3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same initializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'slab_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/slab.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/kmemcheck.h>
118 #include <linux/memory.h>
119 #include <linux/prefetch.h>
121 #include <net/sock.h>
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
127 #include <trace/events/kmem.h>
129 #include "internal.h"
132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
133 * 0 for faster, smaller code (especially in the critical paths).
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 #ifdef CONFIG_DEBUG_SLAB
144 #define FORCED_DEBUG 1
148 #define FORCED_DEBUG 0
151 /* Shouldn't this be in a header file somewhere? */
152 #define BYTES_PER_WORD sizeof(void *)
153 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
155 #ifndef ARCH_KMALLOC_FLAGS
156 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
160 * true if a page was allocated from pfmemalloc reserves for network-based
163 static bool pfmemalloc_active __read_mostly;
168 * Bufctl's are used for linking objs within a slab
171 * This implementation relies on "struct page" for locating the cache &
172 * slab an object belongs to.
173 * This allows the bufctl structure to be small (one int), but limits
174 * the number of objects a slab (not a cache) can contain when off-slab
175 * bufctls are used. The limit is the size of the largest general cache
176 * that does not use off-slab slabs.
177 * For 32bit archs with 4 kB pages, is this 56.
178 * This is not serious, as it is only for large objects, when it is unwise
179 * to have too many per slab.
180 * Note: This limit can be raised by introducing a general cache whose size
181 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
184 typedef unsigned int kmem_bufctl_t;
185 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
186 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
187 #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
188 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
193 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
194 * arrange for kmem_freepages to be called via RCU. This is useful if
195 * we need to approach a kernel structure obliquely, from its address
196 * obtained without the usual locking. We can lock the structure to
197 * stabilize it and check it's still at the given address, only if we
198 * can be sure that the memory has not been meanwhile reused for some
199 * other kind of object (which our subsystem's lock might corrupt).
201 * rcu_read_lock before reading the address, then rcu_read_unlock after
202 * taking the spinlock within the structure expected at that address.
205 struct rcu_head head;
206 struct kmem_cache *cachep;
213 * Manages the objs in a slab. Placed either at the beginning of mem allocated
214 * for a slab, or allocated from an general cache.
215 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list;
221 unsigned long colouroff;
222 void *s_mem; /* including colour offset */
223 unsigned int inuse; /* num of objs active in slab */
225 unsigned short nodeid;
227 struct slab_rcu __slab_cover_slab_rcu;
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
239 * The limit is stored in the per-cpu structure to reduce the data cache
246 unsigned int batchcount;
247 unsigned int touched;
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
254 * Entries should not be directly dereferenced as
255 * entries belonging to slabs marked pfmemalloc will
256 * have the lower bits set SLAB_OBJ_PFMEMALLOC
260 #define SLAB_OBJ_PFMEMALLOC 1
261 static inline bool is_obj_pfmemalloc(void *objp)
263 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
266 static inline void set_obj_pfmemalloc(void **objp)
268 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
272 static inline void clear_obj_pfmemalloc(void **objp)
274 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned int free_limit;
296 unsigned int colour_next; /* Per-node cache coloring */
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
308 static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC MAX_NUMNODES
311 #define SIZE_L3 (2 * MAX_NUMNODES)
313 static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
318 static void cache_reap(struct work_struct *unused);
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
324 static __always_inline int index_of(const size_t size)
326 extern void __bad_size(void);
328 if (__builtin_constant_p(size)) {
336 #include <linux/kmalloc_sizes.h>
344 static int slab_early_init = 1;
346 #define INDEX_AC index_of(sizeof(struct arraycache_init))
347 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
349 static void kmem_list3_init(struct kmem_list3 *parent)
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
356 parent->colour_next = 0;
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
362 #define MAKE_LIST(cachep, listp, slab, nodeid) \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
368 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
375 #define CFLGS_OFF_SLAB (0x80000000UL)
376 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
378 #define BATCHREFILL_LIMIT 16
380 * Optimization question: fewer reaps means less probability for unnessary
381 * cpucache drain/refill cycles.
383 * OTOH the cpuarrays can contain lots of objects,
384 * which could lock up otherwise freeable slabs.
386 #define REAPTIMEOUT_CPUC (2*HZ)
387 #define REAPTIMEOUT_LIST3 (4*HZ)
390 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
391 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
392 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
393 #define STATS_INC_GROWN(x) ((x)->grown++)
394 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
395 #define STATS_SET_HIGH(x) \
397 if ((x)->num_active > (x)->high_mark) \
398 (x)->high_mark = (x)->num_active; \
400 #define STATS_INC_ERR(x) ((x)->errors++)
401 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
402 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
403 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
404 #define STATS_SET_FREEABLE(x, i) \
406 if ((x)->max_freeable < i) \
407 (x)->max_freeable = i; \
409 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
410 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
411 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
412 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
414 #define STATS_INC_ACTIVE(x) do { } while (0)
415 #define STATS_DEC_ACTIVE(x) do { } while (0)
416 #define STATS_INC_ALLOCED(x) do { } while (0)
417 #define STATS_INC_GROWN(x) do { } while (0)
418 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
419 #define STATS_SET_HIGH(x) do { } while (0)
420 #define STATS_INC_ERR(x) do { } while (0)
421 #define STATS_INC_NODEALLOCS(x) do { } while (0)
422 #define STATS_INC_NODEFREES(x) do { } while (0)
423 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
424 #define STATS_SET_FREEABLE(x, i) do { } while (0)
425 #define STATS_INC_ALLOCHIT(x) do { } while (0)
426 #define STATS_INC_ALLOCMISS(x) do { } while (0)
427 #define STATS_INC_FREEHIT(x) do { } while (0)
428 #define STATS_INC_FREEMISS(x) do { } while (0)
434 * memory layout of objects:
436 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
437 * the end of an object is aligned with the end of the real
438 * allocation. Catches writes behind the end of the allocation.
439 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
441 * cachep->obj_offset: The real object.
442 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
443 * cachep->size - 1* BYTES_PER_WORD: last caller address
444 * [BYTES_PER_WORD long]
446 static int obj_offset(struct kmem_cache *cachep)
448 return cachep->obj_offset;
451 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
453 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
454 return (unsigned long long*) (objp + obj_offset(cachep) -
455 sizeof(unsigned long long));
458 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
460 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
461 if (cachep->flags & SLAB_STORE_USER)
462 return (unsigned long long *)(objp + cachep->size -
463 sizeof(unsigned long long) -
465 return (unsigned long long *) (objp + cachep->size -
466 sizeof(unsigned long long));
469 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
471 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
472 return (void **)(objp + cachep->size - BYTES_PER_WORD);
477 #define obj_offset(x) 0
478 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
479 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
480 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
485 * Do not go above this order unless 0 objects fit into the slab or
486 * overridden on the command line.
488 #define SLAB_MAX_ORDER_HI 1
489 #define SLAB_MAX_ORDER_LO 0
490 static int slab_max_order = SLAB_MAX_ORDER_LO;
491 static bool slab_max_order_set __initdata;
493 static inline struct kmem_cache *virt_to_cache(const void *obj)
495 struct page *page = virt_to_head_page(obj);
496 return page->slab_cache;
499 static inline struct slab *virt_to_slab(const void *obj)
501 struct page *page = virt_to_head_page(obj);
503 VM_BUG_ON(!PageSlab(page));
504 return page->slab_page;
507 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
510 return slab->s_mem + cache->size * idx;
514 * We want to avoid an expensive divide : (offset / cache->size)
515 * Using the fact that size is a constant for a particular cache,
516 * we can replace (offset / cache->size) by
517 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
519 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
520 const struct slab *slab, void *obj)
522 u32 offset = (obj - slab->s_mem);
523 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
527 * These are the default caches for kmalloc. Custom caches can have other sizes.
529 struct cache_sizes malloc_sizes[] = {
530 #define CACHE(x) { .cs_size = (x) },
531 #include <linux/kmalloc_sizes.h>
535 EXPORT_SYMBOL(malloc_sizes);
537 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
543 static struct cache_names __initdata cache_names[] = {
544 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
545 #include <linux/kmalloc_sizes.h>
550 static struct arraycache_init initarray_cache __initdata =
551 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
552 static struct arraycache_init initarray_generic =
553 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
555 /* internal cache of cache description objs */
556 static struct kmem_cache kmem_cache_boot = {
558 .limit = BOOT_CPUCACHE_ENTRIES,
560 .size = sizeof(struct kmem_cache),
561 .name = "kmem_cache",
564 #define BAD_ALIEN_MAGIC 0x01020304ul
566 #ifdef CONFIG_LOCKDEP
569 * Slab sometimes uses the kmalloc slabs to store the slab headers
570 * for other slabs "off slab".
