1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/kmem.h>
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
46 * Set of flags that will prevent slab merging
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 SLAB_FAILSLAB | kasan_never_merge())
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
56 * Merge control. If this is set then no merging of slab caches will occur.
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
60 static int __init setup_slab_nomerge(char *str)
66 static int __init setup_slab_merge(char *str)
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
81 * Determine the size of a slab object
83 unsigned int kmem_cache_size(struct kmem_cache *s)
85 return s->object_size;
87 EXPORT_SYMBOL(kmem_cache_size);
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
111 static unsigned int calculate_alignment(slab_flags_t flags,
112 unsigned int align, unsigned int size)
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
121 if (flags & SLAB_HWCACHE_ALIGN) {
124 ralign = cache_line_size();
125 while (size <= ralign / 2)
127 align = max(align, ralign);
130 align = max(align, arch_slab_minalign());
132 return ALIGN(align, sizeof(void *));
136 * Find a mergeable slab cache
138 int slab_unmergeable(struct kmem_cache *s)
140 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
146 #ifdef CONFIG_HARDENED_USERCOPY
152 * We may have set a slab to be unmergeable during bootstrap.
160 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
161 slab_flags_t flags, const char *name, void (*ctor)(void *))
163 struct kmem_cache *s;
171 size = ALIGN(size, sizeof(void *));
172 align = calculate_alignment(flags, align, size);
173 size = ALIGN(size, align);
174 flags = kmem_cache_flags(size, flags, name);
176 if (flags & SLAB_NEVER_MERGE)
179 list_for_each_entry_reverse(s, &slab_caches, list) {
180 if (slab_unmergeable(s))
186 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
189 * Check if alignment is compatible.
190 * Courtesy of Adrian Drzewiecki
192 if ((s->size & ~(align - 1)) != s->size)
195 if (s->size - size >= sizeof(void *))
198 if (IS_ENABLED(CONFIG_SLAB) && align &&
199 (align > s->align || s->align % align))
207 static struct kmem_cache *create_cache(const char *name,
208 unsigned int object_size, unsigned int align,
209 slab_flags_t flags, unsigned int useroffset,
210 unsigned int usersize, void (*ctor)(void *),
211 struct kmem_cache *root_cache)
213 struct kmem_cache *s;
216 if (WARN_ON(useroffset + usersize > object_size))
217 useroffset = usersize = 0;
220 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
225 s->size = s->object_size = object_size;
228 #ifdef CONFIG_HARDENED_USERCOPY
229 s->useroffset = useroffset;
230 s->usersize = usersize;
233 err = __kmem_cache_create(s, flags);
238 list_add(&s->list, &slab_caches);
245 kmem_cache_free(kmem_cache, s);
250 * kmem_cache_create_usercopy - Create a cache with a region suitable
251 * for copying to userspace
252 * @name: A string which is used in /proc/slabinfo to identify this cache.
253 * @size: The size of objects to be created in this cache.
254 * @align: The required alignment for the objects.
256 * @useroffset: Usercopy region offset
257 * @usersize: Usercopy region size
258 * @ctor: A constructor for the objects.
260 * Cannot be called within a interrupt, but can be interrupted.
261 * The @ctor is run when new pages are allocated by the cache.
265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
266 * to catch references to uninitialised memory.
268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
269 * for buffer overruns.
271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
272 * cacheline. This can be beneficial if you're counting cycles as closely
275 * Return: a pointer to the cache on success, NULL on failure.
278 kmem_cache_create_usercopy(const char *name,
279 unsigned int size, unsigned int align,
281 unsigned int useroffset, unsigned int usersize,
282 void (*ctor)(void *))
284 struct kmem_cache *s = NULL;
285 const char *cache_name;
288 #ifdef CONFIG_SLUB_DEBUG
290 * If no slub_debug was enabled globally, the static key is not yet
291 * enabled by setup_slub_debug(). Enable it if the cache is being
292 * created with any of the debugging flags passed explicitly.
