in [orig_size+1, object_size], and
853 * the check should be skipped.
855 if (kasan_metadata_size(s, true) > orig_size)
856 orig_size = s->object_size;
859 p += get_info_end(s);
860 p += sizeof(struct track) * 2;
862 *(unsigned int *)p = orig_size;
865 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
867 void *p = kasan_reset_tag(object);
869 if (!slub_debug_orig_size(s))
870 return s->object_size;
872 p += get_info_end(s);
873 p += sizeof(struct track) * 2;
875 return *(unsigned int *)p;
878 void skip_orig_size_check(struct kmem_cache *s, const void *object)
880 set_orig_size(s, (void *)object, s->object_size);
883 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
885 struct va_format vaf;
891 pr_err("=============================================================================\n");
892 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
893 pr_err("-----------------------------------------------------------------------------\n\n");
898 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
900 struct va_format vaf;
903 if (slab_add_kunit_errors())
909 pr_err("FIX %s: %pV\n", s->name, &vaf);
913 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
915 unsigned int off; /* Offset of last byte */
916 u8 *addr = slab_address(slab);
918 print_tracking(s, p);
920 print_slab_info(slab);
922 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
923 p, p - addr, get_freepointer(s, p));
925 if (s->flags & SLAB_RED_ZONE)
926 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
928 else if (p > addr + 16)
929 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
931 print_section(KERN_ERR, "Object ", p,
932 min_t(unsigned int, s->object_size, PAGE_SIZE));
933 if (s->flags & SLAB_RED_ZONE)
934 print_section(KERN_ERR, "Redzone ", p + s->object_size,
935 s->inuse - s->object_size);
937 off = get_info_end(s);
939 if (s->flags & SLAB_STORE_USER)
940 off += 2 * sizeof(struct track);
942 if (slub_debug_orig_size(s))
943 off += sizeof(unsigned int);
945 off += kasan_metadata_size(s, false);
947 if (off != size_from_object(s))
948 /* Beginning of the filler is the free pointer */
949 print_section(KERN_ERR, "Padding ", p + off,
950 size_from_object(s) - off);
955 static void object_err(struct kmem_cache *s, struct slab *slab,
956 u8 *object, char *reason)
958 if (slab_add_kunit_errors())
961 slab_bug(s, "%s", reason);
962 print_trailer(s, slab, object);
963 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
966 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
967 void **freelist, void *nextfree)
969 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
970 !check_valid_pointer(s, slab, nextfree) && freelist) {
971 object_err(s, slab, *freelist, "Freechain corrupt");
973 slab_fix(s, "Isolate corrupted freechain");
980 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
981 const char *fmt, ...)
986 if (slab_add_kunit_errors())
990 vsnprintf(buf, sizeof(buf), fmt, args);
992 slab_bug(s, "%s", buf);
993 print_slab_info(slab);
995 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
998 static void init_object(struct kmem_cache *s, void *object, u8 val)
1000 u8 *p = kasan_reset_tag(object);
1001 unsigned int poison_size = s->object_size;
1003 if (s->flags & SLAB_RED_ZONE) {
1004 memset(p - s->red_left_pad, val, s->red_left_pad);
1006 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1008 * Redzone the extra allocated space by kmalloc than
1009 * requested, and the poison size will be limited to
1010 * the original request size accordingly.
1012 poison_size = get_orig_size(s, object);
1016 if (s->flags & __OBJECT_POISON) {
1017 memset(p, POISON_FREE, poison_size - 1);
1018 p[poison_size - 1] = POISON_END;
1021 if (s->flags & SLAB_RED_ZONE)
1022 memset(p + poison_size, val, s->inuse - poison_size);
1025 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1026 void *from, void *to)
1028 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1029 memset(from, data, to - from);
1032 static int check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1033 u8 *object, char *what,
1034 u8 *start, unsigned int value, unsigned int bytes)
1038 u8 *addr = slab_address(slab);
1040 metadata_access_enable();
1041 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1042 metadata_access_disable();
1046 end = start + bytes;
1047 while (end > fault && end[-1] == value)
1050 if (slab_add_kunit_errors())
1051 goto skip_bug_print;
1053 slab_bug(s, "%s overwritten", what);
1054 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1055 fault, end - 1, fault - addr,
1057 print_trailer(s, slab, object);
1058 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1061 restore_bytes(s, what, value, fault, end);
1069 * Bytes of the object to be managed.
1070 * If the freepointer may overlay the object then the free
1071 * pointer is at the middle of the object.
1073 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1076 * object + s->object_size
1077 * Padding to reach word boundary. This is also used for Redzoning.
1078 * Padding is extended by another word if Redzoning is enabled and
1079 * object_size == inuse.
1081 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
1082 * 0xcc (RED_ACTIVE) for objects in use.
1085 * Meta data starts here.
1087 * A. Free pointer (if we cannot overwrite object on free)
1088 * B. Tracking data for SLAB_STORE_USER
1089 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1090 * D. Padding to reach required alignment boundary or at minimum
1091 * one word if debugging is on to be able to detect writes
1092 * before the word boundary.
1094 * Padding is done using 0x5a (POISON_INUSE)
1097 * Nothing is used beyond s->size.
1099 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1100 * ignored. And therefore no slab options that rely on these boundaries
1101 * may be used with merged slabcaches.
1104 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1106 unsigned long off = get_info_end(s); /* The end of info */
1108 if (s->flags & SLAB_STORE_USER) {
1109 /* We also have user information there */
1110 off += 2 * sizeof(struct track);
1112 if (s->flags & SLAB_KMALLOC)
1113 off += sizeof(unsigned int);
1116 off += kasan_metadata_size(s, false);
1118 if (size_from_object(s) == off)
1121 return check_bytes_and_report(s, slab, p, "Object padding",
1122 p + off, POISON_INUSE, size_from_object(s) - off);
1125 /* Check the pad bytes at the end of a slab page */
1126 static void slab_pad_check(struct kmem_cache *s, struct slab *slab)
1135 if (!(s->flags & SLAB_POISON))
1138 start = slab_address(slab);
1139 length = slab_size(slab);
1140 end = start + length;
1141 remainder = length % s->size;
1145 pad = end - remainder;
1146 metadata_access_enable();
1147 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1148 metadata_access_disable();
1151 while (end > fault && end[-1] == POISON_INUSE)
1154 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1155 fault, end - 1, fault - start);
1156 print_section(KERN_ERR, "Padding ", pad, remainder);
1158 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1161 static int check_object(struct kmem_cache *s, struct slab *slab,
1162 void *object, u8 val)
1165 u8 *endobject = object + s->object_size;
1166 unsigned int orig_size;
1168 if (s->flags & SLAB_RED_ZONE) {
1169 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1170 object - s->red_left_pad, val, s->red_left_pad))
1173 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1174 endobject, val, s->inuse - s->object_size))
1177 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1178 orig_size = get_orig_size(s, object);
1180 if (s->object_size > orig_size &&
1181 !check_bytes_and_report(s, slab, object,
1182 "kmalloc Redzone", p + orig_size,
1183 val, s->object_size - orig_size)) {
1188 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1189 check_bytes_and_report(s, slab, p, "Alignment padding",
1190 endobject, POISON_INUSE,
1191 s->inuse - s->object_size);
1195 if (s->flags & SLAB_POISON) {
1196 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
1197 (!check_bytes_and_report(s, slab, p, "Poison", p,
1198 POISON_FREE, s->object_size - 1) ||
1199 !check_bytes_and_report(s, slab, p, "End Poison",
1200 p + s->object_size - 1, POISON_END, 1)))
1203 * check_pad_bytes cleans up on its own.
1205 check_pad_bytes(s, slab, p);
1208 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
1210 * Object and freepointer overlap. Cannot check
1211 * freepointer while object is allocated.
1215 /* Check free pointer validity */
1216 if (!check_valid_pointer(s, slab, get_freepointer(s, p))) {
1217 object_err(s, slab, p, "Freepointer corrupt");
1219 * No choice but to zap it and thus lose the remainder
1220 * of the free objects in this slab. May cause
1221 * another error because the object count is now wrong.
1223 set_freepointer(s, p, NULL);
1229 static int check_slab(struct kmem_cache *s, struct slab *slab)
1233 if (!folio_test_slab(slab_folio(slab))) {
1234 slab_err(s, slab, "Not a valid slab page");
1238 maxobj = order_objects(slab_order(slab), s->size);
1239 if (slab->objects > maxobj) {
1240 slab_err(s, slab, "objects %u > max %u",
1241 slab->objects, maxobj);
1244 if (slab->inuse > slab->objects) {
1245 slab_err(s, slab, "inuse %u > max %u",
1246 slab->inuse, slab->objects);
1249 /* Slab_pad_check fixes things up after itself */
1250 slab_pad_check(s, slab);
1255 * Determine if a certain object in a slab is on the freelist. Must hold the
1256 * slab lock to guarantee that the chains are in a consistent state.
1258 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1262 void *object = NULL;
1265 fp = slab->freelist;
1266 while (fp && nr <= slab->objects) {
1269 if (!check_valid_pointer(s, slab, fp)) {
1271 object_err(s, slab, object,
1272 "Freechain corrupt");
1273 set_freepointer(s, object, NULL);
1275 slab_err(s, slab, "Freepointer corrupt");
1276 slab->freelist = NULL;
1277 slab->inuse = slab->objects;
1278 slab_fix(s, "Freelist cleared");
1284 fp = get_freepointer(s, object);
1288 max_objects = order_objects(slab_order(slab), s->size);
1289 if (max_objects > MAX_OBJS_PER_PAGE)
1290 max_objects = MAX_OBJS_PER_PAGE;
1292 if (slab->objects != max_objects) {
1293 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1294 slab->objects, max_objects);
1295 slab->objects = max_objects;
1296 slab_fix(s, "Number of objects adjusted");
1298 if (slab->inuse != slab->objects - nr) {
1299 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1300 slab->inuse, slab->objects - nr);
1301 slab->inuse = slab->objects - nr;
1302 slab_fix(s, "Object count adjusted");
1304 return search == NULL;
1307 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1310 if (s->flags & SLAB_TRACE) {
1311 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1313 alloc ? "alloc" : "free",
1314 object, slab->inuse,
1318 print_section(KERN_INFO, "Object ", (void *)object,
1326 * Tracking of fully allocated slabs for debugging purposes.
1328 static void add_full(struct kmem_cache *s,
1329 struct kmem_cache_node *n, struct slab *slab)
1331 if (!(s->flags & SLAB_STORE_USER))
1334 lockdep_assert_held(&n->list_lock);
1335 list_add(&slab->slab_list, &n->full);
1338 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1340 if (!(s->flags & SLAB_STORE_USER))
1343 lockdep_assert_held(&n->list_lock);
1344 list_del(&slab->slab_list);
1347 /* Tracking of the number of slabs for debugging purposes */
1348 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1350 struct kmem_cache_node *n = get_node(s, node);
1352 return atomic_long_read(&n->nr_slabs);
1355 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1357 return atomic_long_read(&n->nr_slabs);
1360 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1362 struct kmem_cache_node *n = get_node(s, node);
1365 * May be called early in order to allocate a slab for the
1366 * kmem_cache_node structure. Solve the chicken-egg
1367 * dilemma by deferring the increment of the count during
1368 * bootstrap (see early_kmem_cache_node_alloc).
1371 atomic_long_inc(&n->nr_slabs);
1372 atomic_long_add(objects, &n->total_objects);
1375 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1377 struct kmem_cache_node *n = get_node(s, node);
1379 atomic_long_dec(&n->nr_slabs);
1380 atomic_long_sub(objects, &n->total_objects);
1383 /* Object debug checks for alloc/free paths */
1384 static void setup_object_debug(struct kmem_cache *s, void *object)
1386 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1389 init_object(s, object, SLUB_RED_INACTIVE);
1390 init_tracking(s, object);
1394 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1396 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1399 metadata_access_enable();
1400 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1401 metadata_access_disable();
1404 static inline int alloc_consistency_checks(struct kmem_cache *s,
1405 struct slab *slab, void *object)
1407 if (!check_slab(s, slab))
1410 if (!check_valid_pointer(s, slab, object)) {
1411 object_err(s, slab, object, "Freelist Pointer check fails");
1415 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1421 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1422 struct slab *slab, void *object, int orig_size)
1424 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1425 if (!alloc_consistency_checks(s, slab, object))
1429 /* Success. Perform special debug activities for allocs */
1430 trace(s, slab, object, 1);
1431 set_orig_size(s, object, orig_size);
1432 init_object(s, object, SLUB_RED_ACTIVE);
1436 if (folio_test_slab(slab_folio(slab))) {
1438 * If this is a slab page then lets do the best we can
1439 * to avoid issues in the future. Marking all objects
1440 * as used avoids touching the remaining objects.
1442 slab_fix(s, "Marking all objects used");
1443 slab->inuse = slab->objects;
1444 slab->freelist = NULL;
1449 static inline int free_consistency_checks(struct kmem_cache *s,
1450 struct slab *slab, void *object, unsigned long addr)
1452 if (!check_valid_pointer(s, slab, object)) {
1453 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1457 if (on_freelist(s, slab, object)) {
1458 object_err(s, slab, object, "Object already free");
1462 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1465 if (unlikely(s != slab->slab_cache)) {
1466 if (!folio_test_slab(slab_folio(slab))) {
1467 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1469 } else if (!slab->slab_cache) {
1470 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1474 object_err(s, slab, object,
1475 "page slab pointer corrupt.");
1482 * Parse a block of slub_debug options. Blocks are delimited by ';'
1484 * @str: start of block
1485 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1486 * @slabs: return start of list of slabs, or NULL when there's no list
1487 * @init: assume this is initial parsing and not per-kmem-create parsing
1489 * returns the start of next block if there's any, or NULL
1492 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1494 bool higher_order_disable = false;
1496 /* Skip any completely empty blocks */
1497 while (*str && *str == ';')
1502 * No options but restriction on slabs. This means full
1503 * debugging for slabs matching a pattern.
1505 *flags = DEBUG_DEFAULT_FLAGS;
1510 /* Determine which debug features should be switched on */
1511 for (; *str && *str != ',' && *str != ';'; str++) {
1512 switch (tolower(*str)) {
1517 *flags |= SLAB_CONSISTENCY_CHECKS;
1520 *flags |= SLAB_RED_ZONE;
1523 *flags |= SLAB_POISON;
1526 *flags |= SLAB_STORE_USER;
1529 *flags |= SLAB_TRACE;
1532 *flags |= SLAB_FAILSLAB;
1536 * Avoid enabling debugging on caches if its minimum
1537 * order would increase as a result.
1539 higher_order_disable = true;
1543 pr_err("slub_debug option '%c' unknown. skipped\n", *str);
1552 /* Skip over the slab list */
1553 while (*str && *str != ';')
1556 /* Skip any completely empty blocks */
1557 while (*str && *str == ';')
1560 if (init && higher_order_disable)
1561 disable_higher_order_debug = 1;
1569 static int __init setup_slub_debug(char *str)
1572 slab_flags_t global_flags;
1575 bool global_slub_debug_changed = false;
1576 bool slab_list_specified = false;
1578 global_flags = DEBUG_DEFAULT_FLAGS;
1579 if (*str++ != '=' || !*str)
1581 * No options specified. Switch on full debugging.
