1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/cpu.h>
25 #include <linux/cpuset.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ctype.h>
28 #include <linux/debugobjects.h>
29 #include <linux/kallsyms.h>
30 #include <linux/memory.h>
31 #include <linux/math64.h>
32 #include <linux/fault-inject.h>
33 #include <linux/stacktrace.h>
34 #include <linux/prefetch.h>
35 #include <linux/memcontrol.h>
36 #include <linux/random.h>
38 #include <trace/events/kmem.h>
44 * 1. slab_mutex (Global Mutex)
46 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * The role of the slab_mutex is to protect the list of all the slabs
51 * and to synchronize major metadata changes to slab cache structures.
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects:
55 * A. page->freelist -> List of object free in a page
56 * B. page->inuse -> Number of objects in use
57 * C. page->objects -> Number of objects in page
58 * D. page->frozen -> frozen state
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list except per cpu partial list. The processor that froze the
62 * slab is the one who can perform list operations on the page. Other
63 * processors may put objects onto the freelist but the processor that
64 * froze the slab is the only one that can retrieve the objects from the
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * page->frozen The slab is frozen and exempt from list processing.
97 * This means that the slab is dedicated to a purpose
98 * such as satisfying allocations for a specific
99 * processor. Objects may be freed in the slab while
100 * it is frozen but slab_free will then skip the usual
101 * list operations. It is up to the processor holding
102 * the slab to integrate the slab into the slab lists
103 * when the slab is no longer needed.
105 * One use of this flag is to mark slabs that are
106 * used for allocations. Then such a slab becomes a cpu
107 * slab. The cpu slab may be equipped with an additional
108 * freelist that allows lockless access to
109 * free objects in addition to the regular freelist
110 * that requires the slab lock.
112 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
113 * options set. This moves slab handling out of
114 * the fast path and disables lockless freelists.
117 static inline int kmem_cache_debug(struct kmem_cache *s)
119 #ifdef CONFIG_SLUB_DEBUG
120 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
126 void *fixup_red_left(struct kmem_cache *s, void *p)
128 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
129 p += s->red_left_pad;
134 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136 #ifdef CONFIG_SLUB_CPU_PARTIAL
137 return !kmem_cache_debug(s);
144 * Issues still to be resolved:
146 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 * - Variable sizing of the per node arrays
151 /* Enable to test recovery from slab corruption on boot */
152 #undef SLUB_RESILIENCY_TEST
154 /* Enable to log cmpxchg failures */
155 #undef SLUB_DEBUG_CMPXCHG
158 * Mininum number of partial slabs. These will be left on the partial
159 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 #define MIN_PARTIAL 5
164 * Maximum number of desirable partial slabs.
165 * The existence of more partial slabs makes kmem_cache_shrink
166 * sort the partial list by the number of objects in use.
168 #define MAX_PARTIAL 10
170 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_STORE_USER)
174 * These debug flags cannot use CMPXCHG because there might be consistency
175 * issues when checking or reading debug information
177 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
182 * Debugging flags that require metadata to be stored in the slab. These get
183 * disabled when slub_debug=O is used and a cache's min order increases with
186 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189 #define OO_MASK ((1 << OO_SHIFT) - 1)
190 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
192 /* Internal SLUB flags */
194 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
195 /* Use cmpxchg_double */
196 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
199 * Tracking user of a slab.
201 #define TRACK_ADDRS_COUNT 16
203 unsigned long addr; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
229 #ifdef CONFIG_SLUB_STATS
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
234 raw_cpu_inc(s->cpu_slab->stat[si]);
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
253 * Normally, this doesn't cause any issues, as both set_freepointer()
254 * and get_freepointer() are called with a pointer with the same tag.
255 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
256 * example, when __free_slub() iterates over objects in a cache, it
257 * passes untagged pointers to check_object(). check_object() in turns
258 * calls get_freepointer() with an untagged pointer, which causes the
259 * freepointer to be restored incorrectly.
261 return (void *)((unsigned long)ptr ^ s->random ^
262 swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
268 /* Returns the freelist pointer recorded at location ptr_addr. */
269 static inline void *freelist_dereference(const struct kmem_cache *s,
272 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
273 (unsigned long)ptr_addr);
276 static inline void *get_freepointer(struct kmem_cache *s, void *object)
278 return freelist_dereference(s, object + s->offset);
281 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
283 prefetch(object + s->offset);
286 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
288 unsigned long freepointer_addr;
291 if (!debug_pagealloc_enabled_static())
292 return get_freepointer(s, object);
294 freepointer_addr = (unsigned long)object + s->offset;
295 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
296 return freelist_ptr(s, p, freepointer_addr);
299 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
301 unsigned long freeptr_addr = (unsigned long)object + s->offset;
303 #ifdef CONFIG_SLAB_FREELIST_HARDENED
304 BUG_ON(object == fp); /* naive detection of double free or corruption */
307 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 /* Loop over all objects in a slab */
311 #define for_each_object(__p, __s, __addr, __objects) \
312 for (__p = fixup_red_left(__s, __addr); \
313 __p < (__addr) + (__objects) * (__s)->size; \
316 /* Determine object index from a given position */
317 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
319 return (kasan_reset_tag(p) - addr) / s->size;
322 static inline unsigned int order_objects(unsigned int order, unsigned int size)
324 return ((unsigned int)PAGE_SIZE << order) / size;
327 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330 struct kmem_cache_order_objects x = {
331 (order << OO_SHIFT) + order_objects(order, size)
337 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
339 return x.x >> OO_SHIFT;
342 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
344 return x.x & OO_MASK;
348 * Per slab locking using the pagelock
350 static __always_inline void slab_lock(struct page *page)
352 VM_BUG_ON_PAGE(PageTail(page), page);
353 bit_spin_lock(PG_locked, &page->flags);
356 static __always_inline void slab_unlock(struct page *page)
358 VM_BUG_ON_PAGE(PageTail(page), page);
359 __bit_spin_unlock(PG_locked, &page->flags);
362 /* Interrupts must be disabled (for the fallback code to work right) */
363 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
364 void *freelist_old, unsigned long counters_old,
365 void *freelist_new, unsigned long counters_new,
368 VM_BUG_ON(!irqs_disabled());
369 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
370 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371 if (s->flags & __CMPXCHG_DOUBLE) {
372 if (cmpxchg_double(&page->freelist, &page->counters,
373 freelist_old, counters_old,
374 freelist_new, counters_new))
380 if (page->freelist == freelist_old &&
381 page->counters == counters_old) {
382 page->freelist = freelist_new;
383 page->counters = counters_new;
391 stat(s, CMPXCHG_DOUBLE_FAIL);
393 #ifdef SLUB_DEBUG_CMPXCHG
394 pr_info("%s %s: cmpxchg double redo ", n, s->name);
400 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
401 void *freelist_old, unsigned long counters_old,
402 void *freelist_new, unsigned long counters_new,
405 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
406 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407 if (s->flags & __CMPXCHG_DOUBLE) {
408 if (cmpxchg_double(&page->freelist, &page->counters,
409 freelist_old, counters_old,
410 freelist_new, counters_new))
417 local_irq_save(flags);
419 if (page->freelist == freelist_old &&
420 page->counters == counters_old) {
421 page->freelist = freelist_new;
422 page->counters = counters_new;
424 local_irq_restore(flags);
428 local_irq_restore(flags);
432 stat(s, CMPXCHG_DOUBLE_FAIL);
434 #ifdef SLUB_DEBUG_CMPXCHG
435 pr_info("%s %s: cmpxchg double redo ", n, s->name);
441 #ifdef CONFIG_SLUB_DEBUG
442 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
443 static DEFINE_SPINLOCK(object_map_lock);
446 * Determine a map of object in use on a page.
448 * Node listlock must be held to guarantee that the page does
449 * not vanish from under us.
451 static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 __acquires(&object_map_lock)
455 void *addr = page_address(page);
457 VM_BUG_ON(!irqs_disabled());
459 spin_lock(&object_map_lock);
461 bitmap_zero(object_map, page->objects);
463 for (p = page->freelist; p; p = get_freepointer(s, p))
464 set_bit(slab_index(p, s, addr), object_map);
469 static void put_map(unsigned long *map) __releases(&object_map_lock)
471 VM_BUG_ON(map != object_map);
472 lockdep_assert_held(&object_map_lock);
474 spin_unlock(&object_map_lock);
477 static inline unsigned int size_from_object(struct kmem_cache *s)
479 if (s->flags & SLAB_RED_ZONE)
480 return s->size - s->red_left_pad;
485 static inline void *restore_red_left(struct kmem_cache *s, void *p)
487 if (s->flags & SLAB_RED_ZONE)
488 p -= s->red_left_pad;
496 #if defined(CONFIG_SLUB_DEBUG_ON)
497 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
499 static slab_flags_t slub_debug;
502 static char *slub_debug_slabs;
503 static int disable_higher_order_debug;
506 * slub is about to manipulate internal object metadata. This memory lies
507 * outside the range of the allocated object, so accessing it would normally
508 * be reported by kasan as a bounds error. metadata_access_enable() is used
509 * to tell kasan that these accesses are OK.
511 static inline void metadata_access_enable(void)
513 kasan_disable_current();
516 static inline void metadata_access_disable(void)
518 kasan_enable_current();
525 /* Verify that a pointer has an address that is valid within a slab page */
526 static inline int check_valid_pointer(struct kmem_cache *s,
527 struct page *page, void *object)
534 base = page_address(page);
535 object = kasan_reset_tag(object);
536 object = restore_red_left(s, object);
537 if (object < base || object >= base + page->objects * s->size ||
538 (object - base) % s->size) {
545 static void print_section(char *level, char *text, u8 *addr,
548 metadata_access_enable();
549 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
551 metadata_access_disable();
555 * See comment in calculate_sizes().
557 static inline bool freeptr_outside_object(struct kmem_cache *s)
559 return s->offset >= s->inuse;
563 * Return offset of the end of info block which is inuse + free pointer if
564 * not overlapping with object.
566 static inline unsigned int get_info_end(struct kmem_cache *s)
568 if (freeptr_outside_object(s))
569 return s->inuse + sizeof(void *);
574 static struct track *get_track(struct kmem_cache *s, void *object,
575 enum track_item alloc)
579 p = object + get_info_end(s);
584 static void set_track(struct kmem_cache *s, void *object,
585 enum track_item alloc, unsigned long addr)
587 struct track *p = get_track(s, object, alloc);
590 #ifdef CONFIG_STACKTRACE
591 unsigned int nr_entries;
593 metadata_access_enable();
594 nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
595 metadata_access_disable();
597 if (nr_entries < TRACK_ADDRS_COUNT)
598 p->addrs[nr_entries] = 0;
601 p->cpu = smp_processor_id();
602 p->pid = current->pid;
605 memset(p, 0, sizeof(struct track));
609 static void init_tracking(struct kmem_cache *s, void *object)
611 if (!(s->flags & SLAB_STORE_USER))
614 set_track(s, object, TRACK_FREE, 0UL);
615 set_track(s, object, TRACK_ALLOC, 0UL);
618 static void print_track(const char *s, struct track *t, unsigned long pr_time)
623 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
624 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
625 #ifdef CONFIG_STACKTRACE
628 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
630 pr_err("\t%pS\n", (void *)t->addrs[i]);
637 static void print_tracking(struct kmem_cache *s, void *object)
639 unsigned long pr_time = jiffies;
640 if (!(s->flags & SLAB_STORE_USER))
643 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
644 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
647 static void print_page_info(struct page *page)
649 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
650 page, page->objects, page->inuse, page->freelist, page->flags);
654 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
656 struct va_format vaf;
662 pr_err("=============================================================================\n");
663 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
664 pr_err("-----------------------------------------------------------------------------\n\n");
666 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
672 struct va_format vaf;
678 pr_err("FIX %s: %pV\n", s->name, &vaf);
682 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
683 void *freelist, void *nextfree)
685 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
686 !check_valid_pointer(s, page, nextfree)) {
687 object_err(s, page, freelist, "Freechain corrupt");
689 slab_fix(s, "Isolate corrupted freechain");
696 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
698 unsigned int off; /* Offset of last byte */
699 u8 *addr = page_address(page);
701 print_tracking(s, p);
703 print_page_info(page);
705 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
706 p, p - addr, get_freepointer(s, p));
708 if (s->flags & SLAB_RED_ZONE)
709 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
711 else if (p > addr + 16)
712 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
714 print_section(KERN_ERR, "Object ", p,
715 min_t(unsigned int, s->object_size, PAGE_SIZE));
716 if (s->flags & SLAB_RED_ZONE)
717 print_section(KERN_ERR, "Redzone ", p + s->object_size,
718 s->inuse - s->object_size);
720 off = get_info_end(s);
722 if (s->flags & SLAB_STORE_USER)
723 off += 2 * sizeof(struct track);
725 off += kasan_metadata_size(s);
727 if (off != size_from_object(s))
728 /* Beginning of the filler is the free pointer */
729 print_section(KERN_ERR, "Padding ", p + off,
730 size_from_object(s) - off);
735 void object_err(struct kmem_cache *s, struct page *page,
736 u8 *object, char *reason)
738 slab_bug(s, "%s", reason);
739 print_trailer(s, page, object);
742 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
743 const char *fmt, ...)
749 vsnprintf(buf, sizeof(buf), fmt, args);
751 slab_bug(s, "%s", buf);
752 print_page_info(page);
756 static void init_object(struct kmem_cache *s, void *object, u8 val)
760 if (s->flags & SLAB_RED_ZONE)
761 memset(p - s->red_left_pad, val, s->red_left_pad);
763 if (s->flags & __OBJECT_POISON) {
764 memset(p, POISON_FREE, s->object_size - 1);
765 p[s->object_size - 1] = POISON_END;
768 if (s->flags & SLAB_RED_ZONE)
769 memset(p + s->object_size, val, s->inuse - s->object_size);
772 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
773 void *from, void *to)
775 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
776 memset(from, data, to - from);
779 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
780 u8 *object, char *what,
781 u8 *start, unsigned int value, unsigned int bytes)
785 u8 *addr = page_address(page);
787 metadata_access_enable();
788 fault = memchr_inv(start, value, bytes);
789 metadata_access_disable();
794 while (end > fault && end[-1] == value)
797 slab_bug(s, "%s overwritten", what);
798 pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
799 fault, end - 1, fault - addr,
801 print_trailer(s, page, object);
803 restore_bytes(s, what, value, fault, end);
811 * Bytes of the object to be managed.
812 * If the freepointer may overlay the object then the free
813 * pointer is at the middle of the object.
815 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
818 * object + s->object_size
819 * Padding to reach word boundary. This is also used for Redzoning.
820 * Padding is extended by another word if Redzoning is enabled and
821 * object_size == inuse.
823 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
824 * 0xcc (RED_ACTIVE) for objects in use.
827 * Meta data starts here.
829 * A. Free pointer (if we cannot overwrite object on free)
830 * B. Tracking data for SLAB_STORE_USER
831 * C. Padding to reach required alignment boundary or at mininum
832 * one word if debugging is on to be able to detect writes
833 * before the word boundary.
835 * Padding is done using 0x5a (POISON_INUSE)
838 * Nothing is used beyond s->size.
840 * If slabcaches are merged then the object_size and inuse boundaries are mostly
841 * ignored. And therefore no slab options that rely on these boundaries
842 * may be used with merged slabcaches.