571 * The locking for this is tricky in that it nests within the locks
572 * of all other slabs in a few places; to deal with this special
573 * locking we put on-slab caches into a separate lock-class.
575 * We set lock class for alien array caches which are up during init.
576 * The lock annotation will be lost if all cpus of a node goes down and
577 * then comes back up during hotplug
579 static struct lock_class_key on_slab_l3_key;
580 static struct lock_class_key on_slab_alc_key;
582 static struct lock_class_key debugobj_l3_key;
583 static struct lock_class_key debugobj_alc_key;
585 static void slab_set_lock_classes(struct kmem_cache *cachep,
586 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
589 struct array_cache **alc;
590 struct kmem_list3 *l3;
593 l3 = cachep->nodelists[q];
597 lockdep_set_class(&l3->list_lock, l3_key);
600 * FIXME: This check for BAD_ALIEN_MAGIC
601 * should go away when common slab code is taught to
602 * work even without alien caches.
603 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
604 * for alloc_alien_cache,
606 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
610 lockdep_set_class(&alc[r]->lock, alc_key);
614 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
616 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
619 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
623 for_each_online_node(node)
624 slab_set_debugobj_lock_classes_node(cachep, node);
627 static void init_node_lock_keys(int q)
629 struct cache_sizes *s = malloc_sizes;
634 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
635 struct kmem_list3 *l3;
637 l3 = s->cs_cachep->nodelists[q];
638 if (!l3 || OFF_SLAB(s->cs_cachep))
641 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
642 &on_slab_alc_key, q);
646 static inline void init_lock_keys(void)
651 init_node_lock_keys(node);
654 static void init_node_lock_keys(int q)
658 static inline void init_lock_keys(void)
662 static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
666 static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
671 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
673 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
675 return cachep->array[smp_processor_id()];
678 static inline struct kmem_cache *__find_general_cachep(size_t size,
681 struct cache_sizes *csizep = malloc_sizes;
684 /* This happens if someone tries to call
685 * kmem_cache_create(), or __kmalloc(), before
686 * the generic caches are initialized.
688 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
691 return ZERO_SIZE_PTR;
693 while (size > csizep->cs_size)
697 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
698 * has cs_{dma,}cachep==NULL. Thus no special case
699 * for large kmalloc calls required.
701 #ifdef CONFIG_ZONE_DMA
702 if (unlikely(gfpflags & GFP_DMA))
703 return csizep->cs_dmacachep;
705 return csizep->cs_cachep;
708 static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
710 return __find_general_cachep(size, gfpflags);
713 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
715 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
719 * Calculate the number of objects and left-over bytes for a given buffer size.
721 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
722 size_t align, int flags, size_t *left_over,
727 size_t slab_size = PAGE_SIZE << gfporder;
730 * The slab management structure can be either off the slab or
731 * on it. For the latter case, the memory allocated for a
735 * - One kmem_bufctl_t for each object
736 * - Padding to respect alignment of @align
737 * - @buffer_size bytes for each object
739 * If the slab management structure is off the slab, then the
740 * alignment will already be calculated into the size. Because
741 * the slabs are all pages aligned, the objects will be at the
742 * correct alignment when allocated.
744 if (flags & CFLGS_OFF_SLAB) {
746 nr_objs = slab_size / buffer_size;
748 if (nr_objs > SLAB_LIMIT)
749 nr_objs = SLAB_LIMIT;
752 * Ignore padding for the initial guess. The padding
753 * is at most @align-1 bytes, and @buffer_size is at
754 * least @align. In the worst case, this result will
755 * be one greater than the number of objects that fit
756 * into the memory allocation when taking the padding
759 nr_objs = (slab_size - sizeof(struct slab)) /
760 (buffer_size + sizeof(kmem_bufctl_t));
763 * This calculated number will be either the right
764 * amount, or one greater than what we want.
766 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
770 if (nr_objs > SLAB_LIMIT)
771 nr_objs = SLAB_LIMIT;
773 mgmt_size = slab_mgmt_size(nr_objs, align);
776 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
780 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
782 static void __slab_error(const char *function, struct kmem_cache *cachep,
785 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
786 function, cachep->name, msg);
788 add_taint(TAINT_BAD_PAGE);
793 * By default on NUMA we use alien caches to stage the freeing of
794 * objects allocated from other nodes. This causes massive memory
795 * inefficiencies when using fake NUMA setup to split memory into a
796 * large number of small nodes, so it can be disabled on the command
800 static int use_alien_caches __read_mostly = 1;
801 static int __init noaliencache_setup(char *s)
803 use_alien_caches = 0;
806 __setup("noaliencache", noaliencache_setup);
808 static int __init slab_max_order_setup(char *str)
810 get_option(&str, &slab_max_order);
811 slab_max_order = slab_max_order < 0 ? 0 :
812 min(slab_max_order, MAX_ORDER - 1);
813 slab_max_order_set = true;
817 __setup("slab_max_order=", slab_max_order_setup);
821 * Special reaping functions for NUMA systems called from cache_reap().
822 * These take care of doing round robin flushing of alien caches (containing
823 * objects freed on different nodes from which they were allocated) and the
824 * flushing of remote pcps by calling drain_node_pages.
826 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
828 static void init_reap_node(int cpu)
832 node = next_node(cpu_to_mem(cpu), node_online_map);
833 if (node == MAX_NUMNODES)
834 node = first_node(node_online_map);
836 per_cpu(slab_reap_node, cpu) = node;
839 static void next_reap_node(void)
841 int node = __this_cpu_read(slab_reap_node);
843 node = next_node(node, node_online_map);
844 if (unlikely(node >= MAX_NUMNODES))
845 node = first_node(node_online_map);
846 __this_cpu_write(slab_reap_node, node);
850 #define init_reap_node(cpu) do { } while (0)
851 #define next_reap_node(void) do { } while (0)
855 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
856 * via the workqueue/eventd.
857 * Add the CPU number into the expiration time to minimize the possibility of
858 * the CPUs getting into lockstep and contending for the global cache chain
861 static void __cpuinit start_cpu_timer(int cpu)
863 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
866 * When this gets called from do_initcalls via cpucache_init(),
867 * init_workqueues() has already run, so keventd will be setup
870 if (keventd_up() && reap_work->work.func == NULL) {
872 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
873 schedule_delayed_work_on(cpu, reap_work,
874 __round_jiffies_relative(HZ, cpu));
878 static struct array_cache *alloc_arraycache(int node, int entries,
879 int batchcount, gfp_t gfp)
881 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
882 struct array_cache *nc = NULL;
884 nc = kmalloc_node(memsize, gfp, node);
886 * The array_cache structures contain pointers to free object.
887 * However, when such objects are allocated or transferred to another
888 * cache the pointers are not cleared and they could be counted as
889 * valid references during a kmemleak scan. Therefore, kmemleak must
890 * not scan such objects.
892 kmemleak_no_scan(nc);
896 nc->batchcount = batchcount;
898 spin_lock_init(&nc->lock);
903 static inline bool is_slab_pfmemalloc(struct slab *slabp)
905 struct page *page = virt_to_page(slabp->s_mem);
907 return PageSlabPfmemalloc(page);
910 /* Clears pfmemalloc_active if no slabs have pfmalloc set */
911 static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
912 struct array_cache *ac)
914 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
918 if (!pfmemalloc_active)
921 spin_lock_irqsave(&l3->list_lock, flags);
922 list_for_each_entry(slabp, &l3->slabs_full, list)
923 if (is_slab_pfmemalloc(slabp))
926 list_for_each_entry(slabp, &l3->slabs_partial, list)
927 if (is_slab_pfmemalloc(slabp))
930 list_for_each_entry(slabp, &l3->slabs_free, list)
931 if (is_slab_pfmemalloc(slabp))
934 pfmemalloc_active = false;
936 spin_unlock_irqrestore(&l3->list_lock, flags);
939 static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
940 gfp_t flags, bool force_refill)
943 void *objp = ac->entry[--ac->avail];
945 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
946 if (unlikely(is_obj_pfmemalloc(objp))) {
947 struct kmem_list3 *l3;
949 if (gfp_pfmemalloc_allowed(flags)) {
950 clear_obj_pfmemalloc(&objp);
954 /* The caller cannot use PFMEMALLOC objects, find another one */
955 for (i = 0; i < ac->avail; i++) {
956 /* If a !PFMEMALLOC object is found, swap them */
957 if (!is_obj_pfmemalloc(ac->entry[i])) {
959 ac->entry[i] = ac->entry[ac->avail];
960 ac->entry[ac->avail] = objp;
966 * If there are empty slabs on the slabs_free list and we are
967 * being forced to refill the cache, mark this one !pfmemalloc.