1587 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1590 global_flags = flags;
1591 global_slub_debug_changed = true;
1593 slab_list_specified = true;
1594 if (flags & SLAB_STORE_USER)
1595 stack_depot_request_early_init();
1600 * For backwards compatibility, a single list of flags with list of
1601 * slabs means debugging is only changed for those slabs, so the global
1602 * slub_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1603 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1604 * long as there is no option specifying flags without a slab list.
1606 if (slab_list_specified) {
1607 if (!global_slub_debug_changed)
1608 global_flags = slub_debug;
1609 slub_debug_string = saved_str;
1612 slub_debug = global_flags;
1613 if (slub_debug & SLAB_STORE_USER)
1614 stack_depot_request_early_init();
1615 if (slub_debug != 0 || slub_debug_string)
1616 static_branch_enable(&slub_debug_enabled);
1618 static_branch_disable(&slub_debug_enabled);
1619 if ((static_branch_unlikely(&init_on_alloc) ||
1620 static_branch_unlikely(&init_on_free)) &&
1621 (slub_debug & SLAB_POISON))
1622 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1626 __setup("slub_debug", setup_slub_debug);
1629 * kmem_cache_flags - apply debugging options to the cache
1630 * @object_size: the size of an object without meta data
1631 * @flags: flags to set
1632 * @name: name of the cache
1634 * Debug option(s) are applied to @flags. In addition to the debug
1635 * option(s), if a slab name (or multiple) is specified i.e.
1636 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1637 * then only the select slabs will receive the debug option(s).
1639 slab_flags_t kmem_cache_flags(unsigned int object_size,
1640 slab_flags_t flags, const char *name)
1645 slab_flags_t block_flags;
1646 slab_flags_t slub_debug_local = slub_debug;
1648 if (flags & SLAB_NO_USER_FLAGS)
1652 * If the slab cache is for debugging (e.g. kmemleak) then
1653 * don't store user (stack trace) information by default,
1654 * but let the user enable it via the command line below.
1656 if (flags & SLAB_NOLEAKTRACE)
1657 slub_debug_local &= ~SLAB_STORE_USER;
1660 next_block = slub_debug_string;
1661 /* Go through all blocks of debug options, see if any matches our slab's name */
1662 while (next_block) {
1663 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1666 /* Found a block that has a slab list, search it */
1671 end = strchrnul(iter, ',');
1672 if (next_block && next_block < end)
1673 end = next_block - 1;
1675 glob = strnchr(iter, end - iter, '*');
1677 cmplen = glob - iter;
1679 cmplen = max_t(size_t, len, (end - iter));
1681 if (!strncmp(name, iter, cmplen)) {
1682 flags |= block_flags;
1686 if (!*end || *end == ';')
1692 return flags | slub_debug_local;
1694 #else /* !CONFIG_SLUB_DEBUG */
1695 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1697 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1699 static inline bool alloc_debug_processing(struct kmem_cache *s,
1700 struct slab *slab, void *object, int orig_size) { return true; }
1702 static inline bool free_debug_processing(struct kmem_cache *s,
1703 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1704 unsigned long addr, depot_stack_handle_t handle) { return true; }
1706 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1707 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1708 void *object, u8 val) { return 1; }
1709 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1710 static inline void set_track(struct kmem_cache *s, void *object,
1711 enum track_item alloc, unsigned long addr) {}
1712 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1713 struct slab *slab) {}
1714 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1715 struct slab *slab) {}
1716 slab_flags_t kmem_cache_flags(unsigned int object_size,
1717 slab_flags_t flags, const char *name)
1721 #define slub_debug 0
1723 #define disable_higher_order_debug 0
1725 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1727 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1729 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1731 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1734 #ifndef CONFIG_SLUB_TINY
1735 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1736 void **freelist, void *nextfree)
1741 #endif /* CONFIG_SLUB_DEBUG */
1744 * Hooks for other subsystems that check memory allocations. In a typical
1745 * production configuration these hooks all should produce no code at all.
1747 static __always_inline bool slab_free_hook(struct kmem_cache *s,
1750 kmemleak_free_recursive(x, s->flags);
1751 kmsan_slab_free(s, x);
1753 debug_check_no_locks_freed(x, s->object_size);
1755 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1756 debug_check_no_obj_freed(x, s->object_size);
1758 /* Use KCSAN to help debug racy use-after-free. */
1759 if (!(s->flags & SLAB_TYPESAFE_BY_RCU))
1760 __kcsan_check_access(x, s->object_size,
1761 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
1764 * As memory initialization might be integrated into KASAN,
1765 * kasan_slab_free and initialization memset's must be
1766 * kept together to avoid discrepancies in behavior.
1768 * The initialization memset's clear the object and the metadata,
1769 * but don't touch the SLAB redzone.
1774 if (!kasan_has_integrated_init())
1775 memset(kasan_reset_tag(x), 0, s->object_size);
1776 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
1777 memset((char *)kasan_reset_tag(x) + s->inuse, 0,
1778 s->size - s->inuse - rsize);
1780 /* KASAN might put x into memory quarantine, delaying its reuse. */
1781 return kasan_slab_free(s, x, init);
1784 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1785 void **head, void **tail,
1791 void *old_tail = *tail ? *tail : *head;
1793 if (is_kfence_address(next)) {
1794 slab_free_hook(s, next, false);
1798 /* Head and tail of the reconstructed freelist */
1804 next = get_freepointer(s, object);
1806 /* If object's reuse doesn't have to be delayed */
1807 if (!slab_free_hook(s, object, slab_want_init_on_free(s))) {
1808 /* Move object to the new freelist */
1809 set_freepointer(s, object, *head);
1815 * Adjust the reconstructed freelist depth
1816 * accordingly if object's reuse is delayed.
1820 } while (object != old_tail);
1825 return *head != NULL;
1828 static void *setup_object(struct kmem_cache *s, void *object)
1830 setup_object_debug(s, object);
1831 object = kasan_init_slab_obj(s, object);
1832 if (unlikely(s->ctor)) {
1833 kasan_unpoison_object_data(s, object);
1835 kasan_poison_object_data(s, object);
1841 * Slab allocation and freeing
1843 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
1844 struct kmem_cache_order_objects oo)
1846 struct folio *folio;
1848 unsigned int order = oo_order(oo);
1850 if (node == NUMA_NO_NODE)
1851 folio = (struct folio *)alloc_pages(flags, order);
1853 folio = (struct folio *)__alloc_pages_node(node, flags, order);
1858 slab = folio_slab(folio);
1859 __folio_set_slab(folio);
1860 /* Make the flag visible before any changes to folio->mapping */
1862 if (folio_is_pfmemalloc(folio))
1863 slab_set_pfmemalloc(slab);
1868 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1869 /* Pre-initialize the random sequence cache */
1870 static int init_cache_random_seq(struct kmem_cache *s)
1872 unsigned int count = oo_objects(s->oo);
1875 /* Bailout if already initialised */
1879 err = cache_random_seq_create(s, count, GFP_KERNEL);
1881 pr_err("SLUB: Unable to initialize free list for %s\n",
1886 /* Transform to an offset on the set of pages */
1887 if (s->random_seq) {
1890 for (i = 0; i < count; i++)
1891 s->random_seq[i] *= s->size;
1896 /* Initialize each random sequence freelist per cache */
1897 static void __init init_freelist_randomization(void)
1899 struct kmem_cache *s;
1901 mutex_lock(&slab_mutex);
1903 list_for_each_entry(s, &slab_caches, list)
1904 init_cache_random_seq(s);
1906 mutex_unlock(&slab_mutex);
1909 /* Get the next entry on the pre-computed freelist randomized */
1910 static void *next_freelist_entry(struct kmem_cache *s, struct slab *slab,
1911 unsigned long *pos, void *start,
1912 unsigned long page_limit,
1913 unsigned long freelist_count)
1918 * If the target page allocation failed, the number of objects on the
1919 * page might be smaller than the usual size defined by the cache.
1922 idx = s->random_seq[*pos];
1924 if (*pos >= freelist_count)
1926 } while (unlikely(idx >= page_limit));
1928 return (char *)start + idx;
1931 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1932 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1937 unsigned long idx, pos, page_limit, freelist_count;
1939 if (slab->objects < 2 || !s->random_seq)
1942 freelist_count = oo_objects(s->oo);
1943 pos = get_random_u32_below(freelist_count);
1945 page_limit = slab->objects * s->size;
1946 start = fixup_red_left(s, slab_address(slab));
1948 /* First entry is used as the base of the freelist */
1949 cur = next_freelist_entry(s, slab, &pos, start, page_limit,
1951 cur = setup_object(s, cur);
1952 slab->freelist = cur;
1954 for (idx = 1; idx < slab->objects; idx++) {
1955 next = next_freelist_entry(s, slab, &pos, start, page_limit,
1957 next = setup_object(s, next);
1958 set_freepointer(s, cur, next);
1961 set_freepointer(s, cur, NULL);
1966 static inline int init_cache_random_seq(struct kmem_cache *s)
1970 static inline void init_freelist_randomization(void) { }
1971 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
1975 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1977 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1980 struct kmem_cache_order_objects oo = s->oo;
1982 void *start, *p, *next;
1986 flags &= gfp_allowed_mask;
1988 flags |= s->allocflags;
1991 * Let the initial higher-order allocation fail under memory pressure
1992 * so we fall-back to the minimum order allocation.
1994 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1995 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1996 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
1998 slab = alloc_slab_page(alloc_gfp, node, oo);
1999 if (unlikely(!slab)) {
2003 * Allocation may have failed due to fragmentation.
2004 * Try a lower order alloc if possible
2006 slab = alloc_slab_page(alloc_gfp, node, oo);
2007 if (unlikely(!slab))
2009 stat(s, ORDER_FALLBACK);
2012 slab->objects = oo_objects(oo);
2016 account_slab(slab, oo_order(oo), s, flags);
2018 slab->slab_cache = s;
2020 kasan_poison_slab(slab);
2022 start = slab_address(slab);
2024 setup_slab_debug(s, slab, start);
2026 shuffle = shuffle_freelist(s, slab);
2029 start = fixup_red_left(s, start);
2030 start = setup_object(s, start);
2031 slab->freelist = start;
2032 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2034 next = setup_object(s, next);
2035 set_freepointer(s, p, next);
2038 set_freepointer(s, p, NULL);
2044 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2046 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2047 flags = kmalloc_fix_flags(flags);
2049 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2051 return allocate_slab(s,
2052 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2055 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2057 struct folio *folio = slab_folio(slab);
2058 int order = folio_order(folio);
2059 int pages = 1 << order;
2061 __slab_clear_pfmemalloc(slab);
2062 folio->mapping = NULL;
2063 /* Make the mapping reset visible before clearing the flag */
2065 __folio_clear_slab(folio);
2066 mm_account_reclaimed_pages(pages);
2067 unaccount_slab(slab, order, s);
2068 __free_pages(&folio->page, order);
2071 static void rcu_free_slab(struct rcu_head *h)
2073 struct slab *slab = container_of(h, struct slab, rcu_head);
2075 __free_slab(slab->slab_cache, slab);
2078 static void free_slab(struct kmem_cache *s, struct slab *slab)
2080 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2083 slab_pad_check(s, slab);
2084 for_each_object(p, s, slab_address(slab), slab->objects)
2085 check_object(s, slab, p, SLUB_RED_INACTIVE);
2088 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2089 call_rcu(&slab->rcu_head, rcu_free_slab);
2091 __free_slab(s, slab);
2094 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2096 dec_slabs_node(s, slab_nid(slab), slab->objects);
2101 * Management of partially allocated slabs.
2104 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2107 if (tail == DEACTIVATE_TO_TAIL)
2108 list_add_tail(&slab->slab_list, &n->partial);
2110 list_add(&slab->slab_list, &n->partial);
2113 static inline void add_partial(struct kmem_cache_node *n,
2114 struct slab *slab, int tail)
2116 lockdep_assert_held(&n->list_lock);
2117 __add_partial(n, slab, tail);
2120 static inline void remove_partial(struct kmem_cache_node *n,
2123 lockdep_assert_held(&n->list_lock);
2124 list_del(&slab->slab_list);
2129 * Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
2130 * slab from the n->partial list. Remove only a single object from the slab, do
2131 * the alloc_debug_processing() checks and leave the slab on the list, or move
2132 * it to full list if it was the last free object.
2134 static void *alloc_single_from_partial(struct kmem_cache *s,
2135 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2139 lockdep_assert_held(&n->list_lock);
2141 object = slab->freelist;
2142 slab->freelist = get_freepointer(s, object);
2145 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2146 remove_partial(n, slab);
2150 if (slab->inuse == slab->objects) {
2151 remove_partial(n, slab);
2152 add_full(s, n, slab);
2159 * Called only for kmem_cache_debug() caches to allocate from a freshly
2160 * allocated slab. Allocate a single object instead of whole freelist
2161 * and put the slab to the partial (or full) list.
2163 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2164 struct slab *slab, int orig_size)
2166 int nid = slab_nid(slab);
2167 struct kmem_cache_node *n = get_node(s, nid);
2168 unsigned long flags;
2172 object = slab->freelist;
2173 slab->freelist = get_freepointer(s, object);
2176 if (!alloc_debug_processing(s, slab, object, orig_size))
2178 * It's not really expected that this would fail on a
2179 * freshly allocated slab, but a concurrent memory
2180 * corruption in theory could cause that.
2184 spin_lock_irqsave(&n->list_lock, flags);
2186 if (slab->inuse == slab->objects)
2187 add_full(s, n, slab);
2189 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2191 inc_slabs_node(s, nid, slab->objects);
2192 spin_unlock_irqrestore(&n->list_lock, flags);
2198 * Remove slab from the partial list, freeze it and
2199 * return the pointer to the freelist.
2201 * Returns a list of objects or NULL if it fails.
2203 static inline void *acquire_slab(struct kmem_cache *s,
2204 struct kmem_cache_node *n, struct slab *slab,
2208 unsigned long counters;
2211 lockdep_assert_held(&n->list_lock);
2214 * Zap the freelist and set the frozen bit.
2215 * The old freelist is the list of objects for the
2216 * per cpu allocation list.
2218 freelist = slab->freelist;
2219 counters = slab->counters;
2220 new.counters = counters;
2222 new.inuse = slab->objects;
2223 new.freelist = NULL;
2225 new.freelist = freelist;
2228 VM_BUG_ON(new.frozen);
2231 if (!__cmpxchg_double_slab(s, slab,
2233 new.freelist, new.counters,
2237 remove_partial(n, slab);
2242 #ifdef CONFIG_SLUB_CPU_PARTIAL
2243 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2245 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2248 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2251 * Try to allocate a partial slab from a specific node.
2253 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
2254 struct partial_context *pc)
2256 struct slab *slab, *slab2;
2257 void *object = NULL;
2258 unsigned long flags;
2259 unsigned int partial_slabs = 0;
2262 * Racy check. If we mistakenly see no partial slabs then we
2263 * just allocate an empty slab. If we mistakenly try to get a
2264 * partial slab and there is none available then get_partial()
2267 if (!n || !n->nr_partial)
2270 spin_lock_irqsave(&n->list_lock, flags);
2271 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2274 if (!pfmemalloc_match(slab, pc->flags))
2277 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2278 object = alloc_single_from_partial(s, n, slab,
2285 t = acquire_slab(s, n, slab, object == NULL);
2291 stat(s, ALLOC_FROM_PARTIAL);
2294 put_cpu_partial(s, slab, 0);
2295 stat(s, CPU_PARTIAL_NODE);
2298 #ifdef CONFIG_SLUB_CPU_PARTIAL
2299 if (!kmem_cache_has_cpu_partial(s)
2300 || partial_slabs > s->cpu_partial_slabs / 2)
2307 spin_unlock_irqrestore(&n->list_lock, flags);
2312 * Get a slab from somewhere. Search in increasing NUMA distances.