293 * It's also possible that this is the first cache created with
294 * SLAB_STORE_USER and we should init stack_depot for it.
296 if (flags & SLAB_DEBUG_FLAGS)
297 static_branch_enable(&slub_debug_enabled);
298 if (flags & SLAB_STORE_USER)
302 mutex_lock(&slab_mutex);
304 err = kmem_cache_sanity_check(name, size);
309 /* Refuse requests with allocator specific flags */
310 if (flags & ~SLAB_FLAGS_PERMITTED) {
316 * Some allocators will constraint the set of valid flags to a subset
317 * of all flags. We expect them to define CACHE_CREATE_MASK in this
318 * case, and we'll just provide them with a sanitized version of the
321 flags &= CACHE_CREATE_MASK;
323 /* Fail closed on bad usersize of useroffset values. */
324 if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
325 WARN_ON(!usersize && useroffset) ||
326 WARN_ON(size < usersize || size - usersize < useroffset))
327 usersize = useroffset = 0;
330 s = __kmem_cache_alias(name, size, align, flags, ctor);
334 cache_name = kstrdup_const(name, GFP_KERNEL);
340 s = create_cache(cache_name, size,
341 calculate_alignment(flags, align, size),
342 flags, useroffset, usersize, ctor, NULL);
345 kfree_const(cache_name);
349 mutex_unlock(&slab_mutex);
352 if (flags & SLAB_PANIC)
353 panic("%s: Failed to create slab '%s'. Error %d\n",
354 __func__, name, err);
356 pr_warn("%s(%s) failed with error %d\n",
357 __func__, name, err);
364 EXPORT_SYMBOL(kmem_cache_create_usercopy);
367 * kmem_cache_create - Create a cache.
368 * @name: A string which is used in /proc/slabinfo to identify this cache.
369 * @size: The size of objects to be created in this cache.
370 * @align: The required alignment for the objects.
372 * @ctor: A constructor for the objects.
374 * Cannot be called within a interrupt, but can be interrupted.
375 * The @ctor is run when new pages are allocated by the cache.
379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
380 * to catch references to uninitialised memory.
382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
383 * for buffer overruns.
385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
386 * cacheline. This can be beneficial if you're counting cycles as closely
389 * Return: a pointer to the cache on success, NULL on failure.
392 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
393 slab_flags_t flags, void (*ctor)(void *))
395 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
398 EXPORT_SYMBOL(kmem_cache_create);
400 #ifdef SLAB_SUPPORTS_SYSFS
402 * For a given kmem_cache, kmem_cache_destroy() should only be called
403 * once or there will be a use-after-free problem. The actual deletion
404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
405 * protection. So they are now done without holding those locks.
407 * Note that there will be a slight delay in the deletion of sysfs files
408 * if kmem_cache_release() is called indrectly from a work function.
