4 * Internal slab definitions
8 * State of the slab allocator.
10 * This is used to describe the states of the allocator during bootup.
11 * Allocators use this to gradually bootstrap themselves. Most allocators
12 * have the problem that the structures used for managing slab caches are
13 * allocated from slab caches themselves.
16 DOWN, /* No slab functionality yet */
17 PARTIAL, /* SLUB: kmem_cache_node available */
18 PARTIAL_ARRAYCACHE, /* SLAB: kmalloc size for arraycache available */
19 PARTIAL_L3, /* SLAB: kmalloc size for l3 struct available */
20 UP, /* Slab caches usable but not all extras yet */
21 FULL /* Everything is working */
24 extern enum slab_state slab_state;
26 /* The slab cache mutex protects the management structures during changes */
27 extern struct mutex slab_mutex;
29 /* The list of all slab caches on the system */
30 extern struct list_head slab_caches;
32 /* The slab cache that manages slab cache information */
33 extern struct kmem_cache *kmem_cache;
35 unsigned long calculate_alignment(unsigned long flags,
36 unsigned long align, unsigned long size);
38 /* Functions provided by the slab allocators */
39 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
41 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
43 extern void create_boot_cache(struct kmem_cache *, const char *name,
44 size_t size, unsigned long flags);
49 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
50 size_t align, unsigned long flags, void (*ctor)(void *));
52 static inline struct kmem_cache *
53 __kmem_cache_alias(struct mem_cgroup *memcg, const char *name, size_t size,
54 size_t align, unsigned long flags, void (*ctor)(void *))
59 /* Legal flag mask for kmem_cache_create(), for various configurations */
60 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
61 SLAB_DESTROY_BY_RCU | SLAB_DEBUG_OBJECTS )
63 #if defined(CONFIG_DEBUG_SLAB)
64 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
65 #elif defined(CONFIG_SLUB_DEBUG)
66 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
67 SLAB_TRACE | SLAB_DEBUG_FREE)
69 #define SLAB_DEBUG_FLAGS (0)
72 #if defined(CONFIG_SLAB)
73 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
74 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | SLAB_NOTRACK)
75 #elif defined(CONFIG_SLUB)
76 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
77 SLAB_TEMPORARY | SLAB_NOTRACK)
79 #define SLAB_CACHE_FLAGS (0)
82 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
84 int __kmem_cache_shutdown(struct kmem_cache *);
90 unsigned long active_objs;
91 unsigned long num_objs;
92 unsigned long active_slabs;
93 unsigned long num_slabs;
94 unsigned long shared_avail;
96 unsigned int batchcount;
98 unsigned int objects_per_slab;
99 unsigned int cache_order;
102 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
103 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
104 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
105 size_t count, loff_t *ppos);
107 #ifdef CONFIG_MEMCG_KMEM
108 static inline bool is_root_cache(struct kmem_cache *s)
110 return !s->memcg_params || s->memcg_params->is_root_cache;
113 static inline bool cache_match_memcg(struct kmem_cache *cachep,
114 struct mem_cgroup *memcg)
116 return (is_root_cache(cachep) && !memcg) ||
117 (cachep->memcg_params->memcg == memcg);
120 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
122 if (!is_root_cache(s))
123 atomic_add(1 << order, &s->memcg_params->nr_pages);
126 static inline void memcg_release_pages(struct kmem_cache *s, int order)
128 if (is_root_cache(s))
131 if (atomic_sub_and_test((1 << order), &s->memcg_params->nr_pages))
132 mem_cgroup_destroy_cache(s);
135 static inline bool slab_equal_or_root(struct kmem_cache *s,
136 struct kmem_cache *p)
139 (s->memcg_params && (p == s->memcg_params->root_cache));
143 * We use suffixes to the name in memcg because we can't have caches
144 * created in the system with the same name. But when we print them
145 * locally, better refer to them with the base name
147 static inline const char *cache_name(struct kmem_cache *s)
149 if (!is_root_cache(s))
150 return s->memcg_params->root_cache->name;
154 static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
156 return s->memcg_params->memcg_caches[idx];
159 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
161 if (is_root_cache(s))
163 return s->memcg_params->root_cache;
166 static inline bool is_root_cache(struct kmem_cache *s)
171 static inline bool cache_match_memcg(struct kmem_cache *cachep,
172 struct mem_cgroup *memcg)
177 static inline void memcg_bind_pages(struct kmem_cache *s, int order)
181 static inline void memcg_release_pages(struct kmem_cache *s, int order)
185 static inline bool slab_equal_or_root(struct kmem_cache *s,
186 struct kmem_cache *p)
191 static inline const char *cache_name(struct kmem_cache *s)
196 static inline struct kmem_cache *cache_from_memcg(struct kmem_cache *s, int idx)
201 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
207 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
209 struct kmem_cache *cachep;
213 * When kmemcg is not being used, both assignments should return the
214 * same value. but we don't want to pay the assignment price in that
215 * case. If it is not compiled in, the compiler should be smart enough
216 * to not do even the assignment. In that case, slab_equal_or_root
217 * will also be a constant.
219 if (!memcg_kmem_enabled() && !unlikely(s->flags & SLAB_DEBUG_FREE))
222 page = virt_to_head_page(x);
223 cachep = page->slab_cache;
224 if (slab_equal_or_root(cachep, s))
227 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
228 __FUNCTION__, cachep->name, s->name);