2314 static void *get_any_partial(struct kmem_cache *s, struct partial_context *pc)
2317 struct zonelist *zonelist;
2320 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2322 unsigned int cpuset_mems_cookie;
2325 * The defrag ratio allows a configuration of the tradeoffs between
2326 * inter node defragmentation and node local allocations. A lower
2327 * defrag_ratio increases the tendency to do local allocations
2328 * instead of attempting to obtain partial slabs from other nodes.
2330 * If the defrag_ratio is set to 0 then kmalloc() always
2331 * returns node local objects. If the ratio is higher then kmalloc()
2332 * may return off node objects because partial slabs are obtained
2333 * from other nodes and filled up.
2335 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2336 * (which makes defrag_ratio = 1000) then every (well almost)
2337 * allocation will first attempt to defrag slab caches on other nodes.
2338 * This means scanning over all nodes to look for partial slabs which
2339 * may be expensive if we do it every time we are trying to find a slab
2340 * with available objects.
2342 if (!s->remote_node_defrag_ratio ||
2343 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2347 cpuset_mems_cookie = read_mems_allowed_begin();
2348 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2349 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2350 struct kmem_cache_node *n;
2352 n = get_node(s, zone_to_nid(zone));
2354 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2355 n->nr_partial > s->min_partial) {
2356 object = get_partial_node(s, n, pc);
2359 * Don't check read_mems_allowed_retry()
2360 * here - if mems_allowed was updated in
2361 * parallel, that was a harmless race
2362 * between allocation and the cpuset
2369 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2370 #endif /* CONFIG_NUMA */
2375 * Get a partial slab, lock it and return it.
2377 static void *get_partial(struct kmem_cache *s, int node, struct partial_context *pc)
2380 int searchnode = node;
2382 if (node == NUMA_NO_NODE)
2383 searchnode = numa_mem_id();
2385 object = get_partial_node(s, get_node(s, searchnode), pc);
2386 if (object || node != NUMA_NO_NODE)
2389 return get_any_partial(s, pc);
2392 #ifndef CONFIG_SLUB_TINY
2394 #ifdef CONFIG_PREEMPTION
2396 * Calculate the next globally unique transaction for disambiguation
2397 * during cmpxchg. The transactions start with the cpu number and are then
2398 * incremented by CONFIG_NR_CPUS.
2400 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2403 * No preemption supported therefore also no need to check for
2407 #endif /* CONFIG_PREEMPTION */
2409 static inline unsigned long next_tid(unsigned long tid)
2411 return tid + TID_STEP;
2414 #ifdef SLUB_DEBUG_CMPXCHG
2415 static inline unsigned int tid_to_cpu(unsigned long tid)
2417 return tid % TID_STEP;
2420 static inline unsigned long tid_to_event(unsigned long tid)
2422 return tid / TID_STEP;
2426 static inline unsigned int init_tid(int cpu)
2431 static inline void note_cmpxchg_failure(const char *n,
2432 const struct kmem_cache *s, unsigned long tid)
2434 #ifdef SLUB_DEBUG_CMPXCHG
2435 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2437 pr_info("%s %s: cmpxchg redo ", n, s->name);
2439 #ifdef CONFIG_PREEMPTION
2440 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2441 pr_warn("due to cpu change %d -> %d\n",
2442 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2445 if (tid_to_event(tid) != tid_to_event(actual_tid))
2446 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2447 tid_to_event(tid), tid_to_event(actual_tid));
2449 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2450 actual_tid, tid, next_tid(tid));
2452 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2455 static void init_kmem_cache_cpus(struct kmem_cache *s)
2458 struct kmem_cache_cpu *c;
2460 for_each_possible_cpu(cpu) {
2461 c = per_cpu_ptr(s->cpu_slab, cpu);
2462 local_lock_init(&c->lock);
2463 c->tid = init_tid(cpu);
2468 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
2469 * unfreezes the slabs and puts it on the proper list.
2470 * Assumes the slab has been already safely taken away from kmem_cache_cpu
2473 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
2476 enum slab_modes { M_NONE, M_PARTIAL, M_FREE, M_FULL_NOLIST };
2477 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
2479 enum slab_modes mode = M_NONE;
2480 void *nextfree, *freelist_iter, *freelist_tail;
2481 int tail = DEACTIVATE_TO_HEAD;
2482 unsigned long flags = 0;
2486 if (slab->freelist) {
2487 stat(s, DEACTIVATE_REMOTE_FREES);
2488 tail = DEACTIVATE_TO_TAIL;
2492 * Stage one: Count the objects on cpu's freelist as free_delta and
2493 * remember the last object in freelist_tail for later splicing.
2495 freelist_tail = NULL;
2496 freelist_iter = freelist;
2497 while (freelist_iter) {
2498 nextfree = get_freepointer(s, freelist_iter);
2501 * If 'nextfree' is invalid, it is possible that the object at
2502 * 'freelist_iter' is already corrupted. So isolate all objects
2503 * starting at 'freelist_iter' by skipping them.
2505 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
2508 freelist_tail = freelist_iter;
2511 freelist_iter = nextfree;
2515 * Stage two: Unfreeze the slab while splicing the per-cpu
2516 * freelist to the head of slab's freelist.
2518 * Ensure that the slab is unfrozen while the list presence
2519 * reflects the actual number of objects during unfreeze.
2521 * We first perform cmpxchg holding lock and insert to list
2522 * when it succeed. If there is mismatch then the slab is not
2523 * unfrozen and number of objects in the slab may have changed.
2524 * Then release lock and retry cmpxchg again.
2528 old.freelist = READ_ONCE(slab->freelist);
2529 old.counters = READ_ONCE(slab->counters);
2530 VM_BUG_ON(!old.frozen);
2532 /* Determine target state of the slab */
2533 new.counters = old.counters;
2534 if (freelist_tail) {
2535 new.inuse -= free_delta;
2536 set_freepointer(s, freelist_tail, old.freelist);
2537 new.freelist = freelist;
2539 new.freelist = old.freelist;
2543 if (!new.inuse && n->nr_partial >= s->min_partial) {
2545 } else if (new.freelist) {
2548 * Taking the spinlock removes the possibility that
2549 * acquire_slab() will see a slab that is frozen
2551 spin_lock_irqsave(&n->list_lock, flags);
2553 mode = M_FULL_NOLIST;
2557 if (!cmpxchg_double_slab(s, slab,
2558 old.freelist, old.counters,
2559 new.freelist, new.counters,
2560 "unfreezing slab")) {
2561 if (mode == M_PARTIAL)
2562 spin_unlock_irqrestore(&n->list_lock, flags);
2567 if (mode == M_PARTIAL) {
2568 add_partial(n, slab, tail);
2569 spin_unlock_irqrestore(&n->list_lock, flags);
2571 } else if (mode == M_FREE) {
2572 stat(s, DEACTIVATE_EMPTY);
2573 discard_slab(s, slab);
2575 } else if (mode == M_FULL_NOLIST) {
2576 stat(s, DEACTIVATE_FULL);
2580 #ifdef CONFIG_SLUB_CPU_PARTIAL
2581 static void __unfreeze_partials(struct kmem_cache *s, struct slab *partial_slab)
2583 struct kmem_cache_node *n = NULL, *n2 = NULL;
2584 struct slab *slab, *slab_to_discard = NULL;
2585 unsigned long flags = 0;
2587 while (partial_slab) {
2591 slab = partial_slab;
2592 partial_slab = slab->next;
2594 n2 = get_node(s, slab_nid(slab));
2597 spin_unlock_irqrestore(&n->list_lock, flags);
2600 spin_lock_irqsave(&n->list_lock, flags);
2605 old.freelist = slab->freelist;
2606 old.counters = slab->counters;
2607 VM_BUG_ON(!old.frozen);
2609 new.counters = old.counters;
2610 new.freelist = old.freelist;
2614 } while (!__cmpxchg_double_slab(s, slab,
2615 old.freelist, old.counters,
2616 new.freelist, new.counters,
2617 "unfreezing slab"));
2619 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2620 slab->next = slab_to_discard;
2621 slab_to_discard = slab;
2623 add_partial(n, slab, DEACTIVATE_TO_TAIL);
2624 stat(s, FREE_ADD_PARTIAL);
2629 spin_unlock_irqrestore(&n->list_lock, flags);
2631 while (slab_to_discard) {
2632 slab = slab_to_discard;
2633 slab_to_discard = slab_to_discard->next;
2635 stat(s, DEACTIVATE_EMPTY);
2636 discard_slab(s, slab);
2642 * Unfreeze all the cpu partial slabs.
2644 static void unfreeze_partials(struct kmem_cache *s)
2646 struct slab *partial_slab;
2647 unsigned long flags;
2649 local_lock_irqsave(&s->cpu_slab->lock, flags);
2650 partial_slab = this_cpu_read(s->cpu_slab->partial);
2651 this_cpu_write(s->cpu_slab->partial, NULL);
2652 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2655 __unfreeze_partials(s, partial_slab);
2658 static void unfreeze_partials_cpu(struct kmem_cache *s,
2659 struct kmem_cache_cpu *c)
2661 struct slab *partial_slab;
2663 partial_slab = slub_percpu_partial(c);
2667 __unfreeze_partials(s, partial_slab);
2671 * Put a slab that was just frozen (in __slab_free|get_partial_node) into a
2672 * partial slab slot if available.
2674 * If we did not find a slot then simply move all the partials to the
2675 * per node partial list.
2677 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
2679 struct slab *oldslab;
2680 struct slab *slab_to_unfreeze = NULL;
2681 unsigned long flags;
2684 local_lock_irqsave(&s->cpu_slab->lock, flags);
2686 oldslab = this_cpu_read(s->cpu_slab->partial);
2689 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
2691 * Partial array is full. Move the existing set to the
2692 * per node partial list. Postpone the actual unfreezing
2693 * outside of the critical section.
2695 slab_to_unfreeze = oldslab;
2698 slabs = oldslab->slabs;
2704 slab->slabs = slabs;
2705 slab->next = oldslab;
2707 this_cpu_write(s->cpu_slab->partial, slab);
2709 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2711 if (slab_to_unfreeze) {
2712 __unfreeze_partials(s, slab_to_unfreeze);
2713 stat(s, CPU_PARTIAL_DRAIN);
2717 #else /* CONFIG_SLUB_CPU_PARTIAL */
2719 static inline void unfreeze_partials(struct kmem_cache *s) { }
2720 static inline void unfreeze_partials_cpu(struct kmem_cache *s,
2721 struct kmem_cache_cpu *c) { }
2723 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2725 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2727 unsigned long flags;
2731 local_lock_irqsave(&s->cpu_slab->lock, flags);
2734 freelist = c->freelist;
2738 c->tid = next_tid(c->tid);
2740 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
2743 deactivate_slab(s, slab, freelist);
2744 stat(s, CPUSLAB_FLUSH);
2748 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2750 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2751 void *freelist = c->freelist;
2752 struct slab *slab = c->slab;
2756 c->tid = next_tid(c->tid);
2759 deactivate_slab(s, slab, freelist);
2760 stat(s, CPUSLAB_FLUSH);
2763 unfreeze_partials_cpu(s, c);
2766 struct slub_flush_work {
2767 struct work_struct work;
2768 struct kmem_cache *s;
2775 * Called from CPU work handler with migration disabled.
2777 static void flush_cpu_slab(struct work_struct *w)
2779 struct kmem_cache *s;
2780 struct kmem_cache_cpu *c;
2781 struct slub_flush_work *sfw;
2783 sfw = container_of(w, struct slub_flush_work, work);
2786 c = this_cpu_ptr(s->cpu_slab);
2791 unfreeze_partials(s);
2794 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
2796 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2798 return c->slab || slub_percpu_partial(c);
2801 static DEFINE_MUTEX(flush_lock);
2802 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
2804 static void flush_all_cpus_locked(struct kmem_cache *s)
2806 struct slub_flush_work *sfw;
2809 lockdep_assert_cpus_held();
2810 mutex_lock(&flush_lock);
2812 for_each_online_cpu(cpu) {
2813 sfw = &per_cpu(slub_flush, cpu);
2814 if (!has_cpu_slab(cpu, s)) {
2818 INIT_WORK(&sfw->work, flush_cpu_slab);
2821 queue_work_on(cpu, flushwq, &sfw->work);
2824 for_each_online_cpu(cpu) {
2825 sfw = &per_cpu(slub_flush, cpu);
2828 flush_work(&sfw->work);
2831 mutex_unlock(&flush_lock);
2834 static void flush_all(struct kmem_cache *s)
2837 flush_all_cpus_locked(s);
2842 * Use the cpu notifier to insure that the cpu slabs are flushed when
2845 static int slub_cpu_dead(unsigned int cpu)
2847 struct kmem_cache *s;
2849 mutex_lock(&slab_mutex);
2850 list_for_each_entry(s, &slab_caches, list)
2851 __flush_cpu_slab(s, cpu);
2852 mutex_unlock(&slab_mutex);
2856 #else /* CONFIG_SLUB_TINY */
2857 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
2858 static inline void flush_all(struct kmem_cache *s) { }
2859 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
2860 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
2861 #endif /* CONFIG_SLUB_TINY */
2864 * Check if the objects in a per cpu structure fit numa
2865 * locality expectations.
2867 static inline int node_match(struct slab *slab, int node)
2870 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
2876 #ifdef CONFIG_SLUB_DEBUG
2877 static int count_free(struct slab *slab)
2879 return slab->objects - slab->inuse;
2882 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2884 return atomic_long_read(&n->total_objects);
2887 /* Supports checking bulk free of a constructed freelist */
2888 static inline bool free_debug_processing(struct kmem_cache *s,
2889 struct slab *slab, void *head, void *tail, int *bulk_cnt,
2890 unsigned long addr, depot_stack_handle_t handle)
2892 bool checks_ok = false;
2893 void *object = head;
2896 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2897 if (!check_slab(s, slab))
2901 if (slab->inuse < *bulk_cnt) {
2902 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
2903 slab->inuse, *bulk_cnt);
2909 if (++cnt > *bulk_cnt)
2912 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
2913 if (!free_consistency_checks(s, slab, object, addr))
2917 if (s->flags & SLAB_STORE_USER)
2918 set_track_update(s, object, TRACK_FREE, addr, handle);
2919 trace(s, slab, object, 0);
2920 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
2921 init_object(s, object, SLUB_RED_INACTIVE);
2923 /* Reached end of constructed freelist yet? */
2924 if (object != tail) {
2925 object = get_freepointer(s, object);
2931 if (cnt != *bulk_cnt) {
2932 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
2940 slab_fix(s, "Object at 0x%p not freed", object);
2944 #endif /* CONFIG_SLUB_DEBUG */
2946 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
2947 static unsigned long count_partial(struct kmem_cache_node *n,
2948 int (*get_count)(struct slab *))
2950 unsigned long flags;
2951 unsigned long x = 0;
2954 spin_lock_irqsave(&n->list_lock, flags);
2955 list_for_each_entry(slab, &n->partial, slab_list)
2956 x += get_count(slab);
2957 spin_unlock_irqrestore(&n->list_lock, flags);
2960 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
2962 #ifdef CONFIG_SLUB_DEBUG
2963 static noinline void
2964 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2966 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2967 DEFAULT_RATELIMIT_BURST);
2969 struct kmem_cache_node *n;
2971 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2974 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2975 nid, gfpflags, &gfpflags);
2976 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2977 s->name, s->object_size, s->size, oo_order(s->oo),
2980 if (oo_order(s->min) > get_order(s->object_size))
2981 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2984 for_each_kmem_cache_node(s, node, n) {
2985 unsigned long nr_slabs;
2986 unsigned long nr_objs;
2987 unsigned long nr_free;
2989 nr_free = count_partial(n, count_free);
2990 nr_slabs = node_nr_slabs(n);
2991 nr_objs = node_nr_objs(n);
2993 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2994 node, nr_slabs, nr_objs, nr_free);
2997 #else /* CONFIG_SLUB_DEBUG */
2999 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3002 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3004 if (unlikely(slab_test_pfmemalloc(slab)))
3005 return gfp_pfmemalloc_allowed(gfpflags);
3010 #ifndef CONFIG_SLUB_TINY
3012 * Check the slab->freelist and either transfer the freelist to the
3013 * per cpu freelist or deactivate the slab.