410 static void kmem_cache_release(struct kmem_cache *s)
412 sysfs_slab_unlink(s);
413 sysfs_slab_release(s);
416 static void kmem_cache_release(struct kmem_cache *s)
418 slab_kmem_cache_release(s);
422 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
424 LIST_HEAD(to_destroy);
425 struct kmem_cache *s, *s2;
428 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
429 * @slab_caches_to_rcu_destroy list. The slab pages are freed
430 * through RCU and the associated kmem_cache are dereferenced
431 * while freeing the pages, so the kmem_caches should be freed only
432 * after the pending RCU operations are finished. As rcu_barrier()
433 * is a pretty slow operation, we batch all pending destructions
436 mutex_lock(&slab_mutex);
437 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
438 mutex_unlock(&slab_mutex);
440 if (list_empty(&to_destroy))
445 list_for_each_entry_safe(s, s2, &to_destroy, list) {
446 debugfs_slab_release(s);
447 kfence_shutdown_cache(s);
448 kmem_cache_release(s);
452 static int shutdown_cache(struct kmem_cache *s)
454 /* free asan quarantined objects */
455 kasan_cache_shutdown(s);
457 if (__kmem_cache_shutdown(s) != 0)
462 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
463 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
464 schedule_work(&slab_caches_to_rcu_destroy_work);
466 kfence_shutdown_cache(s);
467 debugfs_slab_release(s);
473 void slab_kmem_cache_release(struct kmem_cache *s)
475 __kmem_cache_release(s);
476 kfree_const(s->name);
477 kmem_cache_free(kmem_cache, s);
480 void kmem_cache_destroy(struct kmem_cache *s)
485 if (unlikely(!s) || !kasan_check_byte(s))
489 mutex_lock(&slab_mutex);
491 rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
493 refcnt = --s->refcount;
497 WARN(shutdown_cache(s),
498 "%s %s: Slab cache still has objects when called from %pS",
499 __func__, s->name, (void *)_RET_IP_);
501 mutex_unlock(&slab_mutex);
503 if (!refcnt && !rcu_set)
504 kmem_cache_release(s);
506 EXPORT_SYMBOL(kmem_cache_destroy);
509 * kmem_cache_shrink - Shrink a cache.
510 * @cachep: The cache to shrink.
512 * Releases as many slabs as possible for a cache.
513 * To help debugging, a zero exit status indicates all slabs were released.
515 * Return: %0 if all slabs were released, non-zero otherwise
517 int kmem_cache_shrink(struct kmem_cache *cachep)
519 kasan_cache_shrink(cachep);
521 return __kmem_cache_shrink(cachep);
523 EXPORT_SYMBOL(kmem_cache_shrink);
525 bool slab_is_available(void)
527 return slab_state >= UP;
532 * kmem_valid_obj - does the pointer reference a valid slab object?
533 * @object: pointer to query.
535 * Return: %true if the pointer is to a not-yet-freed object from
536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
537 * is to an already-freed object, and %false otherwise.
539 bool kmem_valid_obj(void *object)
543 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
544 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
546 folio = virt_to_folio(object);
547 return folio_test_slab(folio);
549 EXPORT_SYMBOL_GPL(kmem_valid_obj);
551 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
553 if (__kfence_obj_info(kpp, object, slab))
555 __kmem_obj_info(kpp, object, slab);
559 * kmem_dump_obj - Print available slab provenance information
560 * @object: slab object for which to find provenance information.
562 * This function uses pr_cont(), so that the caller is expected to have
563 * printed out whatever preamble is appropriate. The provenance information
564 * depends on the type of object and on how much debugging is enabled.
565 * For a slab-cache object, the fact that it is a slab object is printed,
566 * and, if available, the slab name, return address, and stack trace from
567 * the allocation and last free path of that object.
569 * This function will splat if passed a pointer to a non-slab object.
570 * If you are not sure what type of object you have, you should instead
571 * use mem_dump_obj().
573 void kmem_dump_obj(void *object)
575 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
578 unsigned long ptroffset;
579 struct kmem_obj_info kp = { };
581 if (WARN_ON_ONCE(!virt_addr_valid(object)))
583 slab = virt_to_slab(object);
584 if (WARN_ON_ONCE(!slab)) {
585 pr_cont(" non-slab memory.\n");
588 kmem_obj_info(&kp, object, slab);
589 if (kp.kp_slab_cache)
590 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
592 pr_cont(" slab%s", cp);
593 if (is_kfence_address(object))
594 pr_cont(" (kfence)");
596 pr_cont(" start %px", kp.kp_objp);
597 if (kp.kp_data_offset)
598 pr_cont(" data offset %lu", kp.kp_data_offset);
600 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
601 pr_cont(" pointer offset %lu", ptroffset);
603 if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
604 pr_cont(" size %u", kp.kp_slab_cache->object_size);
606 pr_cont(" allocated at %pS\n", kp.kp_ret);
609 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
612 pr_info(" %pS\n", kp.kp_stack[i]);
615 if (kp.kp_free_stack[0])
616 pr_cont(" Free path:\n");
618 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
619 if (!kp.kp_free_stack[i])
621 pr_info(" %pS\n", kp.kp_free_stack[i]);
625 EXPORT_SYMBOL_GPL(kmem_dump_obj);
628 /* Create a cache during boot when no slab services are available yet */
629 void __init create_boot_cache(struct kmem_cache *s, const char *name,
630 unsigned int size, slab_flags_t flags,
631 unsigned int useroffset, unsigned int usersize)
634 unsigned int align = ARCH_KMALLOC_MINALIGN;
637 s->size = s->object_size = size;
640 * For power of two sizes, guarantee natural alignment for kmalloc
641 * caches, regardless of SL*B debugging options.