845 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
847 unsigned long off = get_info_end(s); /* The end of info */
849 if (s->flags & SLAB_STORE_USER)
850 /* We also have user information there */
851 off += 2 * sizeof(struct track);
853 off += kasan_metadata_size(s);
855 if (size_from_object(s) == off)
858 return check_bytes_and_report(s, page, p, "Object padding",
859 p + off, POISON_INUSE, size_from_object(s) - off);
862 /* Check the pad bytes at the end of a slab page */
863 static int slab_pad_check(struct kmem_cache *s, struct page *page)
872 if (!(s->flags & SLAB_POISON))
875 start = page_address(page);
876 length = page_size(page);
877 end = start + length;
878 remainder = length % s->size;
882 pad = end - remainder;
883 metadata_access_enable();
884 fault = memchr_inv(pad, POISON_INUSE, remainder);
885 metadata_access_disable();
888 while (end > fault && end[-1] == POISON_INUSE)
891 slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
892 fault, end - 1, fault - start);
893 print_section(KERN_ERR, "Padding ", pad, remainder);
895 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
899 static int check_object(struct kmem_cache *s, struct page *page,
900 void *object, u8 val)
903 u8 *endobject = object + s->object_size;
905 if (s->flags & SLAB_RED_ZONE) {
906 if (!check_bytes_and_report(s, page, object, "Redzone",
907 object - s->red_left_pad, val, s->red_left_pad))
910 if (!check_bytes_and_report(s, page, object, "Redzone",
911 endobject, val, s->inuse - s->object_size))
914 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
915 check_bytes_and_report(s, page, p, "Alignment padding",
916 endobject, POISON_INUSE,
917 s->inuse - s->object_size);
921 if (s->flags & SLAB_POISON) {
922 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
923 (!check_bytes_and_report(s, page, p, "Poison", p,
924 POISON_FREE, s->object_size - 1) ||
925 !check_bytes_and_report(s, page, p, "Poison",
926 p + s->object_size - 1, POISON_END, 1)))
929 * check_pad_bytes cleans up on its own.
931 check_pad_bytes(s, page, p);
934 if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
936 * Object and freepointer overlap. Cannot check
937 * freepointer while object is allocated.
941 /* Check free pointer validity */
942 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
943 object_err(s, page, p, "Freepointer corrupt");
945 * No choice but to zap it and thus lose the remainder
946 * of the free objects in this slab. May cause
947 * another error because the object count is now wrong.
949 set_freepointer(s, p, NULL);
955 static int check_slab(struct kmem_cache *s, struct page *page)
959 VM_BUG_ON(!irqs_disabled());
961 if (!PageSlab(page)) {
962 slab_err(s, page, "Not a valid slab page");
966 maxobj = order_objects(compound_order(page), s->size);
967 if (page->objects > maxobj) {
968 slab_err(s, page, "objects %u > max %u",
969 page->objects, maxobj);
972 if (page->inuse > page->objects) {
973 slab_err(s, page, "inuse %u > max %u",
974 page->inuse, page->objects);
977 /* Slab_pad_check fixes things up after itself */
978 slab_pad_check(s, page);
983 * Determine if a certain object on a page is on the freelist. Must hold the
984 * slab lock to guarantee that the chains are in a consistent state.
986 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
994 while (fp && nr <= page->objects) {
997 if (!check_valid_pointer(s, page, fp)) {
999 object_err(s, page, object,
1000 "Freechain corrupt");
1001 set_freepointer(s, object, NULL);
1003 slab_err(s, page, "Freepointer corrupt");
1004 page->freelist = NULL;
1005 page->inuse = page->objects;
1006 slab_fix(s, "Freelist cleared");
1012 fp = get_freepointer(s, object);
1016 max_objects = order_objects(compound_order(page), s->size);
1017 if (max_objects > MAX_OBJS_PER_PAGE)
1018 max_objects = MAX_OBJS_PER_PAGE;
1020 if (page->objects != max_objects) {
1021 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
1022 page->objects, max_objects);
1023 page->objects = max_objects;
1024 slab_fix(s, "Number of objects adjusted.");
1026 if (page->inuse != page->objects - nr) {
1027 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1028 page->inuse, page->objects - nr);
1029 page->inuse = page->objects - nr;
1030 slab_fix(s, "Object count adjusted.");
1032 return search == NULL;
1035 static void trace(struct kmem_cache *s, struct page *page, void *object,
1038 if (s->flags & SLAB_TRACE) {
1039 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1041 alloc ? "alloc" : "free",
1042 object, page->inuse,
1046 print_section(KERN_INFO, "Object ", (void *)object,
1054 * Tracking of fully allocated slabs for debugging purposes.
1056 static void add_full(struct kmem_cache *s,
1057 struct kmem_cache_node *n, struct page *page)
1059 if (!(s->flags & SLAB_STORE_USER))
1062 lockdep_assert_held(&n->list_lock);
1063 list_add(&page->slab_list, &n->full);
1066 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1068 if (!(s->flags & SLAB_STORE_USER))
1071 lockdep_assert_held(&n->list_lock);
1072 list_del(&page->slab_list);
1075 /* Tracking of the number of slabs for debugging purposes */
1076 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1078 struct kmem_cache_node *n = get_node(s, node);
1080 return atomic_long_read(&n->nr_slabs);
1083 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1085 return atomic_long_read(&n->nr_slabs);
1088 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1090 struct kmem_cache_node *n = get_node(s, node);
1093 * May be called early in order to allocate a slab for the
1094 * kmem_cache_node structure. Solve the chicken-egg
1095 * dilemma by deferring the increment of the count during
1096 * bootstrap (see early_kmem_cache_node_alloc).
1099 atomic_long_inc(&n->nr_slabs);
1100 atomic_long_add(objects, &n->total_objects);
1103 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1105 struct kmem_cache_node *n = get_node(s, node);
1107 atomic_long_dec(&n->nr_slabs);
1108 atomic_long_sub(objects, &n->total_objects);
1111 /* Object debug checks for alloc/free paths */
1112 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1115 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1118 init_object(s, object, SLUB_RED_INACTIVE);
1119 init_tracking(s, object);
1123 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1125 if (!(s->flags & SLAB_POISON))
1128 metadata_access_enable();
1129 memset(addr, POISON_INUSE, page_size(page));
1130 metadata_access_disable();
1133 static inline int alloc_consistency_checks(struct kmem_cache *s,
1134 struct page *page, void *object)
1136 if (!check_slab(s, page))
1139 if (!check_valid_pointer(s, page, object)) {
1140 object_err(s, page, object, "Freelist Pointer check fails");
1144 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1150 static noinline int alloc_debug_processing(struct kmem_cache *s,
1152 void *object, unsigned long addr)
1154 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1155 if (!alloc_consistency_checks(s, page, object))
1159 /* Success perform special debug activities for allocs */
1160 if (s->flags & SLAB_STORE_USER)
1161 set_track(s, object, TRACK_ALLOC, addr);
1162 trace(s, page, object, 1);
1163 init_object(s, object, SLUB_RED_ACTIVE);
1167 if (PageSlab(page)) {
1169 * If this is a slab page then lets do the best we can
1170 * to avoid issues in the future. Marking all objects
1171 * as used avoids touching the remaining objects.
1173 slab_fix(s, "Marking all objects used");
1174 page->inuse = page->objects;
1175 page->freelist = NULL;
1180 static inline int free_consistency_checks(struct kmem_cache *s,
1181 struct page *page, void *object, unsigned long addr)
1183 if (!check_valid_pointer(s, page, object)) {
1184 slab_err(s, page, "Invalid object pointer 0x%p", object);
1188 if (on_freelist(s, page, object)) {
1189 object_err(s, page, object, "Object already free");
1193 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1196 if (unlikely(s != page->slab_cache)) {
1197 if (!PageSlab(page)) {
1198 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1200 } else if (!page->slab_cache) {
1201 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1205 object_err(s, page, object,
1206 "page slab pointer corrupt.");
1212 /* Supports checking bulk free of a constructed freelist */
1213 static noinline int free_debug_processing(
1214 struct kmem_cache *s, struct page *page,
1215 void *head, void *tail, int bulk_cnt,
1218 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1219 void *object = head;
1221 unsigned long uninitialized_var(flags);
1224 spin_lock_irqsave(&n->list_lock, flags);
1227 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1228 if (!check_slab(s, page))
1235 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1236 if (!free_consistency_checks(s, page, object, addr))
1240 if (s->flags & SLAB_STORE_USER)
1241 set_track(s, object, TRACK_FREE, addr);
1242 trace(s, page, object, 0);
1243 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1244 init_object(s, object, SLUB_RED_INACTIVE);
1246 /* Reached end of constructed freelist yet? */
1247 if (object != tail) {
1248 object = get_freepointer(s, object);
1254 if (cnt != bulk_cnt)
1255 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1259 spin_unlock_irqrestore(&n->list_lock, flags);
1261 slab_fix(s, "Object at 0x%p not freed", object);
1265 static int __init setup_slub_debug(char *str)
1267 slub_debug = DEBUG_DEFAULT_FLAGS;
1268 if (*str++ != '=' || !*str)
1270 * No options specified. Switch on full debugging.
1276 * No options but restriction on slabs. This means full
1277 * debugging for slabs matching a pattern.
1284 * Switch off all debugging measures.
1289 * Determine which debug features should be switched on
1291 for (; *str && *str != ','; str++) {
1292 switch (tolower(*str)) {
1294 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1297 slub_debug |= SLAB_RED_ZONE;
1300 slub_debug |= SLAB_POISON;
1303 slub_debug |= SLAB_STORE_USER;
1306 slub_debug |= SLAB_TRACE;
1309 slub_debug |= SLAB_FAILSLAB;
1313 * Avoid enabling debugging on caches if its minimum
1314 * order would increase as a result.
1316 disable_higher_order_debug = 1;
1319 pr_err("slub_debug option '%c' unknown. skipped\n",
1326 slub_debug_slabs = str + 1;
1328 if ((static_branch_unlikely(&init_on_alloc) ||
1329 static_branch_unlikely(&init_on_free)) &&
1330 (slub_debug & SLAB_POISON))
1331 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1335 __setup("slub_debug", setup_slub_debug);
1338 * kmem_cache_flags - apply debugging options to the cache
1339 * @object_size: the size of an object without meta data
1340 * @flags: flags to set
1341 * @name: name of the cache
1342 * @ctor: constructor function
1344 * Debug option(s) are applied to @flags. In addition to the debug
1345 * option(s), if a slab name (or multiple) is specified i.e.
1346 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1347 * then only the select slabs will receive the debug option(s).
1349 slab_flags_t kmem_cache_flags(unsigned int object_size,
1350 slab_flags_t flags, const char *name,
1351 void (*ctor)(void *))
1356 /* If slub_debug = 0, it folds into the if conditional. */
1357 if (!slub_debug_slabs)
1358 return flags | slub_debug;
1361 iter = slub_debug_slabs;
1366 end = strchrnul(iter, ',');
1368 glob = strnchr(iter, end - iter, '*');
1370 cmplen = glob - iter;
1372 cmplen = max_t(size_t, len, (end - iter));
1374 if (!strncmp(name, iter, cmplen)) {
1375 flags |= slub_debug;
1386 #else /* !CONFIG_SLUB_DEBUG */
1387 static inline void setup_object_debug(struct kmem_cache *s,
1388 struct page *page, void *object) {}
1390 void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
1392 static inline int alloc_debug_processing(struct kmem_cache *s,
1393 struct page *page, void *object, unsigned long addr) { return 0; }
1395 static inline int free_debug_processing(
1396 struct kmem_cache *s, struct page *page,
1397 void *head, void *tail, int bulk_cnt,
1398 unsigned long addr) { return 0; }
1400 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1402 static inline int check_object(struct kmem_cache *s, struct page *page,
1403 void *object, u8 val) { return 1; }
1404 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1405 struct page *page) {}
1406 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1407 struct page *page) {}
1408 slab_flags_t kmem_cache_flags(unsigned int object_size,
1409 slab_flags_t flags, const char *name,
1410 void (*ctor)(void *))
1414 #define slub_debug 0
1416 #define disable_higher_order_debug 0
1418 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1420 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1422 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1424 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1427 static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
1428 void *freelist, void *nextfree)
1432 #endif /* CONFIG_SLUB_DEBUG */
1435 * Hooks for other subsystems that check memory allocations. In a typical
1436 * production configuration these hooks all should produce no code at all.
1438 static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1440 ptr = kasan_kmalloc_large(ptr, size, flags);
1441 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1442 kmemleak_alloc(ptr, size, 1, flags);
1446 static __always_inline void kfree_hook(void *x)
1449 kasan_kfree_large(x, _RET_IP_);
1452 static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1454 kmemleak_free_recursive(x, s->flags);
1457 * Trouble is that we may no longer disable interrupts in the fast path
1458 * So in order to make the debug calls that expect irqs to be
1459 * disabled we need to disable interrupts temporarily.
1461 #ifdef CONFIG_LOCKDEP
1463 unsigned long flags;
1465 local_irq_save(flags);
1466 debug_check_no_locks_freed(x, s->object_size);
1467 local_irq_restore(flags);
1470 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1471 debug_check_no_obj_freed(x, s->object_size);
1473 /* KASAN might put x into memory quarantine, delaying its reuse */
1474 return kasan_slab_free(s, x, _RET_IP_);
1477 static inline bool slab_free_freelist_hook(struct kmem_cache *s,
1478 void **head, void **tail)
1483 void *old_tail = *tail ? *tail : *head;
1486 /* Head and tail of the reconstructed freelist */
1492 next = get_freepointer(s, object);
1494 if (slab_want_init_on_free(s)) {
1496 * Clear the object and the metadata, but don't touch
1499 memset(object, 0, s->object_size);
1500 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
1502 memset((char *)object + s->inuse, 0,
1503 s->size - s->inuse - rsize);
1506 /* If object's reuse doesn't have to be delayed */
1507 if (!slab_free_hook(s, object)) {
1508 /* Move object to the new freelist */
1509 set_freepointer(s, object, *head);
1514 } while (object != old_tail);
1519 return *head != NULL;
1522 static void *setup_object(struct kmem_cache *s, struct page *page,
1525 setup_object_debug(s, page, object);
1526 object = kasan_init_slab_obj(s, object);
1527 if (unlikely(s->ctor)) {
1528 kasan_unpoison_object_data(s, object);
1530 kasan_poison_object_data(s, object);
1536 * Slab allocation and freeing
1538 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1539 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1542 unsigned int order = oo_order(oo);
1544 if (node == NUMA_NO_NODE)
1545 page = alloc_pages(flags, order);
1547 page = __alloc_pages_node(node, flags, order);
1549 if (page && charge_slab_page(page, flags, order, s)) {
1550 __free_pages(page, order);
1557 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1558 /* Pre-initialize the random sequence cache */
1559 static int init_cache_random_seq(struct kmem_cache *s)
1561 unsigned int count = oo_objects(s->oo);
1564 /* Bailout if already initialised */
1568 err = cache_random_seq_create(s, count, GFP_KERNEL);
1570 pr_err("SLUB: Unable to initialize free list for %s\n",
1575 /* Transform to an offset on the set of pages */
1576 if (s->random_seq) {
1579 for (i = 0; i < count; i++)
1580 s->random_seq[i] *= s->size;
1585 /* Initialize each random sequence freelist per cache */
1586 static void __init init_freelist_randomization(void)
1588 struct kmem_cache *s;
1590 mutex_lock(&slab_mutex);
1592 list_for_each_entry(s, &slab_caches, list)
1593 init_cache_random_seq(s);
1595 mutex_unlock(&slab_mutex);
1598 /* Get the next entry on the pre-computed freelist randomized */
1599 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1600 unsigned long *pos, void *start,
1601 unsigned long page_limit,
1602 unsigned long freelist_count)
1607 * If the target page allocation failed, the number of objects on the
1608 * page might be smaller than the usual size defined by the cache.
