1 /* SPDX-License-Identifier: GPL-2.0 */
5 * Internal slab definitions
8 /* Reuses the bits in struct page */
10 unsigned long __page_flags;
12 #if defined(CONFIG_SLAB)
14 struct kmem_cache *slab_cache;
17 struct list_head slab_list;
18 void *freelist; /* array of free object indexes */
19 void *s_mem; /* first object */
21 struct rcu_head rcu_head;
25 #elif defined(CONFIG_SLUB)
27 struct kmem_cache *slab_cache;
31 struct list_head slab_list;
32 #ifdef CONFIG_SLUB_CPU_PARTIAL
35 int slabs; /* Nr of slabs left */
39 /* Double-word boundary */
40 void *freelist; /* first free object */
42 unsigned long counters;
50 struct rcu_head rcu_head;
52 unsigned int __unused;
54 #elif defined(CONFIG_SLOB)
56 struct list_head slab_list;
58 void *freelist; /* first free block */
60 unsigned int __unused_2;
63 #error "Unexpected slab allocator configured"
66 atomic_t __page_refcount;
68 unsigned long memcg_data;
72 #define SLAB_MATCH(pg, sl) \
73 static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
74 SLAB_MATCH(flags, __page_flags);
76 SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
78 SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
80 SLAB_MATCH(_refcount, __page_refcount);
82 SLAB_MATCH(memcg_data, memcg_data);
85 static_assert(sizeof(struct slab) <= sizeof(struct page));
86 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB)
87 static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *)));
91 * folio_slab - Converts from folio to slab.
94 * Currently struct slab is a different representation of a folio where
95 * folio_test_slab() is true.
97 * Return: The slab which contains this folio.
99 #define folio_slab(folio) (_Generic((folio), \
100 const struct folio *: (const struct slab *)(folio), \
101 struct folio *: (struct slab *)(folio)))
104 * slab_folio - The folio allocated for a slab
107 * Slabs are allocated as folios that contain the individual objects and are
108 * using some fields in the first struct page of the folio - those fields are
109 * now accessed by struct slab. It is occasionally necessary to convert back to
110 * a folio in order to communicate with the rest of the mm. Please use this
111 * helper function instead of casting yourself, as the implementation may change
114 #define slab_folio(s) (_Generic((s), \
115 const struct slab *: (const struct folio *)s, \
116 struct slab *: (struct folio *)s))
119 * page_slab - Converts from first struct page to slab.
120 * @p: The first (either head of compound or single) page of slab.
122 * A temporary wrapper to convert struct page to struct slab in situations where
123 * we know the page is the compound head, or single order-0 page.
125 * Long-term ideally everything would work with struct slab directly or go
126 * through folio to struct slab.
128 * Return: The slab which contains this page
130 #define page_slab(p) (_Generic((p), \
131 const struct page *: (const struct slab *)(p), \
132 struct page *: (struct slab *)(p)))
135 * slab_page - The first struct page allocated for a slab
138 * A convenience wrapper for converting slab to the first struct page of the
139 * underlying folio, to communicate with code not yet converted to folio or
142 #define slab_page(s) folio_page(slab_folio(s), 0)
145 * If network-based swap is enabled, sl*b must keep track of whether pages
146 * were allocated from pfmemalloc reserves.
