1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
26 #include <linux/memcontrol.h>
27 #include <linux/stackdepot.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/kmem.h>
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
46 * Set of flags that will prevent slab merging
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 SLAB_FAILSLAB | kasan_never_merge())
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
56 * Merge control. If this is set then no merging of slab caches will occur.
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
60 static int __init setup_slab_nomerge(char *str)
66 static int __init setup_slab_merge(char *str)
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
81 * Determine the size of a slab object
83 unsigned int kmem_cache_size(struct kmem_cache *s)
85 return s->object_size;
87 EXPORT_SYMBOL(kmem_cache_size);
89 #ifdef CONFIG_DEBUG_VM
90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
108 * Figure out what the alignment of the objects will be given a set of
109 * flags, a user specified alignment and the size of the objects.
111 static unsigned int calculate_alignment(slab_flags_t flags,
112 unsigned int align, unsigned int size)
115 * If the user wants hardware cache aligned objects then follow that
116 * suggestion if the object is sufficiently large.
118 * The hardware cache alignment cannot override the specified
119 * alignment though. If that is greater then use it.
121 if (flags & SLAB_HWCACHE_ALIGN) {
124 ralign = cache_line_size();
125 while (size <= ralign / 2)
127 align = max(align, ralign);
130 align = max(align, arch_slab_minalign());
132 return ALIGN(align, sizeof(void *));
136 * Find a mergeable slab cache
138 int slab_unmergeable(struct kmem_cache *s)
140 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
150 * We may have set a slab to be unmergeable during bootstrap.
158 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
159 slab_flags_t flags, const char *name, void (*ctor)(void *))
161 struct kmem_cache *s;
169 size = ALIGN(size, sizeof(void *));
170 align = calculate_alignment(flags, align, size);
171 size = ALIGN(size, align);
172 flags = kmem_cache_flags(size, flags, name);
174 if (flags & SLAB_NEVER_MERGE)
177 list_for_each_entry_reverse(s, &slab_caches, list) {
178 if (slab_unmergeable(s))
184 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
187 * Check if alignment is compatible.
188 * Courtesy of Adrian Drzewiecki
190 if ((s->size & ~(align - 1)) != s->size)
193 if (s->size - size >= sizeof(void *))
196 if (IS_ENABLED(CONFIG_SLAB) && align &&
197 (align > s->align || s->align % align))
205 static struct kmem_cache *create_cache(const char *name,
206 unsigned int object_size, unsigned int align,
207 slab_flags_t flags, unsigned int useroffset,
208 unsigned int usersize, void (*ctor)(void *),
209 struct kmem_cache *root_cache)
211 struct kmem_cache *s;
214 if (WARN_ON(useroffset + usersize > object_size))
215 useroffset = usersize = 0;
218 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
223 s->size = s->object_size = object_size;
226 s->useroffset = useroffset;
227 s->usersize = usersize;
229 err = __kmem_cache_create(s, flags);
234 list_add(&s->list, &slab_caches);
241 kmem_cache_free(kmem_cache, s);
246 * kmem_cache_create_usercopy - Create a cache with a region suitable
247 * for copying to userspace
248 * @name: A string which is used in /proc/slabinfo to identify this cache.
249 * @size: The size of objects to be created in this cache.
250 * @align: The required alignment for the objects.
252 * @useroffset: Usercopy region offset
253 * @usersize: Usercopy region size
254 * @ctor: A constructor for the objects.
256 * Cannot be called within a interrupt, but can be interrupted.
257 * The @ctor is run when new pages are allocated by the cache.
261 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
262 * to catch references to uninitialised memory.
264 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
265 * for buffer overruns.
267 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
268 * cacheline. This can be beneficial if you're counting cycles as closely
271 * Return: a pointer to the cache on success, NULL on failure.