3015 * The slab is still frozen if the return value is not NULL.
3017 * If this function returns NULL then the slab has been unfrozen.
3019 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3022 unsigned long counters;
3025 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3028 freelist = slab->freelist;
3029 counters = slab->counters;
3031 new.counters = counters;
3032 VM_BUG_ON(!new.frozen);
3034 new.inuse = slab->objects;
3035 new.frozen = freelist != NULL;
3037 } while (!__cmpxchg_double_slab(s, slab,
3046 * Slow path. The lockless freelist is empty or we need to perform
3049 * Processing is still very fast if new objects have been freed to the
3050 * regular freelist. In that case we simply take over the regular freelist
3051 * as the lockless freelist and zap the regular freelist.
3053 * If that is not working then we fall back to the partial lists. We take the
3054 * first element of the freelist as the object to allocate now and move the
3055 * rest of the freelist to the lockless freelist.
3057 * And if we were unable to get a new slab from the partial slab lists then
3058 * we need to allocate a new slab. This is the slowest path since it involves
3059 * a call to the page allocator and the setup of a new slab.
3061 * Version of __slab_alloc to use when we know that preemption is
3062 * already disabled (which is the case for bulk allocation).
3064 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3065 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3069 unsigned long flags;
3070 struct partial_context pc;
3072 stat(s, ALLOC_SLOWPATH);
3076 slab = READ_ONCE(c->slab);
3079 * if the node is not online or has no normal memory, just
3080 * ignore the node constraint
3082 if (unlikely(node != NUMA_NO_NODE &&
3083 !node_isset(node, slab_nodes)))
3084 node = NUMA_NO_NODE;
3089 if (unlikely(!node_match(slab, node))) {
3091 * same as above but node_match() being false already
3092 * implies node != NUMA_NO_NODE
3094 if (!node_isset(node, slab_nodes)) {
3095 node = NUMA_NO_NODE;
3097 stat(s, ALLOC_NODE_MISMATCH);
3098 goto deactivate_slab;
3103 * By rights, we should be searching for a slab page that was
3104 * PFMEMALLOC but right now, we are losing the pfmemalloc
3105 * information when the page leaves the per-cpu allocator
3107 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3108 goto deactivate_slab;
3110 /* must check again c->slab in case we got preempted and it changed */
3111 local_lock_irqsave(&s->cpu_slab->lock, flags);
3112 if (unlikely(slab != c->slab)) {
3113 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3116 freelist = c->freelist;
3120 freelist = get_freelist(s, slab);
3124 c->tid = next_tid(c->tid);
3125 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3126 stat(s, DEACTIVATE_BYPASS);
3130 stat(s, ALLOC_REFILL);
3134 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3137 * freelist is pointing to the list of objects to be used.
3138 * slab is pointing to the slab from which the objects are obtained.
3139 * That slab must be frozen for per cpu allocations to work.
3141 VM_BUG_ON(!c->slab->frozen);
3142 c->freelist = get_freepointer(s, freelist);
3143 c->tid = next_tid(c->tid);
3144 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3149 local_lock_irqsave(&s->cpu_slab->lock, flags);
3150 if (slab != c->slab) {
3151 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3154 freelist = c->freelist;
3157 c->tid = next_tid(c->tid);
3158 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3159 deactivate_slab(s, slab, freelist);
3163 if (slub_percpu_partial(c)) {
3164 local_lock_irqsave(&s->cpu_slab->lock, flags);
3165 if (unlikely(c->slab)) {
3166 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3169 if (unlikely(!slub_percpu_partial(c))) {
3170 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3171 /* we were preempted and partial list got empty */
3175 slab = c->slab = slub_percpu_partial(c);
3176 slub_set_percpu_partial(c, slab);
3177 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3178 stat(s, CPU_PARTIAL_ALLOC);
3184 pc.flags = gfpflags;
3186 pc.orig_size = orig_size;
3187 freelist = get_partial(s, node, &pc);
3189 goto check_new_slab;
3191 slub_put_cpu_ptr(s->cpu_slab);
3192 slab = new_slab(s, gfpflags, node);
3193 c = slub_get_cpu_ptr(s->cpu_slab);
3195 if (unlikely(!slab)) {
3196 slab_out_of_memory(s, gfpflags, node);
3200 stat(s, ALLOC_SLAB);
3202 if (kmem_cache_debug(s)) {
3203 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3205 if (unlikely(!freelist))
3208 if (s->flags & SLAB_STORE_USER)
3209 set_track(s, freelist, TRACK_ALLOC, addr);
3215 * No other reference to the slab yet so we can
3216 * muck around with it freely without cmpxchg
3218 freelist = slab->freelist;
3219 slab->freelist = NULL;
3220 slab->inuse = slab->objects;
3223 inc_slabs_node(s, slab_nid(slab), slab->objects);
3227 if (kmem_cache_debug(s)) {
3229 * For debug caches here we had to go through
3230 * alloc_single_from_partial() so just store the tracking info
3231 * and return the object
3233 if (s->flags & SLAB_STORE_USER)
3234 set_track(s, freelist, TRACK_ALLOC, addr);
3239 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3241 * For !pfmemalloc_match() case we don't load freelist so that
3242 * we don't make further mismatched allocations easier.
3244 deactivate_slab(s, slab, get_freepointer(s, freelist));
3250 local_lock_irqsave(&s->cpu_slab->lock, flags);
3251 if (unlikely(c->slab)) {
3252 void *flush_freelist = c->freelist;
3253 struct slab *flush_slab = c->slab;
3257 c->tid = next_tid(c->tid);
3259 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3261 deactivate_slab(s, flush_slab, flush_freelist);
3263 stat(s, CPUSLAB_FLUSH);
3265 goto retry_load_slab;
3273 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3274 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3277 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3278 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3282 #ifdef CONFIG_PREEMPT_COUNT
3284 * We may have been preempted and rescheduled on a different
3285 * cpu before disabling preemption. Need to reload cpu area
3288 c = slub_get_cpu_ptr(s->cpu_slab);
3291 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3292 #ifdef CONFIG_PREEMPT_COUNT
3293 slub_put_cpu_ptr(s->cpu_slab);
3298 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3299 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3301 struct kmem_cache_cpu *c;
3308 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3309 * enabled. We may switch back and forth between cpus while
3310 * reading from one cpu area. That does not matter as long
3311 * as we end up on the original cpu again when doing the cmpxchg.
3313 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3314 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3315 * the tid. If we are preempted and switched to another cpu between the
3316 * two reads, it's OK as the two are still associated with the same cpu
3317 * and cmpxchg later will validate the cpu.
3319 c = raw_cpu_ptr(s->cpu_slab);
3320 tid = READ_ONCE(c->tid);
3323 * Irqless object alloc/free algorithm used here depends on sequence
3324 * of fetching cpu_slab's data. tid should be fetched before anything
3325 * on c to guarantee that object and slab associated with previous tid
3326 * won't be used with current tid. If we fetch tid first, object and
3327 * slab could be one associated with next tid and our alloc/free
3328 * request will be failed. In this case, we will retry. So, no problem.
3333 * The transaction ids are globally unique per cpu and per operation on
3334 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3335 * occurs on the right processor and that there was no operation on the
3336 * linked list in between.
3339 object = c->freelist;
3342 if (!USE_LOCKLESS_FAST_PATH() ||
3343 unlikely(!object || !slab || !node_match(slab, node))) {
3344 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3346 void *next_object = get_freepointer_safe(s, object);
3349 * The cmpxchg will only match if there was no additional
3350 * operation and if we are on the right processor.
3352 * The cmpxchg does the following atomically (without lock
3354 * 1. Relocate first pointer to the current per cpu area.
3355 * 2. Verify that tid and freelist have not been changed
3356 * 3. If they were not changed replace tid and freelist
3358 * Since this is without lock semantics the protection is only
3359 * against code executing on this cpu *not* from access by
3362 if (unlikely(!this_cpu_cmpxchg_double(
3363 s->cpu_slab->freelist, s->cpu_slab->tid,
3365 next_object, next_tid(tid)))) {
3367 note_cmpxchg_failure("slab_alloc", s, tid);
3370 prefetch_freepointer(s, next_object);
3371 stat(s, ALLOC_FASTPATH);
3376 #else /* CONFIG_SLUB_TINY */
3377 static void *__slab_alloc_node(struct kmem_cache *s,
3378 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3380 struct partial_context pc;
3384 pc.flags = gfpflags;
3386 pc.orig_size = orig_size;
3387 object = get_partial(s, node, &pc);
3392 slab = new_slab(s, gfpflags, node);
3393 if (unlikely(!slab)) {
3394 slab_out_of_memory(s, gfpflags, node);
3398 object = alloc_single_from_new_slab(s, slab, orig_size);
3402 #endif /* CONFIG_SLUB_TINY */
3405 * If the object has been wiped upon free, make sure it's fully initialized by
3406 * zeroing out freelist pointer.
3408 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
3411 if (unlikely(slab_want_init_on_free(s)) && obj)
3412 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
3417 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
3418 * have the fastpath folded into their functions. So no function call
3419 * overhead for requests that can be satisfied on the fastpath.
3421 * The fastpath works by first checking if the lockless freelist can be used.
3422 * If not then __slab_alloc is called for slow processing.
3424 * Otherwise we can simply pick the next object from the lockless free list.
3426 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
3427 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3430 struct obj_cgroup *objcg = NULL;
3433 s = slab_pre_alloc_hook(s, lru, &objcg, 1, gfpflags);
3437 object = kfence_alloc(s, orig_size, gfpflags);
3438 if (unlikely(object))
3441 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
3443 maybe_wipe_obj_freeptr(s, object);
3444 init = slab_want_init_on_alloc(gfpflags, s);
3448 * When init equals 'true', like for kzalloc() family, only
3449 * @orig_size bytes might be zeroed instead of s->object_size
3451 slab_post_alloc_hook(s, objcg, gfpflags, 1, &object, init, orig_size);
3456 static __fastpath_inline void *slab_alloc(struct kmem_cache *s, struct list_lru *lru,
3457 gfp_t gfpflags, unsigned long addr, size_t orig_size)
3459 return slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, addr, orig_size);
3462 static __fastpath_inline
3463 void *__kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3466 void *ret = slab_alloc(s, lru, gfpflags, _RET_IP_, s->object_size);
3468 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
3473 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
3475 return __kmem_cache_alloc_lru(s, NULL, gfpflags);
3477 EXPORT_SYMBOL(kmem_cache_alloc);
3479 void *kmem_cache_alloc_lru(struct kmem_cache *s, struct list_lru *lru,
3482 return __kmem_cache_alloc_lru(s, lru, gfpflags);
3484 EXPORT_SYMBOL(kmem_cache_alloc_lru);
3486 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
3487 int node, size_t orig_size,
3488 unsigned long caller)
3490 return slab_alloc_node(s, NULL, gfpflags, node,
3494 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
3496 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
3498 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
3502 EXPORT_SYMBOL(kmem_cache_alloc_node);
3504 static noinline void free_to_partial_list(
3505 struct kmem_cache *s, struct slab *slab,
3506 void *head, void *tail, int bulk_cnt,
3509 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3510 struct slab *slab_free = NULL;
3512 unsigned long flags;
3513 depot_stack_handle_t handle = 0;
3515 if (s->flags & SLAB_STORE_USER)
3516 handle = set_track_prepare();
3518 spin_lock_irqsave(&n->list_lock, flags);
3520 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
3521 void *prior = slab->freelist;
3523 /* Perform the actual freeing while we still hold the locks */
3525 set_freepointer(s, tail, prior);
3526 slab->freelist = head;
3529 * If the slab is empty, and node's partial list is full,
3530 * it should be discarded anyway no matter it's on full or
3533 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
3537 /* was on full list */
3538 remove_full(s, n, slab);
3540 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3541 stat(s, FREE_ADD_PARTIAL);
3543 } else if (slab_free) {
3544 remove_partial(n, slab);
3545 stat(s, FREE_REMOVE_PARTIAL);
3551 * Update the counters while still holding n->list_lock to
3552 * prevent spurious validation warnings
3554 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
3557 spin_unlock_irqrestore(&n->list_lock, flags);
3561 free_slab(s, slab_free);
3566 * Slow path handling. This may still be called frequently since objects
3567 * have a longer lifetime than the cpu slabs in most processing loads.
3569 * So we still attempt to reduce cache line usage. Just take the slab
3570 * lock and free the item. If there is no additional partial slab
3571 * handling required then we can return immediately.
3573 static void __slab_free(struct kmem_cache *s, struct slab *slab,
3574 void *head, void *tail, int cnt,
3581 unsigned long counters;
3582 struct kmem_cache_node *n = NULL;
3583 unsigned long flags;
3585 stat(s, FREE_SLOWPATH);
3587 if (kfence_free(head))
3590 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
3591 free_to_partial_list(s, slab, head, tail, cnt, addr);
3597 spin_unlock_irqrestore(&n->list_lock, flags);
3600 prior = slab->freelist;
3601 counters = slab->counters;
3602 set_freepointer(s, tail, prior);
3603 new.counters = counters;
3604 was_frozen = new.frozen;
3606 if ((!new.inuse || !prior) && !was_frozen) {
3608 if (kmem_cache_has_cpu_partial(s) && !prior) {
3611 * Slab was on no list before and will be
3613 * We can defer the list move and instead
3618 } else { /* Needs to be taken off a list */
3620 n = get_node(s, slab_nid(slab));
3622 * Speculatively acquire the list_lock.
3623 * If the cmpxchg does not succeed then we may
3624 * drop the list_lock without any processing.
3626 * Otherwise the list_lock will synchronize with
3627 * other processors updating the list of slabs.
3629 spin_lock_irqsave(&n->list_lock, flags);
3634 } while (!cmpxchg_double_slab(s, slab,
3641 if (likely(was_frozen)) {
3643 * The list lock was not taken therefore no list
3644 * activity can be necessary.
3646 stat(s, FREE_FROZEN);
3647 } else if (new.frozen) {
3649 * If we just froze the slab then put it onto the
3650 * per cpu partial list.
3652 put_cpu_partial(s, slab, 1);
3653 stat(s, CPU_PARTIAL_FREE);
3659 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
3663 * Objects left in the slab. If it was not on the partial list before
3666 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
3667 remove_full(s, n, slab);
3668 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3669 stat(s, FREE_ADD_PARTIAL);
3671 spin_unlock_irqrestore(&n->list_lock, flags);
3677 * Slab on the partial list.
