1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
26 #include <linux/memcontrol.h>
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
40 #ifdef CONFIG_HARDENED_USERCOPY
41 bool usercopy_fallback __ro_after_init =
42 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
43 module_param(usercopy_fallback, bool, 0400);
44 MODULE_PARM_DESC(usercopy_fallback,
45 "WARN instead of reject usercopy whitelist violations");
48 static LIST_HEAD(slab_caches_to_rcu_destroy);
49 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
50 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
51 slab_caches_to_rcu_destroy_workfn);
54 * Set of flags that will prevent slab merging
56 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
57 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
58 SLAB_FAILSLAB | kasan_never_merge())
60 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
61 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
64 * Merge control. If this is set then no merging of slab caches will occur.
66 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
68 static int __init setup_slab_nomerge(char *str)
75 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
78 __setup("slab_nomerge", setup_slab_nomerge);
81 * Determine the size of a slab object
83 unsigned int kmem_cache_size(struct kmem_cache *s)
85 return s->object_size;
87 EXPORT_SYMBOL(kmem_cache_size);
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 if (!name || in_interrupt() || size < sizeof(void *) ||
93 size > KMALLOC_MAX_SIZE) {
94 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
98 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
102 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
108 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
112 for (i = 0; i < nr; i++) {
114 kmem_cache_free(s, p[i]);
120 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
125 for (i = 0; i < nr; i++) {
126 void *x = p[i] = kmem_cache_alloc(s, flags);
128 __kmem_cache_free_bulk(s, i, p);
136 * Figure out what the alignment of the objects will be given a set of
137 * flags, a user specified alignment and the size of the objects.
139 static unsigned int calculate_alignment(slab_flags_t flags,
140 unsigned int align, unsigned int size)
143 * If the user wants hardware cache aligned objects then follow that
144 * suggestion if the object is sufficiently large.
146 * The hardware cache alignment cannot override the specified
147 * alignment though. If that is greater then use it.
149 if (flags & SLAB_HWCACHE_ALIGN) {
152 ralign = cache_line_size();
153 while (size <= ralign / 2)
155 align = max(align, ralign);
158 if (align < ARCH_SLAB_MINALIGN)
159 align = ARCH_SLAB_MINALIGN;
161 return ALIGN(align, sizeof(void *));
165 * Find a mergeable slab cache
167 int slab_unmergeable(struct kmem_cache *s)
169 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
179 * We may have set a slab to be unmergeable during bootstrap.
187 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
188 slab_flags_t flags, const char *name, void (*ctor)(void *))
190 struct kmem_cache *s;
198 size = ALIGN(size, sizeof(void *));
199 align = calculate_alignment(flags, align, size);
200 size = ALIGN(size, align);
201 flags = kmem_cache_flags(size, flags, name);
203 if (flags & SLAB_NEVER_MERGE)
206 list_for_each_entry_reverse(s, &slab_caches, list) {
207 if (slab_unmergeable(s))
213 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
216 * Check if alignment is compatible.
217 * Courtesy of Adrian Drzewiecki
219 if ((s->size & ~(align - 1)) != s->size)
222 if (s->size - size >= sizeof(void *))
225 if (IS_ENABLED(CONFIG_SLAB) && align &&
226 (align > s->align || s->align % align))
234 static struct kmem_cache *create_cache(const char *name,
235 unsigned int object_size, unsigned int align,
236 slab_flags_t flags, unsigned int useroffset,
237 unsigned int usersize, void (*ctor)(void *),
238 struct kmem_cache *root_cache)
240 struct kmem_cache *s;
243 if (WARN_ON(useroffset + usersize > object_size))
244 useroffset = usersize = 0;
247 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
252 s->size = s->object_size = object_size;
255 s->useroffset = useroffset;
256 s->usersize = usersize;
258 err = __kmem_cache_create(s, flags);
263 list_add(&s->list, &slab_caches);
270 kmem_cache_free(kmem_cache, s);
275 * kmem_cache_create_usercopy - Create a cache with a region suitable
276 * for copying to userspace
277 * @name: A string which is used in /proc/slabinfo to identify this cache.