274 kmem_cache_create_usercopy(const char *name,
275 unsigned int size, unsigned int align,
277 unsigned int useroffset, unsigned int usersize,
278 void (*ctor)(void *))
280 struct kmem_cache *s = NULL;
281 const char *cache_name;
284 #ifdef CONFIG_SLUB_DEBUG
286 * If no slub_debug was enabled globally, the static key is not yet
287 * enabled by setup_slub_debug(). Enable it if the cache is being
288 * created with any of the debugging flags passed explicitly.
289 * It's also possible that this is the first cache created with
290 * SLAB_STORE_USER and we should init stack_depot for it.
292 if (flags & SLAB_DEBUG_FLAGS)
293 static_branch_enable(&slub_debug_enabled);
294 if (flags & SLAB_STORE_USER)
298 mutex_lock(&slab_mutex);
300 err = kmem_cache_sanity_check(name, size);
305 /* Refuse requests with allocator specific flags */
306 if (flags & ~SLAB_FLAGS_PERMITTED) {
312 * Some allocators will constraint the set of valid flags to a subset
313 * of all flags. We expect them to define CACHE_CREATE_MASK in this
314 * case, and we'll just provide them with a sanitized version of the
317 flags &= CACHE_CREATE_MASK;
319 /* Fail closed on bad usersize of useroffset values. */
320 if (WARN_ON(!usersize && useroffset) ||
321 WARN_ON(size < usersize || size - usersize < useroffset))
322 usersize = useroffset = 0;
325 s = __kmem_cache_alias(name, size, align, flags, ctor);
329 cache_name = kstrdup_const(name, GFP_KERNEL);
335 s = create_cache(cache_name, size,
336 calculate_alignment(flags, align, size),
337 flags, useroffset, usersize, ctor, NULL);
340 kfree_const(cache_name);
344 mutex_unlock(&slab_mutex);
347 if (flags & SLAB_PANIC)
348 panic("%s: Failed to create slab '%s'. Error %d\n",
349 __func__, name, err);
351 pr_warn("%s(%s) failed with error %d\n",
352 __func__, name, err);
359 EXPORT_SYMBOL(kmem_cache_create_usercopy);
362 * kmem_cache_create - Create a cache.
363 * @name: A string which is used in /proc/slabinfo to identify this cache.
364 * @size: The size of objects to be created in this cache.
365 * @align: The required alignment for the objects.
367 * @ctor: A constructor for the objects.
369 * Cannot be called within a interrupt, but can be interrupted.
370 * The @ctor is run when new pages are allocated by the cache.
374 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
375 * to catch references to uninitialised memory.
377 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
378 * for buffer overruns.
380 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
381 * cacheline. This can be beneficial if you're counting cycles as closely
384 * Return: a pointer to the cache on success, NULL on failure.
387 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
388 slab_flags_t flags, void (*ctor)(void *))
390 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
393 EXPORT_SYMBOL(kmem_cache_create);
395 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
397 LIST_HEAD(to_destroy);
398 struct kmem_cache *s, *s2;
401 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
402 * @slab_caches_to_rcu_destroy list. The slab pages are freed
403 * through RCU and the associated kmem_cache are dereferenced
404 * while freeing the pages, so the kmem_caches should be freed only
405 * after the pending RCU operations are finished. As rcu_barrier()
406 * is a pretty slow operation, we batch all pending destructions
409 mutex_lock(&slab_mutex);
410 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
411 mutex_unlock(&slab_mutex);
413 if (list_empty(&to_destroy))
418 list_for_each_entry_safe(s, s2, &to_destroy, list) {
419 debugfs_slab_release(s);
420 kfence_shutdown_cache(s);
421 #ifdef SLAB_SUPPORTS_SYSFS
422 sysfs_slab_release(s);
424 slab_kmem_cache_release(s);
429 static int shutdown_cache(struct kmem_cache *s)
431 /* free asan quarantined objects */
432 kasan_cache_shutdown(s);
434 if (__kmem_cache_shutdown(s) != 0)
439 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
440 #ifdef SLAB_SUPPORTS_SYSFS
441 sysfs_slab_unlink(s);
443 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
444 schedule_work(&slab_caches_to_rcu_destroy_work);
446 kfence_shutdown_cache(s);
447 debugfs_slab_release(s);
448 #ifdef SLAB_SUPPORTS_SYSFS
449 sysfs_slab_unlink(s);
450 sysfs_slab_release(s);
452 slab_kmem_cache_release(s);
459 void slab_kmem_cache_release(struct kmem_cache *s)
461 __kmem_cache_release(s);
462 kfree_const(s->name);
463 kmem_cache_free(kmem_cache, s);
466 void kmem_cache_destroy(struct kmem_cache *s)
468 if (unlikely(!s) || !kasan_check_byte(s))
472 mutex_lock(&slab_mutex);
478 WARN(shutdown_cache(s),
479 "%s %s: Slab cache still has objects when called from %pS",
480 __func__, s->name, (void *)_RET_IP_);
482 mutex_unlock(&slab_mutex);
485 EXPORT_SYMBOL(kmem_cache_destroy);
488 * kmem_cache_shrink - Shrink a cache.