643 if (is_power_of_2(size))
644 align = max(align, size);
645 s->align = calculate_alignment(flags, align, size);
647 #ifdef CONFIG_HARDENED_USERCOPY
648 s->useroffset = useroffset;
649 s->usersize = usersize;
652 err = __kmem_cache_create(s, flags);
655 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
658 s->refcount = -1; /* Exempt from merging for now */
661 struct kmem_cache *__init create_kmalloc_cache(const char *name,
662 unsigned int size, slab_flags_t flags,
663 unsigned int useroffset, unsigned int usersize)
665 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
668 panic("Out of memory when creating slab %s\n", name);
670 create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
672 list_add(&s->list, &slab_caches);
678 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
679 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
680 EXPORT_SYMBOL(kmalloc_caches);
683 * Conversion table for small slabs sizes / 8 to the index in the
684 * kmalloc array. This is necessary for slabs < 192 since we have non power
685 * of two cache sizes there. The size of larger slabs can be determined using
688 static u8 size_index[24] __ro_after_init = {
715 static inline unsigned int size_index_elem(unsigned int bytes)
717 return (bytes - 1) / 8;
721 * Find the kmem_cache structure that serves a given size of
724 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
730 return ZERO_SIZE_PTR;
732 index = size_index[size_index_elem(size)];
734 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
736 index = fls(size - 1);
739 return kmalloc_caches[kmalloc_type(flags)][index];
742 size_t kmalloc_size_roundup(size_t size)
744 struct kmem_cache *c;
746 /* Short-circuit the 0 size case. */
747 if (unlikely(size == 0))
749 /* Short-circuit saturated "too-large" case. */
750 if (unlikely(size == SIZE_MAX))
752 /* Above the smaller buckets, size is a multiple of page size. */
753 if (size > KMALLOC_MAX_CACHE_SIZE)
754 return PAGE_SIZE << get_order(size);
756 /* The flags don't matter since size_index is common to all. */
757 c = kmalloc_slab(size, GFP_KERNEL);
758 return c ? c->object_size : 0;
760 EXPORT_SYMBOL(kmalloc_size_roundup);
762 #ifdef CONFIG_ZONE_DMA
763 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
765 #define KMALLOC_DMA_NAME(sz)
768 #ifdef CONFIG_MEMCG_KMEM
769 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
771 #define KMALLOC_CGROUP_NAME(sz)
774 #ifndef CONFIG_SLUB_TINY
775 #define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
777 #define KMALLOC_RCL_NAME(sz)
780 #define INIT_KMALLOC_INFO(__size, __short_size) \
782 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
783 KMALLOC_RCL_NAME(__short_size) \
784 KMALLOC_CGROUP_NAME(__short_size) \
785 KMALLOC_DMA_NAME(__short_size) \
790 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
791 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
794 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
795 INIT_KMALLOC_INFO(0, 0),
796 INIT_KMALLOC_INFO(96, 96),
797 INIT_KMALLOC_INFO(192, 192),
798 INIT_KMALLOC_INFO(8, 8),
799 INIT_KMALLOC_INFO(16, 16),
800 INIT_KMALLOC_INFO(32, 32),
801 INIT_KMALLOC_INFO(64, 64),
802 INIT_KMALLOC_INFO(128, 128),
803 INIT_KMALLOC_INFO(256, 256),
804 INIT_KMALLOC_INFO(512, 512),
805 INIT_KMALLOC_INFO(1024, 1k),
806 INIT_KMALLOC_INFO(2048, 2k),
807 INIT_KMALLOC_INFO(4096, 4k),
808 INIT_KMALLOC_INFO(8192, 8k),
809 INIT_KMALLOC_INFO(16384, 16k),
810 INIT_KMALLOC_INFO(32768, 32k),
811 INIT_KMALLOC_INFO(65536, 64k),
812 INIT_KMALLOC_INFO(131072, 128k),
813 INIT_KMALLOC_INFO(262144, 256k),
814 INIT_KMALLOC_INFO(524288, 512k),
815 INIT_KMALLOC_INFO(1048576, 1M),
816 INIT_KMALLOC_INFO(2097152, 2M)
820 * Patch up the size_index table if we have strange large alignment
821 * requirements for the kmalloc array. This is only the case for
822 * MIPS it seems. The standard arches will not generate any code here.
