PCI: dra7xx: Group PHY API invocations
[platform/kernel/linux-rpi.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4  * Internal slab definitions
5  */
6
7 #ifdef CONFIG_SLOB
8 /*
9  * Common fields provided in kmem_cache by all slab allocators
10  * This struct is either used directly by the allocator (SLOB)
11  * or the allocator must include definitions for all fields
12  * provided in kmem_cache_common in their definition of kmem_cache.
13  *
14  * Once we can do anonymous structs (C11 standard) we could put a
15  * anonymous struct definition in these allocators so that the
16  * separate allocations in the kmem_cache structure of SLAB and
17  * SLUB is no longer needed.
18  */
19 struct kmem_cache {
20         unsigned int object_size;/* The original size of the object */
21         unsigned int size;      /* The aligned/padded/added on size  */
22         unsigned int align;     /* Alignment as calculated */
23         unsigned long flags;    /* Active flags on the slab */
24         const char *name;       /* Slab name for sysfs */
25         int refcount;           /* Use counter */
26         void (*ctor)(void *);   /* Called on object slot creation */
27         struct list_head list;  /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46
47 /*
48  * State of the slab allocator.
49  *
50  * This is used to describe the states of the allocator during bootup.
51  * Allocators use this to gradually bootstrap themselves. Most allocators
52  * have the problem that the structures used for managing slab caches are
53  * allocated from slab caches themselves.
54  */
55 enum slab_state {
56         DOWN,                   /* No slab functionality yet */
57         PARTIAL,                /* SLUB: kmem_cache_node available */
58         PARTIAL_NODE,           /* SLAB: kmalloc size for node struct available */
59         UP,                     /* Slab caches usable but not all extras yet */
60         FULL                    /* Everything is working */
61 };
62
63 extern enum slab_state slab_state;
64
65 /* The slab cache mutex protects the management structures during changes */
66 extern struct mutex slab_mutex;
67
68 /* The list of all slab caches on the system */
69 extern struct list_head slab_caches;
70
71 /* The slab cache that manages slab cache information */
72 extern struct kmem_cache *kmem_cache;
73
74 unsigned long calculate_alignment(unsigned long flags,
75                 unsigned long align, unsigned long size);
76
77 #ifndef CONFIG_SLOB
78 /* Kmalloc array related functions */
79 void setup_kmalloc_cache_index_table(void);
80 void create_kmalloc_caches(unsigned long);
81
82 /* Find the kmalloc slab corresponding for a certain size */
83 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
84 #endif
85
86
87 /* Functions provided by the slab allocators */
88 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
89
90 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
91                         unsigned long flags);
92 extern void create_boot_cache(struct kmem_cache *, const char *name,
93                         size_t size, unsigned long flags);
94
95 int slab_unmergeable(struct kmem_cache *s);
96 struct kmem_cache *find_mergeable(size_t size, size_t align,
97                 unsigned long flags, const char *name, void (*ctor)(void *));
98 #ifndef CONFIG_SLOB
99 struct kmem_cache *
100 __kmem_cache_alias(const char *name, size_t size, size_t align,
101                    unsigned long flags, void (*ctor)(void *));
102
103 unsigned long kmem_cache_flags(unsigned long object_size,
104         unsigned long flags, const char *name,
105         void (*ctor)(void *));
106 #else
107 static inline struct kmem_cache *
108 __kmem_cache_alias(const char *name, size_t size, size_t align,
109                    unsigned long flags, void (*ctor)(void *))
110 { return NULL; }
111
112 static inline unsigned long kmem_cache_flags(unsigned long object_size,
113         unsigned long flags, const char *name,
114         void (*ctor)(void *))
115 {
116         return flags;
117 }
118 #endif
119
120
121 /* Legal flag mask for kmem_cache_create(), for various configurations */
122 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
123                          SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
124
125 #if defined(CONFIG_DEBUG_SLAB)
126 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
127 #elif defined(CONFIG_SLUB_DEBUG)
128 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
129                           SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
130 #else
131 #define SLAB_DEBUG_FLAGS (0)
132 #endif
133
134 #if defined(CONFIG_SLAB)
135 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
136                           SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
137                           SLAB_NOTRACK | SLAB_ACCOUNT)
138 #elif defined(CONFIG_SLUB)
139 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
140                           SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
141 #else
142 #define SLAB_CACHE_FLAGS (0)
143 #endif
144
145 /* Common flags available with current configuration */
146 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
147
148 /* Common flags permitted for kmem_cache_create */
149 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
150                               SLAB_RED_ZONE | \
151                               SLAB_POISON | \
152                               SLAB_STORE_USER | \
153                               SLAB_TRACE | \
154                               SLAB_CONSISTENCY_CHECKS | \
155                               SLAB_MEM_SPREAD | \
156                               SLAB_NOLEAKTRACE | \
157                               SLAB_RECLAIM_ACCOUNT | \
158                               SLAB_TEMPORARY | \
159                               SLAB_NOTRACK | \
160                               SLAB_ACCOUNT)
161
162 int __kmem_cache_shutdown(struct kmem_cache *);
163 void __kmem_cache_release(struct kmem_cache *);
164 int __kmem_cache_shrink(struct kmem_cache *);
165 void slab_kmem_cache_release(struct kmem_cache *);
166
167 struct seq_file;
168 struct file;
169
170 struct slabinfo {
171         unsigned long active_objs;
172         unsigned long num_objs;
173         unsigned long active_slabs;
174         unsigned long num_slabs;
175         unsigned long shared_avail;
176         unsigned int limit;
177         unsigned int batchcount;
178         unsigned int shared;
179         unsigned int objects_per_slab;
180         unsigned int cache_order;
181 };
182
183 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
184 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
185 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
186                        size_t count, loff_t *ppos);
187
188 /*
189  * Generic implementation of bulk operations
190  * These are useful for situations in which the allocator cannot
191  * perform optimizations. In that case segments of the object listed
192  * may be allocated or freed using these operations.