1611 idx = s->random_seq[*pos];
1613 if (*pos >= freelist_count)
1615 } while (unlikely(idx >= page_limit));
1617 return (char *)start + idx;
1620 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1621 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1626 unsigned long idx, pos, page_limit, freelist_count;
1628 if (page->objects < 2 || !s->random_seq)
1631 freelist_count = oo_objects(s->oo);
1632 pos = get_random_int() % freelist_count;
1634 page_limit = page->objects * s->size;
1635 start = fixup_red_left(s, page_address(page));
1637 /* First entry is used as the base of the freelist */
1638 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1640 cur = setup_object(s, page, cur);
1641 page->freelist = cur;
1643 for (idx = 1; idx < page->objects; idx++) {
1644 next = next_freelist_entry(s, page, &pos, start, page_limit,
1646 next = setup_object(s, page, next);
1647 set_freepointer(s, cur, next);
1650 set_freepointer(s, cur, NULL);
1655 static inline int init_cache_random_seq(struct kmem_cache *s)
1659 static inline void init_freelist_randomization(void) { }
1660 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1664 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1666 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1669 struct kmem_cache_order_objects oo = s->oo;
1671 void *start, *p, *next;
1675 flags &= gfp_allowed_mask;
1677 if (gfpflags_allow_blocking(flags))
1680 flags |= s->allocflags;
1683 * Let the initial higher-order allocation fail under memory pressure
1684 * so we fall-back to the minimum order allocation.
1686 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1687 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1688 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1690 page = alloc_slab_page(s, alloc_gfp, node, oo);
1691 if (unlikely(!page)) {
1695 * Allocation may have failed due to fragmentation.
1696 * Try a lower order alloc if possible
1698 page = alloc_slab_page(s, alloc_gfp, node, oo);
1699 if (unlikely(!page))
1701 stat(s, ORDER_FALLBACK);
1704 page->objects = oo_objects(oo);
1706 page->slab_cache = s;
1707 __SetPageSlab(page);
1708 if (page_is_pfmemalloc(page))
1709 SetPageSlabPfmemalloc(page);
1711 kasan_poison_slab(page);
1713 start = page_address(page);
1715 setup_page_debug(s, page, start);
1717 shuffle = shuffle_freelist(s, page);
1720 start = fixup_red_left(s, start);
1721 start = setup_object(s, page, start);
1722 page->freelist = start;
1723 for (idx = 0, p = start; idx < page->objects - 1; idx++) {
1725 next = setup_object(s, page, next);
1726 set_freepointer(s, p, next);
1729 set_freepointer(s, p, NULL);
1732 page->inuse = page->objects;
1736 if (gfpflags_allow_blocking(flags))
1737 local_irq_disable();
1741 inc_slabs_node(s, page_to_nid(page), page->objects);
1746 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1748 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1749 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1750 flags &= ~GFP_SLAB_BUG_MASK;
1751 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1752 invalid_mask, &invalid_mask, flags, &flags);
1756 return allocate_slab(s,
1757 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1760 static void __free_slab(struct kmem_cache *s, struct page *page)
1762 int order = compound_order(page);
1763 int pages = 1 << order;
1765 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1768 slab_pad_check(s, page);
1769 for_each_object(p, s, page_address(page),
1771 check_object(s, page, p, SLUB_RED_INACTIVE);
1774 __ClearPageSlabPfmemalloc(page);
1775 __ClearPageSlab(page);
1777 page->mapping = NULL;
1778 if (current->reclaim_state)
1779 current->reclaim_state->reclaimed_slab += pages;
1780 uncharge_slab_page(page, order, s);
1781 __free_pages(page, order);
1784 static void rcu_free_slab(struct rcu_head *h)
1786 struct page *page = container_of(h, struct page, rcu_head);
1788 __free_slab(page->slab_cache, page);
1791 static void free_slab(struct kmem_cache *s, struct page *page)
1793 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1794 call_rcu(&page->rcu_head, rcu_free_slab);
1796 __free_slab(s, page);
1799 static void discard_slab(struct kmem_cache *s, struct page *page)
1801 dec_slabs_node(s, page_to_nid(page), page->objects);
1806 * Management of partially allocated slabs.
1809 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1812 if (tail == DEACTIVATE_TO_TAIL)
1813 list_add_tail(&page->slab_list, &n->partial);
1815 list_add(&page->slab_list, &n->partial);
1818 static inline void add_partial(struct kmem_cache_node *n,
1819 struct page *page, int tail)
1821 lockdep_assert_held(&n->list_lock);
1822 __add_partial(n, page, tail);
1825 static inline void remove_partial(struct kmem_cache_node *n,
1828 lockdep_assert_held(&n->list_lock);
1829 list_del(&page->slab_list);
1834 * Remove slab from the partial list, freeze it and
1835 * return the pointer to the freelist.
1837 * Returns a list of objects or NULL if it fails.
1839 static inline void *acquire_slab(struct kmem_cache *s,
1840 struct kmem_cache_node *n, struct page *page,
1841 int mode, int *objects)
1844 unsigned long counters;
1847 lockdep_assert_held(&n->list_lock);
1850 * Zap the freelist and set the frozen bit.
1851 * The old freelist is the list of objects for the
1852 * per cpu allocation list.
1854 freelist = page->freelist;
1855 counters = page->counters;
1856 new.counters = counters;
1857 *objects = new.objects - new.inuse;
1859 new.inuse = page->objects;
1860 new.freelist = NULL;
1862 new.freelist = freelist;
1865 VM_BUG_ON(new.frozen);
1868 if (!__cmpxchg_double_slab(s, page,
1870 new.freelist, new.counters,
1874 remove_partial(n, page);
1879 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1880 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1883 * Try to allocate a partial slab from a specific node.
1885 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1886 struct kmem_cache_cpu *c, gfp_t flags)
1888 struct page *page, *page2;
1889 void *object = NULL;
1890 unsigned int available = 0;
1894 * Racy check. If we mistakenly see no partial slabs then we
1895 * just allocate an empty slab. If we mistakenly try to get a
1896 * partial slab and there is none available then get_partials()
1899 if (!n || !n->nr_partial)
1902 spin_lock(&n->list_lock);
1903 list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1906 if (!pfmemalloc_match(page, flags))
1909 t = acquire_slab(s, n, page, object == NULL, &objects);
1913 available += objects;
1916 stat(s, ALLOC_FROM_PARTIAL);
1919 put_cpu_partial(s, page, 0);
1920 stat(s, CPU_PARTIAL_NODE);
1922 if (!kmem_cache_has_cpu_partial(s)
1923 || available > slub_cpu_partial(s) / 2)
1927 spin_unlock(&n->list_lock);
1932 * Get a page from somewhere. Search in increasing NUMA distances.
1934 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1935 struct kmem_cache_cpu *c)
1938 struct zonelist *zonelist;
1941 enum zone_type highest_zoneidx = gfp_zone(flags);
1943 unsigned int cpuset_mems_cookie;
1946 * The defrag ratio allows a configuration of the tradeoffs between
1947 * inter node defragmentation and node local allocations. A lower
1948 * defrag_ratio increases the tendency to do local allocations
1949 * instead of attempting to obtain partial slabs from other nodes.
1951 * If the defrag_ratio is set to 0 then kmalloc() always
1952 * returns node local objects. If the ratio is higher then kmalloc()
1953 * may return off node objects because partial slabs are obtained
1954 * from other nodes and filled up.
1956 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1957 * (which makes defrag_ratio = 1000) then every (well almost)
1958 * allocation will first attempt to defrag slab caches on other nodes.
1959 * This means scanning over all nodes to look for partial slabs which
1960 * may be expensive if we do it every time we are trying to find a slab
1961 * with available objects.
1963 if (!s->remote_node_defrag_ratio ||
1964 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1968 cpuset_mems_cookie = read_mems_allowed_begin();
1969 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1970 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
1971 struct kmem_cache_node *n;
1973 n = get_node(s, zone_to_nid(zone));
1975 if (n && cpuset_zone_allowed(zone, flags) &&
1976 n->nr_partial > s->min_partial) {
1977 object = get_partial_node(s, n, c, flags);
1980 * Don't check read_mems_allowed_retry()
1981 * here - if mems_allowed was updated in
1982 * parallel, that was a harmless race
1983 * between allocation and the cpuset
1990 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1991 #endif /* CONFIG_NUMA */
1996 * Get a partial page, lock it and return it.
1998 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1999 struct kmem_cache_cpu *c)
2002 int searchnode = node;
2004 if (node == NUMA_NO_NODE)
2005 searchnode = numa_mem_id();
2007 object = get_partial_node(s, get_node(s, searchnode), c, flags);
2008 if (object || node != NUMA_NO_NODE)
2011 return get_any_partial(s, flags, c);
2014 #ifdef CONFIG_PREEMPTION
2016 * Calculate the next globally unique transaction for disambiguation
2017 * during cmpxchg. The transactions start with the cpu number and are then
2018 * incremented by CONFIG_NR_CPUS.
2020 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2023 * No preemption supported therefore also no need to check for
2029 static inline unsigned long next_tid(unsigned long tid)
2031 return tid + TID_STEP;
2034 #ifdef SLUB_DEBUG_CMPXCHG
2035 static inline unsigned int tid_to_cpu(unsigned long tid)
2037 return tid % TID_STEP;
2040 static inline unsigned long tid_to_event(unsigned long tid)
2042 return tid / TID_STEP;
2046 static inline unsigned int init_tid(int cpu)
2051 static inline void note_cmpxchg_failure(const char *n,
2052 const struct kmem_cache *s, unsigned long tid)
2054 #ifdef SLUB_DEBUG_CMPXCHG
2055 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2057 pr_info("%s %s: cmpxchg redo ", n, s->name);
2059 #ifdef CONFIG_PREEMPTION
2060 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2061 pr_warn("due to cpu change %d -> %d\n",
2062 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2065 if (tid_to_event(tid) != tid_to_event(actual_tid))
2066 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2067 tid_to_event(tid), tid_to_event(actual_tid));
2069 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2070 actual_tid, tid, next_tid(tid));
2072 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2075 static void init_kmem_cache_cpus(struct kmem_cache *s)
2079 for_each_possible_cpu(cpu)
2080 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2084 * Remove the cpu slab
2086 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2087 void *freelist, struct kmem_cache_cpu *c)
2089 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2090 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2092 enum slab_modes l = M_NONE, m = M_NONE;
2094 int tail = DEACTIVATE_TO_HEAD;
2098 if (page->freelist) {
2099 stat(s, DEACTIVATE_REMOTE_FREES);
2100 tail = DEACTIVATE_TO_TAIL;
2104 * Stage one: Free all available per cpu objects back
2105 * to the page freelist while it is still frozen. Leave the
2108 * There is no need to take the list->lock because the page
2111 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2113 unsigned long counters;
2116 * If 'nextfree' is invalid, it is possible that the object at
2117 * 'freelist' is already corrupted. So isolate all objects
2118 * starting at 'freelist'.
2120 if (freelist_corrupted(s, page, freelist, nextfree))
2124 prior = page->freelist;
2125 counters = page->counters;
2126 set_freepointer(s, freelist, prior);
2127 new.counters = counters;
2129 VM_BUG_ON(!new.frozen);
2131 } while (!__cmpxchg_double_slab(s, page,
2133 freelist, new.counters,
2134 "drain percpu freelist"));
2136 freelist = nextfree;
2140 * Stage two: Ensure that the page is unfrozen while the
2141 * list presence reflects the actual number of objects
2144 * We setup the list membership and then perform a cmpxchg
2145 * with the count. If there is a mismatch then the page
2146 * is not unfrozen but the page is on the wrong list.
2148 * Then we restart the process which may have to remove
2149 * the page from the list that we just put it on again
2150 * because the number of objects in the slab may have
2155 old.freelist = page->freelist;
2156 old.counters = page->counters;
2157 VM_BUG_ON(!old.frozen);
2159 /* Determine target state of the slab */
2160 new.counters = old.counters;
2163 set_freepointer(s, freelist, old.freelist);
2164 new.freelist = freelist;
2166 new.freelist = old.freelist;
2170 if (!new.inuse && n->nr_partial >= s->min_partial)
2172 else if (new.freelist) {
2177 * Taking the spinlock removes the possibility
2178 * that acquire_slab() will see a slab page that
2181 spin_lock(&n->list_lock);
2185 if (kmem_cache_debug(s) && !lock) {
2188 * This also ensures that the scanning of full
2189 * slabs from diagnostic functions will not see
2192 spin_lock(&n->list_lock);
2198 remove_partial(n, page);
2199 else if (l == M_FULL)
2200 remove_full(s, n, page);
2203 add_partial(n, page, tail);
2204 else if (m == M_FULL)
2205 add_full(s, n, page);
2209 if (!__cmpxchg_double_slab(s, page,
2210 old.freelist, old.counters,
2211 new.freelist, new.counters,
2216 spin_unlock(&n->list_lock);
2220 else if (m == M_FULL)
2221 stat(s, DEACTIVATE_FULL);
2222 else if (m == M_FREE) {
2223 stat(s, DEACTIVATE_EMPTY);
2224 discard_slab(s, page);
2233 * Unfreeze all the cpu partial slabs.
2235 * This function must be called with interrupts disabled
2236 * for the cpu using c (or some other guarantee must be there
2237 * to guarantee no concurrent accesses).
2239 static void unfreeze_partials(struct kmem_cache *s,
2240 struct kmem_cache_cpu *c)
2242 #ifdef CONFIG_SLUB_CPU_PARTIAL
2243 struct kmem_cache_node *n = NULL, *n2 = NULL;
2244 struct page *page, *discard_page = NULL;
2246 while ((page = slub_percpu_partial(c))) {
2250 slub_set_percpu_partial(c, page);
2252 n2 = get_node(s, page_to_nid(page));
2255 spin_unlock(&n->list_lock);
2258 spin_lock(&n->list_lock);
2263 old.freelist = page->freelist;
2264 old.counters = page->counters;
2265 VM_BUG_ON(!old.frozen);
2267 new.counters = old.counters;
2268 new.freelist = old.freelist;
2272 } while (!__cmpxchg_double_slab(s, page,
2273 old.freelist, old.counters,
2274 new.freelist, new.counters,
2275 "unfreezing slab"));
2277 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2278 page->next = discard_page;
2279 discard_page = page;
2281 add_partial(n, page, DEACTIVATE_TO_TAIL);
2282 stat(s, FREE_ADD_PARTIAL);
2287 spin_unlock(&n->list_lock);
2289 while (discard_page) {
2290 page = discard_page;
2291 discard_page = discard_page->next;
2293 stat(s, DEACTIVATE_EMPTY);
2294 discard_slab(s, page);
2297 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2301 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
2302 * partial page slot if available.
2304 * If we did not find a slot then simply move all the partials to the
2305 * per node partial list.
2307 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2309 #ifdef CONFIG_SLUB_CPU_PARTIAL
2310 struct page *oldpage;
2318 oldpage = this_cpu_read(s->cpu_slab->partial);
2321 pobjects = oldpage->pobjects;
2322 pages = oldpage->pages;
2323 if (drain && pobjects > slub_cpu_partial(s)) {
2324 unsigned long flags;
2326 * partial array is full. Move the existing
2327 * set to the per node partial list.