489 * @cachep: The cache to shrink.
491 * Releases as many slabs as possible for a cache.
492 * To help debugging, a zero exit status indicates all slabs were released.
494 * Return: %0 if all slabs were released, non-zero otherwise
496 int kmem_cache_shrink(struct kmem_cache *cachep)
501 kasan_cache_shrink(cachep);
502 ret = __kmem_cache_shrink(cachep);
506 EXPORT_SYMBOL(kmem_cache_shrink);
508 bool slab_is_available(void)
510 return slab_state >= UP;
515 * kmem_valid_obj - does the pointer reference a valid slab object?
516 * @object: pointer to query.
518 * Return: %true if the pointer is to a not-yet-freed object from
519 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
520 * is to an already-freed object, and %false otherwise.
522 bool kmem_valid_obj(void *object)
526 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
527 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
529 folio = virt_to_folio(object);
530 return folio_test_slab(folio);
532 EXPORT_SYMBOL_GPL(kmem_valid_obj);
534 static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
536 if (__kfence_obj_info(kpp, object, slab))
538 __kmem_obj_info(kpp, object, slab);
542 * kmem_dump_obj - Print available slab provenance information
543 * @object: slab object for which to find provenance information.
545 * This function uses pr_cont(), so that the caller is expected to have
546 * printed out whatever preamble is appropriate. The provenance information
547 * depends on the type of object and on how much debugging is enabled.
548 * For a slab-cache object, the fact that it is a slab object is printed,
549 * and, if available, the slab name, return address, and stack trace from
550 * the allocation and last free path of that object.
552 * This function will splat if passed a pointer to a non-slab object.
553 * If you are not sure what type of object you have, you should instead
554 * use mem_dump_obj().
556 void kmem_dump_obj(void *object)
558 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
561 unsigned long ptroffset;
562 struct kmem_obj_info kp = { };
564 if (WARN_ON_ONCE(!virt_addr_valid(object)))
566 slab = virt_to_slab(object);
567 if (WARN_ON_ONCE(!slab)) {
568 pr_cont(" non-slab memory.\n");
571 kmem_obj_info(&kp, object, slab);
572 if (kp.kp_slab_cache)
573 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
575 pr_cont(" slab%s", cp);
576 if (is_kfence_address(object))
577 pr_cont(" (kfence)");
579 pr_cont(" start %px", kp.kp_objp);
580 if (kp.kp_data_offset)
581 pr_cont(" data offset %lu", kp.kp_data_offset);
583 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
584 pr_cont(" pointer offset %lu", ptroffset);
586 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
587 pr_cont(" size %u", kp.kp_slab_cache->usersize);
589 pr_cont(" allocated at %pS\n", kp.kp_ret);
592 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
595 pr_info(" %pS\n", kp.kp_stack[i]);
598 if (kp.kp_free_stack[0])
599 pr_cont(" Free path:\n");
601 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
602 if (!kp.kp_free_stack[i])
604 pr_info(" %pS\n", kp.kp_free_stack[i]);
608 EXPORT_SYMBOL_GPL(kmem_dump_obj);
612 /* Create a cache during boot when no slab services are available yet */
613 void __init create_boot_cache(struct kmem_cache *s, const char *name,
614 unsigned int size, slab_flags_t flags,
615 unsigned int useroffset, unsigned int usersize)
618 unsigned int align = ARCH_KMALLOC_MINALIGN;
621 s->size = s->object_size = size;
624 * For power of two sizes, guarantee natural alignment for kmalloc
625 * caches, regardless of SL*B debugging options.