824 * Largest permitted alignment is 256 bytes due to the way we
825 * handle the index determination for the smaller caches.
827 * Make sure that nothing crazy happens if someone starts tinkering
828 * around with ARCH_KMALLOC_MINALIGN
830 void __init setup_kmalloc_cache_index_table(void)
834 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
835 !is_power_of_2(KMALLOC_MIN_SIZE));
837 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
838 unsigned int elem = size_index_elem(i);
840 if (elem >= ARRAY_SIZE(size_index))
842 size_index[elem] = KMALLOC_SHIFT_LOW;
845 if (KMALLOC_MIN_SIZE >= 64) {
847 * The 96 byte sized cache is not used if the alignment
850 for (i = 64 + 8; i <= 96; i += 8)
851 size_index[size_index_elem(i)] = 7;
855 if (KMALLOC_MIN_SIZE >= 128) {
857 * The 192 byte sized cache is not used if the alignment
858 * is 128 byte. Redirect kmalloc to use the 256 byte cache
861 for (i = 128 + 8; i <= 192; i += 8)
862 size_index[size_index_elem(i)] = 8;
867 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
869 if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
870 flags |= SLAB_RECLAIM_ACCOUNT;
871 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
872 if (mem_cgroup_kmem_disabled()) {
873 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
876 flags |= SLAB_ACCOUNT;
877 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
878 flags |= SLAB_CACHE_DMA;
881 kmalloc_caches[type][idx] = create_kmalloc_cache(
882 kmalloc_info[idx].name[type],
883 kmalloc_info[idx].size, flags, 0,
884 kmalloc_info[idx].size);
887 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
888 * KMALLOC_NORMAL caches.
890 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
891 kmalloc_caches[type][idx]->refcount = -1;
895 * Create the kmalloc array. Some of the regular kmalloc arrays
896 * may already have been created because they were needed to
897 * enable allocations for slab creation.
899 void __init create_kmalloc_caches(slab_flags_t flags)
902 enum kmalloc_cache_type type;
905 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
907 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
908 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
909 if (!kmalloc_caches[type][i])
910 new_kmalloc_cache(i, type, flags);
913 * Caches that are not of the two-to-the-power-of size.