278 * @size: The size of objects to be created in this cache.
279 * @align: The required alignment for the objects.
281 * @useroffset: Usercopy region offset
282 * @usersize: Usercopy region size
283 * @ctor: A constructor for the objects.
285 * Cannot be called within a interrupt, but can be interrupted.
286 * The @ctor is run when new pages are allocated by the cache.
290 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
291 * to catch references to uninitialised memory.
293 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
294 * for buffer overruns.
296 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
297 * cacheline. This can be beneficial if you're counting cycles as closely
300 * Return: a pointer to the cache on success, NULL on failure.
303 kmem_cache_create_usercopy(const char *name,
304 unsigned int size, unsigned int align,
306 unsigned int useroffset, unsigned int usersize,
307 void (*ctor)(void *))
309 struct kmem_cache *s = NULL;
310 const char *cache_name;
313 mutex_lock(&slab_mutex);
315 err = kmem_cache_sanity_check(name, size);
320 /* Refuse requests with allocator specific flags */
321 if (flags & ~SLAB_FLAGS_PERMITTED) {
327 * Some allocators will constraint the set of valid flags to a subset
328 * of all flags. We expect them to define CACHE_CREATE_MASK in this
329 * case, and we'll just provide them with a sanitized version of the
332 flags &= CACHE_CREATE_MASK;
334 /* Fail closed on bad usersize of useroffset values. */
335 if (WARN_ON(!usersize && useroffset) ||
336 WARN_ON(size < usersize || size - usersize < useroffset))
337 usersize = useroffset = 0;
340 s = __kmem_cache_alias(name, size, align, flags, ctor);
344 cache_name = kstrdup_const(name, GFP_KERNEL);
350 s = create_cache(cache_name, size,
351 calculate_alignment(flags, align, size),
352 flags, useroffset, usersize, ctor, NULL);
355 kfree_const(cache_name);
359 mutex_unlock(&slab_mutex);
362 if (flags & SLAB_PANIC)
363 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
366 pr_warn("kmem_cache_create(%s) failed with error %d\n",
374 EXPORT_SYMBOL(kmem_cache_create_usercopy);
377 * kmem_cache_create - Create a cache.
378 * @name: A string which is used in /proc/slabinfo to identify this cache.
379 * @size: The size of objects to be created in this cache.
380 * @align: The required alignment for the objects.
382 * @ctor: A constructor for the objects.
384 * Cannot be called within a interrupt, but can be interrupted.
385 * The @ctor is run when new pages are allocated by the cache.
389 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
390 * to catch references to uninitialised memory.
392 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
393 * for buffer overruns.
395 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
396 * cacheline. This can be beneficial if you're counting cycles as closely
399 * Return: a pointer to the cache on success, NULL on failure.