627 if (is_power_of_2(size))
628 align = max(align, size);
629 s->align = calculate_alignment(flags, align, size);
631 s->useroffset = useroffset;
632 s->usersize = usersize;
634 err = __kmem_cache_create(s, flags);
637 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
640 s->refcount = -1; /* Exempt from merging for now */
643 struct kmem_cache *__init create_kmalloc_cache(const char *name,
644 unsigned int size, slab_flags_t flags,
645 unsigned int useroffset, unsigned int usersize)
647 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
650 panic("Out of memory when creating slab %s\n", name);
652 create_boot_cache(s, name, size, flags, useroffset, usersize);
653 kasan_cache_create_kmalloc(s);
654 list_add(&s->list, &slab_caches);
660 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
661 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
662 EXPORT_SYMBOL(kmalloc_caches);
665 * Conversion table for small slabs sizes / 8 to the index in the
666 * kmalloc array. This is necessary for slabs < 192 since we have non power
667 * of two cache sizes there. The size of larger slabs can be determined using
670 static u8 size_index[24] __ro_after_init = {
697 static inline unsigned int size_index_elem(unsigned int bytes)
699 return (bytes - 1) / 8;
703 * Find the kmem_cache structure that serves a given size of
706 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
712 return ZERO_SIZE_PTR;
714 index = size_index[size_index_elem(size)];
716 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
718 index = fls(size - 1);
721 return kmalloc_caches[kmalloc_type(flags)][index];
724 #ifdef CONFIG_ZONE_DMA
725 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
727 #define KMALLOC_DMA_NAME(sz)
730 #ifdef CONFIG_MEMCG_KMEM
731 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
733 #define KMALLOC_CGROUP_NAME(sz)
736 #define INIT_KMALLOC_INFO(__size, __short_size) \
738 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
739 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
740 KMALLOC_CGROUP_NAME(__short_size) \
741 KMALLOC_DMA_NAME(__short_size) \
746 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
747 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
750 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
751 INIT_KMALLOC_INFO(0, 0),
752 INIT_KMALLOC_INFO(96, 96),
753 INIT_KMALLOC_INFO(192, 192),
754 INIT_KMALLOC_INFO(8, 8),
755 INIT_KMALLOC_INFO(16, 16),
756 INIT_KMALLOC_INFO(32, 32),
757 INIT_KMALLOC_INFO(64, 64),
758 INIT_KMALLOC_INFO(128, 128),
759 INIT_KMALLOC_INFO(256, 256),
760 INIT_KMALLOC_INFO(512, 512),
761 INIT_KMALLOC_INFO(1024, 1k),
762 INIT_KMALLOC_INFO(2048, 2k),
763 INIT_KMALLOC_INFO(4096, 4k),
764 INIT_KMALLOC_INFO(8192, 8k),
765 INIT_KMALLOC_INFO(16384, 16k),
766 INIT_KMALLOC_INFO(32768, 32k),
767 INIT_KMALLOC_INFO(65536, 64k),
768 INIT_KMALLOC_INFO(131072, 128k),
769 INIT_KMALLOC_INFO(262144, 256k),
770 INIT_KMALLOC_INFO(524288, 512k),
771 INIT_KMALLOC_INFO(1048576, 1M),
772 INIT_KMALLOC_INFO(2097152, 2M),
773 INIT_KMALLOC_INFO(4194304, 4M),
774 INIT_KMALLOC_INFO(8388608, 8M),
775 INIT_KMALLOC_INFO(16777216, 16M),
776 INIT_KMALLOC_INFO(33554432, 32M)
780 * Patch up the size_index table if we have strange large alignment
781 * requirements for the kmalloc array. This is only the case for
782 * MIPS it seems. The standard arches will not generate any code here.