914 * These have to be created immediately after the
915 * earlier power of two caches
917 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
918 !kmalloc_caches[type][1])
919 new_kmalloc_cache(1, type, flags);
920 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
921 !kmalloc_caches[type][2])
922 new_kmalloc_cache(2, type, flags);
926 /* Kmalloc array is now usable */
930 void free_large_kmalloc(struct folio *folio, void *object)
932 unsigned int order = folio_order(folio);
934 if (WARN_ON_ONCE(order == 0))
935 pr_warn_once("object pointer: 0x%p\n", object);
937 kmemleak_free(object);
938 kasan_kfree_large(object);
939 kmsan_kfree_large(object);
941 mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
942 -(PAGE_SIZE << order));
943 __free_pages(folio_page(folio, 0), order);
946 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
947 static __always_inline
948 void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
950 struct kmem_cache *s;
953 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
954 ret = __kmalloc_large_node(size, flags, node);
955 trace_kmalloc(caller, ret, size,
956 PAGE_SIZE << get_order(size), flags, node);
960 s = kmalloc_slab(size, flags);
962 if (unlikely(ZERO_OR_NULL_PTR(s)))
965 ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
966 ret = kasan_kmalloc(s, ret, size, flags);
967 trace_kmalloc(caller, ret, size, s->size, flags, node);
971 void *__kmalloc_node(size_t size, gfp_t flags, int node)
973 return __do_kmalloc_node(size, flags, node, _RET_IP_);
975 EXPORT_SYMBOL(__kmalloc_node);
977 void *__kmalloc(size_t size, gfp_t flags)
979 return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
981 EXPORT_SYMBOL(__kmalloc);
983 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
984 int node, unsigned long caller)
986 return __do_kmalloc_node(size, flags, node, caller);
988 EXPORT_SYMBOL(__kmalloc_node_track_caller);
991 * kfree - free previously allocated memory
992 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
994 * If @object is NULL, no operation is performed.
996 void kfree(const void *object)
1000 struct kmem_cache *s;
1002 trace_kfree(_RET_IP_, object);
1004 if (unlikely(ZERO_OR_NULL_PTR(object)))
1007 folio = virt_to_folio(object);
1008 if (unlikely(!folio_test_slab(folio))) {
1009 free_large_kmalloc(folio, (void *)object);
1013 slab = folio_slab(folio);
1014 s = slab->slab_cache;
1015 __kmem_cache_free(s, (void *)object, _RET_IP_);
1017 EXPORT_SYMBOL(kfree);
1020 * __ksize -- Report full size of underlying allocation
1021 * @object: pointer to the object
1023 * This should only be used internally to query the true size of allocations.
1024 * It is not meant to be a way to discover the usable size of an allocation
1025 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1026 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1027 * and/or FORTIFY_SOURCE.
1029 * Return: size of the actual memory used by @object in bytes
1031 size_t __ksize(const void *object)
1033 struct folio *folio;
1035 if (unlikely(object == ZERO_SIZE_PTR))
1038 folio = virt_to_folio(object);
1040 if (unlikely(!folio_test_slab(folio))) {
1041 if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1043 if (WARN_ON(object != folio_address(folio)))
1045 return folio_size(folio);
1048 #ifdef CONFIG_SLUB_DEBUG
1049 skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1052 return slab_ksize(folio_slab(folio)->slab_cache);
1055 void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1057 void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1060 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1062 ret = kasan_kmalloc(s, ret, size, gfpflags);
1065 EXPORT_SYMBOL(kmalloc_trace);
1067 void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1068 int node, size_t size)
1070 void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1072 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1074 ret = kasan_kmalloc(s, ret, size, gfpflags);
1077 EXPORT_SYMBOL(kmalloc_node_trace);
1079 gfp_t kmalloc_fix_flags(gfp_t flags)
1081 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1083 flags &= ~GFP_SLAB_BUG_MASK;
1084 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1085 invalid_mask, &invalid_mask, flags, &flags);
1092 * To avoid unnecessary overhead, we pass through large allocation requests
1093 * directly to the page allocator. We use __GFP_COMP, because we will need to
1094 * know the allocation order to free the pages properly in kfree.