2329 local_irq_save(flags);
2330 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2331 local_irq_restore(flags);
2335 stat(s, CPU_PARTIAL_DRAIN);
2340 pobjects += page->objects - page->inuse;
2342 page->pages = pages;
2343 page->pobjects = pobjects;
2344 page->next = oldpage;
2346 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2348 if (unlikely(!slub_cpu_partial(s))) {
2349 unsigned long flags;
2351 local_irq_save(flags);
2352 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2353 local_irq_restore(flags);
2356 #endif /* CONFIG_SLUB_CPU_PARTIAL */
2359 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2361 stat(s, CPUSLAB_FLUSH);
2362 deactivate_slab(s, c->page, c->freelist, c);
2364 c->tid = next_tid(c->tid);
2370 * Called from IPI handler with interrupts disabled.
2372 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2374 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2379 unfreeze_partials(s, c);
2382 static void flush_cpu_slab(void *d)
2384 struct kmem_cache *s = d;
2386 __flush_cpu_slab(s, smp_processor_id());
2389 static bool has_cpu_slab(int cpu, void *info)
2391 struct kmem_cache *s = info;
2392 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2394 return c->page || slub_percpu_partial(c);
2397 static void flush_all(struct kmem_cache *s)
2399 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
2403 * Use the cpu notifier to insure that the cpu slabs are flushed when
2406 static int slub_cpu_dead(unsigned int cpu)
2408 struct kmem_cache *s;
2409 unsigned long flags;
2411 mutex_lock(&slab_mutex);
2412 list_for_each_entry(s, &slab_caches, list) {
2413 local_irq_save(flags);
2414 __flush_cpu_slab(s, cpu);
2415 local_irq_restore(flags);
2417 mutex_unlock(&slab_mutex);
2422 * Check if the objects in a per cpu structure fit numa
2423 * locality expectations.
2425 static inline int node_match(struct page *page, int node)
2428 if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2434 #ifdef CONFIG_SLUB_DEBUG
2435 static int count_free(struct page *page)
2437 return page->objects - page->inuse;
2440 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2442 return atomic_long_read(&n->total_objects);
2444 #endif /* CONFIG_SLUB_DEBUG */
2446 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2447 static unsigned long count_partial(struct kmem_cache_node *n,
2448 int (*get_count)(struct page *))
2450 unsigned long flags;
2451 unsigned long x = 0;
2454 spin_lock_irqsave(&n->list_lock, flags);
2455 list_for_each_entry(page, &n->partial, slab_list)
2456 x += get_count(page);
2457 spin_unlock_irqrestore(&n->list_lock, flags);
2460 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2462 static noinline void
2463 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2465 #ifdef CONFIG_SLUB_DEBUG
2466 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2467 DEFAULT_RATELIMIT_BURST);
2469 struct kmem_cache_node *n;
2471 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2474 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2475 nid, gfpflags, &gfpflags);
2476 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2477 s->name, s->object_size, s->size, oo_order(s->oo),
2480 if (oo_order(s->min) > get_order(s->object_size))
2481 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2484 for_each_kmem_cache_node(s, node, n) {
2485 unsigned long nr_slabs;
2486 unsigned long nr_objs;
2487 unsigned long nr_free;
2489 nr_free = count_partial(n, count_free);
2490 nr_slabs = node_nr_slabs(n);
2491 nr_objs = node_nr_objs(n);
2493 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2494 node, nr_slabs, nr_objs, nr_free);
2499 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2500 int node, struct kmem_cache_cpu **pc)
2503 struct kmem_cache_cpu *c = *pc;
2506 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2508 freelist = get_partial(s, flags, node, c);
2513 page = new_slab(s, flags, node);
2515 c = raw_cpu_ptr(s->cpu_slab);
2520 * No other reference to the page yet so we can
2521 * muck around with it freely without cmpxchg
2523 freelist = page->freelist;
2524 page->freelist = NULL;
2526 stat(s, ALLOC_SLAB);
2534 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2536 if (unlikely(PageSlabPfmemalloc(page)))
2537 return gfp_pfmemalloc_allowed(gfpflags);
2543 * Check the page->freelist of a page and either transfer the freelist to the
2544 * per cpu freelist or deactivate the page.
2546 * The page is still frozen if the return value is not NULL.
2548 * If this function returns NULL then the page has been unfrozen.
2550 * This function must be called with interrupt disabled.
2552 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2555 unsigned long counters;
2559 freelist = page->freelist;
2560 counters = page->counters;
2562 new.counters = counters;
2563 VM_BUG_ON(!new.frozen);
2565 new.inuse = page->objects;
2566 new.frozen = freelist != NULL;
2568 } while (!__cmpxchg_double_slab(s, page,
2577 * Slow path. The lockless freelist is empty or we need to perform
2580 * Processing is still very fast if new objects have been freed to the
2581 * regular freelist. In that case we simply take over the regular freelist
2582 * as the lockless freelist and zap the regular freelist.
2584 * If that is not working then we fall back to the partial lists. We take the
2585 * first element of the freelist as the object to allocate now and move the
2586 * rest of the freelist to the lockless freelist.
2588 * And if we were unable to get a new slab from the partial slab lists then
2589 * we need to allocate a new slab. This is the slowest path since it involves
2590 * a call to the page allocator and the setup of a new slab.
2592 * Version of __slab_alloc to use when we know that interrupts are
2593 * already disabled (which is the case for bulk allocation).
2595 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596 unsigned long addr, struct kmem_cache_cpu *c)
2604 * if the node is not online or has no normal memory, just
2605 * ignore the node constraint
2607 if (unlikely(node != NUMA_NO_NODE &&
2608 !node_state(node, N_NORMAL_MEMORY)))
2609 node = NUMA_NO_NODE;
2614 if (unlikely(!node_match(page, node))) {
2616 * same as above but node_match() being false already
2617 * implies node != NUMA_NO_NODE
2619 if (!node_state(node, N_NORMAL_MEMORY)) {
2620 node = NUMA_NO_NODE;
2623 stat(s, ALLOC_NODE_MISMATCH);
2624 deactivate_slab(s, page, c->freelist, c);
2630 * By rights, we should be searching for a slab page that was
2631 * PFMEMALLOC but right now, we are losing the pfmemalloc
2632 * information when the page leaves the per-cpu allocator
2634 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2635 deactivate_slab(s, page, c->freelist, c);
2639 /* must check again c->freelist in case of cpu migration or IRQ */
2640 freelist = c->freelist;
2644 freelist = get_freelist(s, page);
2648 stat(s, DEACTIVATE_BYPASS);
2652 stat(s, ALLOC_REFILL);
2656 * freelist is pointing to the list of objects to be used.
2657 * page is pointing to the page from which the objects are obtained.
2658 * That page must be frozen for per cpu allocations to work.
2660 VM_BUG_ON(!c->page->frozen);
2661 c->freelist = get_freepointer(s, freelist);
2662 c->tid = next_tid(c->tid);
2667 if (slub_percpu_partial(c)) {
2668 page = c->page = slub_percpu_partial(c);
2669 slub_set_percpu_partial(c, page);
2670 stat(s, CPU_PARTIAL_ALLOC);
2674 freelist = new_slab_objects(s, gfpflags, node, &c);
2676 if (unlikely(!freelist)) {
2677 slab_out_of_memory(s, gfpflags, node);
2682 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2685 /* Only entered in the debug case */
2686 if (kmem_cache_debug(s) &&
2687 !alloc_debug_processing(s, page, freelist, addr))
2688 goto new_slab; /* Slab failed checks. Next slab needed */
2690 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2695 * Another one that disabled interrupt and compensates for possible
2696 * cpu changes by refetching the per cpu area pointer.
2698 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2699 unsigned long addr, struct kmem_cache_cpu *c)
2702 unsigned long flags;
2704 local_irq_save(flags);
2705 #ifdef CONFIG_PREEMPTION
2707 * We may have been preempted and rescheduled on a different
2708 * cpu before disabling interrupts. Need to reload cpu area
2711 c = this_cpu_ptr(s->cpu_slab);
2714 p = ___slab_alloc(s, gfpflags, node, addr, c);
2715 local_irq_restore(flags);
2720 * If the object has been wiped upon free, make sure it's fully initialized by
2721 * zeroing out freelist pointer.
2723 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
2726 if (unlikely(slab_want_init_on_free(s)) && obj)
2727 memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
2731 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2732 * have the fastpath folded into their functions. So no function call
2733 * overhead for requests that can be satisfied on the fastpath.
2735 * The fastpath works by first checking if the lockless freelist can be used.
2736 * If not then __slab_alloc is called for slow processing.
2738 * Otherwise we can simply pick the next object from the lockless free list.
2740 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2741 gfp_t gfpflags, int node, unsigned long addr)
2744 struct kmem_cache_cpu *c;
2748 s = slab_pre_alloc_hook(s, gfpflags);
2753 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2754 * enabled. We may switch back and forth between cpus while
2755 * reading from one cpu area. That does not matter as long
2756 * as we end up on the original cpu again when doing the cmpxchg.
2758 * We should guarantee that tid and kmem_cache are retrieved on
2759 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2760 * to check if it is matched or not.
2763 tid = this_cpu_read(s->cpu_slab->tid);
2764 c = raw_cpu_ptr(s->cpu_slab);
2765 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
2766 unlikely(tid != READ_ONCE(c->tid)));
2769 * Irqless object alloc/free algorithm used here depends on sequence
2770 * of fetching cpu_slab's data. tid should be fetched before anything
2771 * on c to guarantee that object and page associated with previous tid
2772 * won't be used with current tid. If we fetch tid first, object and
2773 * page could be one associated with next tid and our alloc/free
2774 * request will be failed. In this case, we will retry. So, no problem.
2779 * The transaction ids are globally unique per cpu and per operation on
2780 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2781 * occurs on the right processor and that there was no operation on the
2782 * linked list in between.
2785 object = c->freelist;
2787 if (unlikely(!object || !node_match(page, node))) {
2788 object = __slab_alloc(s, gfpflags, node, addr, c);
2789 stat(s, ALLOC_SLOWPATH);
2791 void *next_object = get_freepointer_safe(s, object);
2794 * The cmpxchg will only match if there was no additional
2795 * operation and if we are on the right processor.
2797 * The cmpxchg does the following atomically (without lock
2799 * 1. Relocate first pointer to the current per cpu area.
2800 * 2. Verify that tid and freelist have not been changed
2801 * 3. If they were not changed replace tid and freelist
2803 * Since this is without lock semantics the protection is only
2804 * against code executing on this cpu *not* from access by
2807 if (unlikely(!this_cpu_cmpxchg_double(
2808 s->cpu_slab->freelist, s->cpu_slab->tid,
2810 next_object, next_tid(tid)))) {
2812 note_cmpxchg_failure("slab_alloc", s, tid);
2815 prefetch_freepointer(s, next_object);
2816 stat(s, ALLOC_FASTPATH);
2819 maybe_wipe_obj_freeptr(s, object);
2821 if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2822 memset(object, 0, s->object_size);
2824 slab_post_alloc_hook(s, gfpflags, 1, &object);
2829 static __always_inline void *slab_alloc(struct kmem_cache *s,
2830 gfp_t gfpflags, unsigned long addr)
2832 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2835 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2837 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2839 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2844 EXPORT_SYMBOL(kmem_cache_alloc);
2846 #ifdef CONFIG_TRACING
2847 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2849 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2850 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2851 ret = kasan_kmalloc(s, ret, size, gfpflags);
2854 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2858 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2860 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2862 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2863 s->object_size, s->size, gfpflags, node);
2867 EXPORT_SYMBOL(kmem_cache_alloc_node);
2869 #ifdef CONFIG_TRACING
2870 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2872 int node, size_t size)
2874 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2876 trace_kmalloc_node(_RET_IP_, ret,
2877 size, s->size, gfpflags, node);
2879 ret = kasan_kmalloc(s, ret, size, gfpflags);
2882 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2884 #endif /* CONFIG_NUMA */
2887 * Slow path handling. This may still be called frequently since objects
2888 * have a longer lifetime than the cpu slabs in most processing loads.
2890 * So we still attempt to reduce cache line usage. Just take the slab
2891 * lock and free the item. If there is no additional partial page
2892 * handling required then we can return immediately.
2894 static void __slab_free(struct kmem_cache *s, struct page *page,
2895 void *head, void *tail, int cnt,
2902 unsigned long counters;
2903 struct kmem_cache_node *n = NULL;
2904 unsigned long uninitialized_var(flags);
2906 stat(s, FREE_SLOWPATH);
2908 if (kmem_cache_debug(s) &&
2909 !free_debug_processing(s, page, head, tail, cnt, addr))
2914 spin_unlock_irqrestore(&n->list_lock, flags);
2917 prior = page->freelist;
2918 counters = page->counters;
2919 set_freepointer(s, tail, prior);
2920 new.counters = counters;
2921 was_frozen = new.frozen;
2923 if ((!new.inuse || !prior) && !was_frozen) {
2925 if (kmem_cache_has_cpu_partial(s) && !prior) {
2928 * Slab was on no list before and will be
2930 * We can defer the list move and instead
2935 } else { /* Needs to be taken off a list */
2937 n = get_node(s, page_to_nid(page));
2939 * Speculatively acquire the list_lock.
2940 * If the cmpxchg does not succeed then we may
2941 * drop the list_lock without any processing.
2943 * Otherwise the list_lock will synchronize with
2944 * other processors updating the list of slabs.
2946 spin_lock_irqsave(&n->list_lock, flags);
2951 } while (!cmpxchg_double_slab(s, page,
2959 * If we just froze the page then put it onto the
2960 * per cpu partial list.
2962 if (new.frozen && !was_frozen) {
2963 put_cpu_partial(s, page, 1);
2964 stat(s, CPU_PARTIAL_FREE);
2967 * The list lock was not taken therefore no list
2968 * activity can be necessary.
2971 stat(s, FREE_FROZEN);
2975 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2979 * Objects left in the slab. If it was not on the partial list before
2982 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2983 remove_full(s, n, page);
2984 add_partial(n, page, DEACTIVATE_TO_TAIL);
2985 stat(s, FREE_ADD_PARTIAL);
2987 spin_unlock_irqrestore(&n->list_lock, flags);
2993 * Slab on the partial list.
2995 remove_partial(n, page);
2996 stat(s, FREE_REMOVE_PARTIAL);
2998 /* Slab must be on the full list */
2999 remove_full(s, n, page);
3002 spin_unlock_irqrestore(&n->list_lock, flags);
3004 discard_slab(s, page);
3008 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
3009 * can perform fastpath freeing without additional function calls.
3011 * The fastpath is only possible if we are freeing to the current cpu slab
3012 * of this processor. This typically the case if we have just allocated
3015 * If fastpath is not possible then fall back to __slab_free where we deal
3016 * with all sorts of special processing.
3018 * Bulk free of a freelist with several objects (all pointing to the
3019 * same page) possible by specifying head and tail ptr, plus objects
3020 * count (cnt). Bulk free indicated by tail pointer being set.
3022 static __always_inline void do_slab_free(struct kmem_cache *s,
3023 struct page *page, void *head, void *tail,
3024 int cnt, unsigned long addr)
3026 void *tail_obj = tail ? : head;
3027 struct kmem_cache_cpu *c;
3031 * Determine the currently cpus per cpu slab.
3032 * The cpu may change afterward. However that does not matter since
3033 * data is retrieved via this pointer. If we are on the same cpu
3034 * during the cmpxchg then the free will succeed.