784 * Largest permitted alignment is 256 bytes due to the way we
785 * handle the index determination for the smaller caches.
787 * Make sure that nothing crazy happens if someone starts tinkering
788 * around with ARCH_KMALLOC_MINALIGN
790 void __init setup_kmalloc_cache_index_table(void)
794 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
795 !is_power_of_2(KMALLOC_MIN_SIZE));
797 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
798 unsigned int elem = size_index_elem(i);
800 if (elem >= ARRAY_SIZE(size_index))
802 size_index[elem] = KMALLOC_SHIFT_LOW;
805 if (KMALLOC_MIN_SIZE >= 64) {
807 * The 96 byte sized cache is not used if the alignment
810 for (i = 64 + 8; i <= 96; i += 8)
811 size_index[size_index_elem(i)] = 7;
815 if (KMALLOC_MIN_SIZE >= 128) {
817 * The 192 byte sized cache is not used if the alignment
818 * is 128 byte. Redirect kmalloc to use the 256 byte cache
821 for (i = 128 + 8; i <= 192; i += 8)
822 size_index[size_index_elem(i)] = 8;
827 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
829 if (type == KMALLOC_RECLAIM) {
830 flags |= SLAB_RECLAIM_ACCOUNT;
831 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
832 if (mem_cgroup_kmem_disabled()) {
833 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
836 flags |= SLAB_ACCOUNT;
837 } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
838 flags |= SLAB_CACHE_DMA;
841 kmalloc_caches[type][idx] = create_kmalloc_cache(
842 kmalloc_info[idx].name[type],
843 kmalloc_info[idx].size, flags, 0,
844 kmalloc_info[idx].size);
847 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
848 * KMALLOC_NORMAL caches.
850 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
851 kmalloc_caches[type][idx]->refcount = -1;
855 * Create the kmalloc array. Some of the regular kmalloc arrays
856 * may already have been created because they were needed to
857 * enable allocations for slab creation.
859 void __init create_kmalloc_caches(slab_flags_t flags)
862 enum kmalloc_cache_type type;
865 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
867 for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
868 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
869 if (!kmalloc_caches[type][i])
870 new_kmalloc_cache(i, type, flags);
873 * Caches that are not of the two-to-the-power-of size.
874 * These have to be created immediately after the
875 * earlier power of two caches
877 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
878 !kmalloc_caches[type][1])
879 new_kmalloc_cache(1, type, flags);
880 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
881 !kmalloc_caches[type][2])
882 new_kmalloc_cache(2, type, flags);
886 /* Kmalloc array is now usable */
889 #endif /* !CONFIG_SLOB */
891 gfp_t kmalloc_fix_flags(gfp_t flags)
893 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
895 flags &= ~GFP_SLAB_BUG_MASK;
896 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
897 invalid_mask, &invalid_mask, flags, &flags);
904 * To avoid unnecessary overhead, we pass through large allocation requests
905 * directly to the page allocator. We use __GFP_COMP, because we will need to
906 * know the allocation order to free the pages properly in kfree.