3679 remove_partial(n, slab);
3680 stat(s, FREE_REMOVE_PARTIAL);
3682 /* Slab must be on the full list */
3683 remove_full(s, n, slab);
3686 spin_unlock_irqrestore(&n->list_lock, flags);
3688 discard_slab(s, slab);
3691 #ifndef CONFIG_SLUB_TINY
3693 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3694 * can perform fastpath freeing without additional function calls.
3696 * The fastpath is only possible if we are freeing to the current cpu slab
3697 * of this processor. This typically the case if we have just allocated
3700 * If fastpath is not possible then fall back to __slab_free where we deal
3701 * with all sorts of special processing.
3703 * Bulk free of a freelist with several objects (all pointing to the
3704 * same slab) possible by specifying head and tail ptr, plus objects
3705 * count (cnt). Bulk free indicated by tail pointer being set.
3707 static __always_inline void do_slab_free(struct kmem_cache *s,
3708 struct slab *slab, void *head, void *tail,
3709 int cnt, unsigned long addr)
3711 void *tail_obj = tail ? : head;
3712 struct kmem_cache_cpu *c;
3718 * Determine the currently cpus per cpu slab.
3719 * The cpu may change afterward. However that does not matter since
3720 * data is retrieved via this pointer. If we are on the same cpu
3721 * during the cmpxchg then the free will succeed.
3723 c = raw_cpu_ptr(s->cpu_slab);
3724 tid = READ_ONCE(c->tid);
3726 /* Same with comment on barrier() in slab_alloc_node() */
3729 if (unlikely(slab != c->slab)) {
3730 __slab_free(s, slab, head, tail_obj, cnt, addr);
3734 if (USE_LOCKLESS_FAST_PATH()) {
3735 freelist = READ_ONCE(c->freelist);
3737 set_freepointer(s, tail_obj, freelist);
3739 if (unlikely(!this_cpu_cmpxchg_double(
3740 s->cpu_slab->freelist, s->cpu_slab->tid,
3742 head, next_tid(tid)))) {
3744 note_cmpxchg_failure("slab_free", s, tid);
3748 /* Update the free list under the local lock */
3749 local_lock(&s->cpu_slab->lock);
3750 c = this_cpu_ptr(s->cpu_slab);
3751 if (unlikely(slab != c->slab)) {
3752 local_unlock(&s->cpu_slab->lock);
3756 freelist = c->freelist;
3758 set_freepointer(s, tail_obj, freelist);
3760 c->tid = next_tid(tid);
3762 local_unlock(&s->cpu_slab->lock);
3764 stat(s, FREE_FASTPATH);
3766 #else /* CONFIG_SLUB_TINY */
3767 static void do_slab_free(struct kmem_cache *s,
3768 struct slab *slab, void *head, void *tail,
3769 int cnt, unsigned long addr)
3771 void *tail_obj = tail ? : head;
3773 __slab_free(s, slab, head, tail_obj, cnt, addr);
3775 #endif /* CONFIG_SLUB_TINY */
3777 static __fastpath_inline void slab_free(struct kmem_cache *s, struct slab *slab,
3778 void *head, void *tail, void **p, int cnt,
3781 memcg_slab_free_hook(s, slab, p, cnt);
3783 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3784 * to remove objects, whose reuse must be delayed.
3786 if (slab_free_freelist_hook(s, &head, &tail, &cnt))
3787 do_slab_free(s, slab, head, tail, cnt, addr);
3790 #ifdef CONFIG_KASAN_GENERIC
3791 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3793 do_slab_free(cache, virt_to_slab(x), x, NULL, 1, addr);
3797 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller)
3799 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, caller);
3802 void kmem_cache_free(struct kmem_cache *s, void *x)
3804 s = cache_from_obj(s, x);
3807 trace_kmem_cache_free(_RET_IP_, x, s);
3808 slab_free(s, virt_to_slab(x), x, NULL, &x, 1, _RET_IP_);
3810 EXPORT_SYMBOL(kmem_cache_free);
3812 struct detached_freelist {
3817 struct kmem_cache *s;
3821 * This function progressively scans the array with free objects (with
3822 * a limited look ahead) and extract objects belonging to the same
3823 * slab. It builds a detached freelist directly within the given
3824 * slab/objects. This can happen without any need for
3825 * synchronization, because the objects are owned by running process.
3826 * The freelist is build up as a single linked list in the objects.
3827 * The idea is, that this detached freelist can then be bulk
3828 * transferred to the real freelist(s), but only requiring a single
3829 * synchronization primitive. Look ahead in the array is limited due
3830 * to performance reasons.
3833 int build_detached_freelist(struct kmem_cache *s, size_t size,
3834 void **p, struct detached_freelist *df)
3838 struct folio *folio;
3842 folio = virt_to_folio(object);
3844 /* Handle kalloc'ed objects */
3845 if (unlikely(!folio_test_slab(folio))) {
3846 free_large_kmalloc(folio, object);
3850 /* Derive kmem_cache from object */
3851 df->slab = folio_slab(folio);
3852 df->s = df->slab->slab_cache;
3854 df->slab = folio_slab(folio);
3855 df->s = cache_from_obj(s, object); /* Support for memcg */
3858 /* Start new detached freelist */
3860 df->freelist = object;
3863 if (is_kfence_address(object))
3866 set_freepointer(df->s, object, NULL);
3871 /* df->slab is always set at this point */
3872 if (df->slab == virt_to_slab(object)) {
3873 /* Opportunity build freelist */
3874 set_freepointer(df->s, object, df->freelist);
3875 df->freelist = object;
3879 swap(p[size], p[same]);
3883 /* Limit look ahead search */
3891 /* Note that interrupts must be enabled when calling this function. */
3892 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3898 struct detached_freelist df;
3900 size = build_detached_freelist(s, size, p, &df);
3904 slab_free(df.s, df.slab, df.freelist, df.tail, &p[size], df.cnt,
3906 } while (likely(size));
3908 EXPORT_SYMBOL(kmem_cache_free_bulk);
3910 #ifndef CONFIG_SLUB_TINY
3911 static inline int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3912 size_t size, void **p, struct obj_cgroup *objcg)
3914 struct kmem_cache_cpu *c;
3915 unsigned long irqflags;
3919 * Drain objects in the per cpu slab, while disabling local
3920 * IRQs, which protects against PREEMPT and interrupts
3921 * handlers invoking normal fastpath.
3923 c = slub_get_cpu_ptr(s->cpu_slab);
3924 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3926 for (i = 0; i < size; i++) {
3927 void *object = kfence_alloc(s, s->object_size, flags);
3929 if (unlikely(object)) {
3934 object = c->freelist;
3935 if (unlikely(!object)) {
3937 * We may have removed an object from c->freelist using
3938 * the fastpath in the previous iteration; in that case,
3939 * c->tid has not been bumped yet.
3940 * Since ___slab_alloc() may reenable interrupts while
3941 * allocating memory, we should bump c->tid now.
3943 c->tid = next_tid(c->tid);
3945 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3948 * Invoking slow path likely have side-effect
3949 * of re-populating per CPU c->freelist
3951 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3952 _RET_IP_, c, s->object_size);
3953 if (unlikely(!p[i]))
3956 c = this_cpu_ptr(s->cpu_slab);
3957 maybe_wipe_obj_freeptr(s, p[i]);
3959 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
3961 continue; /* goto for-loop */
3963 c->freelist = get_freepointer(s, object);
3965 maybe_wipe_obj_freeptr(s, p[i]);
3967 c->tid = next_tid(c->tid);
3968 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
3969 slub_put_cpu_ptr(s->cpu_slab);
3974 slub_put_cpu_ptr(s->cpu_slab);
3975 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
3976 kmem_cache_free_bulk(s, i, p);
3980 #else /* CONFIG_SLUB_TINY */
3981 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
3982 size_t size, void **p, struct obj_cgroup *objcg)
3986 for (i = 0; i < size; i++) {
3987 void *object = kfence_alloc(s, s->object_size, flags);
3989 if (unlikely(object)) {
3994 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
3995 _RET_IP_, s->object_size);
3996 if (unlikely(!p[i]))
3999 maybe_wipe_obj_freeptr(s, p[i]);
4005 slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
4006 kmem_cache_free_bulk(s, i, p);
4009 #endif /* CONFIG_SLUB_TINY */
4011 /* Note that interrupts must be enabled when calling this function. */
4012 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
4016 struct obj_cgroup *objcg = NULL;
4021 /* memcg and kmem_cache debug support */
4022 s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
4026 i = __kmem_cache_alloc_bulk(s, flags, size, p, objcg);
4029 * memcg and kmem_cache debug support and memory initialization.
4030 * Done outside of the IRQ disabled fastpath loop.
4033 slab_post_alloc_hook(s, objcg, flags, size, p,
4034 slab_want_init_on_alloc(flags, s), s->object_size);
4037 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
4041 * Object placement in a slab is made very easy because we always start at
4042 * offset 0. If we tune the size of the object to the alignment then we can
4043 * get the required alignment by putting one properly sized object after
4046 * Notice that the allocation order determines the sizes of the per cpu
4047 * caches. Each processor has always one slab available for allocations.
4048 * Increasing the allocation order reduces the number of times that slabs
4049 * must be moved on and off the partial lists and is therefore a factor in
4054 * Minimum / Maximum order of slab pages. This influences locking overhead
4055 * and slab fragmentation. A higher order reduces the number of partial slabs
4056 * and increases the number of allocations possible without having to
4057 * take the list_lock.
4059 static unsigned int slub_min_order;
4060 static unsigned int slub_max_order =
4061 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
4062 static unsigned int slub_min_objects;
4065 * Calculate the order of allocation given an slab object size.
4067 * The order of allocation has significant impact on performance and other
4068 * system components. Generally order 0 allocations should be preferred since
4069 * order 0 does not cause fragmentation in the page allocator. Larger objects
4070 * be problematic to put into order 0 slabs because there may be too much
4071 * unused space left. We go to a higher order if more than 1/16th of the slab
4074 * In order to reach satisfactory performance we must ensure that a minimum
4075 * number of objects is in one slab. Otherwise we may generate too much
4076 * activity on the partial lists which requires taking the list_lock. This is
4077 * less a concern for large slabs though which are rarely used.
4079 * slub_max_order specifies the order where we begin to stop considering the
4080 * number of objects in a slab as critical. If we reach slub_max_order then
4081 * we try to keep the page order as low as possible. So we accept more waste
4082 * of space in favor of a small page order.
4084 * Higher order allocations also allow the placement of more objects in a
4085 * slab and thereby reduce object handling overhead. If the user has
4086 * requested a higher minimum order then we start with that one instead of
4087 * the smallest order which will fit the object.
4089 static inline unsigned int calc_slab_order(unsigned int size,
4090 unsigned int min_objects, unsigned int max_order,
4091 unsigned int fract_leftover)
4093 unsigned int min_order = slub_min_order;
4096 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
4097 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
4099 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
4100 order <= max_order; order++) {
4102 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
4105 rem = slab_size % size;
4107 if (rem <= slab_size / fract_leftover)
4114 static inline int calculate_order(unsigned int size)
4117 unsigned int min_objects;
4118 unsigned int max_objects;
4119 unsigned int nr_cpus;
4122 * Attempt to find best configuration for a slab. This
4123 * works by first attempting to generate a layout with
4124 * the best configuration and backing off gradually.
4126 * First we increase the acceptable waste in a slab. Then
4127 * we reduce the minimum objects required in a slab.
4129 min_objects = slub_min_objects;
4132 * Some architectures will only update present cpus when
4133 * onlining them, so don't trust the number if it's just 1. But
4134 * we also don't want to use nr_cpu_ids always, as on some other
4135 * architectures, there can be many possible cpus, but never
4136 * onlined. Here we compromise between trying to avoid too high
4137 * order on systems that appear larger than they are, and too
4138 * low order on systems that appear smaller than they are.
4140 nr_cpus = num_present_cpus();
4142 nr_cpus = nr_cpu_ids;
4143 min_objects = 4 * (fls(nr_cpus) + 1);
4145 max_objects = order_objects(slub_max_order, size);
4146 min_objects = min(min_objects, max_objects);
4148 while (min_objects > 1) {
4149 unsigned int fraction;
4152 while (fraction >= 4) {
4153 order = calc_slab_order(size, min_objects,
4154 slub_max_order, fraction);
4155 if (order <= slub_max_order)
4163 * We were unable to place multiple objects in a slab. Now
4164 * lets see if we can place a single object there.
4166 order = calc_slab_order(size, 1, slub_max_order, 1);
4167 if (order <= slub_max_order)
4171 * Doh this slab cannot be placed using slub_max_order.
4173 order = calc_slab_order(size, 1, MAX_ORDER, 1);
4174 if (order <= MAX_ORDER)
4180 init_kmem_cache_node(struct kmem_cache_node *n)
4183 spin_lock_init(&n->list_lock);
4184 INIT_LIST_HEAD(&n->partial);
4185 #ifdef CONFIG_SLUB_DEBUG
4186 atomic_long_set(&n->nr_slabs, 0);
4187 atomic_long_set(&n->total_objects, 0);
4188 INIT_LIST_HEAD(&n->full);
4192 #ifndef CONFIG_SLUB_TINY
4193 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4195 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
4196 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
4197 sizeof(struct kmem_cache_cpu));
4200 * Must align to double word boundary for the double cmpxchg
4201 * instructions to work; see __pcpu_double_call_return_bool().
4203 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
4204 2 * sizeof(void *));
4209 init_kmem_cache_cpus(s);
4214 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4218 #endif /* CONFIG_SLUB_TINY */
4220 static struct kmem_cache *kmem_cache_node;
4223 * No kmalloc_node yet so do it by hand. We know that this is the first
4224 * slab on the node for this slabcache. There are no concurrent accesses
4227 * Note that this function only works on the kmem_cache_node
4228 * when allocating for the kmem_cache_node. This is used for bootstrapping
4229 * memory on a fresh node that has no slab structures yet.
4231 static void early_kmem_cache_node_alloc(int node)
4234 struct kmem_cache_node *n;
4236 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
4238 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
4241 inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
4242 if (slab_nid(slab) != node) {
4243 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
4244 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
4249 #ifdef CONFIG_SLUB_DEBUG
4250 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
4251 init_tracking(kmem_cache_node, n);
4253 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
4254 slab->freelist = get_freepointer(kmem_cache_node, n);
4256 kmem_cache_node->node[node] = n;
4257 init_kmem_cache_node(n);
4258 inc_slabs_node(kmem_cache_node, node, slab->objects);
4261 * No locks need to be taken here as it has just been
4262 * initialized and there is no concurrent access.
4264 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
4267 static void free_kmem_cache_nodes(struct kmem_cache *s)
4270 struct kmem_cache_node *n;
4272 for_each_kmem_cache_node(s, node, n) {
4273 s->node[node] = NULL;
4274 kmem_cache_free(kmem_cache_node, n);
4278 void __kmem_cache_release(struct kmem_cache *s)
4280 cache_random_seq_destroy(s);
4281 #ifndef CONFIG_SLUB_TINY
4282 free_percpu(s->cpu_slab);
4284 free_kmem_cache_nodes(s);
4287 static int init_kmem_cache_nodes(struct kmem_cache *s)
4291 for_each_node_mask(node, slab_nodes) {
4292 struct kmem_cache_node *n;
4294 if (slab_state == DOWN) {
4295 early_kmem_cache_node_alloc(node);
4298 n = kmem_cache_alloc_node(kmem_cache_node,
4302 free_kmem_cache_nodes(s);
4306 init_kmem_cache_node(n);
4312 static void set_cpu_partial(struct kmem_cache *s)
4314 #ifdef CONFIG_SLUB_CPU_PARTIAL
4315 unsigned int nr_objects;
4318 * cpu_partial determined the maximum number of objects kept in the
4319 * per cpu partial lists of a processor.