969 l3 = cachep->nodelists[numa_mem_id()];
970 if (!list_empty(&l3->slabs_free) && force_refill) {
971 struct slab *slabp = virt_to_slab(objp);
972 ClearPageSlabPfmemalloc(virt_to_head_page(slabp->s_mem));
973 clear_obj_pfmemalloc(&objp);
974 recheck_pfmemalloc_active(cachep, ac);
978 /* No !PFMEMALLOC objects available */
986 static inline void *ac_get_obj(struct kmem_cache *cachep,
987 struct array_cache *ac, gfp_t flags, bool force_refill)
991 if (unlikely(sk_memalloc_socks()))
992 objp = __ac_get_obj(cachep, ac, flags, force_refill);
994 objp = ac->entry[--ac->avail];
999 static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1002 if (unlikely(pfmemalloc_active)) {
1003 /* Some pfmemalloc slabs exist, check if this is one */
1004 struct page *page = virt_to_head_page(objp);
1005 if (PageSlabPfmemalloc(page))
1006 set_obj_pfmemalloc(&objp);
1012 static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_put_obj(cachep, ac, objp);
1018 ac->entry[ac->avail++] = objp;
1022 * Transfer objects in one arraycache to another.
1023 * Locking must be handled by the caller.
1025 * Return the number of entries transferred.
1027 static int transfer_objects(struct array_cache *to,
1028 struct array_cache *from, unsigned int max)
1030 /* Figure out how many entries to transfer */
1031 int nr = min3(from->avail, max, to->limit - to->avail);
1036 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1037 sizeof(void *) *nr);
1046 #define drain_alien_cache(cachep, alien) do { } while (0)
1047 #define reap_alien(cachep, l3) do { } while (0)
1049 static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1051 return (struct array_cache **)BAD_ALIEN_MAGIC;
1054 static inline void free_alien_cache(struct array_cache **ac_ptr)
1058 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1063 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1069 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1070 gfp_t flags, int nodeid)
1075 #else /* CONFIG_NUMA */
1077 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1078 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1080 static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
1082 struct array_cache **ac_ptr;
1083 int memsize = sizeof(void *) * nr_node_ids;
1088 ac_ptr = kzalloc_node(memsize, gfp, node);
1091 if (i == node || !node_online(i))
1093 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
1095 for (i--; i >= 0; i--)
1105 static void free_alien_cache(struct array_cache **ac_ptr)
1116 static void __drain_alien_cache(struct kmem_cache *cachep,
1117 struct array_cache *ac, int node)
1119 struct kmem_list3 *rl3 = cachep->nodelists[node];
1122 spin_lock(&rl3->list_lock);
1124 * Stuff objects into the remote nodes shared array first.
1125 * That way we could avoid the overhead of putting the objects
1126 * into the free lists and getting them back later.
1129 transfer_objects(rl3->shared, ac, ac->limit);
1131 free_block(cachep, ac->entry, ac->avail, node);
1133 spin_unlock(&rl3->list_lock);
1138 * Called from cache_reap() to regularly drain alien caches round robin.
1140 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1142 int node = __this_cpu_read(slab_reap_node);
1145 struct array_cache *ac = l3->alien[node];
1147 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1148 __drain_alien_cache(cachep, ac, node);
1149 spin_unlock_irq(&ac->lock);
1154 static void drain_alien_cache(struct kmem_cache *cachep,
1155 struct array_cache **alien)
1158 struct array_cache *ac;
1159 unsigned long flags;
1161 for_each_online_node(i) {
1164 spin_lock_irqsave(&ac->lock, flags);
1165 __drain_alien_cache(cachep, ac, i);
1166 spin_unlock_irqrestore(&ac->lock, flags);
1171 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1173 struct slab *slabp = virt_to_slab(objp);
1174 int nodeid = slabp->nodeid;
1175 struct kmem_list3 *l3;
1176 struct array_cache *alien = NULL;
1179 node = numa_mem_id();
1182 * Make sure we are not freeing a object from another node to the array
1183 * cache on this cpu.
1185 if (likely(slabp->nodeid == node))
1188 l3 = cachep->nodelists[node];
1189 STATS_INC_NODEFREES(cachep);
1190 if (l3->alien && l3->alien[nodeid]) {
1191 alien = l3->alien[nodeid];
1192 spin_lock(&alien->lock);
1193 if (unlikely(alien->avail == alien->limit)) {
1194 STATS_INC_ACOVERFLOW(cachep);
1195 __drain_alien_cache(cachep, alien, nodeid);
1197 ac_put_obj(cachep, alien, objp);
1198 spin_unlock(&alien->lock);
1200 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1201 free_block(cachep, &objp, 1, nodeid);
1202 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1209 * Allocates and initializes nodelists for a node on each slab cache, used for
1210 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1211 * will be allocated off-node since memory is not yet online for the new node.
1212 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1215 * Must hold slab_mutex.
1217 static int init_cache_nodelists_node(int node)
1219 struct kmem_cache *cachep;
1220 struct kmem_list3 *l3;
1221 const int memsize = sizeof(struct kmem_list3);
1223 list_for_each_entry(cachep, &slab_caches, list) {
1225 * Set up the size64 kmemlist for cpu before we can
1226 * begin anything. Make sure some other cpu on this
1227 * node has not already allocated this
1229 if (!cachep->nodelists[node]) {
1230 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1233 kmem_list3_init(l3);
1234 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1235 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1238 * The l3s don't come and go as CPUs come and
1239 * go. slab_mutex is sufficient
1242 cachep->nodelists[node] = l3;
1245 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1246 cachep->nodelists[node]->free_limit =
1247 (1 + nr_cpus_node(node)) *
1248 cachep->batchcount + cachep->num;
1249 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1254 static void __cpuinit cpuup_canceled(long cpu)
1256 struct kmem_cache *cachep;
1257 struct kmem_list3 *l3 = NULL;
1258 int node = cpu_to_mem(cpu);
1259 const struct cpumask *mask = cpumask_of_node(node);
1261 list_for_each_entry(cachep, &slab_caches, list) {
1262 struct array_cache *nc;
1263 struct array_cache *shared;
1264 struct array_cache **alien;
1266 /* cpu is dead; no one can alloc from it. */
1267 nc = cachep->array[cpu];
1268 cachep->array[cpu] = NULL;
1269 l3 = cachep->nodelists[node];
1272 goto free_array_cache;
1274 spin_lock_irq(&l3->list_lock);
1276 /* Free limit for this kmem_list3 */
1277 l3->free_limit -= cachep->batchcount;
1279 free_block(cachep, nc->entry, nc->avail, node);
1281 if (!cpumask_empty(mask)) {
1282 spin_unlock_irq(&l3->list_lock);
1283 goto free_array_cache;
1286 shared = l3->shared;
1288 free_block(cachep, shared->entry,
1289 shared->avail, node);
1296 spin_unlock_irq(&l3->list_lock);
1300 drain_alien_cache(cachep, alien);
1301 free_alien_cache(alien);
1307 * In the previous loop, all the objects were freed to
1308 * the respective cache's slabs, now we can go ahead and
1309 * shrink each nodelist to its limit.
1311 list_for_each_entry(cachep, &slab_caches, list) {
1312 l3 = cachep->nodelists[node];
1315 drain_freelist(cachep, l3, l3->free_objects);
1319 static int __cpuinit cpuup_prepare(long cpu)
1321 struct kmem_cache *cachep;
1322 struct kmem_list3 *l3 = NULL;
1323 int node = cpu_to_mem(cpu);
1327 * We need to do this right in the beginning since
1328 * alloc_arraycache's are going to use this list.
