1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Internal slab definitions
7 void __init kmem_cache_init(void);
10 # ifdef system_has_cmpxchg128
11 # define system_has_freelist_aba() system_has_cmpxchg128()
12 # define try_cmpxchg_freelist try_cmpxchg128
14 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg128
15 typedef u128 freelist_full_t;
16 #else /* CONFIG_64BIT */
17 # ifdef system_has_cmpxchg64
18 # define system_has_freelist_aba() system_has_cmpxchg64()
19 # define try_cmpxchg_freelist try_cmpxchg64
21 #define this_cpu_try_cmpxchg_freelist this_cpu_try_cmpxchg64
22 typedef u64 freelist_full_t;
23 #endif /* CONFIG_64BIT */
25 #if defined(system_has_freelist_aba) && !defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
26 #undef system_has_freelist_aba
30 * Freelist pointer and counter to cmpxchg together, avoids the typical ABA
31 * problems with cmpxchg of just a pointer.
36 unsigned long counter;
41 /* Reuses the bits in struct page */
43 unsigned long __page_flags;
45 #if defined(CONFIG_SLAB)
47 struct kmem_cache *slab_cache;
50 struct list_head slab_list;
51 void *freelist; /* array of free object indexes */
52 void *s_mem; /* first object */
54 struct rcu_head rcu_head;
58 #elif defined(CONFIG_SLUB)
60 struct kmem_cache *slab_cache;
64 struct list_head slab_list;
65 #ifdef CONFIG_SLUB_CPU_PARTIAL
68 int slabs; /* Nr of slabs left */
72 /* Double-word boundary */
75 void *freelist; /* first free object */
77 unsigned long counters;
85 #ifdef system_has_freelist_aba
86 freelist_aba_t freelist_counter;
90 struct rcu_head rcu_head;
92 unsigned int __unused;
95 #error "Unexpected slab allocator configured"
98 atomic_t __page_refcount;
100 unsigned long memcg_data;
104 #define SLAB_MATCH(pg, sl) \
105 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
106 SLAB_MATCH(flags, __page_flags);
107 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
108 SLAB_MATCH(_refcount, __page_refcount);
110 SLAB_MATCH(memcg_data, memcg_data);
113 static_assert(sizeof(struct slab) <= sizeof(struct page));
114 #if defined(system_has_freelist_aba) && defined(CONFIG_SLUB)
115 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), sizeof(freelist_aba_t)));
119 * folio_slab - Converts from folio to slab.
122 * Currently struct slab is a different representation of a folio where
123 * folio_test_slab() is true.
125 * Return: The slab which contains this folio.
127 #define folio_slab(folio) (_Generic((folio), \
128 const struct folio *: (const struct slab *)(folio), \
129 struct folio *: (struct slab *)(folio)))
132 * slab_folio - The folio allocated for a slab
135 * Slabs are allocated as folios that contain the individual objects and are
136 * using some fields in the first struct page of the folio - those fields are
137 * now accessed by struct slab. It is occasionally necessary to convert back to
138 * a folio in order to communicate with the rest of the mm. Please use this
139 * helper function instead of casting yourself, as the implementation may change
142 #define slab_folio(s) (_Generic((s), \
143 const struct slab *: (const struct folio *)s, \
144 struct slab *: (struct folio *)s))
147 * page_slab - Converts from first struct page to slab.
148 * @p: The first (either head of compound or single) page of slab.
150 * A temporary wrapper to convert struct page to struct slab in situations where
151 * we know the page is the compound head, or single order-0 page.
153 * Long-term ideally everything would work with struct slab directly or go
154 * through folio to struct slab.
156 * Return: The slab which contains this page
158 #define page_slab(p) (_Generic((p), \
159 const struct page *: (const struct slab *)(p), \
160 struct page *: (struct slab *)(p)))
163 * slab_page - The first struct page allocated for a slab
166 * A convenience wrapper for converting slab to the first struct page of the
167 * underlying folio, to communicate with code not yet converted to folio or
170 #define slab_page(s) folio_page(slab_folio(s), 0)
173 * If network-based swap is enabled, sl*b must keep track of whether pages
174 * were allocated from pfmemalloc reserves.