402 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
403 slab_flags_t flags, void (*ctor)(void *))
405 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
408 EXPORT_SYMBOL(kmem_cache_create);
410 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
412 LIST_HEAD(to_destroy);
413 struct kmem_cache *s, *s2;
416 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
417 * @slab_caches_to_rcu_destroy list. The slab pages are freed
418 * through RCU and the associated kmem_cache are dereferenced
419 * while freeing the pages, so the kmem_caches should be freed only
420 * after the pending RCU operations are finished. As rcu_barrier()
421 * is a pretty slow operation, we batch all pending destructions
424 mutex_lock(&slab_mutex);
425 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
426 mutex_unlock(&slab_mutex);
428 if (list_empty(&to_destroy))
433 list_for_each_entry_safe(s, s2, &to_destroy, list) {
434 kfence_shutdown_cache(s);
435 #ifdef SLAB_SUPPORTS_SYSFS
436 sysfs_slab_release(s);
438 slab_kmem_cache_release(s);
443 static int shutdown_cache(struct kmem_cache *s)
445 /* free asan quarantined objects */
446 kasan_cache_shutdown(s);
448 if (__kmem_cache_shutdown(s) != 0)
453 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
454 #ifdef SLAB_SUPPORTS_SYSFS
455 sysfs_slab_unlink(s);
457 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
458 schedule_work(&slab_caches_to_rcu_destroy_work);
460 kfence_shutdown_cache(s);
461 #ifdef SLAB_SUPPORTS_SYSFS
462 sysfs_slab_unlink(s);
463 sysfs_slab_release(s);
465 slab_kmem_cache_release(s);
472 void slab_kmem_cache_release(struct kmem_cache *s)
474 __kmem_cache_release(s);
475 kfree_const(s->name);
476 kmem_cache_free(kmem_cache, s);
479 void kmem_cache_destroy(struct kmem_cache *s)
486 mutex_lock(&slab_mutex);
492 err = shutdown_cache(s);
494 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
499 mutex_unlock(&slab_mutex);
501 EXPORT_SYMBOL(kmem_cache_destroy);
504 * kmem_cache_shrink - Shrink a cache.
505 * @cachep: The cache to shrink.
507 * Releases as many slabs as possible for a cache.
508 * To help debugging, a zero exit status indicates all slabs were released.
510 * Return: %0 if all slabs were released, non-zero otherwise
512 int kmem_cache_shrink(struct kmem_cache *cachep)
517 kasan_cache_shrink(cachep);
518 ret = __kmem_cache_shrink(cachep);
522 EXPORT_SYMBOL(kmem_cache_shrink);
524 bool slab_is_available(void)
526 return slab_state >= UP;
530 * kmem_valid_obj - does the pointer reference a valid slab object?
531 * @object: pointer to query.
533 * Return: %true if the pointer is to a not-yet-freed object from
534 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
535 * is to an already-freed object, and %false otherwise.
537 bool kmem_valid_obj(void *object)
541 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
542 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
544 page = virt_to_head_page(object);
545 return PageSlab(page);
549 * kmem_dump_obj - Print available slab provenance information
550 * @object: slab object for which to find provenance information.
552 * This function uses pr_cont(), so that the caller is expected to have
553 * printed out whatever preamble is appropriate. The provenance information
554 * depends on the type of object and on how much debugging is enabled.
555 * For a slab-cache object, the fact that it is a slab object is printed,
556 * and, if available, the slab name, return address, and stack trace from
557 * the allocation of that object.
559 * This function will splat if passed a pointer to a non-slab object.
560 * If you are not sure what type of object you have, you should instead
561 * use mem_dump_obj().
563 void kmem_dump_obj(void *object)
565 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
568 unsigned long ptroffset;
569 struct kmem_obj_info kp = { };
571 if (WARN_ON_ONCE(!virt_addr_valid(object)))
573 page = virt_to_head_page(object);
574 if (WARN_ON_ONCE(!PageSlab(page))) {
575 pr_cont(" non-slab memory.\n");
578 kmem_obj_info(&kp, object, page);
579 if (kp.kp_slab_cache)
580 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
582 pr_cont(" slab%s", cp);
584 pr_cont(" start %px", kp.kp_objp);
585 if (kp.kp_data_offset)
586 pr_cont(" data offset %lu", kp.kp_data_offset);
588 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
589 pr_cont(" pointer offset %lu", ptroffset);
591 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
592 pr_cont(" size %u", kp.kp_slab_cache->usersize);
594 pr_cont(" allocated at %pS\n", kp.kp_ret);
597 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
600 pr_info(" %pS\n", kp.kp_stack[i]);
605 /* Create a cache during boot when no slab services are available yet */
606 void __init create_boot_cache(struct kmem_cache *s, const char *name,
607 unsigned int size, slab_flags_t flags,
608 unsigned int useroffset, unsigned int usersize)
611 unsigned int align = ARCH_KMALLOC_MINALIGN;
614 s->size = s->object_size = size;
617 * For power of two sizes, guarantee natural alignment for kmalloc
618 * caches, regardless of SL*B debugging options.