148 static inline bool slab_test_pfmemalloc(const struct slab *slab)
150 return folio_test_active((struct folio *)slab_folio(slab));
153 static inline void slab_set_pfmemalloc(struct slab *slab)
155 folio_set_active(slab_folio(slab));
158 static inline void slab_clear_pfmemalloc(struct slab *slab)
160 folio_clear_active(slab_folio(slab));
163 static inline void __slab_clear_pfmemalloc(struct slab *slab)
165 __folio_clear_active(slab_folio(slab));
168 static inline void *slab_address(const struct slab *slab)
170 return folio_address(slab_folio(slab));
173 static inline int slab_nid(const struct slab *slab)
175 return folio_nid(slab_folio(slab));
178 static inline pg_data_t *slab_pgdat(const struct slab *slab)
180 return folio_pgdat(slab_folio(slab));
183 static inline struct slab *virt_to_slab(const void *addr)
185 struct folio *folio = virt_to_folio(addr);
187 if (!folio_test_slab(folio))
190 return folio_slab(folio);
193 static inline int slab_order(const struct slab *slab)
195 return folio_order((struct folio *)slab_folio(slab));
198 static inline size_t slab_size(const struct slab *slab)
200 return PAGE_SIZE << slab_order(slab);
205 * Common fields provided in kmem_cache by all slab allocators
206 * This struct is either used directly by the allocator (SLOB)
207 * or the allocator must include definitions for all fields
208 * provided in kmem_cache_common in their definition of kmem_cache.
210 * Once we can do anonymous structs (C11 standard) we could put a
211 * anonymous struct definition in these allocators so that the
212 * separate allocations in the kmem_cache structure of SLAB and
213 * SLUB is no longer needed.
216 unsigned int object_size;/* The original size of the object */
217 unsigned int size; /* The aligned/padded/added on size */
218 unsigned int align; /* Alignment as calculated */
219 slab_flags_t flags; /* Active flags on the slab */
220 const char *name; /* Slab name for sysfs */
221 int refcount; /* Use counter */
222 void (*ctor)(void *); /* Called on object slot creation */
223 struct list_head list; /* List of all slab caches on the system */
226 #endif /* CONFIG_SLOB */
229 #include <linux/slab_def.h>
233 #include <linux/slub_def.h>
236 #include <linux/memcontrol.h>
237 #include <linux/fault-inject.h>
238 #include <linux/kasan.h>
239 #include <linux/kmemleak.h>
240 #include <linux/random.h>
241 #include <linux/sched/mm.h>
242 #include <linux/list_lru.h>
245 * State of the slab allocator.
247 * This is used to describe the states of the allocator during bootup.
248 * Allocators use this to gradually bootstrap themselves. Most allocators
249 * have the problem that the structures used for managing slab caches are
250 * allocated from slab caches themselves.
253 DOWN, /* No slab functionality yet */
254 PARTIAL, /* SLUB: kmem_cache_node available */
255 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
256 UP, /* Slab caches usable but not all extras yet */
257 FULL /* Everything is working */
260 extern enum slab_state slab_state;
262 /* The slab cache mutex protects the management structures during changes */
263 extern struct mutex slab_mutex;
265 /* The list of all slab caches on the system */
266 extern struct list_head slab_caches;
268 /* The slab cache that manages slab cache information */
269 extern struct kmem_cache *kmem_cache;
271 /* A table of kmalloc cache names and sizes */
272 extern const struct kmalloc_info_struct {
273 const char *name[NR_KMALLOC_TYPES];
278 /* Kmalloc array related functions */
279 void setup_kmalloc_cache_index_table(void);
280 void create_kmalloc_caches(slab_flags_t);
282 /* Find the kmalloc slab corresponding for a certain size */
283 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
285 void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
286 int node, size_t orig_size,
287 unsigned long caller);
288 void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
291 gfp_t kmalloc_fix_flags(gfp_t flags);
293 /* Functions provided by the slab allocators */
294 int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
296 struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
297 slab_flags_t flags, unsigned int useroffset,
298 unsigned int usersize);
299 extern void create_boot_cache(struct kmem_cache *, const char *name,
300 unsigned int size, slab_flags_t flags,
301 unsigned int useroffset, unsigned int usersize);
303 int slab_unmergeable(struct kmem_cache *s);
304 struct kmem_cache *find_mergeable(unsigned size, unsigned align,
305 slab_flags_t flags, const char *name, void (*ctor)(void *));
308 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