1097 static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1101 unsigned int order = get_order(size);
1103 if (unlikely(flags & GFP_SLAB_BUG_MASK))
1104 flags = kmalloc_fix_flags(flags);
1106 flags |= __GFP_COMP;
1107 page = alloc_pages_node(node, flags, order);
1109 ptr = page_address(page);
1110 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1111 PAGE_SIZE << order);
1114 ptr = kasan_kmalloc_large(ptr, size, flags);
1115 /* As ptr might get tagged, call kmemleak hook after KASAN. */
1116 kmemleak_alloc(ptr, size, 1, flags);
1117 kmsan_kmalloc_large(ptr, size, flags);
1122 void *kmalloc_large(size_t size, gfp_t flags)
1124 void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1126 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1127 flags, NUMA_NO_NODE);
1130 EXPORT_SYMBOL(kmalloc_large);
1132 void *kmalloc_large_node(size_t size, gfp_t flags, int node)
1134 void *ret = __kmalloc_large_node(size, flags, node);
1136 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1140 EXPORT_SYMBOL(kmalloc_large_node);
1142 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1143 /* Randomize a generic freelist */
1144 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1150 for (i = 0; i < count; i++)
1153 /* Fisher-Yates shuffle */
1154 for (i = count - 1; i > 0; i--) {
1155 rand = prandom_u32_state(state);
1157 swap(list[i], list[rand]);
1161 /* Create a random sequence per cache */
1162 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1165 struct rnd_state state;
1167 if (count < 2 || cachep->random_seq)
1170 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1171 if (!cachep->random_seq)
1174 /* Get best entropy at this stage of boot */
1175 prandom_seed_state(&state, get_random_long());
1177 freelist_randomize(&state, cachep->random_seq, count);
1181 /* Destroy the per-cache random freelist sequence */
1182 void cache_random_seq_destroy(struct kmem_cache *cachep)
1184 kfree(cachep->random_seq);
1185 cachep->random_seq = NULL;
1187 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1189 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1191 #define SLABINFO_RIGHTS (0600)
1193 #define SLABINFO_RIGHTS (0400)
1196 static void print_slabinfo_header(struct seq_file *m)
1199 * Output format version, so at least we can change it
1200 * without _too_ many complaints.
1202 #ifdef CONFIG_DEBUG_SLAB
1203 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1205 seq_puts(m, "slabinfo - version: 2.1\n");
1207 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1208 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1209 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1210 #ifdef CONFIG_DEBUG_SLAB
1211 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1212 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1217 static void *slab_start(struct seq_file *m, loff_t *pos)
1219 mutex_lock(&slab_mutex);
1220 return seq_list_start(&slab_caches, *pos);
1223 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1225 return seq_list_next(p, &slab_caches, pos);
1228 static void slab_stop(struct seq_file *m, void *p)
1230 mutex_unlock(&slab_mutex);
1233 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1235 struct slabinfo sinfo;
1237 memset(&sinfo, 0, sizeof(sinfo));
1238 get_slabinfo(s, &sinfo);
1240 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1241 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1242 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1244 seq_printf(m, " : tunables %4u %4u %4u",
1245 sinfo.limit, sinfo.batchcount, sinfo.shared);
1246 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1247 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1248 slabinfo_show_stats(m, s);
1252 static int slab_show(struct seq_file *m, void *p)
1254 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1256 if (p == slab_caches.next)
1257 print_slabinfo_header(m);
1262 void dump_unreclaimable_slab(void)
1264 struct kmem_cache *s;
1265 struct slabinfo sinfo;
1268 * Here acquiring slab_mutex is risky since we don't prefer to get
1269 * sleep in oom path. But, without mutex hold, it may introduce a
1271 * Use mutex_trylock to protect the list traverse, dump nothing
1272 * without acquiring the mutex.