908 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
913 if (unlikely(flags & GFP_SLAB_BUG_MASK))
914 flags = kmalloc_fix_flags(flags);
917 page = alloc_pages(flags, order);
919 ret = page_address(page);
920 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
923 ret = kasan_kmalloc_large(ret, size, flags);
924 /* As ret might get tagged, call kmemleak hook after KASAN. */
925 kmemleak_alloc(ret, size, 1, flags);
928 EXPORT_SYMBOL(kmalloc_order);
930 #ifdef CONFIG_TRACING
931 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
933 void *ret = kmalloc_order(size, flags, order);
934 trace_kmalloc(_RET_IP_, ret, NULL, size, PAGE_SIZE << order, flags);
937 EXPORT_SYMBOL(kmalloc_order_trace);
940 #ifdef CONFIG_SLAB_FREELIST_RANDOM
941 /* Randomize a generic freelist */
942 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
948 for (i = 0; i < count; i++)
951 /* Fisher-Yates shuffle */
952 for (i = count - 1; i > 0; i--) {
953 rand = prandom_u32_state(state);
955 swap(list[i], list[rand]);
959 /* Create a random sequence per cache */
960 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
963 struct rnd_state state;
965 if (count < 2 || cachep->random_seq)
968 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
969 if (!cachep->random_seq)
972 /* Get best entropy at this stage of boot */
973 prandom_seed_state(&state, get_random_long());
975 freelist_randomize(&state, cachep->random_seq, count);
979 /* Destroy the per-cache random freelist sequence */
980 void cache_random_seq_destroy(struct kmem_cache *cachep)
982 kfree(cachep->random_seq);
983 cachep->random_seq = NULL;
985 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
987 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
989 #define SLABINFO_RIGHTS (0600)
991 #define SLABINFO_RIGHTS (0400)
994 static void print_slabinfo_header(struct seq_file *m)
997 * Output format version, so at least we can change it
998 * without _too_ many complaints.
1000 #ifdef CONFIG_DEBUG_SLAB
1001 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1003 seq_puts(m, "slabinfo - version: 2.1\n");
1005 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1006 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1007 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1008 #ifdef CONFIG_DEBUG_SLAB
1009 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1010 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1015 static void *slab_start(struct seq_file *m, loff_t *pos)
1017 mutex_lock(&slab_mutex);
1018 return seq_list_start(&slab_caches, *pos);
1021 static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1023 return seq_list_next(p, &slab_caches, pos);
1026 static void slab_stop(struct seq_file *m, void *p)
1028 mutex_unlock(&slab_mutex);
1031 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1033 struct slabinfo sinfo;
1035 memset(&sinfo, 0, sizeof(sinfo));
1036 get_slabinfo(s, &sinfo);
1038 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1039 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1040 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1042 seq_printf(m, " : tunables %4u %4u %4u",
1043 sinfo.limit, sinfo.batchcount, sinfo.shared);
1044 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1045 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1046 slabinfo_show_stats(m, s);
1050 static int slab_show(struct seq_file *m, void *p)
1052 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1054 if (p == slab_caches.next)
1055 print_slabinfo_header(m);
1060 void dump_unreclaimable_slab(void)
1062 struct kmem_cache *s;
1063 struct slabinfo sinfo;
1066 * Here acquiring slab_mutex is risky since we don't prefer to get
1067 * sleep in oom path. But, without mutex hold, it may introduce a
1069 * Use mutex_trylock to protect the list traverse, dump nothing
1070 * without acquiring the mutex.