309 slab_flags_t flags, void (*ctor)(void *));
311 slab_flags_t kmem_cache_flags(unsigned int object_size,
312 slab_flags_t flags, const char *name);
314 static inline struct kmem_cache *
315 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
316 slab_flags_t flags, void (*ctor)(void *))
319 static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
320 slab_flags_t flags, const char *name)
327 /* Legal flag mask for kmem_cache_create(), for various configurations */
328 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
329 SLAB_CACHE_DMA32 | SLAB_PANIC | \
330 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
332 #if defined(CONFIG_DEBUG_SLAB)
333 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
334 #elif defined(CONFIG_SLUB_DEBUG)
335 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
336 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
338 #define SLAB_DEBUG_FLAGS (0)
341 #if defined(CONFIG_SLAB)
342 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
343 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
345 #elif defined(CONFIG_SLUB)
346 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
347 SLAB_TEMPORARY | SLAB_ACCOUNT | \
348 SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
350 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
353 /* Common flags available with current configuration */
354 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
356 /* Common flags permitted for kmem_cache_create */
357 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
362 SLAB_CONSISTENCY_CHECKS | \
365 SLAB_RECLAIM_ACCOUNT | \
371 bool __kmem_cache_empty(struct kmem_cache *);
372 int __kmem_cache_shutdown(struct kmem_cache *);
373 void __kmem_cache_release(struct kmem_cache *);
374 int __kmem_cache_shrink(struct kmem_cache *);
375 void slab_kmem_cache_release(struct kmem_cache *);
381 unsigned long active_objs;
382 unsigned long num_objs;
383 unsigned long active_slabs;
384 unsigned long num_slabs;
385 unsigned long shared_avail;
387 unsigned int batchcount;
389 unsigned int objects_per_slab;
390 unsigned int cache_order;
393 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
394 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
395 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
396 size_t count, loff_t *ppos);
398 static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
400 return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
401 NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
404 #ifdef CONFIG_SLUB_DEBUG
405 #ifdef CONFIG_SLUB_DEBUG_ON
406 DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
408 DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
410 extern void print_tracking(struct kmem_cache *s, void *object);
411 long validate_slab_cache(struct kmem_cache *s);
412 static inline bool __slub_debug_enabled(void)
414 return static_branch_unlikely(&slub_debug_enabled);
417 static inline void print_tracking(struct kmem_cache *s, void *object)
420 static inline bool __slub_debug_enabled(void)
427 * Returns true if any of the specified slub_debug flags is enabled for the
428 * cache. Use only for flags parsed by setup_slub_debug() as it also enables
431 static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
433 if (IS_ENABLED(CONFIG_SLUB_DEBUG))
434 VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
435 if (__slub_debug_enabled())
436 return s->flags & flags;
440 #ifdef CONFIG_MEMCG_KMEM
442 * slab_objcgs - get the object cgroups vector associated with a slab
443 * @slab: a pointer to the slab struct
445 * Returns a pointer to the object cgroups vector associated with the slab,
446 * or NULL if no such vector has been associated yet.
448 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
450 unsigned long memcg_data = READ_ONCE(slab->memcg_data);
452 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
454 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
456 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
459 int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
460 gfp_t gfp, bool new_slab);
461 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
462 enum node_stat_item idx, int nr);
464 static inline void memcg_free_slab_cgroups(struct slab *slab)
466 kfree(slab_objcgs(slab));
467 slab->memcg_data = 0;
470 static inline size_t obj_full_size(struct kmem_cache *s)
473 * For each accounted object there is an extra space which is used
474 * to store obj_cgroup membership. Charge it too.
476 return s->size + sizeof(struct obj_cgroup *);
480 * Returns false if the allocation should fail.