3037 tid = this_cpu_read(s->cpu_slab->tid);
3038 c = raw_cpu_ptr(s->cpu_slab);
3039 } while (IS_ENABLED(CONFIG_PREEMPTION) &&
3040 unlikely(tid != READ_ONCE(c->tid)));
3042 /* Same with comment on barrier() in slab_alloc_node() */
3045 if (likely(page == c->page)) {
3046 void **freelist = READ_ONCE(c->freelist);
3048 set_freepointer(s, tail_obj, freelist);
3050 if (unlikely(!this_cpu_cmpxchg_double(
3051 s->cpu_slab->freelist, s->cpu_slab->tid,
3053 head, next_tid(tid)))) {
3055 note_cmpxchg_failure("slab_free", s, tid);
3058 stat(s, FREE_FASTPATH);
3060 __slab_free(s, page, head, tail_obj, cnt, addr);
3064 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
3065 void *head, void *tail, int cnt,
3069 * With KASAN enabled slab_free_freelist_hook modifies the freelist
3070 * to remove objects, whose reuse must be delayed.
3072 if (slab_free_freelist_hook(s, &head, &tail))
3073 do_slab_free(s, page, head, tail, cnt, addr);
3076 #ifdef CONFIG_KASAN_GENERIC
3077 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3079 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3083 void kmem_cache_free(struct kmem_cache *s, void *x)
3085 s = cache_from_obj(s, x);
3088 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3089 trace_kmem_cache_free(_RET_IP_, x);
3091 EXPORT_SYMBOL(kmem_cache_free);
3093 struct detached_freelist {
3098 struct kmem_cache *s;
3102 * This function progressively scans the array with free objects (with
3103 * a limited look ahead) and extract objects belonging to the same
3104 * page. It builds a detached freelist directly within the given
3105 * page/objects. This can happen without any need for
3106 * synchronization, because the objects are owned by running process.
3107 * The freelist is build up as a single linked list in the objects.
3108 * The idea is, that this detached freelist can then be bulk
3109 * transferred to the real freelist(s), but only requiring a single
3110 * synchronization primitive. Look ahead in the array is limited due
3111 * to performance reasons.
3114 int build_detached_freelist(struct kmem_cache *s, size_t size,
3115 void **p, struct detached_freelist *df)
3117 size_t first_skipped_index = 0;
3122 /* Always re-init detached_freelist */
3127 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3128 } while (!object && size);
3133 page = virt_to_head_page(object);
3135 /* Handle kalloc'ed objects */
3136 if (unlikely(!PageSlab(page))) {
3137 BUG_ON(!PageCompound(page));
3139 __free_pages(page, compound_order(page));
3140 p[size] = NULL; /* mark object processed */
3143 /* Derive kmem_cache from object */
3144 df->s = page->slab_cache;
3146 df->s = cache_from_obj(s, object); /* Support for memcg */
3149 /* Start new detached freelist */
3151 set_freepointer(df->s, object, NULL);
3153 df->freelist = object;
3154 p[size] = NULL; /* mark object processed */
3160 continue; /* Skip processed objects */
3162 /* df->page is always set at this point */
3163 if (df->page == virt_to_head_page(object)) {
3164 /* Opportunity build freelist */
3165 set_freepointer(df->s, object, df->freelist);
3166 df->freelist = object;
3168 p[size] = NULL; /* mark object processed */
3173 /* Limit look ahead search */
3177 if (!first_skipped_index)
3178 first_skipped_index = size + 1;
3181 return first_skipped_index;
3184 /* Note that interrupts must be enabled when calling this function. */
3185 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3191 struct detached_freelist df;
3193 size = build_detached_freelist(s, size, p, &df);
3197 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3198 } while (likely(size));
3200 EXPORT_SYMBOL(kmem_cache_free_bulk);
3202 /* Note that interrupts must be enabled when calling this function. */
3203 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3206 struct kmem_cache_cpu *c;
3209 /* memcg and kmem_cache debug support */
3210 s = slab_pre_alloc_hook(s, flags);
3214 * Drain objects in the per cpu slab, while disabling local
3215 * IRQs, which protects against PREEMPT and interrupts
3216 * handlers invoking normal fastpath.
3218 local_irq_disable();
3219 c = this_cpu_ptr(s->cpu_slab);
3221 for (i = 0; i < size; i++) {
3222 void *object = c->freelist;
3224 if (unlikely(!object)) {
3226 * We may have removed an object from c->freelist using
3227 * the fastpath in the previous iteration; in that case,
3228 * c->tid has not been bumped yet.
3229 * Since ___slab_alloc() may reenable interrupts while
3230 * allocating memory, we should bump c->tid now.
3232 c->tid = next_tid(c->tid);
3235 * Invoking slow path likely have side-effect
3236 * of re-populating per CPU c->freelist
3238 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3240 if (unlikely(!p[i]))
3243 c = this_cpu_ptr(s->cpu_slab);
3244 maybe_wipe_obj_freeptr(s, p[i]);
3246 continue; /* goto for-loop */
3248 c->freelist = get_freepointer(s, object);
3250 maybe_wipe_obj_freeptr(s, p[i]);
3252 c->tid = next_tid(c->tid);
3255 /* Clear memory outside IRQ disabled fastpath loop */
3256 if (unlikely(slab_want_init_on_alloc(flags, s))) {
3259 for (j = 0; j < i; j++)
3260 memset(p[j], 0, s->object_size);
3263 /* memcg and kmem_cache debug support */
3264 slab_post_alloc_hook(s, flags, size, p);
3268 slab_post_alloc_hook(s, flags, i, p);
3269 __kmem_cache_free_bulk(s, i, p);
3272 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3276 * Object placement in a slab is made very easy because we always start at
3277 * offset 0. If we tune the size of the object to the alignment then we can
3278 * get the required alignment by putting one properly sized object after
3281 * Notice that the allocation order determines the sizes of the per cpu
3282 * caches. Each processor has always one slab available for allocations.
3283 * Increasing the allocation order reduces the number of times that slabs
3284 * must be moved on and off the partial lists and is therefore a factor in
3289 * Mininum / Maximum order of slab pages. This influences locking overhead
3290 * and slab fragmentation. A higher order reduces the number of partial slabs
3291 * and increases the number of allocations possible without having to
3292 * take the list_lock.
3294 static unsigned int slub_min_order;
3295 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3296 static unsigned int slub_min_objects;
3299 * Calculate the order of allocation given an slab object size.
3301 * The order of allocation has significant impact on performance and other
3302 * system components. Generally order 0 allocations should be preferred since
3303 * order 0 does not cause fragmentation in the page allocator. Larger objects
3304 * be problematic to put into order 0 slabs because there may be too much
3305 * unused space left. We go to a higher order if more than 1/16th of the slab
3308 * In order to reach satisfactory performance we must ensure that a minimum
3309 * number of objects is in one slab. Otherwise we may generate too much
3310 * activity on the partial lists which requires taking the list_lock. This is
3311 * less a concern for large slabs though which are rarely used.
3313 * slub_max_order specifies the order where we begin to stop considering the
3314 * number of objects in a slab as critical. If we reach slub_max_order then
3315 * we try to keep the page order as low as possible. So we accept more waste
3316 * of space in favor of a small page order.
3318 * Higher order allocations also allow the placement of more objects in a
3319 * slab and thereby reduce object handling overhead. If the user has
3320 * requested a higher mininum order then we start with that one instead of
3321 * the smallest order which will fit the object.
3323 static inline unsigned int slab_order(unsigned int size,
3324 unsigned int min_objects, unsigned int max_order,
3325 unsigned int fract_leftover)
3327 unsigned int min_order = slub_min_order;
3330 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3331 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3333 for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3334 order <= max_order; order++) {
3336 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3339 rem = slab_size % size;
3341 if (rem <= slab_size / fract_leftover)
3348 static inline int calculate_order(unsigned int size)
3351 unsigned int min_objects;
3352 unsigned int max_objects;
3355 * Attempt to find best configuration for a slab. This
3356 * works by first attempting to generate a layout with
3357 * the best configuration and backing off gradually.
3359 * First we increase the acceptable waste in a slab. Then
3360 * we reduce the minimum objects required in a slab.
3362 min_objects = slub_min_objects;
3364 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3365 max_objects = order_objects(slub_max_order, size);
3366 min_objects = min(min_objects, max_objects);
3368 while (min_objects > 1) {
3369 unsigned int fraction;
3372 while (fraction >= 4) {
3373 order = slab_order(size, min_objects,
3374 slub_max_order, fraction);
3375 if (order <= slub_max_order)
3383 * We were unable to place multiple objects in a slab. Now
3384 * lets see if we can place a single object there.
3386 order = slab_order(size, 1, slub_max_order, 1);
3387 if (order <= slub_max_order)
3391 * Doh this slab cannot be placed using slub_max_order.
3393 order = slab_order(size, 1, MAX_ORDER, 1);
3394 if (order < MAX_ORDER)
3400 init_kmem_cache_node(struct kmem_cache_node *n)
3403 spin_lock_init(&n->list_lock);
3404 INIT_LIST_HEAD(&n->partial);
3405 #ifdef CONFIG_SLUB_DEBUG
3406 atomic_long_set(&n->nr_slabs, 0);
3407 atomic_long_set(&n->total_objects, 0);
3408 INIT_LIST_HEAD(&n->full);
3412 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3414 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3415 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3418 * Must align to double word boundary for the double cmpxchg
3419 * instructions to work; see __pcpu_double_call_return_bool().
3421 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3422 2 * sizeof(void *));
3427 init_kmem_cache_cpus(s);
3432 static struct kmem_cache *kmem_cache_node;
3435 * No kmalloc_node yet so do it by hand. We know that this is the first
3436 * slab on the node for this slabcache. There are no concurrent accesses
3439 * Note that this function only works on the kmem_cache_node
3440 * when allocating for the kmem_cache_node. This is used for bootstrapping
3441 * memory on a fresh node that has no slab structures yet.
3443 static void early_kmem_cache_node_alloc(int node)
3446 struct kmem_cache_node *n;
3448 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3450 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3453 if (page_to_nid(page) != node) {
3454 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3455 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3460 #ifdef CONFIG_SLUB_DEBUG
3461 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3462 init_tracking(kmem_cache_node, n);
3464 n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3466 page->freelist = get_freepointer(kmem_cache_node, n);
3469 kmem_cache_node->node[node] = n;
3470 init_kmem_cache_node(n);
3471 inc_slabs_node(kmem_cache_node, node, page->objects);
3474 * No locks need to be taken here as it has just been
3475 * initialized and there is no concurrent access.
3477 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3480 static void free_kmem_cache_nodes(struct kmem_cache *s)
3483 struct kmem_cache_node *n;
3485 for_each_kmem_cache_node(s, node, n) {
3486 s->node[node] = NULL;
3487 kmem_cache_free(kmem_cache_node, n);
3491 void __kmem_cache_release(struct kmem_cache *s)
3493 cache_random_seq_destroy(s);
3494 free_percpu(s->cpu_slab);
3495 free_kmem_cache_nodes(s);
3498 static int init_kmem_cache_nodes(struct kmem_cache *s)
3502 for_each_node_state(node, N_NORMAL_MEMORY) {
3503 struct kmem_cache_node *n;
3505 if (slab_state == DOWN) {
3506 early_kmem_cache_node_alloc(node);
3509 n = kmem_cache_alloc_node(kmem_cache_node,
3513 free_kmem_cache_nodes(s);
3517 init_kmem_cache_node(n);
3523 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3525 if (min < MIN_PARTIAL)
3527 else if (min > MAX_PARTIAL)
3529 s->min_partial = min;
3532 static void set_cpu_partial(struct kmem_cache *s)
3534 #ifdef CONFIG_SLUB_CPU_PARTIAL
3536 * cpu_partial determined the maximum number of objects kept in the
3537 * per cpu partial lists of a processor.
3539 * Per cpu partial lists mainly contain slabs that just have one
3540 * object freed. If they are used for allocation then they can be
3541 * filled up again with minimal effort. The slab will never hit the
3542 * per node partial lists and therefore no locking will be required.
3544 * This setting also determines
3546 * A) The number of objects from per cpu partial slabs dumped to the
3547 * per node list when we reach the limit.
3548 * B) The number of objects in cpu partial slabs to extract from the
3549 * per node list when we run out of per cpu objects. We only fetch
3550 * 50% to keep some capacity around for frees.
3552 if (!kmem_cache_has_cpu_partial(s))
3553 slub_set_cpu_partial(s, 0);
3554 else if (s->size >= PAGE_SIZE)
3555 slub_set_cpu_partial(s, 2);
3556 else if (s->size >= 1024)
3557 slub_set_cpu_partial(s, 6);
3558 else if (s->size >= 256)
3559 slub_set_cpu_partial(s, 13);
3561 slub_set_cpu_partial(s, 30);
3566 * calculate_sizes() determines the order and the distribution of data within
3569 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3571 slab_flags_t flags = s->flags;
3572 unsigned int size = s->object_size;
3573 unsigned int freepointer_area;
3577 * Round up object size to the next word boundary. We can only
3578 * place the free pointer at word boundaries and this determines
3579 * the possible location of the free pointer.
3581 size = ALIGN(size, sizeof(void *));
3583 * This is the area of the object where a freepointer can be
3584 * safely written. If redzoning adds more to the inuse size, we
3585 * can't use that portion for writing the freepointer, so
3586 * s->offset must be limited within this for the general case.
3588 freepointer_area = size;
3590 #ifdef CONFIG_SLUB_DEBUG
3592 * Determine if we can poison the object itself. If the user of
3593 * the slab may touch the object after free or before allocation
3594 * then we should never poison the object itself.
3596 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3598 s->flags |= __OBJECT_POISON;
3600 s->flags &= ~__OBJECT_POISON;
3604 * If we are Redzoning then check if there is some space between the
3605 * end of the object and the free pointer. If not then add an
3606 * additional word to have some bytes to store Redzone information.
3608 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3609 size += sizeof(void *);
3613 * With that we have determined the number of bytes in actual use
3614 * by the object. This is the potential offset to the free pointer.
3618 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3621 * Relocate free pointer after the object if it is not
3622 * permitted to overwrite the first word of the object on
3625 * This is the case if we do RCU, have a constructor or
3626 * destructor or are poisoning the objects.
3628 * The assumption that s->offset >= s->inuse means free
3629 * pointer is outside of the object is used in the
3630 * freeptr_outside_object() function. If that is no
3631 * longer true, the function needs to be modified.
3634 size += sizeof(void *);
3635 } else if (freepointer_area > sizeof(void *)) {
3637 * Store freelist pointer near middle of object to keep
3638 * it away from the edges of the object to avoid small
3639 * sized over/underflows from neighboring allocations.
3641 s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
3644 #ifdef CONFIG_SLUB_DEBUG
3645 if (flags & SLAB_STORE_USER)
3647 * Need to store information about allocs and frees after
3650 size += 2 * sizeof(struct track);
3653 kasan_cache_create(s, &size, &s->flags);
3654 #ifdef CONFIG_SLUB_DEBUG
3655 if (flags & SLAB_RED_ZONE) {
3657 * Add some empty padding so that we can catch
3658 * overwrites from earlier objects rather than let
3659 * tracking information or the free pointer be
3660 * corrupted if a user writes before the start
3663 size += sizeof(void *);
3665 s->red_left_pad = sizeof(void *);
3666 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3667 size += s->red_left_pad;
3672 * SLUB stores one object immediately after another beginning from
3673 * offset 0. In order to align the objects we have to simply size
3674 * each object to conform to the alignment.