620 if (is_power_of_2(size))
621 align = max(align, size);
622 s->align = calculate_alignment(flags, align, size);
624 s->useroffset = useroffset;
625 s->usersize = usersize;
627 err = __kmem_cache_create(s, flags);
630 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
633 s->refcount = -1; /* Exempt from merging for now */
636 struct kmem_cache *__init create_kmalloc_cache(const char *name,
637 unsigned int size, slab_flags_t flags,
638 unsigned int useroffset, unsigned int usersize)
640 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
643 panic("Out of memory when creating slab %s\n", name);
645 create_boot_cache(s, name, size, flags, useroffset, usersize);
646 kasan_cache_create_kmalloc(s);
647 list_add(&s->list, &slab_caches);
653 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
654 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
655 EXPORT_SYMBOL(kmalloc_caches);
658 * Conversion table for small slabs sizes / 8 to the index in the
659 * kmalloc array. This is necessary for slabs < 192 since we have non power
660 * of two cache sizes there. The size of larger slabs can be determined using
663 static u8 size_index[24] __ro_after_init = {
690 static inline unsigned int size_index_elem(unsigned int bytes)
692 return (bytes - 1) / 8;
696 * Find the kmem_cache structure that serves a given size of
699 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
705 return ZERO_SIZE_PTR;
707 index = size_index[size_index_elem(size)];
709 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
711 index = fls(size - 1);
714 return kmalloc_caches[kmalloc_type(flags)][index];
717 #ifdef CONFIG_ZONE_DMA
718 #define INIT_KMALLOC_INFO(__size, __short_size) \
720 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
721 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
722 .name[KMALLOC_DMA] = "dma-kmalloc-" #__short_size, \
726 #define INIT_KMALLOC_INFO(__size, __short_size) \
728 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
729 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
735 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
736 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
739 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
740 INIT_KMALLOC_INFO(0, 0),
741 INIT_KMALLOC_INFO(96, 96),
742 INIT_KMALLOC_INFO(192, 192),
743 INIT_KMALLOC_INFO(8, 8),
744 INIT_KMALLOC_INFO(16, 16),
745 INIT_KMALLOC_INFO(32, 32),
746 INIT_KMALLOC_INFO(64, 64),
747 INIT_KMALLOC_INFO(128, 128),
748 INIT_KMALLOC_INFO(256, 256),
749 INIT_KMALLOC_INFO(512, 512),
750 INIT_KMALLOC_INFO(1024, 1k),
751 INIT_KMALLOC_INFO(2048, 2k),
752 INIT_KMALLOC_INFO(4096, 4k),
753 INIT_KMALLOC_INFO(8192, 8k),
754 INIT_KMALLOC_INFO(16384, 16k),
755 INIT_KMALLOC_INFO(32768, 32k),
756 INIT_KMALLOC_INFO(65536, 64k),
757 INIT_KMALLOC_INFO(131072, 128k),
758 INIT_KMALLOC_INFO(262144, 256k),
759 INIT_KMALLOC_INFO(524288, 512k),
760 INIT_KMALLOC_INFO(1048576, 1M),
761 INIT_KMALLOC_INFO(2097152, 2M),
762 INIT_KMALLOC_INFO(4194304, 4M),
763 INIT_KMALLOC_INFO(8388608, 8M),
764 INIT_KMALLOC_INFO(16777216, 16M),
765 INIT_KMALLOC_INFO(33554432, 32M),
766 INIT_KMALLOC_INFO(67108864, 64M)
770 * Patch up the size_index table if we have strange large alignment
771 * requirements for the kmalloc array. This is only the case for
772 * MIPS it seems. The standard arches will not generate any code here.