1329 * kmalloc_node allows us to add the slab to the right
1330 * kmem_list3 and not this cpu's kmem_list3
1332 err = init_cache_nodelists_node(node);
1337 * Now we can go ahead with allocating the shared arrays and
1340 list_for_each_entry(cachep, &slab_caches, list) {
1341 struct array_cache *nc;
1342 struct array_cache *shared = NULL;
1343 struct array_cache **alien = NULL;
1345 nc = alloc_arraycache(node, cachep->limit,
1346 cachep->batchcount, GFP_KERNEL);
1349 if (cachep->shared) {
1350 shared = alloc_arraycache(node,
1351 cachep->shared * cachep->batchcount,
1352 0xbaadf00d, GFP_KERNEL);
1358 if (use_alien_caches) {
1359 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1366 cachep->array[cpu] = nc;
1367 l3 = cachep->nodelists[node];
1370 spin_lock_irq(&l3->list_lock);
1373 * We are serialised from CPU_DEAD or
1374 * CPU_UP_CANCELLED by the cpucontrol lock
1376 l3->shared = shared;
1385 spin_unlock_irq(&l3->list_lock);
1387 free_alien_cache(alien);
1388 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1389 slab_set_debugobj_lock_classes_node(cachep, node);
1391 init_node_lock_keys(node);
1395 cpuup_canceled(cpu);
1399 static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1400 unsigned long action, void *hcpu)
1402 long cpu = (long)hcpu;
1406 case CPU_UP_PREPARE:
1407 case CPU_UP_PREPARE_FROZEN:
1408 mutex_lock(&slab_mutex);
1409 err = cpuup_prepare(cpu);
1410 mutex_unlock(&slab_mutex);
1413 case CPU_ONLINE_FROZEN:
1414 start_cpu_timer(cpu);
1416 #ifdef CONFIG_HOTPLUG_CPU
1417 case CPU_DOWN_PREPARE:
1418 case CPU_DOWN_PREPARE_FROZEN:
1420 * Shutdown cache reaper. Note that the slab_mutex is
1421 * held so that if cache_reap() is invoked it cannot do
1422 * anything expensive but will only modify reap_work
1423 * and reschedule the timer.
1425 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1426 /* Now the cache_reaper is guaranteed to be not running. */
1427 per_cpu(slab_reap_work, cpu).work.func = NULL;
1429 case CPU_DOWN_FAILED:
1430 case CPU_DOWN_FAILED_FROZEN:
1431 start_cpu_timer(cpu);
1434 case CPU_DEAD_FROZEN:
1436 * Even if all the cpus of a node are down, we don't free the
1437 * kmem_list3 of any cache. This to avoid a race between
1438 * cpu_down, and a kmalloc allocation from another cpu for
1439 * memory from the node of the cpu going down. The list3
1440 * structure is usually allocated from kmem_cache_create() and
1441 * gets destroyed at kmem_cache_destroy().
1445 case CPU_UP_CANCELED:
1446 case CPU_UP_CANCELED_FROZEN:
1447 mutex_lock(&slab_mutex);
1448 cpuup_canceled(cpu);
1449 mutex_unlock(&slab_mutex);
1452 return notifier_from_errno(err);
1455 static struct notifier_block __cpuinitdata cpucache_notifier = {
1456 &cpuup_callback, NULL, 0
1459 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1461 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1462 * Returns -EBUSY if all objects cannot be drained so that the node is not
1465 * Must hold slab_mutex.
1467 static int __meminit drain_cache_nodelists_node(int node)
1469 struct kmem_cache *cachep;
1472 list_for_each_entry(cachep, &slab_caches, list) {
1473 struct kmem_list3 *l3;
1475 l3 = cachep->nodelists[node];
1479 drain_freelist(cachep, l3, l3->free_objects);
1481 if (!list_empty(&l3->slabs_full) ||
1482 !list_empty(&l3->slabs_partial)) {
1490 static int __meminit slab_memory_callback(struct notifier_block *self,
1491 unsigned long action, void *arg)
1493 struct memory_notify *mnb = arg;
1497 nid = mnb->status_change_nid;
1502 case MEM_GOING_ONLINE:
1503 mutex_lock(&slab_mutex);
1504 ret = init_cache_nodelists_node(nid);
1505 mutex_unlock(&slab_mutex);
1507 case MEM_GOING_OFFLINE:
1508 mutex_lock(&slab_mutex);
1509 ret = drain_cache_nodelists_node(nid);
1510 mutex_unlock(&slab_mutex);
1514 case MEM_CANCEL_ONLINE:
1515 case MEM_CANCEL_OFFLINE:
1519 return notifier_from_errno(ret);
1521 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1524 * swap the static kmem_list3 with kmalloced memory
1526 static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1529 struct kmem_list3 *ptr;
1531 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1534 memcpy(ptr, list, sizeof(struct kmem_list3));
1536 * Do not assume that spinlocks can be initialized via memcpy:
1538 spin_lock_init(&ptr->list_lock);
1540 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1541 cachep->nodelists[nodeid] = ptr;
1545 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1546 * size of kmem_list3.
1548 static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1552 for_each_online_node(node) {
1553 cachep->nodelists[node] = &initkmem_list3[index + node];
1554 cachep->nodelists[node]->next_reap = jiffies +
1556 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1561 * The memory after the last cpu cache pointer is used for the
1562 * the nodelists pointer.
1564 static void setup_nodelists_pointer(struct kmem_cache *cachep)
1566 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
1570 * Initialisation. Called after the page allocator have been initialised and
1571 * before smp_init().
1573 void __init kmem_cache_init(void)
1576 struct cache_sizes *sizes;
1577 struct cache_names *names;
1582 kmem_cache = &kmem_cache_boot;
1583 setup_nodelists_pointer(kmem_cache);
1585 if (num_possible_nodes() == 1)
1586 use_alien_caches = 0;
1588 for (i = 0; i < NUM_INIT_LISTS; i++)
1589 kmem_list3_init(&initkmem_list3[i]);
1591 set_up_list3s(kmem_cache, CACHE_CACHE);
1594 * Fragmentation resistance on low memory - only use bigger
1595 * page orders on machines with more than 32MB of memory if
1596 * not overridden on the command line.
1598 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1599 slab_max_order = SLAB_MAX_ORDER_HI;
1601 /* Bootstrap is tricky, because several objects are allocated
1602 * from caches that do not exist yet:
1603 * 1) initialize the kmem_cache cache: it contains the struct
1604 * kmem_cache structures of all caches, except kmem_cache itself:
1605 * kmem_cache is statically allocated.
1606 * Initially an __init data area is used for the head array and the
1607 * kmem_list3 structures, it's replaced with a kmalloc allocated
1608 * array at the end of the bootstrap.
1609 * 2) Create the first kmalloc cache.
1610 * The struct kmem_cache for the new cache is allocated normally.
1611 * An __init data area is used for the head array.
1612 * 3) Create the remaining kmalloc caches, with minimally sized
1614 * 4) Replace the __init data head arrays for kmem_cache and the first
1615 * kmalloc cache with kmalloc allocated arrays.
1616 * 5) Replace the __init data for kmem_list3 for kmem_cache and
1617 * the other cache's with kmalloc allocated memory.
1618 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1621 node = numa_mem_id();
1623 /* 1) create the kmem_cache */
1624 INIT_LIST_HEAD(&slab_caches);
1625 list_add(&kmem_cache->list, &slab_caches);
1626 kmem_cache->colour_off = cache_line_size();
1627 kmem_cache->array[smp_processor_id()] = &initarray_cache.cache;
1630 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1632 kmem_cache->size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
1633 nr_node_ids * sizeof(struct kmem_list3 *);
1634 kmem_cache->object_size = kmem_cache->size;
1635 kmem_cache->size = ALIGN(kmem_cache->object_size,
1637 kmem_cache->reciprocal_buffer_size =
1638 reciprocal_value(kmem_cache->size);
1640 for (order = 0; order < MAX_ORDER; order++) {
1641 cache_estimate(order, kmem_cache->size,
1642 cache_line_size(), 0, &left_over, &kmem_cache->num);
1643 if (kmem_cache->num)
1646 BUG_ON(!kmem_cache->num);
1647 kmem_cache->gfporder = order;
1648 kmem_cache->colour = left_over / kmem_cache->colour_off;
1649 kmem_cache->slab_size = ALIGN(kmem_cache->num * sizeof(kmem_bufctl_t) +
1650 sizeof(struct slab), cache_line_size());
1652 /* 2+3) create the kmalloc caches */
1653 sizes = malloc_sizes;
1654 names = cache_names;
1657 * Initialize the caches that provide memory for the array cache and the
1658 * kmem_list3 structures first. Without this, further allocations will
1662 sizes[INDEX_AC].cs_cachep = create_kmalloc_cache(names[INDEX_AC].name,
1663 sizes[INDEX_AC].cs_size, ARCH_KMALLOC_FLAGS);
1665 if (INDEX_AC != INDEX_L3)
1666 sizes[INDEX_L3].cs_cachep =
1667 create_kmalloc_cache(names[INDEX_L3].name,
1668 sizes[INDEX_L3].cs_size, ARCH_KMALLOC_FLAGS);
1670 slab_early_init = 0;
1672 while (sizes->cs_size != ULONG_MAX) {
1674 * For performance, all the general caches are L1 aligned.
1675 * This should be particularly beneficial on SMP boxes, as it
1676 * eliminates "false sharing".
1677 * Note for systems short on memory removing the alignment will
1678 * allow tighter packing of the smaller caches.