3676 size = ALIGN(size, s->align);
3678 if (forced_order >= 0)
3679 order = forced_order;
3681 order = calculate_order(size);
3688 s->allocflags |= __GFP_COMP;
3690 if (s->flags & SLAB_CACHE_DMA)
3691 s->allocflags |= GFP_DMA;
3693 if (s->flags & SLAB_CACHE_DMA32)
3694 s->allocflags |= GFP_DMA32;
3696 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3697 s->allocflags |= __GFP_RECLAIMABLE;
3700 * Determine the number of objects per slab
3702 s->oo = oo_make(order, size);
3703 s->min = oo_make(get_order(size), size);
3704 if (oo_objects(s->oo) > oo_objects(s->max))
3707 return !!oo_objects(s->oo);
3710 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3712 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3713 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3714 s->random = get_random_long();
3717 if (!calculate_sizes(s, -1))
3719 if (disable_higher_order_debug) {
3721 * Disable debugging flags that store metadata if the min slab
3724 if (get_order(s->size) > get_order(s->object_size)) {
3725 s->flags &= ~DEBUG_METADATA_FLAGS;
3727 if (!calculate_sizes(s, -1))
3732 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3733 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3734 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3735 /* Enable fast mode */
3736 s->flags |= __CMPXCHG_DOUBLE;
3740 * The larger the object size is, the more pages we want on the partial
3741 * list to avoid pounding the page allocator excessively.
3743 set_min_partial(s, ilog2(s->size) / 2);
3748 s->remote_node_defrag_ratio = 1000;
3751 /* Initialize the pre-computed randomized freelist if slab is up */
3752 if (slab_state >= UP) {
3753 if (init_cache_random_seq(s))
3757 if (!init_kmem_cache_nodes(s))
3760 if (alloc_kmem_cache_cpus(s))
3763 free_kmem_cache_nodes(s);
3768 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3769 const char *text, unsigned long *map)
3771 #ifdef CONFIG_SLUB_DEBUG
3772 void *addr = page_address(page);
3778 slab_err(s, page, text, s->name);
3781 map = get_map(s, page);
3782 for_each_object(p, s, addr, page->objects) {
3784 if (!test_bit(slab_index(p, s, addr), map)) {
3785 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3786 print_tracking(s, p);
3794 * Attempt to free all partial slabs on a node.
3795 * This is called from __kmem_cache_shutdown(). We must take list_lock
3796 * because sysfs file might still access partial list after the shutdowning.
3798 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3801 struct page *page, *h;
3802 unsigned long *map = NULL;
3804 #ifdef CONFIG_SLUB_DEBUG
3805 map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
3808 BUG_ON(irqs_disabled());
3809 spin_lock_irq(&n->list_lock);
3810 list_for_each_entry_safe(page, h, &n->partial, slab_list) {
3812 remove_partial(n, page);
3813 list_add(&page->slab_list, &discard);
3815 list_slab_objects(s, page,
3816 "Objects remaining in %s on __kmem_cache_shutdown()",
3820 spin_unlock_irq(&n->list_lock);
3822 #ifdef CONFIG_SLUB_DEBUG
3826 list_for_each_entry_safe(page, h, &discard, slab_list)
3827 discard_slab(s, page);
3830 bool __kmem_cache_empty(struct kmem_cache *s)
3833 struct kmem_cache_node *n;
3835 for_each_kmem_cache_node(s, node, n)
3836 if (n->nr_partial || slabs_node(s, node))
3842 * Release all resources used by a slab cache.
3844 int __kmem_cache_shutdown(struct kmem_cache *s)
3847 struct kmem_cache_node *n;
3850 /* Attempt to free all objects */
3851 for_each_kmem_cache_node(s, node, n) {
3853 if (n->nr_partial || slabs_node(s, node))
3856 sysfs_slab_remove(s);
3860 /********************************************************************
3862 *******************************************************************/
3864 static int __init setup_slub_min_order(char *str)
3866 get_option(&str, (int *)&slub_min_order);
3871 __setup("slub_min_order=", setup_slub_min_order);
3873 static int __init setup_slub_max_order(char *str)
3875 get_option(&str, (int *)&slub_max_order);
3876 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3881 __setup("slub_max_order=", setup_slub_max_order);
3883 static int __init setup_slub_min_objects(char *str)
3885 get_option(&str, (int *)&slub_min_objects);
3890 __setup("slub_min_objects=", setup_slub_min_objects);
3892 void *__kmalloc(size_t size, gfp_t flags)
3894 struct kmem_cache *s;
3897 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3898 return kmalloc_large(size, flags);
3900 s = kmalloc_slab(size, flags);
3902 if (unlikely(ZERO_OR_NULL_PTR(s)))
3905 ret = slab_alloc(s, flags, _RET_IP_);
3907 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3909 ret = kasan_kmalloc(s, ret, size, flags);
3913 EXPORT_SYMBOL(__kmalloc);
3916 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3920 unsigned int order = get_order(size);
3922 flags |= __GFP_COMP;
3923 page = alloc_pages_node(node, flags, order);
3925 ptr = page_address(page);
3926 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
3930 return kmalloc_large_node_hook(ptr, size, flags);
3933 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3935 struct kmem_cache *s;
3938 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3939 ret = kmalloc_large_node(size, flags, node);
3941 trace_kmalloc_node(_RET_IP_, ret,
3942 size, PAGE_SIZE << get_order(size),
3948 s = kmalloc_slab(size, flags);
3950 if (unlikely(ZERO_OR_NULL_PTR(s)))
3953 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3955 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3957 ret = kasan_kmalloc(s, ret, size, flags);
3961 EXPORT_SYMBOL(__kmalloc_node);
3962 #endif /* CONFIG_NUMA */
3964 #ifdef CONFIG_HARDENED_USERCOPY
3966 * Rejects incorrectly sized objects and objects that are to be copied
3967 * to/from userspace but do not fall entirely within the containing slab
3968 * cache's usercopy region.
3970 * Returns NULL if check passes, otherwise const char * to name of cache
3971 * to indicate an error.
3973 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3976 struct kmem_cache *s;
3977 unsigned int offset;
3980 ptr = kasan_reset_tag(ptr);
3982 /* Find object and usable object size. */
3983 s = page->slab_cache;
3985 /* Reject impossible pointers. */
3986 if (ptr < page_address(page))
3987 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3990 /* Find offset within object. */
3991 offset = (ptr - page_address(page)) % s->size;
3993 /* Adjust for redzone and reject if within the redzone. */
3994 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3995 if (offset < s->red_left_pad)
3996 usercopy_abort("SLUB object in left red zone",
3997 s->name, to_user, offset, n);
3998 offset -= s->red_left_pad;
4001 /* Allow address range falling entirely within usercopy region. */
4002 if (offset >= s->useroffset &&
4003 offset - s->useroffset <= s->usersize &&
4004 n <= s->useroffset - offset + s->usersize)
4008 * If the copy is still within the allocated object, produce
4009 * a warning instead of rejecting the copy. This is intended
4010 * to be a temporary method to find any missing usercopy
4013 object_size = slab_ksize(s);
4014 if (usercopy_fallback &&
4015 offset <= object_size && n <= object_size - offset) {
4016 usercopy_warn("SLUB object", s->name, to_user, offset, n);
4020 usercopy_abort("SLUB object", s->name, to_user, offset, n);
4022 #endif /* CONFIG_HARDENED_USERCOPY */
4024 size_t __ksize(const void *object)
4028 if (unlikely(object == ZERO_SIZE_PTR))
4031 page = virt_to_head_page(object);
4033 if (unlikely(!PageSlab(page))) {
4034 WARN_ON(!PageCompound(page));
4035 return page_size(page);
4038 return slab_ksize(page->slab_cache);
4040 EXPORT_SYMBOL(__ksize);
4042 void kfree(const void *x)
4045 void *object = (void *)x;
4047 trace_kfree(_RET_IP_, x);
4049 if (unlikely(ZERO_OR_NULL_PTR(x)))
4052 page = virt_to_head_page(x);
4053 if (unlikely(!PageSlab(page))) {
4054 unsigned int order = compound_order(page);
4056 BUG_ON(!PageCompound(page));
4058 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
4060 __free_pages(page, order);
4063 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
4065 EXPORT_SYMBOL(kfree);
4067 #define SHRINK_PROMOTE_MAX 32
4070 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
4071 * up most to the head of the partial lists. New allocations will then
4072 * fill those up and thus they can be removed from the partial lists.
4074 * The slabs with the least items are placed last. This results in them
4075 * being allocated from last increasing the chance that the last objects
4076 * are freed in them.
4078 int __kmem_cache_shrink(struct kmem_cache *s)
4082 struct kmem_cache_node *n;
4085 struct list_head discard;
4086 struct list_head promote[SHRINK_PROMOTE_MAX];
4087 unsigned long flags;
4091 for_each_kmem_cache_node(s, node, n) {
4092 INIT_LIST_HEAD(&discard);
4093 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
4094 INIT_LIST_HEAD(promote + i);
4096 spin_lock_irqsave(&n->list_lock, flags);
4099 * Build lists of slabs to discard or promote.
4101 * Note that concurrent frees may occur while we hold the
4102 * list_lock. page->inuse here is the upper limit.
4104 list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4105 int free = page->objects - page->inuse;
4107 /* Do not reread page->inuse */
4110 /* We do not keep full slabs on the list */
4113 if (free == page->objects) {
4114 list_move(&page->slab_list, &discard);
4116 } else if (free <= SHRINK_PROMOTE_MAX)
4117 list_move(&page->slab_list, promote + free - 1);
4121 * Promote the slabs filled up most to the head of the
4124 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
4125 list_splice(promote + i, &n->partial);
4127 spin_unlock_irqrestore(&n->list_lock, flags);
4129 /* Release empty slabs */
4130 list_for_each_entry_safe(page, t, &discard, slab_list)
4131 discard_slab(s, page);
4133 if (slabs_node(s, node))
4141 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4144 * Called with all the locks held after a sched RCU grace period.
4145 * Even if @s becomes empty after shrinking, we can't know that @s
4146 * doesn't have allocations already in-flight and thus can't
4147 * destroy @s until the associated memcg is released.
4149 * However, let's remove the sysfs files for empty caches here.
4150 * Each cache has a lot of interface files which aren't
4151 * particularly useful for empty draining caches; otherwise, we can
4152 * easily end up with millions of unnecessary sysfs files on
4153 * systems which have a lot of memory and transient cgroups.
4155 if (!__kmem_cache_shrink(s))
4156 sysfs_slab_remove(s);
4159 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4162 * Disable empty slabs caching. Used to avoid pinning offline
4163 * memory cgroups by kmem pages that can be freed.
4165 slub_set_cpu_partial(s, 0);
4168 #endif /* CONFIG_MEMCG */
4170 static int slab_mem_going_offline_callback(void *arg)
4172 struct kmem_cache *s;
4174 mutex_lock(&slab_mutex);
4175 list_for_each_entry(s, &slab_caches, list)
4176 __kmem_cache_shrink(s);
4177 mutex_unlock(&slab_mutex);
4182 static void slab_mem_offline_callback(void *arg)
4184 struct kmem_cache_node *n;
4185 struct kmem_cache *s;
4186 struct memory_notify *marg = arg;
4189 offline_node = marg->status_change_nid_normal;
4192 * If the node still has available memory. we need kmem_cache_node
4195 if (offline_node < 0)
4198 mutex_lock(&slab_mutex);
4199 list_for_each_entry(s, &slab_caches, list) {
4200 n = get_node(s, offline_node);
4203 * if n->nr_slabs > 0, slabs still exist on the node
4204 * that is going down. We were unable to free them,
4205 * and offline_pages() function shouldn't call this
4206 * callback. So, we must fail.
4208 BUG_ON(slabs_node(s, offline_node));
4210 s->node[offline_node] = NULL;
4211 kmem_cache_free(kmem_cache_node, n);
4214 mutex_unlock(&slab_mutex);
4217 static int slab_mem_going_online_callback(void *arg)
4219 struct kmem_cache_node *n;
4220 struct kmem_cache *s;
4221 struct memory_notify *marg = arg;
4222 int nid = marg->status_change_nid_normal;
4226 * If the node's memory is already available, then kmem_cache_node is
4227 * already created. Nothing to do.
4233 * We are bringing a node online. No memory is available yet. We must
4234 * allocate a kmem_cache_node structure in order to bring the node
4237 mutex_lock(&slab_mutex);
4238 list_for_each_entry(s, &slab_caches, list) {
4240 * XXX: kmem_cache_alloc_node will fallback to other nodes
4241 * since memory is not yet available from the node that
4244 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4249 init_kmem_cache_node(n);
4253 mutex_unlock(&slab_mutex);
4257 static int slab_memory_callback(struct notifier_block *self,
4258 unsigned long action, void *arg)
4263 case MEM_GOING_ONLINE:
4264 ret = slab_mem_going_online_callback(arg);
4266 case MEM_GOING_OFFLINE:
4267 ret = slab_mem_going_offline_callback(arg);
4270 case MEM_CANCEL_ONLINE:
4271 slab_mem_offline_callback(arg);
4274 case MEM_CANCEL_OFFLINE:
4278 ret = notifier_from_errno(ret);
4284 static struct notifier_block slab_memory_callback_nb = {
4285 .notifier_call = slab_memory_callback,
4286 .priority = SLAB_CALLBACK_PRI,
4289 /********************************************************************
4290 * Basic setup of slabs
4291 *******************************************************************/
4294 * Used for early kmem_cache structures that were allocated using
4295 * the page allocator. Allocate them properly then fix up the pointers
4296 * that may be pointing to the wrong kmem_cache structure.
4299 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4302 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4303 struct kmem_cache_node *n;
4305 memcpy(s, static_cache, kmem_cache->object_size);
4308 * This runs very early, and only the boot processor is supposed to be
4309 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4312 __flush_cpu_slab(s, smp_processor_id());
4313 for_each_kmem_cache_node(s, node, n) {
4316 list_for_each_entry(p, &n->partial, slab_list)
4319 #ifdef CONFIG_SLUB_DEBUG
4320 list_for_each_entry(p, &n->full, slab_list)
4324 slab_init_memcg_params(s);
4325 list_add(&s->list, &slab_caches);
4326 memcg_link_cache(s, NULL);
4330 void __init kmem_cache_init(void)
4332 static __initdata struct kmem_cache boot_kmem_cache,
4333 boot_kmem_cache_node;
4335 if (debug_guardpage_minorder())
4338 kmem_cache_node = &boot_kmem_cache_node;
4339 kmem_cache = &boot_kmem_cache;
4341 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4342 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4344 register_hotmemory_notifier(&slab_memory_callback_nb);
4346 /* Able to allocate the per node structures */
4347 slab_state = PARTIAL;
4349 create_boot_cache(kmem_cache, "kmem_cache",
4350 offsetof(struct kmem_cache, node) +
4351 nr_node_ids * sizeof(struct kmem_cache_node *),
4352 SLAB_HWCACHE_ALIGN, 0, 0);
4354 kmem_cache = bootstrap(&boot_kmem_cache);
4355 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4357 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4358 setup_kmalloc_cache_index_table();
4359 create_kmalloc_caches(0);
4361 /* Setup random freelists for each cache */
4362 init_freelist_randomization();
4364 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4367 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4369 slub_min_order, slub_max_order, slub_min_objects,
4370 nr_cpu_ids, nr_node_ids);
4373 void __init kmem_cache_init_late(void)
4378 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4379 slab_flags_t flags, void (*ctor)(void *))
4381 struct kmem_cache *s, *c;
4383 s = find_mergeable(size, align, flags, name, ctor);
4388 * Adjust the object sizes so that we clear
4389 * the complete object on kzalloc.