1072 if (!mutex_trylock(&slab_mutex)) {
1073 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1077 pr_info("Unreclaimable slab info:\n");
1078 pr_info("Name Used Total\n");
1080 list_for_each_entry(s, &slab_caches, list) {
1081 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1084 get_slabinfo(s, &sinfo);
1086 if (sinfo.num_objs > 0)
1087 pr_info("%-17s %10luKB %10luKB\n", s->name,
1088 (sinfo.active_objs * s->size) / 1024,
1089 (sinfo.num_objs * s->size) / 1024);
1091 mutex_unlock(&slab_mutex);
1095 * slabinfo_op - iterator that generates /proc/slabinfo
1104 * num-pages-per-slab
1105 * + further values on SMP and with statistics enabled
1107 static const struct seq_operations slabinfo_op = {
1108 .start = slab_start,
1114 static int slabinfo_open(struct inode *inode, struct file *file)
1116 return seq_open(file, &slabinfo_op);
1119 static const struct proc_ops slabinfo_proc_ops = {
1120 .proc_flags = PROC_ENTRY_PERMANENT,
1121 .proc_open = slabinfo_open,
1122 .proc_read = seq_read,
1123 .proc_write = slabinfo_write,
1124 .proc_lseek = seq_lseek,
1125 .proc_release = seq_release,
1128 static int __init slab_proc_init(void)
1130 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1133 module_init(slab_proc_init);
1135 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1137 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1143 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1144 if (likely(!ZERO_OR_NULL_PTR(p))) {
1145 if (!kasan_check_byte(p))
1147 ks = kfence_ksize(p) ?: __ksize(p);
1151 /* If the object still fits, repoison it precisely. */
1152 if (ks >= new_size) {
1153 p = kasan_krealloc((void *)p, new_size, flags);
1157 ret = kmalloc_track_caller(new_size, flags);
1159 /* Disable KASAN checks as the object's redzone is accessed. */
1160 kasan_disable_current();
1161 memcpy(ret, kasan_reset_tag(p), ks);
1162 kasan_enable_current();
1169 * krealloc - reallocate memory. The contents will remain unchanged.
1170 * @p: object to reallocate memory for.
1171 * @new_size: how many bytes of memory are required.
1172 * @flags: the type of memory to allocate.
1174 * The contents of the object pointed to are preserved up to the
1175 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1176 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1177 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1179 * Return: pointer to the allocated memory or %NULL in case of error
1181 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1185 if (unlikely(!new_size)) {
1187 return ZERO_SIZE_PTR;
1190 ret = __do_krealloc(p, new_size, flags);
1191 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1196 EXPORT_SYMBOL(krealloc);
1199 * kfree_sensitive - Clear sensitive information in memory before freeing
1200 * @p: object to free memory of
1202 * The memory of the object @p points to is zeroed before freed.
1203 * If @p is %NULL, kfree_sensitive() does nothing.
1205 * Note: this function zeroes the whole allocated buffer which can be a good
1206 * deal bigger than the requested buffer size passed to kmalloc(). So be
1207 * careful when using this function in performance sensitive code.
1209 void kfree_sensitive(const void *p)
1212 void *mem = (void *)p;
1216 memzero_explicit(mem, ks);
1219 EXPORT_SYMBOL(kfree_sensitive);
1222 * ksize - get the actual amount of memory allocated for a given object
1223 * @objp: Pointer to the object
1225 * kmalloc may internally round up allocations and return more memory
1226 * than requested. ksize() can be used to determine the actual amount of
1227 * memory allocated. The caller may use this additional memory, even though
1228 * a smaller amount of memory was initially specified with the kmalloc call.
1229 * The caller must guarantee that objp points to a valid object previously
1230 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1231 * must not be freed during the duration of the call.
1233 * Return: size of the actual memory used by @objp in bytes
1235 size_t ksize(const void *objp)
1240 * We need to first check that the pointer to the object is valid, and
1241 * only then unpoison the memory. The report printed from ksize() is
1242 * more useful, then when it's printed later when the behaviour could
1243 * be undefined due to a potential use-after-free or double-free.
1245 * We use kasan_check_byte(), which is supported for the hardware
1246 * tag-based KASAN mode, unlike kasan_check_read/write().
1248 * If the pointed to memory is invalid, we return 0 to avoid users of
1249 * ksize() writing to and potentially corrupting the memory region.
1251 * We want to perform the check before __ksize(), to avoid potentially
1252 * crashing in __ksize() due to accessing invalid metadata.
1254 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1257 size = kfence_ksize(objp) ?: __ksize(objp);
1259 * We assume that ksize callers could use whole allocated area,
1260 * so we need to unpoison this area.
1262 kasan_unpoison_range(objp, size);
1265 EXPORT_SYMBOL(ksize);
1267 /* Tracepoints definitions. */
1268 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1269 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1270 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1271 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1272 EXPORT_TRACEPOINT_SYMBOL(kfree);
1273 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1275 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1277 if (__should_failslab(s, gfpflags))
1281 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);