193  */
194 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
195 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
196
197 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
198 /*
199  * Iterate over all memcg caches of the given root cache. The caller must hold
200  * slab_mutex.
201  */
202 #define for_each_memcg_cache(iter, root) \
203         list_for_each_entry(iter, &(root)->memcg_params.list, \
204                             memcg_params.list)
205
206 static inline bool is_root_cache(struct kmem_cache *s)
207 {
208         return s->memcg_params.is_root_cache;
209 }
210
211 static inline bool slab_equal_or_root(struct kmem_cache *s,
212                                       struct kmem_cache *p)
213 {
214         return p == s || p == s->memcg_params.root_cache;
215 }
216
217 /*
218  * We use suffixes to the name in memcg because we can't have caches
219  * created in the system with the same name. But when we print them
220  * locally, better refer to them with the base name
221  */
222 static inline const char *cache_name(struct kmem_cache *s)
223 {
224         if (!is_root_cache(s))
225                 s = s->memcg_params.root_cache;
226         return s->name;
227 }
228
229 /*
230  * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
231  * That said the caller must assure the memcg's cache won't go away by either
232  * taking a css reference to the owner cgroup, or holding the slab_mutex.
233  */
234 static inline struct kmem_cache *
235 cache_from_memcg_idx(struct kmem_cache *s, int idx)
236 {
237         struct kmem_cache *cachep;
238         struct memcg_cache_array *arr;
239
240         rcu_read_lock();
241         arr = rcu_dereference(s->memcg_params.memcg_caches);
242
243         /*
244          * Make sure we will access the up-to-date value. The code updating
245          * memcg_caches issues a write barrier to match this (see
246          * memcg_create_kmem_cache()).
247          */
248         cachep = lockless_dereference(arr->entries[idx]);
249         rcu_read_unlock();
250
251         return cachep;
252 }
253
254 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
255 {
256         if (is_root_cache(s))
257                 return s;
258         return s->memcg_params.root_cache;
259 }
260
261 static __always_inline int memcg_charge_slab(struct page *page,
262                                              gfp_t gfp, int order,
263                                              struct kmem_cache *s)
264 {
265         int ret;
266
267         if (!memcg_kmem_enabled())
268                 return 0;
269         if (is_root_cache(s))
270                 return 0;
271
272         ret = memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
273         if (ret)
274                 return ret;
275
276         memcg_kmem_update_page_stat(page,
277                         (s->flags & SLAB_RECLAIM_ACCOUNT) ?
278                         MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
279                         1 << order);
280         return 0;
281 }
282
283 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
284                                                 struct kmem_cache *s)
285 {
286         if (!memcg_kmem_enabled())
287                 return;
288
289         memcg_kmem_update_page_stat(page,
290                         (s->flags & SLAB_RECLAIM_ACCOUNT) ?
291                         MEMCG_SLAB_RECLAIMABLE : MEMCG_SLAB_UNRECLAIMABLE,
292                         -(1 << order));
293         memcg_kmem_uncharge(page, order);
294 }
295
296 extern void slab_init_memcg_params(struct kmem_cache *);
297
298 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
299
300 #define for_each_memcg_cache(iter, root) \
301         for ((void)(iter), (void)(root); 0; )
302
303 static inline bool is_root_cache(struct kmem_cache *s)
304 {
305         return true;
306 }
307
308 static inline bool slab_equal_or_root(struct kmem_cache *s,
309                                       struct kmem_cache *p)
310 {
311         return true;
312 }
313
314 static inline const char *cache_name(struct kmem_cache *s)
315 {
316         return s->name;
317 }
318
319 static inline struct kmem_cache *
320 cache_from_memcg_idx(struct kmem_cache *s, int idx)
321 {
322         return NULL;
323 }
324
325 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
326 {
327         return s;
328 }
329
330 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
331                                     struct kmem_cache *s)
332 {
333         return 0;
334 }
335
336 static inline void memcg_uncharge_slab(struct page *page, int order,
337                                        struct kmem_cache *s)
338 {
339 }
340
341 static inline void slab_init_memcg_params(struct kmem_cache *s)
342 {
343 }
344 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
345
346 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
347 {
348         struct kmem_cache *cachep;
349         struct page *page;
350
351         /*
352          * When kmemcg is not being used, both assignments should return the
353          * same value. but we don't want to pay the assignment price in that
354          * case. If it is not compiled in, the compiler should be smart enough
355          * to not do even the assignment. In that case, slab_equal_or_root
356          * will also be a constant.