1680 if (!sizes->cs_cachep)
1681 sizes->cs_cachep = create_kmalloc_cache(names->name,
1682 sizes->cs_size, ARCH_KMALLOC_FLAGS);
1684 #ifdef CONFIG_ZONE_DMA
1685 sizes->cs_dmacachep = create_kmalloc_cache(
1686 names->name_dma, sizes->cs_size,
1687 SLAB_CACHE_DMA|ARCH_KMALLOC_FLAGS);
1692 /* 4) Replace the bootstrap head arrays */
1694 struct array_cache *ptr;
1696 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1698 BUG_ON(cpu_cache_get(kmem_cache) != &initarray_cache.cache);
1699 memcpy(ptr, cpu_cache_get(kmem_cache),
1700 sizeof(struct arraycache_init));
1702 * Do not assume that spinlocks can be initialized via memcpy:
1704 spin_lock_init(&ptr->lock);
1706 kmem_cache->array[smp_processor_id()] = ptr;
1708 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1710 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1711 != &initarray_generic.cache);
1712 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1713 sizeof(struct arraycache_init));
1715 * Do not assume that spinlocks can be initialized via memcpy:
1717 spin_lock_init(&ptr->lock);
1719 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1722 /* 5) Replace the bootstrap kmem_list3's */
1726 for_each_online_node(nid) {
1727 init_list(kmem_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1729 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1730 &initkmem_list3[SIZE_AC + nid], nid);
1732 if (INDEX_AC != INDEX_L3) {
1733 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1734 &initkmem_list3[SIZE_L3 + nid], nid);
1742 void __init kmem_cache_init_late(void)
1744 struct kmem_cache *cachep;
1748 /* 6) resize the head arrays to their final sizes */
1749 mutex_lock(&slab_mutex);
1750 list_for_each_entry(cachep, &slab_caches, list)
1751 if (enable_cpucache(cachep, GFP_NOWAIT))
1753 mutex_unlock(&slab_mutex);
1755 /* Annotate slab for lockdep -- annotate the malloc caches */
1762 * Register a cpu startup notifier callback that initializes
1763 * cpu_cache_get for all new cpus
1765 register_cpu_notifier(&cpucache_notifier);
1769 * Register a memory hotplug callback that initializes and frees
1772 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1776 * The reap timers are started later, with a module init call: That part
1777 * of the kernel is not yet operational.
1781 static int __init cpucache_init(void)
1786 * Register the timers that return unneeded pages to the page allocator
1788 for_each_online_cpu(cpu)
1789 start_cpu_timer(cpu);
1795 __initcall(cpucache_init);
1797 static noinline void
1798 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1800 struct kmem_list3 *l3;
1802 unsigned long flags;
1806 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1808 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
1809 cachep->name, cachep->size, cachep->gfporder);
1811 for_each_online_node(node) {
1812 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1813 unsigned long active_slabs = 0, num_slabs = 0;
1815 l3 = cachep->nodelists[node];
1819 spin_lock_irqsave(&l3->list_lock, flags);
1820 list_for_each_entry(slabp, &l3->slabs_full, list) {
1821 active_objs += cachep->num;
1824 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1825 active_objs += slabp->inuse;
1828 list_for_each_entry(slabp, &l3->slabs_free, list)
1831 free_objects += l3->free_objects;
1832 spin_unlock_irqrestore(&l3->list_lock, flags);
1834 num_slabs += active_slabs;
1835 num_objs = num_slabs * cachep->num;
1837 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1838 node, active_slabs, num_slabs, active_objs, num_objs,
1844 * Interface to system's page allocator. No need to hold the cache-lock.
1846 * If we requested dmaable memory, we will get it. Even if we
1847 * did not request dmaable memory, we might get it, but that
1848 * would be relatively rare and ignorable.
1850 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1858 * Nommu uses slab's for process anonymous memory allocations, and thus
1859 * requires __GFP_COMP to properly refcount higher order allocations
1861 flags |= __GFP_COMP;
1864 flags |= cachep->allocflags;
1865 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1866 flags |= __GFP_RECLAIMABLE;
1868 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1870 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1871 slab_out_of_memory(cachep, flags, nodeid);
1875 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1876 if (unlikely(page->pfmemalloc))
1877 pfmemalloc_active = true;
1879 nr_pages = (1 << cachep->gfporder);
1880 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1881 add_zone_page_state(page_zone(page),
1882 NR_SLAB_RECLAIMABLE, nr_pages);
1884 add_zone_page_state(page_zone(page),
1885 NR_SLAB_UNRECLAIMABLE, nr_pages);
1886 for (i = 0; i < nr_pages; i++) {
1887 __SetPageSlab(page + i);
1889 if (page->pfmemalloc)
1890 SetPageSlabPfmemalloc(page + i);
1893 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1894 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1897 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1899 kmemcheck_mark_unallocated_pages(page, nr_pages);
1902 return page_address(page);
1906 * Interface to system's page release.
1908 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1910 unsigned long i = (1 << cachep->gfporder);
1911 struct page *page = virt_to_page(addr);
1912 const unsigned long nr_freed = i;
1914 kmemcheck_free_shadow(page, cachep->gfporder);
1916 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1917 sub_zone_page_state(page_zone(page),
1918 NR_SLAB_RECLAIMABLE, nr_freed);
1920 sub_zone_page_state(page_zone(page),
1921 NR_SLAB_UNRECLAIMABLE, nr_freed);
1923 BUG_ON(!PageSlab(page));
1924 __ClearPageSlabPfmemalloc(page);
1925 __ClearPageSlab(page);
1928 if (current->reclaim_state)
1929 current->reclaim_state->reclaimed_slab += nr_freed;
1930 free_pages((unsigned long)addr, cachep->gfporder);
1933 static void kmem_rcu_free(struct rcu_head *head)
1935 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1936 struct kmem_cache *cachep = slab_rcu->cachep;
1938 kmem_freepages(cachep, slab_rcu->addr);
1939 if (OFF_SLAB(cachep))
1940 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1945 #ifdef CONFIG_DEBUG_PAGEALLOC
1946 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1947 unsigned long caller)
1949 int size = cachep->object_size;
1951 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1953 if (size < 5 * sizeof(unsigned long))
1956 *addr++ = 0x12345678;
1958 *addr++ = smp_processor_id();
1959 size -= 3 * sizeof(unsigned long);
1961 unsigned long *sptr = &caller;
1962 unsigned long svalue;
1964 while (!kstack_end(sptr)) {
1966 if (kernel_text_address(svalue)) {
1968 size -= sizeof(unsigned long);
1969 if (size <= sizeof(unsigned long))
1975 *addr++ = 0x87654321;
1979 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1981 int size = cachep->object_size;
1982 addr = &((char *)addr)[obj_offset(cachep)];
1984 memset(addr, val, size);
1985 *(unsigned char *)(addr + size - 1) = POISON_END;
1988 static void dump_line(char *data, int offset, int limit)
1991 unsigned char error = 0;
1994 printk(KERN_ERR "%03x: ", offset);
1995 for (i = 0; i < limit; i++) {
1996 if (data[offset + i] != POISON_FREE) {
1997 error = data[offset + i];
2001 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2002 &data[offset], limit, 1);
2004 if (bad_count == 1) {
2005 error ^= POISON_FREE;
2006 if (!(error & (error - 1))) {
2007 printk(KERN_ERR "Single bit error detected. Probably "
2010 printk(KERN_ERR "Run memtest86+ or a similar memory "
2013 printk(KERN_ERR "Run a memory test tool.\n");
2022 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
2027 if (cachep->flags & SLAB_RED_ZONE) {
2028 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
2029 *dbg_redzone1(cachep, objp),
2030 *dbg_redzone2(cachep, objp));
2033 if (cachep->flags & SLAB_STORE_USER) {
2034 printk(KERN_ERR "Last user: [<%p>]",
2035 *dbg_userword(cachep, objp));
2036 print_symbol("(%s)",
2037 (unsigned long)*dbg_userword(cachep, objp));
2040 realobj = (char *)objp + obj_offset(cachep);
2041 size = cachep->object_size;
2042 for (i = 0; i < size && lines; i += 16, lines--) {
2045 if (i + limit > size)
2047 dump_line(realobj, i, limit);
2051 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
2057 realobj = (char *)objp + obj_offset(cachep);
2058 size = cachep->object_size;
2060 for (i = 0; i < size; i++) {
2061 char exp = POISON_FREE;
2064 if (realobj[i] != exp) {
2070 "Slab corruption (%s): %s start=%p, len=%d\n",
2071 print_tainted(), cachep->name, realobj, size);
2072 print_objinfo(cachep, objp, 0);
2074 /* Hexdump the affected line */
2077 if (i + limit > size)
2079 dump_line(realobj, i, limit);
2082 /* Limit to 5 lines */
2088 /* Print some data about the neighboring objects, if they
2091 struct slab *slabp = virt_to_slab(objp);
2094 objnr = obj_to_index(cachep, slabp, objp);
2096 objp = index_to_obj(cachep, slabp, objnr - 1);
2097 realobj = (char *)objp + obj_offset(cachep);
2098 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
2100 print_objinfo(cachep, objp, 2);
2102 if (objnr + 1 < cachep->num) {
2103 objp = index_to_obj(cachep, slabp, objnr + 1);
2104 realobj = (char *)objp + obj_offset(cachep);
2105 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
2107 print_objinfo(cachep, objp, 2);
2114 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2117 for (i = 0; i < cachep->num; i++) {
2118 void *objp = index_to_obj(cachep, slabp, i);
2120 if (cachep->flags & SLAB_POISON) {
2121 #ifdef CONFIG_DEBUG_PAGEALLOC
2122 if (cachep->size % PAGE_SIZE == 0 &&
2124 kernel_map_pages(virt_to_page(objp),
2125 cachep->size / PAGE_SIZE, 1);
2127 check_poison_obj(cachep, objp);
2129 check_poison_obj(cachep, objp);
2132 if (cachep->flags & SLAB_RED_ZONE) {
2133 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2134 slab_error(cachep, "start of a freed object "
2136 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2137 slab_error(cachep, "end of a freed object "
2143 static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
2149 * slab_destroy - destroy and release all objects in a slab
2150 * @cachep: cache pointer being destroyed
2151 * @slabp: slab pointer being destroyed
2153 * Destroy all the objs in a slab, and release the mem back to the system.