4321 * Per cpu partial lists mainly contain slabs that just have one
4322 * object freed. If they are used for allocation then they can be
4323 * filled up again with minimal effort. The slab will never hit the
4324 * per node partial lists and therefore no locking will be required.
4326 * For backwards compatibility reasons, this is determined as number
4327 * of objects, even though we now limit maximum number of pages, see
4328 * slub_set_cpu_partial()
4330 if (!kmem_cache_has_cpu_partial(s))
4332 else if (s->size >= PAGE_SIZE)
4334 else if (s->size >= 1024)
4336 else if (s->size >= 256)
4341 slub_set_cpu_partial(s, nr_objects);
4346 * calculate_sizes() determines the order and the distribution of data within
4349 static int calculate_sizes(struct kmem_cache *s)
4351 slab_flags_t flags = s->flags;
4352 unsigned int size = s->object_size;
4356 * Round up object size to the next word boundary. We can only
4357 * place the free pointer at word boundaries and this determines
4358 * the possible location of the free pointer.
4360 size = ALIGN(size, sizeof(void *));
4362 #ifdef CONFIG_SLUB_DEBUG
4364 * Determine if we can poison the object itself. If the user of
4365 * the slab may touch the object after free or before allocation
4366 * then we should never poison the object itself.
4368 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
4370 s->flags |= __OBJECT_POISON;
4372 s->flags &= ~__OBJECT_POISON;
4376 * If we are Redzoning then check if there is some space between the
4377 * end of the object and the free pointer. If not then add an
4378 * additional word to have some bytes to store Redzone information.
4380 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
4381 size += sizeof(void *);
4385 * With that we have determined the number of bytes in actual use
4386 * by the object and redzoning.
4390 if (slub_debug_orig_size(s) ||
4391 (flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
4392 ((flags & SLAB_RED_ZONE) && s->object_size < sizeof(void *)) ||
4395 * Relocate free pointer after the object if it is not
4396 * permitted to overwrite the first word of the object on
4399 * This is the case if we do RCU, have a constructor or
4400 * destructor, are poisoning the objects, or are
4401 * redzoning an object smaller than sizeof(void *).
4403 * The assumption that s->offset >= s->inuse means free
4404 * pointer is outside of the object is used in the
4405 * freeptr_outside_object() function. If that is no
4406 * longer true, the function needs to be modified.
4409 size += sizeof(void *);
4412 * Store freelist pointer near middle of object to keep
4413 * it away from the edges of the object to avoid small
4414 * sized over/underflows from neighboring allocations.
4416 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
4419 #ifdef CONFIG_SLUB_DEBUG
4420 if (flags & SLAB_STORE_USER) {
4422 * Need to store information about allocs and frees after
4425 size += 2 * sizeof(struct track);
4427 /* Save the original kmalloc request size */
4428 if (flags & SLAB_KMALLOC)
4429 size += sizeof(unsigned int);
4433 kasan_cache_create(s, &size, &s->flags);
4434 #ifdef CONFIG_SLUB_DEBUG
4435 if (flags & SLAB_RED_ZONE) {
4437 * Add some empty padding so that we can catch
4438 * overwrites from earlier objects rather than let
4439 * tracking information or the free pointer be
4440 * corrupted if a user writes before the start
4443 size += sizeof(void *);
4445 s->red_left_pad = sizeof(void *);
4446 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
4447 size += s->red_left_pad;
4452 * SLUB stores one object immediately after another beginning from
4453 * offset 0. In order to align the objects we have to simply size
4454 * each object to conform to the alignment.
4456 size = ALIGN(size, s->align);
4458 s->reciprocal_size = reciprocal_value(size);
4459 order = calculate_order(size);
4466 s->allocflags |= __GFP_COMP;
4468 if (s->flags & SLAB_CACHE_DMA)
4469 s->allocflags |= GFP_DMA;
4471 if (s->flags & SLAB_CACHE_DMA32)
4472 s->allocflags |= GFP_DMA32;
4474 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4475 s->allocflags |= __GFP_RECLAIMABLE;
4478 * Determine the number of objects per slab
4480 s->oo = oo_make(order, size);
4481 s->min = oo_make(get_order(size), size);
4483 return !!oo_objects(s->oo);
4486 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
4488 s->flags = kmem_cache_flags(s->size, flags, s->name);
4489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
4490 s->random = get_random_long();
4493 if (!calculate_sizes(s))
4495 if (disable_higher_order_debug) {
4497 * Disable debugging flags that store metadata if the min slab
4500 if (get_order(s->size) > get_order(s->object_size)) {
4501 s->flags &= ~DEBUG_METADATA_FLAGS;
4503 if (!calculate_sizes(s))
4508 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
4509 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
4510 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
4511 /* Enable fast mode */
4512 s->flags |= __CMPXCHG_DOUBLE;
4516 * The larger the object size is, the more slabs we want on the partial
4517 * list to avoid pounding the page allocator excessively.
4519 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
4520 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
4525 s->remote_node_defrag_ratio = 1000;
4528 /* Initialize the pre-computed randomized freelist if slab is up */
4529 if (slab_state >= UP) {
4530 if (init_cache_random_seq(s))
4534 if (!init_kmem_cache_nodes(s))
4537 if (alloc_kmem_cache_cpus(s))
4541 __kmem_cache_release(s);
4545 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
4548 #ifdef CONFIG_SLUB_DEBUG
4549 void *addr = slab_address(slab);
4552 slab_err(s, slab, text, s->name);
4554 spin_lock(&object_map_lock);
4555 __fill_map(object_map, s, slab);
4557 for_each_object(p, s, addr, slab->objects) {
4559 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
4560 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
4561 print_tracking(s, p);
4564 spin_unlock(&object_map_lock);
4569 * Attempt to free all partial slabs on a node.
4570 * This is called from __kmem_cache_shutdown(). We must take list_lock
4571 * because sysfs file might still access partial list after the shutdowning.
4573 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
4576 struct slab *slab, *h;
4578 BUG_ON(irqs_disabled());
4579 spin_lock_irq(&n->list_lock);
4580 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
4582 remove_partial(n, slab);
4583 list_add(&slab->slab_list, &discard);
4585 list_slab_objects(s, slab,
4586 "Objects remaining in %s on __kmem_cache_shutdown()");
4589 spin_unlock_irq(&n->list_lock);
4591 list_for_each_entry_safe(slab, h, &discard, slab_list)
4592 discard_slab(s, slab);
4595 bool __kmem_cache_empty(struct kmem_cache *s)
4598 struct kmem_cache_node *n;
4600 for_each_kmem_cache_node(s, node, n)
4601 if (n->nr_partial || slabs_node(s, node))
4607 * Release all resources used by a slab cache.
4609 int __kmem_cache_shutdown(struct kmem_cache *s)
4612 struct kmem_cache_node *n;
4614 flush_all_cpus_locked(s);
4615 /* Attempt to free all objects */
4616 for_each_kmem_cache_node(s, node, n) {
4618 if (n->nr_partial || slabs_node(s, node))
4624 #ifdef CONFIG_PRINTK
4625 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
4628 int __maybe_unused i;
4632 struct kmem_cache *s = slab->slab_cache;
4633 struct track __maybe_unused *trackp;
4635 kpp->kp_ptr = object;
4636 kpp->kp_slab = slab;
4637 kpp->kp_slab_cache = s;
4638 base = slab_address(slab);
4639 objp0 = kasan_reset_tag(object);
4640 #ifdef CONFIG_SLUB_DEBUG
4641 objp = restore_red_left(s, objp0);
4645 objnr = obj_to_index(s, slab, objp);
4646 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
4647 objp = base + s->size * objnr;
4648 kpp->kp_objp = objp;
4649 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
4650 || (objp - base) % s->size) ||
4651 !(s->flags & SLAB_STORE_USER))
4653 #ifdef CONFIG_SLUB_DEBUG
4654 objp = fixup_red_left(s, objp);
4655 trackp = get_track(s, objp, TRACK_ALLOC);
4656 kpp->kp_ret = (void *)trackp->addr;
4657 #ifdef CONFIG_STACKDEPOT
4659 depot_stack_handle_t handle;
4660 unsigned long *entries;
4661 unsigned int nr_entries;
4663 handle = READ_ONCE(trackp->handle);
4665 nr_entries = stack_depot_fetch(handle, &entries);
4666 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4667 kpp->kp_stack[i] = (void *)entries[i];
4670 trackp = get_track(s, objp, TRACK_FREE);
4671 handle = READ_ONCE(trackp->handle);
4673 nr_entries = stack_depot_fetch(handle, &entries);
4674 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
4675 kpp->kp_free_stack[i] = (void *)entries[i];
4683 /********************************************************************
4685 *******************************************************************/
4687 static int __init setup_slub_min_order(char *str)
4689 get_option(&str, (int *)&slub_min_order);
4694 __setup("slub_min_order=", setup_slub_min_order);
4696 static int __init setup_slub_max_order(char *str)
4698 get_option(&str, (int *)&slub_max_order);
4699 slub_max_order = min_t(unsigned int, slub_max_order, MAX_ORDER);
4704 __setup("slub_max_order=", setup_slub_max_order);
4706 static int __init setup_slub_min_objects(char *str)
4708 get_option(&str, (int *)&slub_min_objects);
4713 __setup("slub_min_objects=", setup_slub_min_objects);
4715 #ifdef CONFIG_HARDENED_USERCOPY
4717 * Rejects incorrectly sized objects and objects that are to be copied
4718 * to/from userspace but do not fall entirely within the containing slab
4719 * cache's usercopy region.
4721 * Returns NULL if check passes, otherwise const char * to name of cache
4722 * to indicate an error.
4724 void __check_heap_object(const void *ptr, unsigned long n,
4725 const struct slab *slab, bool to_user)
4727 struct kmem_cache *s;
4728 unsigned int offset;
4729 bool is_kfence = is_kfence_address(ptr);
4731 ptr = kasan_reset_tag(ptr);
4733 /* Find object and usable object size. */
4734 s = slab->slab_cache;
4736 /* Reject impossible pointers. */
4737 if (ptr < slab_address(slab))
4738 usercopy_abort("SLUB object not in SLUB page?!", NULL,
4741 /* Find offset within object. */
4743 offset = ptr - kfence_object_start(ptr);
4745 offset = (ptr - slab_address(slab)) % s->size;
4747 /* Adjust for redzone and reject if within the redzone. */
4748 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
4749 if (offset < s->red_left_pad)
4750 usercopy_abort("SLUB object in left red zone",
4751 s->name, to_user, offset, n);
4752 offset -= s->red_left_pad;
4755 /* Allow address range falling entirely within usercopy region. */
4756 if (offset >= s->useroffset &&
4757 offset - s->useroffset <= s->usersize &&
4758 n <= s->useroffset - offset + s->usersize)
4761 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4763 #endif /* CONFIG_HARDENED_USERCOPY */
4765 #define SHRINK_PROMOTE_MAX 32
4768 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4769 * up most to the head of the partial lists. New allocations will then
4770 * fill those up and thus they can be removed from the partial lists.
4772 * The slabs with the least items are placed last. This results in them
4773 * being allocated from last increasing the chance that the last objects
4774 * are freed in them.
4776 static int __kmem_cache_do_shrink(struct kmem_cache *s)
4780 struct kmem_cache_node *n;
4783 struct list_head discard;
4784 struct list_head promote[SHRINK_PROMOTE_MAX];
4785 unsigned long flags;
4788 for_each_kmem_cache_node(s, node, n) {
4789 INIT_LIST_HEAD(&discard);
4790 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4791 INIT_LIST_HEAD(promote + i);
4793 spin_lock_irqsave(&n->list_lock, flags);
4796 * Build lists of slabs to discard or promote.
4798 * Note that concurrent frees may occur while we hold the
4799 * list_lock. slab->inuse here is the upper limit.
4801 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
4802 int free = slab->objects - slab->inuse;
4804 /* Do not reread slab->inuse */
4807 /* We do not keep full slabs on the list */
4810 if (free == slab->objects) {
4811 list_move(&slab->slab_list, &discard);
4813 dec_slabs_node(s, node, slab->objects);
4814 } else if (free <= SHRINK_PROMOTE_MAX)
4815 list_move(&slab->slab_list, promote + free - 1);
4819 * Promote the slabs filled up most to the head of the
4822 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4823 list_splice(promote + i, &n->partial);
4825 spin_unlock_irqrestore(&n->list_lock, flags);
4827 /* Release empty slabs */
4828 list_for_each_entry_safe(slab, t, &discard, slab_list)
4831 if (slabs_node(s, node))
4838 int __kmem_cache_shrink(struct kmem_cache *s)
4841 return __kmem_cache_do_shrink(s);
4844 static int slab_mem_going_offline_callback(void *arg)
4846 struct kmem_cache *s;
4848 mutex_lock(&slab_mutex);
4849 list_for_each_entry(s, &slab_caches, list) {
4850 flush_all_cpus_locked(s);
4851 __kmem_cache_do_shrink(s);
4853 mutex_unlock(&slab_mutex);
4858 static void slab_mem_offline_callback(void *arg)
4860 struct memory_notify *marg = arg;
4863 offline_node = marg->status_change_nid_normal;
4866 * If the node still has available memory. we need kmem_cache_node
4869 if (offline_node < 0)
4872 mutex_lock(&slab_mutex);
4873 node_clear(offline_node, slab_nodes);
4875 * We no longer free kmem_cache_node structures here, as it would be
4876 * racy with all get_node() users, and infeasible to protect them with
4879 mutex_unlock(&slab_mutex);
4882 static int slab_mem_going_online_callback(void *arg)
4884 struct kmem_cache_node *n;
4885 struct kmem_cache *s;
4886 struct memory_notify *marg = arg;
4887 int nid = marg->status_change_nid_normal;
4891 * If the node's memory is already available, then kmem_cache_node is
4892 * already created. Nothing to do.
4898 * We are bringing a node online. No memory is available yet. We must
4899 * allocate a kmem_cache_node structure in order to bring the node
4902 mutex_lock(&slab_mutex);
4903 list_for_each_entry(s, &slab_caches, list) {
4905 * The structure may already exist if the node was previously
4906 * onlined and offlined.
4908 if (get_node(s, nid))
4911 * XXX: kmem_cache_alloc_node will fallback to other nodes
4912 * since memory is not yet available from the node that
4915 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4920 init_kmem_cache_node(n);
4924 * Any cache created after this point will also have kmem_cache_node
4925 * initialized for the new node.
4927 node_set(nid, slab_nodes);
4929 mutex_unlock(&slab_mutex);
4933 static int slab_memory_callback(struct notifier_block *self,
4934 unsigned long action, void *arg)
4939 case MEM_GOING_ONLINE:
4940 ret = slab_mem_going_online_callback(arg);
4942 case MEM_GOING_OFFLINE:
4943 ret = slab_mem_going_offline_callback(arg);
4946 case MEM_CANCEL_ONLINE:
4947 slab_mem_offline_callback(arg);
4950 case MEM_CANCEL_OFFLINE:
4954 ret = notifier_from_errno(ret);
4960 /********************************************************************
4961 * Basic setup of slabs
4962 *******************************************************************/
4965 * Used for early kmem_cache structures that were allocated using
4966 * the page allocator. Allocate them properly then fix up the pointers
4967 * that may be pointing to the wrong kmem_cache structure.