774 * Largest permitted alignment is 256 bytes due to the way we
775 * handle the index determination for the smaller caches.
777 * Make sure that nothing crazy happens if someone starts tinkering
778 * around with ARCH_KMALLOC_MINALIGN
780 void __init setup_kmalloc_cache_index_table(void)
784 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
785 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
787 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
788 unsigned int elem = size_index_elem(i);
790 if (elem >= ARRAY_SIZE(size_index))
792 size_index[elem] = KMALLOC_SHIFT_LOW;
795 if (KMALLOC_MIN_SIZE >= 64) {
797 * The 96 byte size cache is not used if the alignment
800 for (i = 64 + 8; i <= 96; i += 8)
801 size_index[size_index_elem(i)] = 7;
805 if (KMALLOC_MIN_SIZE >= 128) {
807 * The 192 byte sized cache is not used if the alignment
808 * is 128 byte. Redirect kmalloc to use the 256 byte cache
811 for (i = 128 + 8; i <= 192; i += 8)
812 size_index[size_index_elem(i)] = 8;
817 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
819 if (type == KMALLOC_RECLAIM)
820 flags |= SLAB_RECLAIM_ACCOUNT;
822 kmalloc_caches[type][idx] = create_kmalloc_cache(
823 kmalloc_info[idx].name[type],
824 kmalloc_info[idx].size, flags, 0,
825 kmalloc_info[idx].size);
829 * Create the kmalloc array. Some of the regular kmalloc arrays
830 * may already have been created because they were needed to
831 * enable allocations for slab creation.
833 void __init create_kmalloc_caches(slab_flags_t flags)
836 enum kmalloc_cache_type type;
838 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
839 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
840 if (!kmalloc_caches[type][i])
841 new_kmalloc_cache(i, type, flags);
844 * Caches that are not of the two-to-the-power-of size.
845 * These have to be created immediately after the
846 * earlier power of two caches
848 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
849 !kmalloc_caches[type][1])
850 new_kmalloc_cache(1, type, flags);
851 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
852 !kmalloc_caches[type][2])
853 new_kmalloc_cache(2, type, flags);
857 /* Kmalloc array is now usable */
860 #ifdef CONFIG_ZONE_DMA
861 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
862 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
865 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
866 kmalloc_info[i].name[KMALLOC_DMA],
867 kmalloc_info[i].size,
868 SLAB_CACHE_DMA | flags, 0,
869 kmalloc_info[i].size);
874 #endif /* !CONFIG_SLOB */
876 gfp_t kmalloc_fix_flags(gfp_t flags)
878 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
880 flags &= ~GFP_SLAB_BUG_MASK;
881 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
882 invalid_mask, &invalid_mask, flags, &flags);
889 * To avoid unnecessary overhead, we pass through large allocation requests
890 * directly to the page allocator. We use __GFP_COMP, because we will need to
891 * know the allocation order to free the pages properly in kfree.