357          */
358         if (!memcg_kmem_enabled() &&
359             !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
360                 return s;
361
362         page = virt_to_head_page(x);
363         cachep = page->slab_cache;
364         if (slab_equal_or_root(cachep, s))
365                 return cachep;
366
367         pr_err("%s: Wrong slab cache. %s but object is from %s\n",
368                __func__, s->name, cachep->name);
369         WARN_ON_ONCE(1);
370         return s;
371 }
372
373 static inline size_t slab_ksize(const struct kmem_cache *s)
374 {
375 #ifndef CONFIG_SLUB
376         return s->object_size;
377
378 #else /* CONFIG_SLUB */
379 # ifdef CONFIG_SLUB_DEBUG
380         /*
381          * Debugging requires use of the padding between object
382          * and whatever may come after it.
383          */
384         if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
385                 return s->object_size;
386 # endif
387         if (s->flags & SLAB_KASAN)
388                 return s->object_size;
389         /*
390          * If we have the need to store the freelist pointer
391          * back there or track user information then we can
392          * only use the space before that information.
393          */
394         if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
395                 return s->inuse;
396         /*
397          * Else we can use all the padding etc for the allocation
398          */
399         return s->size;
400 #endif
401 }
402
403 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
404                                                      gfp_t flags)
405 {
406         flags &= gfp_allowed_mask;
407         lockdep_trace_alloc(flags);
408         might_sleep_if(gfpflags_allow_blocking(flags));
409
410         if (should_failslab(s, flags))
411                 return NULL;
412
413         if (memcg_kmem_enabled() &&
414             ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
415                 return memcg_kmem_get_cache(s);
416
417         return s;
418 }
419
420 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
421                                         size_t size, void **p)
422 {
423         size_t i;
424
425         flags &= gfp_allowed_mask;
426         for (i = 0; i < size; i++) {
427                 void *object = p[i];
428
429                 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
430                 kmemleak_alloc_recursive(object, s->object_size, 1,
431                                          s->flags, flags);
432                 kasan_slab_alloc(s, object, flags);
433         }
434
435         if (memcg_kmem_enabled())
436                 memcg_kmem_put_cache(s);
437 }
438
439 #ifndef CONFIG_SLOB
440 /*
441  * The slab lists for all objects.
442  */
443 struct kmem_cache_node {
444         spinlock_t list_lock;
445
446 #ifdef CONFIG_SLAB
447         struct list_head slabs_partial; /* partial list first, better asm code */
448         struct list_head slabs_full;
449         struct list_head slabs_free;
450         unsigned long total_slabs;      /* length of all slab lists */
451         unsigned long free_slabs;       /* length of free slab list only */
452         unsigned long free_objects;
453         unsigned int free_limit;
454         unsigned int colour_next;       /* Per-node cache coloring */
455         struct array_cache *shared;     /* shared per node */
456         struct alien_cache **alien;     /* on other nodes */
457         unsigned long next_reap;        /* updated without locking */
458         int free_touched;               /* updated without locking */
459 #endif
460
461 #ifdef CONFIG_SLUB
462         unsigned long nr_partial;
463         struct list_head partial;
464 #ifdef CONFIG_SLUB_DEBUG
465         atomic_long_t nr_slabs;
466         atomic_long_t total_objects;
467         struct list_head full;
468 #endif
469 #endif
470
471 };
472
473 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
474 {
475         return s->node[node];
476 }
477
478 /*
479  * Iterator over all nodes. The body will be executed for each node that has
480  * a kmem_cache_node structure allocated (which is true for all online nodes)
481  */
482 #define for_each_kmem_cache_node(__s, __node, __n) \
483         for (__node = 0; __node < nr_node_ids; __node++) \
484                  if ((__n = get_node(__s, __node)))
485
486 #endif
487
488 void *slab_start(struct seq_file *m, loff_t *pos);
489 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
490 void slab_stop(struct seq_file *m, void *p);
491 int memcg_slab_show(struct seq_file *m, void *p);
492
493 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
494
495 #ifdef CONFIG_SLAB_FREELIST_RANDOM
496 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
497                         gfp_t gfp);
498 void cache_random_seq_destroy(struct kmem_cache *cachep);
499 #else
500 static inline int cache_random_seq_create(struct kmem_cache *cachep,
501                                         unsigned int count, gfp_t gfp)
502 {
503         return 0;
504 }
505 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
506 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
507
508 #endif /* MM_SLAB_H */