2154 * Before calling the slab must have been unlinked from the cache. The
2155 * cache-lock is not held/needed.
2157 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
2159 void *addr = slabp->s_mem - slabp->colouroff;
2161 slab_destroy_debugcheck(cachep, slabp);
2162 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2163 struct slab_rcu *slab_rcu;
2165 slab_rcu = (struct slab_rcu *)slabp;
2166 slab_rcu->cachep = cachep;
2167 slab_rcu->addr = addr;
2168 call_rcu(&slab_rcu->head, kmem_rcu_free);
2170 kmem_freepages(cachep, addr);
2171 if (OFF_SLAB(cachep))
2172 kmem_cache_free(cachep->slabp_cache, slabp);
2177 * calculate_slab_order - calculate size (page order) of slabs
2178 * @cachep: pointer to the cache that is being created
2179 * @size: size of objects to be created in this cache.
2180 * @align: required alignment for the objects.
2181 * @flags: slab allocation flags
2183 * Also calculates the number of objects per slab.
2185 * This could be made much more intelligent. For now, try to avoid using
2186 * high order pages for slabs. When the gfp() functions are more friendly
2187 * towards high-order requests, this should be changed.
2189 static size_t calculate_slab_order(struct kmem_cache *cachep,
2190 size_t size, size_t align, unsigned long flags)
2192 unsigned long offslab_limit;
2193 size_t left_over = 0;
2196 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2200 cache_estimate(gfporder, size, align, flags, &remainder, &num);
2204 if (flags & CFLGS_OFF_SLAB) {
2206 * Max number of objs-per-slab for caches which
2207 * use off-slab slabs. Needed to avoid a possible
2208 * looping condition in cache_grow().
2210 offslab_limit = size - sizeof(struct slab);
2211 offslab_limit /= sizeof(kmem_bufctl_t);
2213 if (num > offslab_limit)
2217 /* Found something acceptable - save it away */
2219 cachep->gfporder = gfporder;
2220 left_over = remainder;
2223 * A VFS-reclaimable slab tends to have most allocations
2224 * as GFP_NOFS and we really don't want to have to be allocating
2225 * higher-order pages when we are unable to shrink dcache.
2227 if (flags & SLAB_RECLAIM_ACCOUNT)
2231 * Large number of objects is good, but very large slabs are
2232 * currently bad for the gfp()s.
2234 if (gfporder >= slab_max_order)
2238 * Acceptable internal fragmentation?
2240 if (left_over * 8 <= (PAGE_SIZE << gfporder))
2246 static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2248 if (slab_state >= FULL)
2249 return enable_cpucache(cachep, gfp);
2251 if (slab_state == DOWN) {
2253 * Note: the first kmem_cache_create must create the cache
2254 * that's used by kmalloc(24), otherwise the creation of
2255 * further caches will BUG().
2257 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2260 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2261 * the first cache, then we need to set up all its list3s,
2262 * otherwise the creation of further caches will BUG().
2264 set_up_list3s(cachep, SIZE_AC);
2265 if (INDEX_AC == INDEX_L3)
2266 slab_state = PARTIAL_L3;
2268 slab_state = PARTIAL_ARRAYCACHE;
2270 cachep->array[smp_processor_id()] =
2271 kmalloc(sizeof(struct arraycache_init), gfp);
2273 if (slab_state == PARTIAL_ARRAYCACHE) {
2274 set_up_list3s(cachep, SIZE_L3);
2275 slab_state = PARTIAL_L3;
2278 for_each_online_node(node) {
2279 cachep->nodelists[node] =
2280 kmalloc_node(sizeof(struct kmem_list3),
2282 BUG_ON(!cachep->nodelists[node]);
2283 kmem_list3_init(cachep->nodelists[node]);
2287 cachep->nodelists[numa_mem_id()]->next_reap =
2288 jiffies + REAPTIMEOUT_LIST3 +
2289 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2291 cpu_cache_get(cachep)->avail = 0;
2292 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2293 cpu_cache_get(cachep)->batchcount = 1;
2294 cpu_cache_get(cachep)->touched = 0;
2295 cachep->batchcount = 1;
2296 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2301 * __kmem_cache_create - Create a cache.
2302 * @cachep: cache management descriptor
2303 * @flags: SLAB flags
2305 * Returns a ptr to the cache on success, NULL on failure.
2306 * Cannot be called within a int, but can be interrupted.
2307 * The @ctor is run when new pages are allocated by the cache.
2311 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2312 * to catch references to uninitialised memory.
2314 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2315 * for buffer overruns.
2317 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2318 * cacheline. This can be beneficial if you're counting cycles as closely
2322 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2324 size_t left_over, slab_size, ralign;
2327 size_t size = cachep->size;
2332 * Enable redzoning and last user accounting, except for caches with
2333 * large objects, if the increased size would increase the object size
2334 * above the next power of two: caches with object sizes just above a
2335 * power of two have a significant amount of internal fragmentation.
2337 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2338 2 * sizeof(unsigned long long)))
2339 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2340 if (!(flags & SLAB_DESTROY_BY_RCU))
2341 flags |= SLAB_POISON;
2343 if (flags & SLAB_DESTROY_BY_RCU)
2344 BUG_ON(flags & SLAB_POISON);
2348 * Check that size is in terms of words. This is needed to avoid
2349 * unaligned accesses for some archs when redzoning is used, and makes
2350 * sure any on-slab bufctl's are also correctly aligned.
2352 if (size & (BYTES_PER_WORD - 1)) {
2353 size += (BYTES_PER_WORD - 1);
2354 size &= ~(BYTES_PER_WORD - 1);
2357 /* calculate the final buffer alignment: */
2359 /* 1) arch recommendation: can be overridden for debug */
2360 if (flags & SLAB_HWCACHE_ALIGN) {
2362 * Default alignment: as specified by the arch code. Except if
2363 * an object is really small, then squeeze multiple objects into
2366 ralign = cache_line_size();
2367 while (size <= ralign / 2)
2370 ralign = BYTES_PER_WORD;
2374 * Redzoning and user store require word alignment or possibly larger.
2375 * Note this will be overridden by architecture or caller mandated
2376 * alignment if either is greater than BYTES_PER_WORD.
2378 if (flags & SLAB_STORE_USER)
2379 ralign = BYTES_PER_WORD;
2381 if (flags & SLAB_RED_ZONE) {
2382 ralign = REDZONE_ALIGN;
2383 /* If redzoning, ensure that the second redzone is suitably
2384 * aligned, by adjusting the object size accordingly. */
2385 size += REDZONE_ALIGN - 1;
2386 size &= ~(REDZONE_ALIGN - 1);
2389 /* 2) arch mandated alignment */
2390 if (ralign < ARCH_SLAB_MINALIGN) {
2391 ralign = ARCH_SLAB_MINALIGN;
2393 /* 3) caller mandated alignment */
2394 if (ralign < cachep->align) {
2395 ralign = cachep->align;
2397 /* disable debug if necessary */
2398 if (ralign > __alignof__(unsigned long long))
2399 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2403 cachep->align = ralign;
2405 if (slab_is_available())
2410 setup_nodelists_pointer(cachep);
2414 * Both debugging options require word-alignment which is calculated
2417 if (flags & SLAB_RED_ZONE) {
2418 /* add space for red zone words */
2419 cachep->obj_offset += sizeof(unsigned long long);
2420 size += 2 * sizeof(unsigned long long);
2422 if (flags & SLAB_STORE_USER) {
2423 /* user store requires one word storage behind the end of
2424 * the real object. But if the second red zone needs to be
2425 * aligned to 64 bits, we must allow that much space.