482 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
483 struct list_lru *lru,
484 struct obj_cgroup **objcgp,
485 size_t objects, gfp_t flags)
487 struct obj_cgroup *objcg;
489 if (!memcg_kmem_enabled())
492 if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
495 objcg = get_obj_cgroup_from_current();
501 struct mem_cgroup *memcg;
503 memcg = get_mem_cgroup_from_objcg(objcg);
504 ret = memcg_list_lru_alloc(memcg, lru, flags);
505 css_put(&memcg->css);
511 if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
517 obj_cgroup_put(objcg);
521 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
522 struct obj_cgroup *objcg,
523 gfp_t flags, size_t size,
530 if (!memcg_kmem_enabled() || !objcg)
533 for (i = 0; i < size; i++) {
535 slab = virt_to_slab(p[i]);
537 if (!slab_objcgs(slab) &&
538 memcg_alloc_slab_cgroups(slab, s, flags,
540 obj_cgroup_uncharge(objcg, obj_full_size(s));
544 off = obj_to_index(s, slab, p[i]);
545 obj_cgroup_get(objcg);
546 slab_objcgs(slab)[off] = objcg;
547 mod_objcg_state(objcg, slab_pgdat(slab),
548 cache_vmstat_idx(s), obj_full_size(s));
550 obj_cgroup_uncharge(objcg, obj_full_size(s));
553 obj_cgroup_put(objcg);
556 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
557 void **p, int objects)
559 struct obj_cgroup **objcgs;
562 if (!memcg_kmem_enabled())
565 objcgs = slab_objcgs(slab);
569 for (i = 0; i < objects; i++) {
570 struct obj_cgroup *objcg;
573 off = obj_to_index(s, slab, p[i]);
579 obj_cgroup_uncharge(objcg, obj_full_size(s));
580 mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
582 obj_cgroup_put(objcg);
586 #else /* CONFIG_MEMCG_KMEM */
587 static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
592 static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
597 static inline int memcg_alloc_slab_cgroups(struct slab *slab,
598 struct kmem_cache *s, gfp_t gfp,
604 static inline void memcg_free_slab_cgroups(struct slab *slab)
608 static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
609 struct list_lru *lru,
610 struct obj_cgroup **objcgp,
611 size_t objects, gfp_t flags)
616 static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
617 struct obj_cgroup *objcg,
618 gfp_t flags, size_t size,
623 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
624 void **p, int objects)
627 #endif /* CONFIG_MEMCG_KMEM */
630 static inline struct kmem_cache *virt_to_cache(const void *obj)
634 slab = virt_to_slab(obj);
635 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
638 return slab->slab_cache;
641 static __always_inline void account_slab(struct slab *slab, int order,
642 struct kmem_cache *s, gfp_t gfp)
644 if (memcg_kmem_enabled() && (s->flags & SLAB_ACCOUNT))
645 memcg_alloc_slab_cgroups(slab, s, gfp, true);
647 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
651 static __always_inline void unaccount_slab(struct slab *slab, int order,
652 struct kmem_cache *s)
654 if (memcg_kmem_enabled())
655 memcg_free_slab_cgroups(slab);
657 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
658 -(PAGE_SIZE << order));
661 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
663 struct kmem_cache *cachep;
665 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
666 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
669 cachep = virt_to_cache(x);
670 if (WARN(cachep && cachep != s,
671 "%s: Wrong slab cache. %s but object is from %s\n",
672 __func__, s->name, cachep->name))
673 print_tracking(cachep, x);
677 void free_large_kmalloc(struct folio *folio, void *object);
679 #endif /* CONFIG_SLOB */
681 size_t __ksize(const void *objp);
683 static inline size_t slab_ksize(const struct kmem_cache *s)
686 return s->object_size;
688 #else /* CONFIG_SLUB */
689 # ifdef CONFIG_SLUB_DEBUG
691 * Debugging requires use of the padding between object
692 * and whatever may come after it.
694 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
695 return s->object_size;
697 if (s->flags & SLAB_KASAN)
698 return s->object_size;
700 * If we have the need to store the freelist pointer
701 * back there or track user information then we can
702 * only use the space before that information.
