2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
25 enum slab_state slab_state;
26 LIST_HEAD(slab_caches);
27 DEFINE_MUTEX(slab_mutex);
28 struct kmem_cache *kmem_cache;
30 #ifdef CONFIG_DEBUG_VM
31 static int kmem_cache_sanity_check(struct mem_cgroup *memcg, const char *name,
34 struct kmem_cache *s = NULL;
36 if (!name || in_interrupt() || size < sizeof(void *) ||
37 size > KMALLOC_MAX_SIZE) {
38 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
42 list_for_each_entry(s, &slab_caches, list) {
47 * This happens when the module gets unloaded and doesn't
48 * destroy its slab cache and no-one else reuses the vmalloc
49 * area of the module. Print a warning.
51 res = probe_kernel_address(s->name, tmp);
53 pr_err("Slab cache with size %d has lost its name\n",
59 * For simplicity, we won't check this in the list of memcg
60 * caches. We have control over memcg naming, and if there
61 * aren't duplicates in the global list, there won't be any
62 * duplicates in the memcg lists as well.
64 if (!memcg && !strcmp(s->name, name)) {
65 pr_err("%s (%s): Cache name already exists.\n",
73 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77 static inline int kmem_cache_sanity_check(struct mem_cgroup *memcg,
78 const char *name, size_t size)
84 #ifdef CONFIG_MEMCG_KMEM
85 int memcg_update_all_caches(int num_memcgs)
89 mutex_lock(&slab_mutex);
91 list_for_each_entry(s, &slab_caches, list) {
92 if (!is_root_cache(s))
95 ret = memcg_update_cache_size(s, num_memcgs);
97 * See comment in memcontrol.c, memcg_update_cache_size:
98 * Instead of freeing the memory, we'll just leave the caches
99 * up to this point in an updated state.
105 memcg_update_array_size(num_memcgs);
107 mutex_unlock(&slab_mutex);
113 * Figure out what the alignment of the objects will be given a set of
114 * flags, a user specified alignment and the size of the objects.
116 unsigned long calculate_alignment(unsigned long flags,
117 unsigned long align, unsigned long size)
120 * If the user wants hardware cache aligned objects then follow that
121 * suggestion if the object is sufficiently large.
123 * The hardware cache alignment cannot override the specified
124 * alignment though. If that is greater then use it.
126 if (flags & SLAB_HWCACHE_ALIGN) {
127 unsigned long ralign = cache_line_size();
128 while (size <= ralign / 2)
130 align = max(align, ralign);
133 if (align < ARCH_SLAB_MINALIGN)
134 align = ARCH_SLAB_MINALIGN;
136 return ALIGN(align, sizeof(void *));
141 * kmem_cache_create - Create a cache.
142 * @name: A string which is used in /proc/slabinfo to identify this cache.
143 * @size: The size of objects to be created in this cache.
144 * @align: The required alignment for the objects.
146 * @ctor: A constructor for the objects.
148 * Returns a ptr to the cache on success, NULL on failure.
149 * Cannot be called within a interrupt, but can be interrupted.
150 * The @ctor is run when new pages are allocated by the cache.
154 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
155 * to catch references to uninitialised memory.
157 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
158 * for buffer overruns.