2427 if (flags & SLAB_RED_ZONE)
2428 size += REDZONE_ALIGN;
2430 size += BYTES_PER_WORD;
2432 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2433 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2434 && cachep->object_size > cache_line_size()
2435 && ALIGN(size, cachep->align) < PAGE_SIZE) {
2436 cachep->obj_offset += PAGE_SIZE - ALIGN(size, cachep->align);
2443 * Determine if the slab management is 'on' or 'off' slab.
2444 * (bootstrapping cannot cope with offslab caches so don't do
2445 * it too early on. Always use on-slab management when
2446 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2448 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2449 !(flags & SLAB_NOLEAKTRACE))
2451 * Size is large, assume best to place the slab management obj
2452 * off-slab (should allow better packing of objs).
2454 flags |= CFLGS_OFF_SLAB;
2456 size = ALIGN(size, cachep->align);
2458 left_over = calculate_slab_order(cachep, size, cachep->align, flags);
2463 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2464 + sizeof(struct slab), cachep->align);
2467 * If the slab has been placed off-slab, and we have enough space then
2468 * move it on-slab. This is at the expense of any extra colouring.
2470 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2471 flags &= ~CFLGS_OFF_SLAB;
2472 left_over -= slab_size;
2475 if (flags & CFLGS_OFF_SLAB) {
2476 /* really off slab. No need for manual alignment */
2478 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2480 #ifdef CONFIG_PAGE_POISONING
2481 /* If we're going to use the generic kernel_map_pages()
2482 * poisoning, then it's going to smash the contents of
2483 * the redzone and userword anyhow, so switch them off.
2485 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2486 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2490 cachep->colour_off = cache_line_size();
2491 /* Offset must be a multiple of the alignment. */
2492 if (cachep->colour_off < cachep->align)
2493 cachep->colour_off = cachep->align;
2494 cachep->colour = left_over / cachep->colour_off;
2495 cachep->slab_size = slab_size;
2496 cachep->flags = flags;
2497 cachep->allocflags = 0;
2498 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
2499 cachep->allocflags |= GFP_DMA;
2500 cachep->size = size;
2501 cachep->reciprocal_buffer_size = reciprocal_value(size);
2503 if (flags & CFLGS_OFF_SLAB) {
2504 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2506 * This is a possibility for one of the malloc_sizes caches.
2507 * But since we go off slab only for object size greater than
2508 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2509 * this should not happen at all.
2510 * But leave a BUG_ON for some lucky dude.
2512 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2515 err = setup_cpu_cache(cachep, gfp);
2517 __kmem_cache_shutdown(cachep);
2521 if (flags & SLAB_DEBUG_OBJECTS) {
2523 * Would deadlock through slab_destroy()->call_rcu()->
2524 * debug_object_activate()->kmem_cache_alloc().
2526 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2528 slab_set_debugobj_lock_classes(cachep);
2535 static void check_irq_off(void)
2537 BUG_ON(!irqs_disabled());
2540 static void check_irq_on(void)
2542 BUG_ON(irqs_disabled());
2545 static void check_spinlock_acquired(struct kmem_cache *cachep)
2549 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
2553 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2557 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2562 #define check_irq_off() do { } while(0)
2563 #define check_irq_on() do { } while(0)
2564 #define check_spinlock_acquired(x) do { } while(0)
2565 #define check_spinlock_acquired_node(x, y) do { } while(0)
2568 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2569 struct array_cache *ac,
2570 int force, int node);
2572 static void do_drain(void *arg)
2574 struct kmem_cache *cachep = arg;
2575 struct array_cache *ac;
2576 int node = numa_mem_id();
2579 ac = cpu_cache_get(cachep);
2580 spin_lock(&cachep->nodelists[node]->list_lock);
2581 free_block(cachep, ac->entry, ac->avail, node);
2582 spin_unlock(&cachep->nodelists[node]->list_lock);
2586 static void drain_cpu_caches(struct kmem_cache *cachep)
2588 struct kmem_list3 *l3;
2591 on_each_cpu(do_drain, cachep, 1);
2593 for_each_online_node(node) {
2594 l3 = cachep->nodelists[node];
2595 if (l3 && l3->alien)
2596 drain_alien_cache(cachep, l3->alien);
2599 for_each_online_node(node) {
2600 l3 = cachep->nodelists[node];
2602 drain_array(cachep, l3, l3->shared, 1, node);
2607 * Remove slabs from the list of free slabs.
2608 * Specify the number of slabs to drain in tofree.
2610 * Returns the actual number of slabs released.
2612 static int drain_freelist(struct kmem_cache *cache,
2613 struct kmem_list3 *l3, int tofree)
2615 struct list_head *p;
2620 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
2622 spin_lock_irq(&l3->list_lock);
2623 p = l3->slabs_free.prev;
2624 if (p == &l3->slabs_free) {
2625 spin_unlock_irq(&l3->list_lock);
2629 slabp = list_entry(p, struct slab, list);
2631 BUG_ON(slabp->inuse);
2633 list_del(&slabp->list);
2635 * Safe to drop the lock. The slab is no longer linked
2638 l3->free_objects -= cache->num;
2639 spin_unlock_irq(&l3->list_lock);
2640 slab_destroy(cache, slabp);
2647 /* Called with slab_mutex held to protect against cpu hotplug */
2648 static int __cache_shrink(struct kmem_cache *cachep)
2651 struct kmem_list3 *l3;
2653 drain_cpu_caches(cachep);
2656 for_each_online_node(i) {
2657 l3 = cachep->nodelists[i];
2661 drain_freelist(cachep, l3, l3->free_objects);
2663 ret += !list_empty(&l3->slabs_full) ||
2664 !list_empty(&l3->slabs_partial);
2666 return (ret ? 1 : 0);
2670 * kmem_cache_shrink - Shrink a cache.
2671 * @cachep: The cache to shrink.
2673 * Releases as many slabs as possible for a cache.
2674 * To help debugging, a zero exit status indicates all slabs were released.
2676 int kmem_cache_shrink(struct kmem_cache *cachep)
2679 BUG_ON(!cachep || in_interrupt());
2682 mutex_lock(&slab_mutex);
2683 ret = __cache_shrink(cachep);
2684 mutex_unlock(&slab_mutex);
2688 EXPORT_SYMBOL(kmem_cache_shrink);
2690 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2693 struct kmem_list3 *l3;
2694 int rc = __cache_shrink(cachep);
2699 for_each_online_cpu(i)
2700 kfree(cachep->array[i]);
2702 /* NUMA: free the list3 structures */
2703 for_each_online_node(i) {
2704 l3 = cachep->nodelists[i];
2707 free_alien_cache(l3->alien);
2715 * Get the memory for a slab management obj.
2716 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2717 * always come from malloc_sizes caches. The slab descriptor cannot
2718 * come from the same cache which is getting created because,
2719 * when we are searching for an appropriate cache for these
2720 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2721 * If we are creating a malloc_sizes cache here it would not be visible to
2722 * kmem_find_general_cachep till the initialization is complete.
2723 * Hence we cannot have slabp_cache same as the original cache.
2725 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2726 int colour_off, gfp_t local_flags,
2731 if (OFF_SLAB(cachep)) {
2732 /* Slab management obj is off-slab. */
2733 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2734 local_flags, nodeid);
2736 * If the first object in the slab is leaked (it's allocated
2737 * but no one has a reference to it), we want to make sure
2738 * kmemleak does not treat the ->s_mem pointer as a reference
2739 * to the object. Otherwise we will not report the leak.
2741 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2746 slabp = objp + colour_off;
2747 colour_off += cachep->slab_size;
2750 slabp->colouroff = colour_off;
2751 slabp->s_mem = objp + colour_off;
2752 slabp->nodeid = nodeid;
2757 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2759 return (kmem_bufctl_t *) (slabp + 1);
2762 static void cache_init_objs(struct kmem_cache *cachep,
2767 for (i = 0; i < cachep->num; i++) {
2768 void *objp = index_to_obj(cachep, slabp, i);
2770 /* need to poison the objs? */
2771 if (cachep->flags & SLAB_POISON)
2772 poison_obj(cachep, objp, POISON_FREE);
2773 if (cachep->flags & SLAB_STORE_USER)
2774 *dbg_userword(cachep, objp) = NULL;
2776 if (cachep->flags & SLAB_RED_ZONE) {
2777 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2778 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2781 * Constructors are not allowed to allocate memory from the same
2782 * cache which they are a constructor for. Otherwise, deadlock.