4970 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4973 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4974 struct kmem_cache_node *n;
4976 memcpy(s, static_cache, kmem_cache->object_size);
4979 * This runs very early, and only the boot processor is supposed to be
4980 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4983 __flush_cpu_slab(s, smp_processor_id());
4984 for_each_kmem_cache_node(s, node, n) {
4987 list_for_each_entry(p, &n->partial, slab_list)
4990 #ifdef CONFIG_SLUB_DEBUG
4991 list_for_each_entry(p, &n->full, slab_list)
4995 list_add(&s->list, &slab_caches);
4999 void __init kmem_cache_init(void)
5001 static __initdata struct kmem_cache boot_kmem_cache,
5002 boot_kmem_cache_node;
5005 if (debug_guardpage_minorder())
5008 /* Print slub debugging pointers without hashing */
5009 if (__slub_debug_enabled())
5010 no_hash_pointers_enable(NULL);
5012 kmem_cache_node = &boot_kmem_cache_node;
5013 kmem_cache = &boot_kmem_cache;
5016 * Initialize the nodemask for which we will allocate per node
5017 * structures. Here we don't need taking slab_mutex yet.
5019 for_each_node_state(node, N_NORMAL_MEMORY)
5020 node_set(node, slab_nodes);
5022 create_boot_cache(kmem_cache_node, "kmem_cache_node",
5023 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
5025 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
5027 /* Able to allocate the per node structures */
5028 slab_state = PARTIAL;
5030 create_boot_cache(kmem_cache, "kmem_cache",
5031 offsetof(struct kmem_cache, node) +
5032 nr_node_ids * sizeof(struct kmem_cache_node *),
5033 SLAB_HWCACHE_ALIGN, 0, 0);
5035 kmem_cache = bootstrap(&boot_kmem_cache);
5036 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
5038 /* Now we can use the kmem_cache to allocate kmalloc slabs */
5039 setup_kmalloc_cache_index_table();
5040 create_kmalloc_caches(0);
5042 /* Setup random freelists for each cache */
5043 init_freelist_randomization();
5045 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
5048 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
5050 slub_min_order, slub_max_order, slub_min_objects,
5051 nr_cpu_ids, nr_node_ids);
5054 void __init kmem_cache_init_late(void)
5056 #ifndef CONFIG_SLUB_TINY
5057 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
5063 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
5064 slab_flags_t flags, void (*ctor)(void *))
5066 struct kmem_cache *s;
5068 s = find_mergeable(size, align, flags, name, ctor);
5070 if (sysfs_slab_alias(s, name))
5076 * Adjust the object sizes so that we clear
5077 * the complete object on kzalloc.
5079 s->object_size = max(s->object_size, size);
5080 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
5086 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
5090 err = kmem_cache_open(s, flags);
5094 /* Mutex is not taken during early boot */
5095 if (slab_state <= UP)
5098 err = sysfs_slab_add(s);
5100 __kmem_cache_release(s);
5104 if (s->flags & SLAB_STORE_USER)
5105 debugfs_slab_add(s);
5110 #ifdef SLAB_SUPPORTS_SYSFS
5111 static int count_inuse(struct slab *slab)
5116 static int count_total(struct slab *slab)
5118 return slab->objects;
5122 #ifdef CONFIG_SLUB_DEBUG
5123 static void validate_slab(struct kmem_cache *s, struct slab *slab,
5124 unsigned long *obj_map)
5127 void *addr = slab_address(slab);
5129 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
5132 /* Now we know that a valid freelist exists */
5133 __fill_map(obj_map, s, slab);
5134 for_each_object(p, s, addr, slab->objects) {
5135 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
5136 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
5138 if (!check_object(s, slab, p, val))
5143 static int validate_slab_node(struct kmem_cache *s,
5144 struct kmem_cache_node *n, unsigned long *obj_map)
5146 unsigned long count = 0;
5148 unsigned long flags;
5150 spin_lock_irqsave(&n->list_lock, flags);
5152 list_for_each_entry(slab, &n->partial, slab_list) {
5153 validate_slab(s, slab, obj_map);
5156 if (count != n->nr_partial) {
5157 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
5158 s->name, count, n->nr_partial);
5159 slab_add_kunit_errors();
5162 if (!(s->flags & SLAB_STORE_USER))
5165 list_for_each_entry(slab, &n->full, slab_list) {
5166 validate_slab(s, slab, obj_map);
5169 if (count != atomic_long_read(&n->nr_slabs)) {
5170 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
5171 s->name, count, atomic_long_read(&n->nr_slabs));
5172 slab_add_kunit_errors();
5176 spin_unlock_irqrestore(&n->list_lock, flags);
5180 long validate_slab_cache(struct kmem_cache *s)
5183 unsigned long count = 0;
5184 struct kmem_cache_node *n;
5185 unsigned long *obj_map;
5187 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
5192 for_each_kmem_cache_node(s, node, n)
5193 count += validate_slab_node(s, n, obj_map);
5195 bitmap_free(obj_map);
5199 EXPORT_SYMBOL(validate_slab_cache);
5201 #ifdef CONFIG_DEBUG_FS
5203 * Generate lists of code addresses where slabcache objects are allocated
5208 depot_stack_handle_t handle;
5209 unsigned long count;
5211 unsigned long waste;
5217 DECLARE_BITMAP(cpus, NR_CPUS);
5223 unsigned long count;
5224 struct location *loc;
5228 static struct dentry *slab_debugfs_root;
5230 static void free_loc_track(struct loc_track *t)
5233 free_pages((unsigned long)t->loc,
5234 get_order(sizeof(struct location) * t->max));
5237 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
5242 order = get_order(sizeof(struct location) * max);
5244 l = (void *)__get_free_pages(flags, order);
5249 memcpy(l, t->loc, sizeof(struct location) * t->count);
5257 static int add_location(struct loc_track *t, struct kmem_cache *s,
5258 const struct track *track,
5259 unsigned int orig_size)
5261 long start, end, pos;
5263 unsigned long caddr, chandle, cwaste;
5264 unsigned long age = jiffies - track->when;
5265 depot_stack_handle_t handle = 0;
5266 unsigned int waste = s->object_size - orig_size;
5268 #ifdef CONFIG_STACKDEPOT
5269 handle = READ_ONCE(track->handle);
5275 pos = start + (end - start + 1) / 2;
5278 * There is nothing at "end". If we end up there
5279 * we need to add something to before end.
5286 chandle = l->handle;
5288 if ((track->addr == caddr) && (handle == chandle) &&
5289 (waste == cwaste)) {
5294 if (age < l->min_time)
5296 if (age > l->max_time)
5299 if (track->pid < l->min_pid)
5300 l->min_pid = track->pid;
5301 if (track->pid > l->max_pid)
5302 l->max_pid = track->pid;
5304 cpumask_set_cpu(track->cpu,
5305 to_cpumask(l->cpus));
5307 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5311 if (track->addr < caddr)
5313 else if (track->addr == caddr && handle < chandle)
5315 else if (track->addr == caddr && handle == chandle &&
5323 * Not found. Insert new tracking element.
5325 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
5331 (t->count - pos) * sizeof(struct location));
5334 l->addr = track->addr;
5338 l->min_pid = track->pid;
5339 l->max_pid = track->pid;
5342 cpumask_clear(to_cpumask(l->cpus));
5343 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
5344 nodes_clear(l->nodes);
5345 node_set(page_to_nid(virt_to_page(track)), l->nodes);
5349 static void process_slab(struct loc_track *t, struct kmem_cache *s,
5350 struct slab *slab, enum track_item alloc,
5351 unsigned long *obj_map)
5353 void *addr = slab_address(slab);
5354 bool is_alloc = (alloc == TRACK_ALLOC);
5357 __fill_map(obj_map, s, slab);
5359 for_each_object(p, s, addr, slab->objects)
5360 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
5361 add_location(t, s, get_track(s, p, alloc),
5362 is_alloc ? get_orig_size(s, p) :
5365 #endif /* CONFIG_DEBUG_FS */
5366 #endif /* CONFIG_SLUB_DEBUG */
5368 #ifdef SLAB_SUPPORTS_SYSFS
5369 enum slab_stat_type {
5370 SL_ALL, /* All slabs */
5371 SL_PARTIAL, /* Only partially allocated slabs */
5372 SL_CPU, /* Only slabs used for cpu caches */
5373 SL_OBJECTS, /* Determine allocated objects not slabs */
5374 SL_TOTAL /* Determine object capacity not slabs */
5377 #define SO_ALL (1 << SL_ALL)
5378 #define SO_PARTIAL (1 << SL_PARTIAL)
5379 #define SO_CPU (1 << SL_CPU)
5380 #define SO_OBJECTS (1 << SL_OBJECTS)
5381 #define SO_TOTAL (1 << SL_TOTAL)
5383 static ssize_t show_slab_objects(struct kmem_cache *s,
5384 char *buf, unsigned long flags)
5386 unsigned long total = 0;
5389 unsigned long *nodes;
5392 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
5396 if (flags & SO_CPU) {
5399 for_each_possible_cpu(cpu) {
5400 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
5405 slab = READ_ONCE(c->slab);
5409 node = slab_nid(slab);
5410 if (flags & SO_TOTAL)
5412 else if (flags & SO_OBJECTS)
5420 #ifdef CONFIG_SLUB_CPU_PARTIAL
5421 slab = slub_percpu_partial_read_once(c);
5423 node = slab_nid(slab);
5424 if (flags & SO_TOTAL)
5426 else if (flags & SO_OBJECTS)
5438 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
5439 * already held which will conflict with an existing lock order:
5441 * mem_hotplug_lock->slab_mutex->kernfs_mutex
5443 * We don't really need mem_hotplug_lock (to hold off
5444 * slab_mem_going_offline_callback) here because slab's memory hot
5445 * unplug code doesn't destroy the kmem_cache->node[] data.
5448 #ifdef CONFIG_SLUB_DEBUG
5449 if (flags & SO_ALL) {
5450 struct kmem_cache_node *n;
5452 for_each_kmem_cache_node(s, node, n) {
5454 if (flags & SO_TOTAL)
5455 x = atomic_long_read(&n->total_objects);
5456 else if (flags & SO_OBJECTS)
5457 x = atomic_long_read(&n->total_objects) -
5458 count_partial(n, count_free);
5460 x = atomic_long_read(&n->nr_slabs);
5467 if (flags & SO_PARTIAL) {
5468 struct kmem_cache_node *n;
5470 for_each_kmem_cache_node(s, node, n) {
5471 if (flags & SO_TOTAL)
5472 x = count_partial(n, count_total);
5473 else if (flags & SO_OBJECTS)
5474 x = count_partial(n, count_inuse);
5482 len += sysfs_emit_at(buf, len, "%lu", total);
5484 for (node = 0; node < nr_node_ids; node++) {
5486 len += sysfs_emit_at(buf, len, " N%d=%lu",
5490 len += sysfs_emit_at(buf, len, "\n");
5496 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
5497 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5499 struct slab_attribute {
5500 struct attribute attr;
5501 ssize_t (*show)(struct kmem_cache *s, char *buf);
5502 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5505 #define SLAB_ATTR_RO(_name) \
5506 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
5508 #define SLAB_ATTR(_name) \
5509 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
5511 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5513 return sysfs_emit(buf, "%u\n", s->size);
5515 SLAB_ATTR_RO(slab_size);
5517 static ssize_t align_show(struct kmem_cache *s, char *buf)
5519 return sysfs_emit(buf, "%u\n", s->align);
5521 SLAB_ATTR_RO(align);
5523 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5525 return sysfs_emit(buf, "%u\n", s->object_size);
5527 SLAB_ATTR_RO(object_size);
5529 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5531 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
5533 SLAB_ATTR_RO(objs_per_slab);
5535 static ssize_t order_show(struct kmem_cache *s, char *buf)
5537 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
5539 SLAB_ATTR_RO(order);
5541 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5543 return sysfs_emit(buf, "%lu\n", s->min_partial);
5546 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5552 err = kstrtoul(buf, 10, &min);
5556 s->min_partial = min;
5559 SLAB_ATTR(min_partial);
5561 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5563 unsigned int nr_partial = 0;
5564 #ifdef CONFIG_SLUB_CPU_PARTIAL
5565 nr_partial = s->cpu_partial;
5568 return sysfs_emit(buf, "%u\n", nr_partial);
5571 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5574 unsigned int objects;
5577 err = kstrtouint(buf, 10, &objects);
5580 if (objects && !kmem_cache_has_cpu_partial(s))
5583 slub_set_cpu_partial(s, objects);
5587 SLAB_ATTR(cpu_partial);
5589 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5593 return sysfs_emit(buf, "%pS\n", s->ctor);
5597 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5599 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5601 SLAB_ATTR_RO(aliases);
5603 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5605 return show_slab_objects(s, buf, SO_PARTIAL);
5607 SLAB_ATTR_RO(partial);
5609 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5611 return show_slab_objects(s, buf, SO_CPU);
5613 SLAB_ATTR_RO(cpu_slabs);
5615 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5617 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5619 SLAB_ATTR_RO(objects);
5621 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5623 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5625 SLAB_ATTR_RO(objects_partial);
5627 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5631 int cpu __maybe_unused;
5634 #ifdef CONFIG_SLUB_CPU_PARTIAL
5635 for_each_online_cpu(cpu) {
5638 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5641 slabs += slab->slabs;
5645 /* Approximate half-full slabs, see slub_set_cpu_partial() */
5646 objects = (slabs * oo_objects(s->oo)) / 2;
5647 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
5649 #if defined(CONFIG_SLUB_CPU_PARTIAL) && defined(CONFIG_SMP)
5650 for_each_online_cpu(cpu) {
5653 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5655 slabs = READ_ONCE(slab->slabs);
5656 objects = (slabs * oo_objects(s->oo)) / 2;
5657 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
5658 cpu, objects, slabs);
5662 len += sysfs_emit_at(buf, len, "\n");
5666 SLAB_ATTR_RO(slabs_cpu_partial);
5668 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5670 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5672 SLAB_ATTR_RO(reclaim_account);
5674 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5676 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5678 SLAB_ATTR_RO(hwcache_align);
5680 #ifdef CONFIG_ZONE_DMA
5681 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5683 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5685 SLAB_ATTR_RO(cache_dma);
5688 #ifdef CONFIG_HARDENED_USERCOPY
5689 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5691 return sysfs_emit(buf, "%u\n", s->usersize);
5693 SLAB_ATTR_RO(usersize);
5696 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5698 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5700 SLAB_ATTR_RO(destroy_by_rcu);
5702 #ifdef CONFIG_SLUB_DEBUG
5703 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5705 return show_slab_objects(s, buf, SO_ALL);
5707 SLAB_ATTR_RO(slabs);
5709 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5711 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5713 SLAB_ATTR_RO(total_objects);
5715 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5717 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5719 SLAB_ATTR_RO(sanity_checks);
5721 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5723 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5725 SLAB_ATTR_RO(trace);
5727 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5729 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5732 SLAB_ATTR_RO(red_zone);
5734 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5736 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
5739 SLAB_ATTR_RO(poison);
5741 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5743 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5746 SLAB_ATTR_RO(store_user);