160 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
161 * cacheline. This can be beneficial if you're counting cycles as closely
166 kmem_cache_create_memcg(struct mem_cgroup *memcg, const char *name, size_t size,
167 size_t align, unsigned long flags, void (*ctor)(void *),
168 struct kmem_cache *parent_cache)
170 struct kmem_cache *s = NULL;
174 mutex_lock(&slab_mutex);
176 if (!kmem_cache_sanity_check(memcg, name, size) == 0)
180 * Some allocators will constraint the set of valid flags to a subset
181 * of all flags. We expect them to define CACHE_CREATE_MASK in this
182 * case, and we'll just provide them with a sanitized version of the
185 flags &= CACHE_CREATE_MASK;
187 s = __kmem_cache_alias(memcg, name, size, align, flags, ctor);
191 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
193 s->object_size = s->size = size;
194 s->align = calculate_alignment(flags, align, size);
197 if (memcg_register_cache(memcg, s, parent_cache)) {
198 kmem_cache_free(kmem_cache, s);
203 s->name = kstrdup(name, GFP_KERNEL);
205 kmem_cache_free(kmem_cache, s);
210 err = __kmem_cache_create(s, flags);
213 list_add(&s->list, &slab_caches);
214 memcg_cache_list_add(memcg, s);
217 kmem_cache_free(kmem_cache, s);
223 mutex_unlock(&slab_mutex);
228 if (flags & SLAB_PANIC)
229 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
232 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
244 kmem_cache_create(const char *name, size_t size, size_t align,
245 unsigned long flags, void (*ctor)(void *))
247 return kmem_cache_create_memcg(NULL, name, size, align, flags, ctor, NULL);
249 EXPORT_SYMBOL(kmem_cache_create);
251 void kmem_cache_destroy(struct kmem_cache *s)
253 /* Destroy all the children caches if we aren't a memcg cache */
254 kmem_cache_destroy_memcg_children(s);
257 mutex_lock(&slab_mutex);
262 if (!__kmem_cache_shutdown(s)) {
263 mutex_unlock(&slab_mutex);
264 if (s->flags & SLAB_DESTROY_BY_RCU)
267 memcg_release_cache(s);
269 kmem_cache_free(kmem_cache, s);
271 list_add(&s->list, &slab_caches);
272 mutex_unlock(&slab_mutex);
273 printk(KERN_ERR "kmem_cache_destroy %s: Slab cache still has objects\n",
278 mutex_unlock(&slab_mutex);
282 EXPORT_SYMBOL(kmem_cache_destroy);
284 int slab_is_available(void)
286 return slab_state >= UP;
290 /* Create a cache during boot when no slab services are available yet */
291 void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
297 s->size = s->object_size = size;
298 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
299 err = __kmem_cache_create(s, flags);
302 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
305 s->refcount = -1; /* Exempt from merging for now */
308 struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
311 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
314 panic("Out of memory when creating slab %s\n", name);
316 create_boot_cache(s, name, size, flags);
317 list_add(&s->list, &slab_caches);
322 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
323 EXPORT_SYMBOL(kmalloc_caches);
325 #ifdef CONFIG_ZONE_DMA
326 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
327 EXPORT_SYMBOL(kmalloc_dma_caches);
331 * Conversion table for small slabs sizes / 8 to the index in the
332 * kmalloc array. This is necessary for slabs < 192 since we have non power
333 * of two cache sizes there. The size of larger slabs can be determined using
336 static s8 size_index[24] = {
363 static inline int size_index_elem(size_t bytes)
365 return (bytes - 1) / 8;
369 * Find the kmem_cache structure that serves a given size of
372 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
376 if (size > KMALLOC_MAX_SIZE) {
377 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
383 return ZERO_SIZE_PTR;
385 index = size_index[size_index_elem(size)];
387 index = fls(size - 1);
389 #ifdef CONFIG_ZONE_DMA
390 if (unlikely((flags & GFP_DMA)))
391 return kmalloc_dma_caches[index];
394 return kmalloc_caches[index];
398 * Create the kmalloc array. Some of the regular kmalloc arrays
399 * may already have been created because they were needed to
400 * enable allocations for slab creation.
402 void __init create_kmalloc_caches(unsigned long flags)
407 * Patch up the size_index table if we have strange large alignment
408 * requirements for the kmalloc array. This is only the case for
409 * MIPS it seems. The standard arches will not generate any code here.
411 * Largest permitted alignment is 256 bytes due to the way we
412 * handle the index determination for the smaller caches.
414 * Make sure that nothing crazy happens if someone starts tinkering
415 * around with ARCH_KMALLOC_MINALIGN
417 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
418 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
420 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
421 int elem = size_index_elem(i);
423 if (elem >= ARRAY_SIZE(size_index))
425 size_index[elem] = KMALLOC_SHIFT_LOW;
428 if (KMALLOC_MIN_SIZE >= 64) {
430 * The 96 byte size cache is not used if the alignment
433 for (i = 64 + 8; i <= 96; i += 8)
434 size_index[size_index_elem(i)] = 7;
438 if (KMALLOC_MIN_SIZE >= 128) {
440 * The 192 byte sized cache is not used if the alignment
441 * is 128 byte. Redirect kmalloc to use the 256 byte cache
444 for (i = 128 + 8; i <= 192; i += 8)
445 size_index[size_index_elem(i)] = 8;
447 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
448 if (!kmalloc_caches[i]) {
449 kmalloc_caches[i] = create_kmalloc_cache(NULL,
454 * Caches that are not of the two-to-the-power-of size.