1274 if (!mutex_trylock(&slab_mutex)) {
1275 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1279 pr_info("Unreclaimable slab info:\n");
1280 pr_info("Name Used Total\n");
1282 list_for_each_entry(s, &slab_caches, list) {
1283 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1286 get_slabinfo(s, &sinfo);
1288 if (sinfo.num_objs > 0)
1289 pr_info("%-17s %10luKB %10luKB\n", s->name,
1290 (sinfo.active_objs * s->size) / 1024,
1291 (sinfo.num_objs * s->size) / 1024);
1293 mutex_unlock(&slab_mutex);
1297 * slabinfo_op - iterator that generates /proc/slabinfo
1306 * num-pages-per-slab
1307 * + further values on SMP and with statistics enabled
1309 static const struct seq_operations slabinfo_op = {
1310 .start = slab_start,
1316 static int slabinfo_open(struct inode *inode, struct file *file)
1318 return seq_open(file, &slabinfo_op);
1321 static const struct proc_ops slabinfo_proc_ops = {
1322 .proc_flags = PROC_ENTRY_PERMANENT,
1323 .proc_open = slabinfo_open,
1324 .proc_read = seq_read,
1325 .proc_write = slabinfo_write,
1326 .proc_lseek = seq_lseek,
1327 .proc_release = seq_release,
1330 static int __init slab_proc_init(void)
1332 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1335 module_init(slab_proc_init);
1337 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1339 static __always_inline __realloc_size(2) void *
1340 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
1345 /* Check for double-free before calling ksize. */
1346 if (likely(!ZERO_OR_NULL_PTR(p))) {
1347 if (!kasan_check_byte(p))
1353 /* If the object still fits, repoison it precisely. */
1354 if (ks >= new_size) {
1355 p = kasan_krealloc((void *)p, new_size, flags);
1359 ret = kmalloc_track_caller(new_size, flags);
1361 /* Disable KASAN checks as the object's redzone is accessed. */
1362 kasan_disable_current();
1363 memcpy(ret, kasan_reset_tag(p), ks);
1364 kasan_enable_current();
1371 * krealloc - reallocate memory. The contents will remain unchanged.
1372 * @p: object to reallocate memory for.
1373 * @new_size: how many bytes of memory are required.
1374 * @flags: the type of memory to allocate.
1376 * The contents of the object pointed to are preserved up to the
1377 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1378 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1379 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1381 * Return: pointer to the allocated memory or %NULL in case of error
1383 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1387 if (unlikely(!new_size)) {
1389 return ZERO_SIZE_PTR;
1392 ret = __do_krealloc(p, new_size, flags);
1393 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1398 EXPORT_SYMBOL(krealloc);
1401 * kfree_sensitive - Clear sensitive information in memory before freeing
1402 * @p: object to free memory of
1404 * The memory of the object @p points to is zeroed before freed.
1405 * If @p is %NULL, kfree_sensitive() does nothing.
1407 * Note: this function zeroes the whole allocated buffer which can be a good
1408 * deal bigger than the requested buffer size passed to kmalloc(). So be
1409 * careful when using this function in performance sensitive code.
1411 void kfree_sensitive(const void *p)
1414 void *mem = (void *)p;
1418 kasan_unpoison_range(mem, ks);
1419 memzero_explicit(mem, ks);
1423 EXPORT_SYMBOL(kfree_sensitive);
1425 size_t ksize(const void *objp)
1428 * We need to first check that the pointer to the object is valid.
1429 * The KASAN report printed from ksize() is more useful, then when
1430 * it's printed later when the behaviour could be undefined due to
1431 * a potential use-after-free or double-free.
1433 * We use kasan_check_byte(), which is supported for the hardware
1434 * tag-based KASAN mode, unlike kasan_check_read/write().
1436 * If the pointed to memory is invalid, we return 0 to avoid users of
1437 * ksize() writing to and potentially corrupting the memory region.
1439 * We want to perform the check before __ksize(), to avoid potentially
1440 * crashing in __ksize() due to accessing invalid metadata.
1442 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1445 return kfence_ksize(objp) ?: __ksize(objp);
1447 EXPORT_SYMBOL(ksize);
1449 /* Tracepoints definitions. */
1450 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1451 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1452 EXPORT_TRACEPOINT_SYMBOL(kfree);
1453 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1455 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1457 if (__should_failslab(s, gfpflags))
1461 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);