5748 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5753 static ssize_t validate_store(struct kmem_cache *s,
5754 const char *buf, size_t length)
5758 if (buf[0] == '1' && kmem_cache_debug(s)) {
5759 ret = validate_slab_cache(s);
5765 SLAB_ATTR(validate);
5767 #endif /* CONFIG_SLUB_DEBUG */
5769 #ifdef CONFIG_FAILSLAB
5770 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5772 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5775 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5778 if (s->refcount > 1)
5782 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
5784 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
5788 SLAB_ATTR(failslab);
5791 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5796 static ssize_t shrink_store(struct kmem_cache *s,
5797 const char *buf, size_t length)
5800 kmem_cache_shrink(s);
5808 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5810 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5813 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5814 const char *buf, size_t length)
5819 err = kstrtouint(buf, 10, &ratio);
5825 s->remote_node_defrag_ratio = ratio * 10;
5829 SLAB_ATTR(remote_node_defrag_ratio);
5832 #ifdef CONFIG_SLUB_STATS
5833 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5835 unsigned long sum = 0;
5838 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5843 for_each_online_cpu(cpu) {
5844 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5850 len += sysfs_emit_at(buf, len, "%lu", sum);
5853 for_each_online_cpu(cpu) {
5855 len += sysfs_emit_at(buf, len, " C%d=%u",
5860 len += sysfs_emit_at(buf, len, "\n");
5865 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5869 for_each_online_cpu(cpu)
5870 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5873 #define STAT_ATTR(si, text) \
5874 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5876 return show_stat(s, buf, si); \
5878 static ssize_t text##_store(struct kmem_cache *s, \
5879 const char *buf, size_t length) \
5881 if (buf[0] != '0') \
5883 clear_stat(s, si); \
5888 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5889 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5890 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5891 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5892 STAT_ATTR(FREE_FROZEN, free_frozen);
5893 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5894 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5895 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5896 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5897 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5898 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5899 STAT_ATTR(FREE_SLAB, free_slab);
5900 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5901 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5902 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5903 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5904 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5905 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5906 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5907 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5908 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5909 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5910 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5911 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5912 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5913 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5914 #endif /* CONFIG_SLUB_STATS */
5916 #ifdef CONFIG_KFENCE
5917 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
5919 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
5922 static ssize_t skip_kfence_store(struct kmem_cache *s,
5923 const char *buf, size_t length)
5928 s->flags &= ~SLAB_SKIP_KFENCE;
5929 else if (buf[0] == '1')
5930 s->flags |= SLAB_SKIP_KFENCE;
5936 SLAB_ATTR(skip_kfence);
5939 static struct attribute *slab_attrs[] = {
5940 &slab_size_attr.attr,
5941 &object_size_attr.attr,
5942 &objs_per_slab_attr.attr,
5944 &min_partial_attr.attr,
5945 &cpu_partial_attr.attr,
5947 &objects_partial_attr.attr,
5949 &cpu_slabs_attr.attr,
5953 &hwcache_align_attr.attr,
5954 &reclaim_account_attr.attr,
5955 &destroy_by_rcu_attr.attr,
5957 &slabs_cpu_partial_attr.attr,
5958 #ifdef CONFIG_SLUB_DEBUG
5959 &total_objects_attr.attr,
5961 &sanity_checks_attr.attr,
5963 &red_zone_attr.attr,
5965 &store_user_attr.attr,
5966 &validate_attr.attr,
5968 #ifdef CONFIG_ZONE_DMA
5969 &cache_dma_attr.attr,
5972 &remote_node_defrag_ratio_attr.attr,
5974 #ifdef CONFIG_SLUB_STATS
5975 &alloc_fastpath_attr.attr,
5976 &alloc_slowpath_attr.attr,
5977 &free_fastpath_attr.attr,
5978 &free_slowpath_attr.attr,
5979 &free_frozen_attr.attr,
5980 &free_add_partial_attr.attr,
5981 &free_remove_partial_attr.attr,
5982 &alloc_from_partial_attr.attr,
5983 &alloc_slab_attr.attr,
5984 &alloc_refill_attr.attr,
5985 &alloc_node_mismatch_attr.attr,
5986 &free_slab_attr.attr,
5987 &cpuslab_flush_attr.attr,
5988 &deactivate_full_attr.attr,
5989 &deactivate_empty_attr.attr,
5990 &deactivate_to_head_attr.attr,
5991 &deactivate_to_tail_attr.attr,
5992 &deactivate_remote_frees_attr.attr,
5993 &deactivate_bypass_attr.attr,
5994 &order_fallback_attr.attr,
5995 &cmpxchg_double_fail_attr.attr,
5996 &cmpxchg_double_cpu_fail_attr.attr,
5997 &cpu_partial_alloc_attr.attr,
5998 &cpu_partial_free_attr.attr,
5999 &cpu_partial_node_attr.attr,
6000 &cpu_partial_drain_attr.attr,
6002 #ifdef CONFIG_FAILSLAB
6003 &failslab_attr.attr,
6005 #ifdef CONFIG_HARDENED_USERCOPY
6006 &usersize_attr.attr,
6008 #ifdef CONFIG_KFENCE
6009 &skip_kfence_attr.attr,
6015 static const struct attribute_group slab_attr_group = {
6016 .attrs = slab_attrs,
6019 static ssize_t slab_attr_show(struct kobject *kobj,
6020 struct attribute *attr,
6023 struct slab_attribute *attribute;
6024 struct kmem_cache *s;
6026 attribute = to_slab_attr(attr);
6029 if (!attribute->show)
6032 return attribute->show(s, buf);
6035 static ssize_t slab_attr_store(struct kobject *kobj,
6036 struct attribute *attr,
6037 const char *buf, size_t len)
6039 struct slab_attribute *attribute;
6040 struct kmem_cache *s;
6042 attribute = to_slab_attr(attr);
6045 if (!attribute->store)
6048 return attribute->store(s, buf, len);
6051 static void kmem_cache_release(struct kobject *k)
6053 slab_kmem_cache_release(to_slab(k));
6056 static const struct sysfs_ops slab_sysfs_ops = {
6057 .show = slab_attr_show,
6058 .store = slab_attr_store,
6061 static const struct kobj_type slab_ktype = {
6062 .sysfs_ops = &slab_sysfs_ops,
6063 .release = kmem_cache_release,
6066 static struct kset *slab_kset;
6068 static inline struct kset *cache_kset(struct kmem_cache *s)
6073 #define ID_STR_LENGTH 32
6075 /* Create a unique string id for a slab cache:
6077 * Format :[flags-]size
6079 static char *create_unique_id(struct kmem_cache *s)
6081 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
6085 return ERR_PTR(-ENOMEM);
6089 * First flags affecting slabcache operations. We will only
6090 * get here for aliasable slabs so we do not need to support
6091 * too many flags. The flags here must cover all flags that
6092 * are matched during merging to guarantee that the id is
6095 if (s->flags & SLAB_CACHE_DMA)
6097 if (s->flags & SLAB_CACHE_DMA32)
6099 if (s->flags & SLAB_RECLAIM_ACCOUNT)
6101 if (s->flags & SLAB_CONSISTENCY_CHECKS)
6103 if (s->flags & SLAB_ACCOUNT)
6107 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
6109 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
6111 return ERR_PTR(-EINVAL);
6113 kmsan_unpoison_memory(name, p - name);
6117 static int sysfs_slab_add(struct kmem_cache *s)
6121 struct kset *kset = cache_kset(s);
6122 int unmergeable = slab_unmergeable(s);
6124 if (!unmergeable && disable_higher_order_debug &&
6125 (slub_debug & DEBUG_METADATA_FLAGS))
6130 * Slabcache can never be merged so we can use the name proper.
6131 * This is typically the case for debug situations. In that
6132 * case we can catch duplicate names easily.
6134 sysfs_remove_link(&slab_kset->kobj, s->name);
6138 * Create a unique name for the slab as a target
6141 name = create_unique_id(s);
6143 return PTR_ERR(name);
6146 s->kobj.kset = kset;
6147 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
6151 err = sysfs_create_group(&s->kobj, &slab_attr_group);
6156 /* Setup first alias */
6157 sysfs_slab_alias(s, s->name);
6164 kobject_del(&s->kobj);
6168 void sysfs_slab_unlink(struct kmem_cache *s)
6170 if (slab_state >= FULL)
6171 kobject_del(&s->kobj);
6174 void sysfs_slab_release(struct kmem_cache *s)
6176 if (slab_state >= FULL)
6177 kobject_put(&s->kobj);
6181 * Need to buffer aliases during bootup until sysfs becomes
6182 * available lest we lose that information.
6184 struct saved_alias {
6185 struct kmem_cache *s;
6187 struct saved_alias *next;
6190 static struct saved_alias *alias_list;
6192 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
6194 struct saved_alias *al;
6196 if (slab_state == FULL) {
6198 * If we have a leftover link then remove it.
6200 sysfs_remove_link(&slab_kset->kobj, name);
6201 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
6204 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
6210 al->next = alias_list;
6212 kmsan_unpoison_memory(al, sizeof(*al));
6216 static int __init slab_sysfs_init(void)
6218 struct kmem_cache *s;
6221 mutex_lock(&slab_mutex);
6223 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
6225 mutex_unlock(&slab_mutex);
6226 pr_err("Cannot register slab subsystem.\n");
6232 list_for_each_entry(s, &slab_caches, list) {
6233 err = sysfs_slab_add(s);
6235 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
6239 while (alias_list) {
6240 struct saved_alias *al = alias_list;
6242 alias_list = alias_list->next;
6243 err = sysfs_slab_alias(al->s, al->name);
6245 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
6250 mutex_unlock(&slab_mutex);
6253 late_initcall(slab_sysfs_init);
6254 #endif /* SLAB_SUPPORTS_SYSFS */
6256 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
6257 static int slab_debugfs_show(struct seq_file *seq, void *v)
6259 struct loc_track *t = seq->private;
6263 idx = (unsigned long) t->idx;
6264 if (idx < t->count) {
6267 seq_printf(seq, "%7ld ", l->count);
6270 seq_printf(seq, "%pS", (void *)l->addr);
6272 seq_puts(seq, "<not-available>");
6275 seq_printf(seq, " waste=%lu/%lu",
6276 l->count * l->waste, l->waste);
6278 if (l->sum_time != l->min_time) {
6279 seq_printf(seq, " age=%ld/%llu/%ld",
6280 l->min_time, div_u64(l->sum_time, l->count),
6283 seq_printf(seq, " age=%ld", l->min_time);
6285 if (l->min_pid != l->max_pid)
6286 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
6288 seq_printf(seq, " pid=%ld",
6291 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
6292 seq_printf(seq, " cpus=%*pbl",
6293 cpumask_pr_args(to_cpumask(l->cpus)));
6295 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
6296 seq_printf(seq, " nodes=%*pbl",
6297 nodemask_pr_args(&l->nodes));
6299 #ifdef CONFIG_STACKDEPOT
6301 depot_stack_handle_t handle;
6302 unsigned long *entries;
6303 unsigned int nr_entries, j;
6305 handle = READ_ONCE(l->handle);
6307 nr_entries = stack_depot_fetch(handle, &entries);
6308 seq_puts(seq, "\n");
6309 for (j = 0; j < nr_entries; j++)
6310 seq_printf(seq, " %pS\n", (void *)entries[j]);
6314 seq_puts(seq, "\n");
6317 if (!idx && !t->count)
6318 seq_puts(seq, "No data\n");
6323 static void slab_debugfs_stop(struct seq_file *seq, void *v)
6327 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
6329 struct loc_track *t = seq->private;
6332 if (*ppos <= t->count)
6338 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
6340 struct location *loc1 = (struct location *)a;
6341 struct location *loc2 = (struct location *)b;
6343 if (loc1->count > loc2->count)
6349 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
6351 struct loc_track *t = seq->private;
6357 static const struct seq_operations slab_debugfs_sops = {
6358 .start = slab_debugfs_start,
6359 .next = slab_debugfs_next,
6360 .stop = slab_debugfs_stop,
6361 .show = slab_debugfs_show,
6364 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
6367 struct kmem_cache_node *n;
6368 enum track_item alloc;
6370 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
6371 sizeof(struct loc_track));
6372 struct kmem_cache *s = file_inode(filep)->i_private;
6373 unsigned long *obj_map;
6378 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6380 seq_release_private(inode, filep);
6384 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
6385 alloc = TRACK_ALLOC;
6389 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
6390 bitmap_free(obj_map);
6391 seq_release_private(inode, filep);
6395 for_each_kmem_cache_node(s, node, n) {
6396 unsigned long flags;
6399 if (!atomic_long_read(&n->nr_slabs))
6402 spin_lock_irqsave(&n->list_lock, flags);
6403 list_for_each_entry(slab, &n->partial, slab_list)
6404 process_slab(t, s, slab, alloc, obj_map);
6405 list_for_each_entry(slab, &n->full, slab_list)
6406 process_slab(t, s, slab, alloc, obj_map);
6407 spin_unlock_irqrestore(&n->list_lock, flags);
6410 /* Sort locations by count */
6411 sort_r(t->loc, t->count, sizeof(struct location),
6412 cmp_loc_by_count, NULL, NULL);
6414 bitmap_free(obj_map);
6418 static int slab_debug_trace_release(struct inode *inode, struct file *file)
6420 struct seq_file *seq = file->private_data;
6421 struct loc_track *t = seq->private;
6424 return seq_release_private(inode, file);
6427 static const struct file_operations slab_debugfs_fops = {
6428 .open = slab_debug_trace_open,
6430 .llseek = seq_lseek,
6431 .release = slab_debug_trace_release,
6434 static void debugfs_slab_add(struct kmem_cache *s)
6436 struct dentry *slab_cache_dir;
6438 if (unlikely(!slab_debugfs_root))
6441 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
6443 debugfs_create_file("alloc_traces", 0400,
6444 slab_cache_dir, s, &slab_debugfs_fops);
6446 debugfs_create_file("free_traces", 0400,
6447 slab_cache_dir, s, &slab_debugfs_fops);
6450 void debugfs_slab_release(struct kmem_cache *s)
6452 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
6455 static int __init slab_debugfs_init(void)
6457 struct kmem_cache *s;
6459 slab_debugfs_root = debugfs_create_dir("slab", NULL);
6461 list_for_each_entry(s, &slab_caches, list)
6462 if (s->flags & SLAB_STORE_USER)
6463 debugfs_slab_add(s);
6468 __initcall(slab_debugfs_init);
6471 * The /proc/slabinfo ABI
6473 #ifdef CONFIG_SLUB_DEBUG
6474 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
6476 unsigned long nr_slabs = 0;
6477 unsigned long nr_objs = 0;
6478 unsigned long nr_free = 0;
6480 struct kmem_cache_node *n;
6482 for_each_kmem_cache_node(s, node, n) {
6483 nr_slabs += node_nr_slabs(n);
6484 nr_objs += node_nr_objs(n);
6485 nr_free += count_partial(n, count_free);
6488 sinfo->active_objs = nr_objs - nr_free;
6489 sinfo->num_objs = nr_objs;
6490 sinfo->active_slabs = nr_slabs;
6491 sinfo->num_slabs = nr_slabs;
6492 sinfo->objects_per_slab = oo_objects(s->oo);
6493 sinfo->cache_order = oo_order(s->oo);
6496 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6500 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6501 size_t count, loff_t *ppos)
6505 #endif /* CONFIG_SLUB_DEBUG */