455 * These have to be created immediately after the
456 * earlier power of two caches
458 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
459 kmalloc_caches[1] = create_kmalloc_cache(NULL, 96, flags);
461 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
462 kmalloc_caches[2] = create_kmalloc_cache(NULL, 192, flags);
465 /* Kmalloc array is now usable */
468 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
469 struct kmem_cache *s = kmalloc_caches[i];
473 n = kasprintf(GFP_NOWAIT, "kmalloc-%d", kmalloc_size(i));
480 #ifdef CONFIG_ZONE_DMA
481 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
482 struct kmem_cache *s = kmalloc_caches[i];
485 int size = kmalloc_size(i);
486 char *n = kasprintf(GFP_NOWAIT,
487 "dma-kmalloc-%d", size);
490 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
491 size, SLAB_CACHE_DMA | flags);
496 #endif /* !CONFIG_SLOB */
499 #ifdef CONFIG_SLABINFO
502 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
504 #define SLABINFO_RIGHTS S_IRUSR
507 void print_slabinfo_header(struct seq_file *m)
510 * Output format version, so at least we can change it
511 * without _too_ many complaints.
513 #ifdef CONFIG_DEBUG_SLAB
514 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
516 seq_puts(m, "slabinfo - version: 2.1\n");
518 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
519 "<objperslab> <pagesperslab>");
520 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
521 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
522 #ifdef CONFIG_DEBUG_SLAB
523 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
524 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
525 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
530 static void *s_start(struct seq_file *m, loff_t *pos)
534 mutex_lock(&slab_mutex);
536 print_slabinfo_header(m);
538 return seq_list_start(&slab_caches, *pos);
541 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
543 return seq_list_next(p, &slab_caches, pos);
546 void slab_stop(struct seq_file *m, void *p)
548 mutex_unlock(&slab_mutex);
552 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
554 struct kmem_cache *c;
555 struct slabinfo sinfo;
558 if (!is_root_cache(s))
561 for_each_memcg_cache_index(i) {
562 c = cache_from_memcg(s, i);
566 memset(&sinfo, 0, sizeof(sinfo));
567 get_slabinfo(c, &sinfo);
569 info->active_slabs += sinfo.active_slabs;
570 info->num_slabs += sinfo.num_slabs;
571 info->shared_avail += sinfo.shared_avail;
572 info->active_objs += sinfo.active_objs;
573 info->num_objs += sinfo.num_objs;
577 int cache_show(struct kmem_cache *s, struct seq_file *m)
579 struct slabinfo sinfo;
581 memset(&sinfo, 0, sizeof(sinfo));
582 get_slabinfo(s, &sinfo);
584 memcg_accumulate_slabinfo(s, &sinfo);
586 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
587 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
588 sinfo.objects_per_slab, (1 << sinfo.cache_order));
590 seq_printf(m, " : tunables %4u %4u %4u",
591 sinfo.limit, sinfo.batchcount, sinfo.shared);
592 seq_printf(m, " : slabdata %6lu %6lu %6lu",
593 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
594 slabinfo_show_stats(m, s);
599 static int s_show(struct seq_file *m, void *p)
601 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
603 if (!is_root_cache(s))
605 return cache_show(s, m);
609 * slabinfo_op - iterator that generates /proc/slabinfo
619 * + further values on SMP and with statistics enabled
621 static const struct seq_operations slabinfo_op = {
628 static int slabinfo_open(struct inode *inode, struct file *file)
630 return seq_open(file, &slabinfo_op);
633 static const struct file_operations proc_slabinfo_operations = {
634 .open = slabinfo_open,
636 .write = slabinfo_write,
638 .release = seq_release,
641 static int __init slab_proc_init(void)
643 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
644 &proc_slabinfo_operations);
647 module_init(slab_proc_init);
648 #endif /* CONFIG_SLABINFO */