176 static inline bool slab_test_pfmemalloc(const struct slab *slab)
178 return folio_test_active((struct folio *)slab_folio(slab));
181 static inline void slab_set_pfmemalloc(struct slab *slab)
183 folio_set_active(slab_folio(slab));
186 static inline void slab_clear_pfmemalloc(struct slab *slab)
188 folio_clear_active(slab_folio(slab));
191 static inline void __slab_clear_pfmemalloc(struct slab *slab)
193 __folio_clear_active(slab_folio(slab));
196 static inline void *slab_address(const struct slab *slab)
198 return folio_address(slab_folio(slab));
201 static inline int slab_nid(const struct slab *slab)
203 return folio_nid(slab_folio(slab));
206 static inline pg_data_t *slab_pgdat(const struct slab *slab)
208 return folio_pgdat(slab_folio(slab));
211 static inline struct slab *virt_to_slab(const void *addr)
213 struct folio *folio = virt_to_folio(addr);
215 if (!folio_test_slab(folio))
218 return folio_slab(folio);
221 static inline int slab_order(const struct slab *slab)
223 return folio_order((struct folio *)slab_folio(slab));
226 static inline size_t slab_size(const struct slab *slab)
228 return PAGE_SIZE << slab_order(slab);
232 #include <linux/slab_def.h>
236 #include <linux/slub_def.h>
239 #include <linux/memcontrol.h>
240 #include <linux/fault-inject.h>
241 #include <linux/kasan.h>
242 #include <linux/kmemleak.h>
243 #include <linux/random.h>
244 #include <linux/sched/mm.h>
245 #include <linux/list_lru.h>
248 * State of the slab allocator.
250 * This is used to describe the states of the allocator during bootup.
251 * Allocators use this to gradually bootstrap themselves. Most allocators
252 * have the problem that the structures used for managing slab caches are
253 * allocated from slab caches themselves.
256 DOWN, /* No slab functionality yet */
257 PARTIAL, /* SLUB: kmem_cache_node available */
258 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
259 UP, /* Slab caches usable but not all extras yet */
260 FULL /* Everything is working */
263 extern enum slab_state slab_state;
265 /* The slab cache mutex protects the management structures during changes */
266 extern struct mutex slab_mutex;
268 /* The list of all slab caches on the system */
269 extern struct list_head slab_caches;
271 /* The slab cache that manages slab cache information */
272 extern struct kmem_cache *kmem_cache;
274 /* A table of kmalloc cache names and sizes */
275 extern const struct kmalloc_info_struct {
276 const char *name[NR_KMALLOC_TYPES];
280 /* Kmalloc array related functions */
281 void setup_kmalloc_cache_index_table(void);
282 void create_kmalloc_caches(slab_flags_t);
284 /* Find the kmalloc slab corresponding for a certain size */
285 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller);
287 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
288 int node, size_t orig_size,
289 unsigned long caller);
290 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
292 gfp_t kmalloc_fix_flags(gfp_t flags);
294 /* Functions provided by the slab allocators */
295 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
297 void __init new_kmalloc_cache(int idx, enum kmalloc_cache_type type,
299 extern void create_boot_cache(struct kmem_cache *, const char *name,
300 unsigned int size, slab_flags_t flags,
301 unsigned int useroffset, unsigned int usersize);
303 int slab_unmergeable(struct kmem_cache *s);
304 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
305 slab_flags_t flags, const char *name, void (*ctor)(void *));
307 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
308 slab_flags_t flags, void (*ctor)(void *));
310 slab_flags_t kmem_cache_flags(unsigned int object_size,
311 slab_flags_t flags, const char *name);
313 static inline bool is_kmalloc_cache(struct kmem_cache *s)
315 return (s->flags & SLAB_KMALLOC);
318 /* Legal flag mask for kmem_cache_create(), for various configurations */
319 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
320 SLAB_CACHE_DMA32 | SLAB_PANIC | \