893 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
898 if (unlikely(flags & GFP_SLAB_BUG_MASK))
899 flags = kmalloc_fix_flags(flags);
902 page = alloc_pages(flags, order);
904 ret = page_address(page);
905 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
908 ret = kasan_kmalloc_large(ret, size, flags);
909 /* As ret might get tagged, call kmemleak hook after KASAN. */
910 kmemleak_alloc(ret, size, 1, flags);
913 EXPORT_SYMBOL(kmalloc_order);
915 #ifdef CONFIG_TRACING
916 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
918 void *ret = kmalloc_order(size, flags, order);
919 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
922 EXPORT_SYMBOL(kmalloc_order_trace);
925 #ifdef CONFIG_SLAB_FREELIST_RANDOM
926 /* Randomize a generic freelist */
927 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
933 for (i = 0; i < count; i++)
936 /* Fisher-Yates shuffle */
937 for (i = count - 1; i > 0; i--) {
938 rand = prandom_u32_state(state);
940 swap(list[i], list[rand]);
944 /* Create a random sequence per cache */
945 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
948 struct rnd_state state;
950 if (count < 2 || cachep->random_seq)
953 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
954 if (!cachep->random_seq)
957 /* Get best entropy at this stage of boot */
958 prandom_seed_state(&state, get_random_long());
960 freelist_randomize(&state, cachep->random_seq, count);
964 /* Destroy the per-cache random freelist sequence */
965 void cache_random_seq_destroy(struct kmem_cache *cachep)
967 kfree(cachep->random_seq);
968 cachep->random_seq = NULL;
970 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
972 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
974 #define SLABINFO_RIGHTS (0600)
976 #define SLABINFO_RIGHTS (0400)
979 static void print_slabinfo_header(struct seq_file *m)
982 * Output format version, so at least we can change it
983 * without _too_ many complaints.
985 #ifdef CONFIG_DEBUG_SLAB
986 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
988 seq_puts(m, "slabinfo - version: 2.1\n");
990 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
991 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
992 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
993 #ifdef CONFIG_DEBUG_SLAB
994 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
995 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1000 void *slab_start(struct seq_file *m, loff_t *pos)
1002 mutex_lock(&slab_mutex);
1003 return seq_list_start(&slab_caches, *pos);
1006 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1008 return seq_list_next(p, &slab_caches, pos);
1011 void slab_stop(struct seq_file *m, void *p)
1013 mutex_unlock(&slab_mutex);
1016 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1018 struct slabinfo sinfo;
1020 memset(&sinfo, 0, sizeof(sinfo));
1021 get_slabinfo(s, &sinfo);
1023 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1024 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1025 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1027 seq_printf(m, " : tunables %4u %4u %4u",
1028 sinfo.limit, sinfo.batchcount, sinfo.shared);
1029 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1030 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1031 slabinfo_show_stats(m, s);
1035 static int slab_show(struct seq_file *m, void *p)
1037 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1039 if (p == slab_caches.next)
1040 print_slabinfo_header(m);
1045 void dump_unreclaimable_slab(void)
1047 struct kmem_cache *s;
1048 struct slabinfo sinfo;
1051 * Here acquiring slab_mutex is risky since we don't prefer to get
1052 * sleep in oom path. But, without mutex hold, it may introduce a
1054 * Use mutex_trylock to protect the list traverse, dump nothing
1055 * without acquiring the mutex.
1057 if (!mutex_trylock(&slab_mutex)) {
1058 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1062 pr_info("Unreclaimable slab info:\n");
1063 pr_info("Name Used Total\n");
1065 list_for_each_entry(s, &slab_caches, list) {
1066 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1069 get_slabinfo(s, &sinfo);
1071 if (sinfo.num_objs > 0)
1072 pr_info("%-17s %10luKB %10luKB\n", s->name,
1073 (sinfo.active_objs * s->size) / 1024,
1074 (sinfo.num_objs * s->size) / 1024);
1076 mutex_unlock(&slab_mutex);
1079 #if defined(CONFIG_MEMCG_KMEM)
1080 int memcg_slab_show(struct seq_file *m, void *p)
1084 * Please, take a look at tools/cgroup/slabinfo.py .