4391 s->object_size = max(s->object_size, size);
4392 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4394 for_each_memcg_cache(c, s) {
4395 c->object_size = s->object_size;
4396 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4399 if (sysfs_slab_alias(s, name)) {
4408 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4412 err = kmem_cache_open(s, flags);
4416 /* Mutex is not taken during early boot */
4417 if (slab_state <= UP)
4420 memcg_propagate_slab_attrs(s);
4421 err = sysfs_slab_add(s);
4423 __kmem_cache_release(s);
4428 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4430 struct kmem_cache *s;
4433 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4434 return kmalloc_large(size, gfpflags);
4436 s = kmalloc_slab(size, gfpflags);
4438 if (unlikely(ZERO_OR_NULL_PTR(s)))
4441 ret = slab_alloc(s, gfpflags, caller);
4443 /* Honor the call site pointer we received. */
4444 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4448 EXPORT_SYMBOL(__kmalloc_track_caller);
4451 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4452 int node, unsigned long caller)
4454 struct kmem_cache *s;
4457 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4458 ret = kmalloc_large_node(size, gfpflags, node);
4460 trace_kmalloc_node(caller, ret,
4461 size, PAGE_SIZE << get_order(size),
4467 s = kmalloc_slab(size, gfpflags);
4469 if (unlikely(ZERO_OR_NULL_PTR(s)))
4472 ret = slab_alloc_node(s, gfpflags, node, caller);
4474 /* Honor the call site pointer we received. */
4475 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4479 EXPORT_SYMBOL(__kmalloc_node_track_caller);
4483 static int count_inuse(struct page *page)
4488 static int count_total(struct page *page)
4490 return page->objects;
4494 #ifdef CONFIG_SLUB_DEBUG
4495 static void validate_slab(struct kmem_cache *s, struct page *page)
4498 void *addr = page_address(page);
4503 if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4506 /* Now we know that a valid freelist exists */
4507 map = get_map(s, page);
4508 for_each_object(p, s, addr, page->objects) {
4509 u8 val = test_bit(slab_index(p, s, addr), map) ?
4510 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4512 if (!check_object(s, page, p, val))
4520 static int validate_slab_node(struct kmem_cache *s,
4521 struct kmem_cache_node *n)
4523 unsigned long count = 0;
4525 unsigned long flags;
4527 spin_lock_irqsave(&n->list_lock, flags);
4529 list_for_each_entry(page, &n->partial, slab_list) {
4530 validate_slab(s, page);
4533 if (count != n->nr_partial)
4534 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4535 s->name, count, n->nr_partial);
4537 if (!(s->flags & SLAB_STORE_USER))
4540 list_for_each_entry(page, &n->full, slab_list) {
4541 validate_slab(s, page);
4544 if (count != atomic_long_read(&n->nr_slabs))
4545 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4546 s->name, count, atomic_long_read(&n->nr_slabs));
4549 spin_unlock_irqrestore(&n->list_lock, flags);
4553 static long validate_slab_cache(struct kmem_cache *s)
4556 unsigned long count = 0;
4557 struct kmem_cache_node *n;
4560 for_each_kmem_cache_node(s, node, n)
4561 count += validate_slab_node(s, n);
4566 * Generate lists of code addresses where slabcache objects are allocated
4571 unsigned long count;
4578 DECLARE_BITMAP(cpus, NR_CPUS);
4584 unsigned long count;
4585 struct location *loc;
4588 static void free_loc_track(struct loc_track *t)
4591 free_pages((unsigned long)t->loc,
4592 get_order(sizeof(struct location) * t->max));
4595 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4600 order = get_order(sizeof(struct location) * max);
4602 l = (void *)__get_free_pages(flags, order);
4607 memcpy(l, t->loc, sizeof(struct location) * t->count);
4615 static int add_location(struct loc_track *t, struct kmem_cache *s,
4616 const struct track *track)
4618 long start, end, pos;
4620 unsigned long caddr;
4621 unsigned long age = jiffies - track->when;
4627 pos = start + (end - start + 1) / 2;
4630 * There is nothing at "end". If we end up there
4631 * we need to add something to before end.
4636 caddr = t->loc[pos].addr;
4637 if (track->addr == caddr) {
4643 if (age < l->min_time)
4645 if (age > l->max_time)
4648 if (track->pid < l->min_pid)
4649 l->min_pid = track->pid;
4650 if (track->pid > l->max_pid)
4651 l->max_pid = track->pid;
4653 cpumask_set_cpu(track->cpu,
4654 to_cpumask(l->cpus));
4656 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4660 if (track->addr < caddr)
4667 * Not found. Insert new tracking element.
4669 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4675 (t->count - pos) * sizeof(struct location));
4678 l->addr = track->addr;
4682 l->min_pid = track->pid;
4683 l->max_pid = track->pid;
4684 cpumask_clear(to_cpumask(l->cpus));
4685 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4686 nodes_clear(l->nodes);
4687 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4691 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4692 struct page *page, enum track_item alloc)
4694 void *addr = page_address(page);
4698 map = get_map(s, page);
4699 for_each_object(p, s, addr, page->objects)
4700 if (!test_bit(slab_index(p, s, addr), map))
4701 add_location(t, s, get_track(s, p, alloc));
4705 static int list_locations(struct kmem_cache *s, char *buf,
4706 enum track_item alloc)
4710 struct loc_track t = { 0, 0, NULL };
4712 struct kmem_cache_node *n;
4714 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4716 return sprintf(buf, "Out of memory\n");
4718 /* Push back cpu slabs */
4721 for_each_kmem_cache_node(s, node, n) {
4722 unsigned long flags;
4725 if (!atomic_long_read(&n->nr_slabs))
4728 spin_lock_irqsave(&n->list_lock, flags);
4729 list_for_each_entry(page, &n->partial, slab_list)
4730 process_slab(&t, s, page, alloc);
4731 list_for_each_entry(page, &n->full, slab_list)
4732 process_slab(&t, s, page, alloc);
4733 spin_unlock_irqrestore(&n->list_lock, flags);
4736 for (i = 0; i < t.count; i++) {
4737 struct location *l = &t.loc[i];
4739 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4741 len += sprintf(buf + len, "%7ld ", l->count);
4744 len += sprintf(buf + len, "%pS", (void *)l->addr);
4746 len += sprintf(buf + len, "<not-available>");
4748 if (l->sum_time != l->min_time) {
4749 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4751 (long)div_u64(l->sum_time, l->count),
4754 len += sprintf(buf + len, " age=%ld",
4757 if (l->min_pid != l->max_pid)
4758 len += sprintf(buf + len, " pid=%ld-%ld",
4759 l->min_pid, l->max_pid);
4761 len += sprintf(buf + len, " pid=%ld",
4764 if (num_online_cpus() > 1 &&
4765 !cpumask_empty(to_cpumask(l->cpus)) &&
4766 len < PAGE_SIZE - 60)
4767 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4769 cpumask_pr_args(to_cpumask(l->cpus)));
4771 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4772 len < PAGE_SIZE - 60)
4773 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4775 nodemask_pr_args(&l->nodes));
4777 len += sprintf(buf + len, "\n");
4782 len += sprintf(buf, "No data\n");
4785 #endif /* CONFIG_SLUB_DEBUG */
4787 #ifdef SLUB_RESILIENCY_TEST
4788 static void __init resiliency_test(void)
4791 int type = KMALLOC_NORMAL;
4793 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4795 pr_err("SLUB resiliency testing\n");
4796 pr_err("-----------------------\n");
4797 pr_err("A. Corruption after allocation\n");
4799 p = kzalloc(16, GFP_KERNEL);
4801 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4804 validate_slab_cache(kmalloc_caches[type][4]);
4806 /* Hmmm... The next two are dangerous */
4807 p = kzalloc(32, GFP_KERNEL);
4808 p[32 + sizeof(void *)] = 0x34;
4809 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4811 pr_err("If allocated object is overwritten then not detectable\n\n");
4813 validate_slab_cache(kmalloc_caches[type][5]);
4814 p = kzalloc(64, GFP_KERNEL);
4815 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4817 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4819 pr_err("If allocated object is overwritten then not detectable\n\n");
4820 validate_slab_cache(kmalloc_caches[type][6]);
4822 pr_err("\nB. Corruption after free\n");
4823 p = kzalloc(128, GFP_KERNEL);
4826 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4827 validate_slab_cache(kmalloc_caches[type][7]);
4829 p = kzalloc(256, GFP_KERNEL);
4832 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4833 validate_slab_cache(kmalloc_caches[type][8]);
4835 p = kzalloc(512, GFP_KERNEL);
4838 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4839 validate_slab_cache(kmalloc_caches[type][9]);
4843 static void resiliency_test(void) {};
4845 #endif /* SLUB_RESILIENCY_TEST */
4848 enum slab_stat_type {
4849 SL_ALL, /* All slabs */
4850 SL_PARTIAL, /* Only partially allocated slabs */
4851 SL_CPU, /* Only slabs used for cpu caches */
4852 SL_OBJECTS, /* Determine allocated objects not slabs */
4853 SL_TOTAL /* Determine object capacity not slabs */
4856 #define SO_ALL (1 << SL_ALL)
4857 #define SO_PARTIAL (1 << SL_PARTIAL)
4858 #define SO_CPU (1 << SL_CPU)
4859 #define SO_OBJECTS (1 << SL_OBJECTS)
4860 #define SO_TOTAL (1 << SL_TOTAL)
4863 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4865 static int __init setup_slub_memcg_sysfs(char *str)
4869 if (get_option(&str, &v) > 0)
4870 memcg_sysfs_enabled = v;
4875 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4878 static ssize_t show_slab_objects(struct kmem_cache *s,
4879 char *buf, unsigned long flags)
4881 unsigned long total = 0;
4884 unsigned long *nodes;
4886 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4890 if (flags & SO_CPU) {
4893 for_each_possible_cpu(cpu) {
4894 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4899 page = READ_ONCE(c->page);
4903 node = page_to_nid(page);
4904 if (flags & SO_TOTAL)
4906 else if (flags & SO_OBJECTS)
4914 page = slub_percpu_partial_read_once(c);
4916 node = page_to_nid(page);
4917 if (flags & SO_TOTAL)
4919 else if (flags & SO_OBJECTS)
4930 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
4931 * already held which will conflict with an existing lock order:
4933 * mem_hotplug_lock->slab_mutex->kernfs_mutex
4935 * We don't really need mem_hotplug_lock (to hold off
4936 * slab_mem_going_offline_callback) here because slab's memory hot
4937 * unplug code doesn't destroy the kmem_cache->node[] data.
4940 #ifdef CONFIG_SLUB_DEBUG
4941 if (flags & SO_ALL) {
4942 struct kmem_cache_node *n;
4944 for_each_kmem_cache_node(s, node, n) {
4946 if (flags & SO_TOTAL)
4947 x = atomic_long_read(&n->total_objects);
4948 else if (flags & SO_OBJECTS)
4949 x = atomic_long_read(&n->total_objects) -
4950 count_partial(n, count_free);
4952 x = atomic_long_read(&n->nr_slabs);
4959 if (flags & SO_PARTIAL) {
4960 struct kmem_cache_node *n;
4962 for_each_kmem_cache_node(s, node, n) {
4963 if (flags & SO_TOTAL)
4964 x = count_partial(n, count_total);
4965 else if (flags & SO_OBJECTS)
4966 x = count_partial(n, count_inuse);
4973 x = sprintf(buf, "%lu", total);
4975 for (node = 0; node < nr_node_ids; node++)
4977 x += sprintf(buf + x, " N%d=%lu",
4981 return x + sprintf(buf + x, "\n");
4984 #ifdef CONFIG_SLUB_DEBUG
4985 static int any_slab_objects(struct kmem_cache *s)
4988 struct kmem_cache_node *n;
4990 for_each_kmem_cache_node(s, node, n)
4991 if (atomic_long_read(&n->total_objects))
4998 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4999 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
5001 struct slab_attribute {
5002 struct attribute attr;
5003 ssize_t (*show)(struct kmem_cache *s, char *buf);
5004 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
5007 #define SLAB_ATTR_RO(_name) \
5008 static struct slab_attribute _name##_attr = \
5009 __ATTR(_name, 0400, _name##_show, NULL)
5011 #define SLAB_ATTR(_name) \
5012 static struct slab_attribute _name##_attr = \
5013 __ATTR(_name, 0600, _name##_show, _name##_store)
5015 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
5017 return sprintf(buf, "%u\n", s->size);
5019 SLAB_ATTR_RO(slab_size);
5021 static ssize_t align_show(struct kmem_cache *s, char *buf)
5023 return sprintf(buf, "%u\n", s->align);
5025 SLAB_ATTR_RO(align);
5027 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
5029 return sprintf(buf, "%u\n", s->object_size);
5031 SLAB_ATTR_RO(object_size);
5033 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
5035 return sprintf(buf, "%u\n", oo_objects(s->oo));
5037 SLAB_ATTR_RO(objs_per_slab);
5039 static ssize_t order_store(struct kmem_cache *s,
5040 const char *buf, size_t length)
5045 err = kstrtouint(buf, 10, &order);
5049 if (order > slub_max_order || order < slub_min_order)
5052 calculate_sizes(s, order);
5056 static ssize_t order_show(struct kmem_cache *s, char *buf)
5058 return sprintf(buf, "%u\n", oo_order(s->oo));
5062 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
5064 return sprintf(buf, "%lu\n", s->min_partial);
5067 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
5073 err = kstrtoul(buf, 10, &min);
5077 set_min_partial(s, min);
5080 SLAB_ATTR(min_partial);
5082 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
5084 return sprintf(buf, "%u\n", slub_cpu_partial(s));
5087 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
5090 unsigned int objects;
5093 err = kstrtouint(buf, 10, &objects);
5096 if (objects && !kmem_cache_has_cpu_partial(s))
5099 slub_set_cpu_partial(s, objects);
5103 SLAB_ATTR(cpu_partial);
5105 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
5109 return sprintf(buf, "%pS\n", s->ctor);
5113 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
5115 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
5117 SLAB_ATTR_RO(aliases);
5119 static ssize_t partial_show(struct kmem_cache *s, char *buf)
5121 return show_slab_objects(s, buf, SO_PARTIAL);
5123 SLAB_ATTR_RO(partial);
5125 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5127 return show_slab_objects(s, buf, SO_CPU);
5129 SLAB_ATTR_RO(cpu_slabs);
5131 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5133 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5135 SLAB_ATTR_RO(objects);
5137 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5139 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5141 SLAB_ATTR_RO(objects_partial);
5143 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5150 for_each_online_cpu(cpu) {
5153 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5156 pages += page->pages;
5157 objects += page->pobjects;
5161 len = sprintf(buf, "%d(%d)", objects, pages);
5164 for_each_online_cpu(cpu) {
5167 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5169 if (page && len < PAGE_SIZE - 20)
5170 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5171 page->pobjects, page->pages);
5174 return len + sprintf(buf + len, "\n");
5176 SLAB_ATTR_RO(slabs_cpu_partial);
5178 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5180 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5183 static ssize_t reclaim_account_store(struct kmem_cache *s,
5184 const char *buf, size_t length)
5186 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5188 s->flags |= SLAB_RECLAIM_ACCOUNT;
5191 SLAB_ATTR(reclaim_account);
5193 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5195 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5197 SLAB_ATTR_RO(hwcache_align);
5199 #ifdef CONFIG_ZONE_DMA
5200 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5202 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5204 SLAB_ATTR_RO(cache_dma);
5207 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5209 return sprintf(buf, "%u\n", s->usersize);
5211 SLAB_ATTR_RO(usersize);
5213 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5217 SLAB_ATTR_RO(destroy_by_rcu);
5219 #ifdef CONFIG_SLUB_DEBUG
5220 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5222 return show_slab_objects(s, buf, SO_ALL);
5224 SLAB_ATTR_RO(slabs);
5226 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5228 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5230 SLAB_ATTR_RO(total_objects);
5232 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5234 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5237 static ssize_t sanity_checks_store(struct kmem_cache *s,
5238 const char *buf, size_t length)
5240 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5241 if (buf[0] == '1') {
5242 s->flags &= ~__CMPXCHG_DOUBLE;
5243 s->flags |= SLAB_CONSISTENCY_CHECKS;
5247 SLAB_ATTR(sanity_checks);
5249 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5254 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5258 * Tracing a merged cache is going to give confusing results
5259 * as well as cause other issues like converting a mergeable
5260 * cache into an umergeable one.