321 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
323 #if defined(CONFIG_DEBUG_SLAB)
324 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
325 #elif defined(CONFIG_SLUB_DEBUG)
326 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
327 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
329 #define SLAB_DEBUG_FLAGS (0)
332 #if defined(CONFIG_SLAB)
333 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
334 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
335 SLAB_ACCOUNT | SLAB_NO_MERGE)
336 #elif defined(CONFIG_SLUB)
337 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
338 SLAB_TEMPORARY | SLAB_ACCOUNT | \
339 SLAB_NO_USER_FLAGS | SLAB_KMALLOC | SLAB_NO_MERGE)
341 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
344 /* Common flags available with current configuration */
345 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
347 /* Common flags permitted for kmem_cache_create */
348 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
353 SLAB_CONSISTENCY_CHECKS | \
356 SLAB_RECLAIM_ACCOUNT | \
363 bool __kmem_cache_empty(struct kmem_cache *);
364 int __kmem_cache_shutdown(struct kmem_cache *);
365 void __kmem_cache_release(struct kmem_cache *);
366 int __kmem_cache_shrink(struct kmem_cache *);
367 void slab_kmem_cache_release(struct kmem_cache *);
373 unsigned long active_objs;
374 unsigned long num_objs;
375 unsigned long active_slabs;
376 unsigned long num_slabs;
377 unsigned long shared_avail;
379 unsigned int batchcount;
381 unsigned int objects_per_slab;
382 unsigned int cache_order;
385 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
386 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
387 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
388 size_t count, loff_t *ppos);
390 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
392 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
393 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
396 #ifdef CONFIG_SLUB_DEBUG
397 #ifdef CONFIG_SLUB_DEBUG_ON
398 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
400 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
402 extern void print_tracking(struct kmem_cache *s, void *object);
403 long validate_slab_cache(struct kmem_cache *s);
404 static inline bool __slub_debug_enabled(void)
406 return static_branch_unlikely(&slub_debug_enabled);
409 static inline void print_tracking(struct kmem_cache *s, void *object)
412 static inline bool __slub_debug_enabled(void)
419 * Returns true if any of the specified slub_debug flags is enabled for the
420 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
423 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
425 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
426 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
427 if (__slub_debug_enabled())
428 return s->flags & flags;
432 #ifdef CONFIG_MEMCG_KMEM
434 * slab_objcgs - get the object cgroups vector associated with a slab
435 * @slab: a pointer to the slab struct
437 * Returns a pointer to the object cgroups vector associated with the slab,
438 * or NULL if no such vector has been associated yet.
440 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
442 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
444 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
446 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
448 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
451 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
452 gfp_t gfp, bool new_slab);
453 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
454 enum node_stat_item idx, int nr);
456 static inline void memcg_free_slab_cgroups(struct slab *slab)
458 kfree(slab_objcgs(slab));
459 slab->memcg_data = 0;
462 static inline size_t obj_full_size(struct kmem_cache *s)
465 * For each accounted object there is an extra space which is used
466 * to store obj_cgroup membership. Charge it too.
468 return s->size + sizeof(struct obj_cgroup *);
472 * Returns false if the allocation should fail.