1091 * slabinfo_op - iterator that generates /proc/slabinfo
1100 * num-pages-per-slab
1101 * + further values on SMP and with statistics enabled
1103 static const struct seq_operations slabinfo_op = {
1104 .start = slab_start,
1110 static int slabinfo_open(struct inode *inode, struct file *file)
1112 return seq_open(file, &slabinfo_op);
1115 static const struct proc_ops slabinfo_proc_ops = {
1116 .proc_flags = PROC_ENTRY_PERMANENT,
1117 .proc_open = slabinfo_open,
1118 .proc_read = seq_read,
1119 .proc_write = slabinfo_write,
1120 .proc_lseek = seq_lseek,
1121 .proc_release = seq_release,
1124 static int __init slab_proc_init(void)
1126 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1129 module_init(slab_proc_init);
1131 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1133 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1139 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1140 if (likely(!ZERO_OR_NULL_PTR(p))) {
1141 if (!kasan_check_byte(p))
1143 ks = kfence_ksize(p) ?: __ksize(p);
1147 /* If the object still fits, repoison it precisely. */
1148 if (ks >= new_size) {
1149 p = kasan_krealloc((void *)p, new_size, flags);
1153 ret = kmalloc_track_caller(new_size, flags);
1155 /* Disable KASAN checks as the object's redzone is accessed. */
1156 kasan_disable_current();
1157 memcpy(ret, kasan_reset_tag(p), ks);
1158 kasan_enable_current();
1165 * krealloc - reallocate memory. The contents will remain unchanged.
1166 * @p: object to reallocate memory for.
1167 * @new_size: how many bytes of memory are required.
1168 * @flags: the type of memory to allocate.
1170 * The contents of the object pointed to are preserved up to the
1171 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1172 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1173 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1175 * Return: pointer to the allocated memory or %NULL in case of error
1177 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1181 if (unlikely(!new_size)) {
1183 return ZERO_SIZE_PTR;
1186 ret = __do_krealloc(p, new_size, flags);
1187 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1192 EXPORT_SYMBOL(krealloc);
1195 * kfree_sensitive - Clear sensitive information in memory before freeing
1196 * @p: object to free memory of
1198 * The memory of the object @p points to is zeroed before freed.
1199 * If @p is %NULL, kfree_sensitive() does nothing.
1201 * Note: this function zeroes the whole allocated buffer which can be a good
1202 * deal bigger than the requested buffer size passed to kmalloc(). So be
1203 * careful when using this function in performance sensitive code.
1205 void kfree_sensitive(const void *p)
1208 void *mem = (void *)p;
1212 memzero_explicit(mem, ks);
1215 EXPORT_SYMBOL(kfree_sensitive);
1218 * ksize - get the actual amount of memory allocated for a given object
1219 * @objp: Pointer to the object
1221 * kmalloc may internally round up allocations and return more memory
1222 * than requested. ksize() can be used to determine the actual amount of
1223 * memory allocated. The caller may use this additional memory, even though
1224 * a smaller amount of memory was initially specified with the kmalloc call.
1225 * The caller must guarantee that objp points to a valid object previously
1226 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1227 * must not be freed during the duration of the call.
1229 * Return: size of the actual memory used by @objp in bytes
1231 size_t ksize(const void *objp)
1236 * We need to first check that the pointer to the object is valid, and
1237 * only then unpoison the memory. The report printed from ksize() is
1238 * more useful, then when it's printed later when the behaviour could
1239 * be undefined due to a potential use-after-free or double-free.
1241 * We use kasan_check_byte(), which is supported for the hardware
1242 * tag-based KASAN mode, unlike kasan_check_read/write().
1244 * If the pointed to memory is invalid, we return 0 to avoid users of
1245 * ksize() writing to and potentially corrupting the memory region.
1247 * We want to perform the check before __ksize(), to avoid potentially
1248 * crashing in __ksize() due to accessing invalid metadata.
1250 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1253 size = kfence_ksize(objp) ?: __ksize(objp);
1255 * We assume that ksize callers could use whole allocated area,
1256 * so we need to unpoison this area.
1258 kasan_unpoison_range(objp, size);
1261 EXPORT_SYMBOL(ksize);
1263 /* Tracepoints definitions. */
1264 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1265 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1266 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1267 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1268 EXPORT_TRACEPOINT_SYMBOL(kfree);
1269 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1271 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1273 if (__should_failslab(s, gfpflags))
1277 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);