5262 if (s->refcount > 1)
5265 s->flags &= ~SLAB_TRACE;
5266 if (buf[0] == '1') {
5267 s->flags &= ~__CMPXCHG_DOUBLE;
5268 s->flags |= SLAB_TRACE;
5274 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5276 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5279 static ssize_t red_zone_store(struct kmem_cache *s,
5280 const char *buf, size_t length)
5282 if (any_slab_objects(s))
5285 s->flags &= ~SLAB_RED_ZONE;
5286 if (buf[0] == '1') {
5287 s->flags |= SLAB_RED_ZONE;
5289 calculate_sizes(s, -1);
5292 SLAB_ATTR(red_zone);
5294 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5296 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5299 static ssize_t poison_store(struct kmem_cache *s,
5300 const char *buf, size_t length)
5302 if (any_slab_objects(s))
5305 s->flags &= ~SLAB_POISON;
5306 if (buf[0] == '1') {
5307 s->flags |= SLAB_POISON;
5309 calculate_sizes(s, -1);
5314 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5316 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5319 static ssize_t store_user_store(struct kmem_cache *s,
5320 const char *buf, size_t length)
5322 if (any_slab_objects(s))
5325 s->flags &= ~SLAB_STORE_USER;
5326 if (buf[0] == '1') {
5327 s->flags &= ~__CMPXCHG_DOUBLE;
5328 s->flags |= SLAB_STORE_USER;
5330 calculate_sizes(s, -1);
5333 SLAB_ATTR(store_user);
5335 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5340 static ssize_t validate_store(struct kmem_cache *s,
5341 const char *buf, size_t length)
5345 if (buf[0] == '1') {
5346 ret = validate_slab_cache(s);
5352 SLAB_ATTR(validate);
5354 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5356 if (!(s->flags & SLAB_STORE_USER))
5358 return list_locations(s, buf, TRACK_ALLOC);
5360 SLAB_ATTR_RO(alloc_calls);
5362 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5364 if (!(s->flags & SLAB_STORE_USER))
5366 return list_locations(s, buf, TRACK_FREE);
5368 SLAB_ATTR_RO(free_calls);
5369 #endif /* CONFIG_SLUB_DEBUG */
5371 #ifdef CONFIG_FAILSLAB
5372 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5374 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5377 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5380 if (s->refcount > 1)
5383 s->flags &= ~SLAB_FAILSLAB;
5385 s->flags |= SLAB_FAILSLAB;
5388 SLAB_ATTR(failslab);
5391 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5396 static ssize_t shrink_store(struct kmem_cache *s,
5397 const char *buf, size_t length)
5400 kmem_cache_shrink_all(s);
5408 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5410 return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
5413 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5414 const char *buf, size_t length)
5419 err = kstrtouint(buf, 10, &ratio);
5425 s->remote_node_defrag_ratio = ratio * 10;
5429 SLAB_ATTR(remote_node_defrag_ratio);
5432 #ifdef CONFIG_SLUB_STATS
5433 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5435 unsigned long sum = 0;
5438 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5443 for_each_online_cpu(cpu) {
5444 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5450 len = sprintf(buf, "%lu", sum);
5453 for_each_online_cpu(cpu) {
5454 if (data[cpu] && len < PAGE_SIZE - 20)
5455 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5459 return len + sprintf(buf + len, "\n");
5462 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5466 for_each_online_cpu(cpu)
5467 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5470 #define STAT_ATTR(si, text) \
5471 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5473 return show_stat(s, buf, si); \
5475 static ssize_t text##_store(struct kmem_cache *s, \
5476 const char *buf, size_t length) \
5478 if (buf[0] != '0') \
5480 clear_stat(s, si); \
5485 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5486 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5487 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5488 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5489 STAT_ATTR(FREE_FROZEN, free_frozen);
5490 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5491 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5492 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5493 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5494 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5495 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5496 STAT_ATTR(FREE_SLAB, free_slab);
5497 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5498 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5499 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5500 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5501 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5502 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5503 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5504 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5505 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5506 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5507 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5508 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5509 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5510 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5511 #endif /* CONFIG_SLUB_STATS */
5513 static struct attribute *slab_attrs[] = {
5514 &slab_size_attr.attr,
5515 &object_size_attr.attr,
5516 &objs_per_slab_attr.attr,
5518 &min_partial_attr.attr,
5519 &cpu_partial_attr.attr,
5521 &objects_partial_attr.attr,
5523 &cpu_slabs_attr.attr,
5527 &hwcache_align_attr.attr,
5528 &reclaim_account_attr.attr,
5529 &destroy_by_rcu_attr.attr,
5531 &slabs_cpu_partial_attr.attr,
5532 #ifdef CONFIG_SLUB_DEBUG
5533 &total_objects_attr.attr,
5535 &sanity_checks_attr.attr,
5537 &red_zone_attr.attr,
5539 &store_user_attr.attr,
5540 &validate_attr.attr,
5541 &alloc_calls_attr.attr,
5542 &free_calls_attr.attr,
5544 #ifdef CONFIG_ZONE_DMA
5545 &cache_dma_attr.attr,
5548 &remote_node_defrag_ratio_attr.attr,
5550 #ifdef CONFIG_SLUB_STATS
5551 &alloc_fastpath_attr.attr,
5552 &alloc_slowpath_attr.attr,
5553 &free_fastpath_attr.attr,
5554 &free_slowpath_attr.attr,
5555 &free_frozen_attr.attr,
5556 &free_add_partial_attr.attr,
5557 &free_remove_partial_attr.attr,
5558 &alloc_from_partial_attr.attr,
5559 &alloc_slab_attr.attr,
5560 &alloc_refill_attr.attr,
5561 &alloc_node_mismatch_attr.attr,
5562 &free_slab_attr.attr,
5563 &cpuslab_flush_attr.attr,
5564 &deactivate_full_attr.attr,
5565 &deactivate_empty_attr.attr,
5566 &deactivate_to_head_attr.attr,
5567 &deactivate_to_tail_attr.attr,
5568 &deactivate_remote_frees_attr.attr,
5569 &deactivate_bypass_attr.attr,
5570 &order_fallback_attr.attr,
5571 &cmpxchg_double_fail_attr.attr,
5572 &cmpxchg_double_cpu_fail_attr.attr,
5573 &cpu_partial_alloc_attr.attr,
5574 &cpu_partial_free_attr.attr,
5575 &cpu_partial_node_attr.attr,
5576 &cpu_partial_drain_attr.attr,
5578 #ifdef CONFIG_FAILSLAB
5579 &failslab_attr.attr,
5581 &usersize_attr.attr,
5586 static const struct attribute_group slab_attr_group = {
5587 .attrs = slab_attrs,
5590 static ssize_t slab_attr_show(struct kobject *kobj,
5591 struct attribute *attr,
5594 struct slab_attribute *attribute;
5595 struct kmem_cache *s;
5598 attribute = to_slab_attr(attr);
5601 if (!attribute->show)
5604 err = attribute->show(s, buf);
5609 static ssize_t slab_attr_store(struct kobject *kobj,
5610 struct attribute *attr,
5611 const char *buf, size_t len)
5613 struct slab_attribute *attribute;
5614 struct kmem_cache *s;
5617 attribute = to_slab_attr(attr);
5620 if (!attribute->store)
5623 err = attribute->store(s, buf, len);
5625 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5626 struct kmem_cache *c;
5628 mutex_lock(&slab_mutex);
5629 if (s->max_attr_size < len)
5630 s->max_attr_size = len;
5633 * This is a best effort propagation, so this function's return
5634 * value will be determined by the parent cache only. This is
5635 * basically because not all attributes will have a well
5636 * defined semantics for rollbacks - most of the actions will
5637 * have permanent effects.
5639 * Returning the error value of any of the children that fail
5640 * is not 100 % defined, in the sense that users seeing the
5641 * error code won't be able to know anything about the state of
5644 * Only returning the error code for the parent cache at least
5645 * has well defined semantics. The cache being written to
5646 * directly either failed or succeeded, in which case we loop
5647 * through the descendants with best-effort propagation.
5649 for_each_memcg_cache(c, s)
5650 attribute->store(c, buf, len);
5651 mutex_unlock(&slab_mutex);
5657 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5661 char *buffer = NULL;
5662 struct kmem_cache *root_cache;
5664 if (is_root_cache(s))
5667 root_cache = s->memcg_params.root_cache;
5670 * This mean this cache had no attribute written. Therefore, no point
5671 * in copying default values around
5673 if (!root_cache->max_attr_size)
5676 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5679 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5682 if (!attr || !attr->store || !attr->show)
5686 * It is really bad that we have to allocate here, so we will
5687 * do it only as a fallback. If we actually allocate, though,
5688 * we can just use the allocated buffer until the end.
5690 * Most of the slub attributes will tend to be very small in
5691 * size, but sysfs allows buffers up to a page, so they can
5692 * theoretically happen.
5696 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
5697 !IS_ENABLED(CONFIG_SLUB_STATS))
5700 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5701 if (WARN_ON(!buffer))
5706 len = attr->show(root_cache, buf);
5708 attr->store(s, buf, len);
5712 free_page((unsigned long)buffer);
5713 #endif /* CONFIG_MEMCG */
5716 static void kmem_cache_release(struct kobject *k)
5718 slab_kmem_cache_release(to_slab(k));
5721 static const struct sysfs_ops slab_sysfs_ops = {
5722 .show = slab_attr_show,
5723 .store = slab_attr_store,
5726 static struct kobj_type slab_ktype = {
5727 .sysfs_ops = &slab_sysfs_ops,
5728 .release = kmem_cache_release,
5731 static struct kset *slab_kset;
5733 static inline struct kset *cache_kset(struct kmem_cache *s)
5736 if (!is_root_cache(s))
5737 return s->memcg_params.root_cache->memcg_kset;
5742 #define ID_STR_LENGTH 64
5744 /* Create a unique string id for a slab cache:
5746 * Format :[flags-]size
5748 static char *create_unique_id(struct kmem_cache *s)
5750 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5757 * First flags affecting slabcache operations. We will only
5758 * get here for aliasable slabs so we do not need to support
5759 * too many flags. The flags here must cover all flags that
5760 * are matched during merging to guarantee that the id is
5763 if (s->flags & SLAB_CACHE_DMA)
5765 if (s->flags & SLAB_CACHE_DMA32)
5767 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5769 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5771 if (s->flags & SLAB_ACCOUNT)
5775 p += sprintf(p, "%07u", s->size);
5777 BUG_ON(p > name + ID_STR_LENGTH - 1);
5781 static void sysfs_slab_remove_workfn(struct work_struct *work)
5783 struct kmem_cache *s =
5784 container_of(work, struct kmem_cache, kobj_remove_work);
5786 if (!s->kobj.state_in_sysfs)
5788 * For a memcg cache, this may be called during
5789 * deactivation and again on shutdown. Remove only once.
5790 * A cache is never shut down before deactivation is
5791 * complete, so no need to worry about synchronization.
5796 kset_unregister(s->memcg_kset);
5799 kobject_put(&s->kobj);
5802 static int sysfs_slab_add(struct kmem_cache *s)
5806 struct kset *kset = cache_kset(s);
5807 int unmergeable = slab_unmergeable(s);
5809 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5812 kobject_init(&s->kobj, &slab_ktype);
5816 if (!unmergeable && disable_higher_order_debug &&
5817 (slub_debug & DEBUG_METADATA_FLAGS))
5822 * Slabcache can never be merged so we can use the name proper.
5823 * This is typically the case for debug situations. In that
5824 * case we can catch duplicate names easily.
5826 sysfs_remove_link(&slab_kset->kobj, s->name);
5830 * Create a unique name for the slab as a target
5833 name = create_unique_id(s);
5836 s->kobj.kset = kset;
5837 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5839 kobject_put(&s->kobj);
5843 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5848 if (is_root_cache(s) && memcg_sysfs_enabled) {
5849 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5850 if (!s->memcg_kset) {
5858 /* Setup first alias */
5859 sysfs_slab_alias(s, s->name);
5866 kobject_del(&s->kobj);
5870 static void sysfs_slab_remove(struct kmem_cache *s)
5872 if (slab_state < FULL)
5874 * Sysfs has not been setup yet so no need to remove the
5879 kobject_get(&s->kobj);
5880 schedule_work(&s->kobj_remove_work);
5883 void sysfs_slab_unlink(struct kmem_cache *s)
5885 if (slab_state >= FULL)
5886 kobject_del(&s->kobj);
5889 void sysfs_slab_release(struct kmem_cache *s)
5891 if (slab_state >= FULL)
5892 kobject_put(&s->kobj);
5896 * Need to buffer aliases during bootup until sysfs becomes
5897 * available lest we lose that information.
5899 struct saved_alias {
5900 struct kmem_cache *s;
5902 struct saved_alias *next;
5905 static struct saved_alias *alias_list;
5907 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5909 struct saved_alias *al;
5911 if (slab_state == FULL) {
5913 * If we have a leftover link then remove it.
5915 sysfs_remove_link(&slab_kset->kobj, name);
5916 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5919 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5925 al->next = alias_list;
5930 static int __init slab_sysfs_init(void)
5932 struct kmem_cache *s;
5935 mutex_lock(&slab_mutex);
5937 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5939 mutex_unlock(&slab_mutex);
5940 pr_err("Cannot register slab subsystem.\n");
5946 list_for_each_entry(s, &slab_caches, list) {
5947 err = sysfs_slab_add(s);
5949 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5953 while (alias_list) {
5954 struct saved_alias *al = alias_list;
5956 alias_list = alias_list->next;
5957 err = sysfs_slab_alias(al->s, al->name);
5959 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5964 mutex_unlock(&slab_mutex);
5969 __initcall(slab_sysfs_init);
5970 #endif /* CONFIG_SYSFS */
5973 * The /proc/slabinfo ABI
5975 #ifdef CONFIG_SLUB_DEBUG
5976 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5978 unsigned long nr_slabs = 0;
5979 unsigned long nr_objs = 0;
5980 unsigned long nr_free = 0;
5982 struct kmem_cache_node *n;
5984 for_each_kmem_cache_node(s, node, n) {
5985 nr_slabs += node_nr_slabs(n);
5986 nr_objs += node_nr_objs(n);
5987 nr_free += count_partial(n, count_free);
5990 sinfo->active_objs = nr_objs - nr_free;
5991 sinfo->num_objs = nr_objs;
5992 sinfo->active_slabs = nr_slabs;
5993 sinfo->num_slabs = nr_slabs;
5994 sinfo->objects_per_slab = oo_objects(s->oo);
5995 sinfo->cache_order = oo_order(s->oo);
5998 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
6002 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
6003 size_t count, loff_t *ppos)
6007 #endif /* CONFIG_SLUB_DEBUG */