704 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
707 * Else we can use all the padding etc for the allocation
713 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
714 struct list_lru *lru,
715 struct obj_cgroup **objcgp,
716 size_t size, gfp_t flags)
718 flags &= gfp_allowed_mask;
722 if (should_failslab(s, flags))
725 if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
731 static inline void slab_post_alloc_hook(struct kmem_cache *s,
732 struct obj_cgroup *objcg, gfp_t flags,
733 size_t size, void **p, bool init,
734 unsigned int orig_size)
736 unsigned int zero_size = s->object_size;
739 flags &= gfp_allowed_mask;
742 * For kmalloc object, the allocated memory size(object_size) is likely
743 * larger than the requested size(orig_size). If redzone check is
744 * enabled for the extra space, don't zero it, as it will be redzoned
745 * soon. The redzone operation for this extra space could be seen as a
746 * replacement of current poisoning under certain debug option, and
747 * won't break other sanity checks.
749 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
750 (s->flags & SLAB_KMALLOC))
751 zero_size = orig_size;
754 * As memory initialization might be integrated into KASAN,
755 * kasan_slab_alloc and initialization memset must be
756 * kept together to avoid discrepancies in behavior.
758 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
760 for (i = 0; i < size; i++) {
761 p[i] = kasan_slab_alloc(s, p[i], flags, init);
762 if (p[i] && init && !kasan_has_integrated_init())
763 memset(p[i], 0, zero_size);
764 kmemleak_alloc_recursive(p[i], s->object_size, 1,
766 kmsan_slab_alloc(s, p[i], flags);
769 memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
774 * The slab lists for all objects.
776 struct kmem_cache_node {
778 raw_spinlock_t list_lock;
779 struct list_head slabs_partial; /* partial list first, better asm code */
780 struct list_head slabs_full;
781 struct list_head slabs_free;
782 unsigned long total_slabs; /* length of all slab lists */
783 unsigned long free_slabs; /* length of free slab list only */
784 unsigned long free_objects;
785 unsigned int free_limit;
786 unsigned int colour_next; /* Per-node cache coloring */
787 struct array_cache *shared; /* shared per node */
788 struct alien_cache **alien; /* on other nodes */
789 unsigned long next_reap; /* updated without locking */
790 int free_touched; /* updated without locking */
794 spinlock_t list_lock;
795 unsigned long nr_partial;
796 struct list_head partial;
797 #ifdef CONFIG_SLUB_DEBUG
798 atomic_long_t nr_slabs;
799 atomic_long_t total_objects;
800 struct list_head full;
806 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
808 return s->node[node];
812 * Iterator over all nodes. The body will be executed for each node that has
813 * a kmem_cache_node structure allocated (which is true for all online nodes)
815 #define for_each_kmem_cache_node(__s, __node, __n) \
816 for (__node = 0; __node < nr_node_ids; __node++) \
817 if ((__n = get_node(__s, __node)))
821 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
822 void dump_unreclaimable_slab(void);
824 static inline void dump_unreclaimable_slab(void)
829 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
831 #ifdef CONFIG_SLAB_FREELIST_RANDOM
832 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
834 void cache_random_seq_destroy(struct kmem_cache *cachep);
836 static inline int cache_random_seq_create(struct kmem_cache *cachep,
837 unsigned int count, gfp_t gfp)
841 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
842 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
844 static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
846 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
850 if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
851 return flags & __GFP_ZERO;
854 return flags & __GFP_ZERO;
857 static inline bool slab_want_init_on_free(struct kmem_cache *c)
859 if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
862 (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
866 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
867 void debugfs_slab_release(struct kmem_cache *);
869 static inline void debugfs_slab_release(struct kmem_cache *s) { }
873 #define KS_ADDRS_COUNT 16
874 struct kmem_obj_info {
876 struct slab *kp_slab;
878 unsigned long kp_data_offset;
879 struct kmem_cache *kp_slab_cache;
881 void *kp_stack[KS_ADDRS_COUNT];
882 void *kp_free_stack[KS_ADDRS_COUNT];
884 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
887 #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
888 void __check_heap_object(const void *ptr, unsigned long n,
889 const struct slab *slab, bool to_user);
892 void __check_heap_object(const void *ptr, unsigned long n,
893 const struct slab *slab, bool to_user)
898 #ifdef CONFIG_SLUB_DEBUG
899 void skip_orig_size_check(struct kmem_cache *s, const void *object);
902 #endif /* MM_SLAB_H */