474 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
475 struct list_lru *lru,
476 struct obj_cgroup **objcgp,
477 size_t objects, gfp_t flags)
479 struct obj_cgroup *objcg;
481 if (!memcg_kmem_online())
484 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
487 objcg = get_obj_cgroup_from_current();
493 struct mem_cgroup *memcg;
495 memcg = get_mem_cgroup_from_objcg(objcg);
496 ret = memcg_list_lru_alloc(memcg, lru, flags);
497 css_put(&memcg->css);
503 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
509 obj_cgroup_put(objcg);
513 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
514 struct obj_cgroup *objcg,
515 gfp_t flags, size_t size,
522 if (!memcg_kmem_online() || !objcg)
525 for (i = 0; i < size; i++) {
527 slab = virt_to_slab(p[i]);
529 if (!slab_objcgs(slab) &&
530 memcg_alloc_slab_cgroups(slab, s, flags,
532 obj_cgroup_uncharge(objcg, obj_full_size(s));
536 off = obj_to_index(s, slab, p[i]);
537 obj_cgroup_get(objcg);
538 slab_objcgs(slab)[off] = objcg;
539 mod_objcg_state(objcg, slab_pgdat(slab),
540 cache_vmstat_idx(s), obj_full_size(s));
542 obj_cgroup_uncharge(objcg, obj_full_size(s));
545 obj_cgroup_put(objcg);
548 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
549 void **p, int objects)
551 struct obj_cgroup **objcgs;
554 if (!memcg_kmem_online())
557 objcgs = slab_objcgs(slab);
561 for (i = 0; i < objects; i++) {
562 struct obj_cgroup *objcg;
565 off = obj_to_index(s, slab, p[i]);
571 obj_cgroup_uncharge(objcg, obj_full_size(s));
572 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
574 obj_cgroup_put(objcg);
578 #else /* CONFIG_MEMCG_KMEM */
579 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
584 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
589 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
590 struct kmem_cache *s, gfp_t gfp,
596 static inline void memcg_free_slab_cgroups(struct slab *slab)
600 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
601 struct list_lru *lru,
602 struct obj_cgroup **objcgp,
603 size_t objects, gfp_t flags)
608 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
609 struct obj_cgroup *objcg,
610 gfp_t flags, size_t size,
615 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
616 void **p, int objects)
619 #endif /* CONFIG_MEMCG_KMEM */
621 static inline struct kmem_cache *virt_to_cache(const void *obj)
625 slab = virt_to_slab(obj);
626 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
629 return slab->slab_cache;
632 static __always_inline void account_slab(struct slab *slab, int order,
633 struct kmem_cache *s, gfp_t gfp)
635 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
636 memcg_alloc_slab_cgroups(slab, s, gfp, true);
638 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
642 static __always_inline void unaccount_slab(struct slab *slab, int order,
643 struct kmem_cache *s)
645 if (memcg_kmem_online())
646 memcg_free_slab_cgroups(slab);
648 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
649 -(PAGE_SIZE << order));
652 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
654 struct kmem_cache *cachep;
656 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
657 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
660 cachep = virt_to_cache(x);
661 if (WARN(cachep && cachep != s,
662 "%s: Wrong slab cache. %s but object is from %s\n",
663 __func__, s->name, cachep->name))
664 print_tracking(cachep, x);
668 void free_large_kmalloc(struct folio *folio, void *object);
670 size_t __ksize(const void *objp);
672 static inline size_t slab_ksize(const struct kmem_cache *s)
675 return s->object_size;
677 #else /* CONFIG_SLUB */
678 # ifdef CONFIG_SLUB_DEBUG
680 * Debugging requires use of the padding between object
681 * and whatever may come after it.
683 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
684 return s->object_size;
686 if (s->flags & SLAB_KASAN)
687 return s->object_size;
689 * If we have the need to store the freelist pointer
690 * back there or track user information then we can
691 * only use the space before that information.
693 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
696 * Else we can use all the padding etc for the allocation
702 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
703 struct list_lru *lru,
704 struct obj_cgroup **objcgp,
705 size_t size, gfp_t flags)
707 flags &= gfp_allowed_mask;
711 if (should_failslab(s, flags))
714 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
720 static inline void slab_post_alloc_hook(struct kmem_cache *s,
721 struct obj_cgroup *objcg, gfp_t flags,
722 size_t size, void **p, bool init,
723 unsigned int orig_size)
725 unsigned int zero_size = s->object_size;
726 bool kasan_init = init;
729 flags &= gfp_allowed_mask;
732 * For kmalloc object, the allocated memory size(object_size) is likely
733 * larger than the requested size(orig_size). If redzone check is
734 * enabled for the extra space, don't zero it, as it will be redzoned
735 * soon. The redzone operation for this extra space could be seen as a
736 * replacement of current poisoning under certain debug option, and
737 * won't break other sanity checks.
739 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
740 (s->flags & SLAB_KMALLOC))
741 zero_size = orig_size;
744 * When slub_debug is enabled, avoid memory initialization integrated
745 * into KASAN and instead zero out the memory via the memset below with
746 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
747 * cause false-positive reports. This does not lead to a performance
748 * penalty on production builds, as slub_debug is not intended to be
751 if (__slub_debug_enabled())
755 * As memory initialization might be integrated into KASAN,
756 * kasan_slab_alloc and initialization memset must be
757 * kept together to avoid discrepancies in behavior.
759 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
761 for (i = 0; i < size; i++) {
762 p[i] = kasan_slab_alloc(s, p[i], flags, kasan_init);
763 if (p[i] && init && (!kasan_init || !kasan_has_integrated_init()))
764 memset(p[i], 0, zero_size);
765 kmemleak_alloc_recursive(p[i], s->object_size, 1,
767 kmsan_slab_alloc(s, p[i], flags);
770 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
774 * The slab lists for all objects.
776 struct kmem_cache_node {
778 raw_spinlock_t list_lock;
779 struct list_head slabs_partial; /* partial list first, better asm code */
780 struct list_head slabs_full;
781 struct list_head slabs_free;
782 unsigned long total_slabs; /* length of all slab lists */
783 unsigned long free_slabs; /* length of free slab list only */
784 unsigned long free_objects;
785 unsigned int free_limit;
786 unsigned int colour_next; /* Per-node cache coloring */
787 struct array_cache *shared; /* shared per node */
788 struct alien_cache **alien; /* on other nodes */
789 unsigned long next_reap; /* updated without locking */
790 int free_touched; /* updated without locking */
794 spinlock_t list_lock;
795 unsigned long nr_partial;
796 struct list_head partial;
797 #ifdef CONFIG_SLUB_DEBUG
798 atomic_long_t nr_slabs;
799 atomic_long_t total_objects;
800 struct list_head full;
806 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
808 return s->node[node];
812 * Iterator over all nodes. The body will be executed for each node that has
813 * a kmem_cache_node structure allocated (which is true for all online nodes)
815 #define for_each_kmem_cache_node(__s, __node, __n) \
816 for (__node = 0; __node < nr_node_ids; __node++) \
817 if ((__n = get_node(__s, __node)))
820 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
821 void dump_unreclaimable_slab(void);
823 static inline void dump_unreclaimable_slab(void)
828 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
830 #ifdef CONFIG_SLAB_FREELIST_RANDOM
831 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
833 void cache_random_seq_destroy(struct kmem_cache *cachep);
835 static inline int cache_random_seq_create(struct kmem_cache *cachep,
836 unsigned int count, gfp_t gfp)
840 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
841 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
843 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
845 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
849 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
850 return flags & __GFP_ZERO;
853 return flags & __GFP_ZERO;
856 static inline bool slab_want_init_on_free(struct kmem_cache *c)
858 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
861 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
865 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
866 void debugfs_slab_release(struct kmem_cache *);
868 static inline void debugfs_slab_release(struct kmem_cache *s) { }
872 #define KS_ADDRS_COUNT 16
873 struct kmem_obj_info {
875 struct slab *kp_slab;
877 unsigned long kp_data_offset;
878 struct kmem_cache *kp_slab_cache;
880 void *kp_stack[KS_ADDRS_COUNT];
881 void *kp_free_stack[KS_ADDRS_COUNT];
883 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
886 void __check_heap_object(const void *ptr, unsigned long n,
887 const struct slab *slab, bool to_user);
889 #ifdef CONFIG_SLUB_DEBUG
890 void skip_orig_size_check(struct kmem_cache *s, const void *object);
893 #endif /* MM_SLAB_H */