2783 * They must also be threaded.
2785 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2786 cachep->ctor(objp + obj_offset(cachep));
2788 if (cachep->flags & SLAB_RED_ZONE) {
2789 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2790 slab_error(cachep, "constructor overwrote the"
2791 " end of an object");
2792 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2793 slab_error(cachep, "constructor overwrote the"
2794 " start of an object");
2796 if ((cachep->size % PAGE_SIZE) == 0 &&
2797 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2798 kernel_map_pages(virt_to_page(objp),
2799 cachep->size / PAGE_SIZE, 0);
2804 slab_bufctl(slabp)[i] = i + 1;
2806 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2809 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2811 if (CONFIG_ZONE_DMA_FLAG) {
2812 if (flags & GFP_DMA)
2813 BUG_ON(!(cachep->allocflags & GFP_DMA));
2815 BUG_ON(cachep->allocflags & GFP_DMA);
2819 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2822 void *objp = index_to_obj(cachep, slabp, slabp->free);
2826 next = slab_bufctl(slabp)[slabp->free];
2828 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2829 WARN_ON(slabp->nodeid != nodeid);
2836 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2837 void *objp, int nodeid)
2839 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2842 /* Verify that the slab belongs to the intended node */
2843 WARN_ON(slabp->nodeid != nodeid);
2845 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2846 printk(KERN_ERR "slab: double free detected in cache "
2847 "'%s', objp %p\n", cachep->name, objp);
2851 slab_bufctl(slabp)[objnr] = slabp->free;
2852 slabp->free = objnr;
2857 * Map pages beginning at addr to the given cache and slab. This is required
2858 * for the slab allocator to be able to lookup the cache and slab of a
2859 * virtual address for kfree, ksize, and slab debugging.
2861 static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2867 page = virt_to_page(addr);
2870 if (likely(!PageCompound(page)))
2871 nr_pages <<= cache->gfporder;
2874 page->slab_cache = cache;
2875 page->slab_page = slab;
2877 } while (--nr_pages);
2881 * Grow (by 1) the number of slabs within a cache. This is called by
2882 * kmem_cache_alloc() when there are no active objs left in a cache.
2884 static int cache_grow(struct kmem_cache *cachep,
2885 gfp_t flags, int nodeid, void *objp)
2890 struct kmem_list3 *l3;
2893 * Be lazy and only check for valid flags here, keeping it out of the
2894 * critical path in kmem_cache_alloc().
2896 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2897 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2899 /* Take the l3 list lock to change the colour_next on this node */
2901 l3 = cachep->nodelists[nodeid];
2902 spin_lock(&l3->list_lock);
2904 /* Get colour for the slab, and cal the next value. */
2905 offset = l3->colour_next;
2907 if (l3->colour_next >= cachep->colour)
2908 l3->colour_next = 0;
2909 spin_unlock(&l3->list_lock);
2911 offset *= cachep->colour_off;
2913 if (local_flags & __GFP_WAIT)
2917 * The test for missing atomic flag is performed here, rather than
2918 * the more obvious place, simply to reduce the critical path length
2919 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2920 * will eventually be caught here (where it matters).
2922 kmem_flagcheck(cachep, flags);
2925 * Get mem for the objs. Attempt to allocate a physical page from
2929 objp = kmem_getpages(cachep, local_flags, nodeid);
2933 /* Get slab management. */
2934 slabp = alloc_slabmgmt(cachep, objp, offset,
2935 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
2939 slab_map_pages(cachep, slabp, objp);
2941 cache_init_objs(cachep, slabp);
2943 if (local_flags & __GFP_WAIT)
2944 local_irq_disable();
2946 spin_lock(&l3->list_lock);
2948 /* Make slab active. */
2949 list_add_tail(&slabp->list, &(l3->slabs_free));
2950 STATS_INC_GROWN(cachep);
2951 l3->free_objects += cachep->num;
2952 spin_unlock(&l3->list_lock);
2955 kmem_freepages(cachep, objp);
2957 if (local_flags & __GFP_WAIT)
2958 local_irq_disable();
2965 * Perform extra freeing checks:
2966 * - detect bad pointers.
2967 * - POISON/RED_ZONE checking
2969 static void kfree_debugcheck(const void *objp)
2971 if (!virt_addr_valid(objp)) {
2972 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2973 (unsigned long)objp);
2978 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2980 unsigned long long redzone1, redzone2;
2982 redzone1 = *dbg_redzone1(cache, obj);
2983 redzone2 = *dbg_redzone2(cache, obj);
2988 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2991 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2992 slab_error(cache, "double free detected");
2994 slab_error(cache, "memory outside object was overwritten");
2996 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2997 obj, redzone1, redzone2);
3000 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
3001 unsigned long caller)
3007 BUG_ON(virt_to_cache(objp) != cachep);
3009 objp -= obj_offset(cachep);
3010 kfree_debugcheck(objp);
3011 page = virt_to_head_page(objp);
3013 slabp = page->slab_page;
3015 if (cachep->flags & SLAB_RED_ZONE) {
3016 verify_redzone_free(cachep, objp);
3017 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3018 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3020 if (cachep->flags & SLAB_STORE_USER)
3021 *dbg_userword(cachep, objp) = (void *)caller;
3023 objnr = obj_to_index(cachep, slabp, objp);
3025 BUG_ON(objnr >= cachep->num);
3026 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
3028 #ifdef CONFIG_DEBUG_SLAB_LEAK
3029 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3031 if (cachep->flags & SLAB_POISON) {
3032 #ifdef CONFIG_DEBUG_PAGEALLOC
3033 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
3034 store_stackinfo(cachep, objp, caller);
3035 kernel_map_pages(virt_to_page(objp),
3036 cachep->size / PAGE_SIZE, 0);
3038 poison_obj(cachep, objp, POISON_FREE);
3041 poison_obj(cachep, objp, POISON_FREE);
3047 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
3052 /* Check slab's freelist to see if this obj is there. */
3053 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3055 if (entries > cachep->num || i >= cachep->num)
3058 if (entries != cachep->num - slabp->inuse) {
3060 printk(KERN_ERR "slab: Internal list corruption detected in "
3061 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3062 cachep->name, cachep->num, slabp, slabp->inuse,
3064 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3065 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3071 #define kfree_debugcheck(x) do { } while(0)
3072 #define cache_free_debugcheck(x,objp,z) (objp)
3073 #define check_slabp(x,y) do { } while(0)
3076 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3080 struct kmem_list3 *l3;
3081 struct array_cache *ac;
3085 node = numa_mem_id();
3086 if (unlikely(force_refill))
3089 ac = cpu_cache_get(cachep);
3090 batchcount = ac->batchcount;
3091 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
3093 * If there was little recent activity on this cache, then
3094 * perform only a partial refill. Otherwise we could generate
3097 batchcount = BATCHREFILL_LIMIT;
3099 l3 = cachep->nodelists[node];
3101 BUG_ON(ac->avail > 0 || !l3);
3102 spin_lock(&l3->list_lock);
3104 /* See if we can refill from the shared array */
3105 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3106 l3->shared->touched = 1;
3110 while (batchcount > 0) {
3111 struct list_head *entry;
3113 /* Get slab alloc is to come from. */
3114 entry = l3->slabs_partial.next;
3115 if (entry == &l3->slabs_partial) {
3116 l3->free_touched = 1;
3117 entry = l3->slabs_free.next;
3118 if (entry == &l3->slabs_free)
3122 slabp = list_entry(entry, struct slab, list);
3123 check_slabp(cachep, slabp);
3124 check_spinlock_acquired(cachep);
3127 * The slab was either on partial or free list so
3128 * there must be at least one object available for
3131 BUG_ON(slabp->inuse >= cachep->num);
3133 while (slabp->inuse < cachep->num && batchcount--) {
3134 STATS_INC_ALLOCED(cachep);
3135 STATS_INC_ACTIVE(cachep);
3136 STATS_SET_HIGH(cachep);
3138 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3141 check_slabp(cachep, slabp);
3143 /* move slabp to correct slabp list: */
3144 list_del(&slabp->list);
3145 if (slabp->free == BUFCTL_END)
3146 list_add(&slabp->list, &l3->slabs_full);
3148 list_add(&slabp->list, &l3->slabs_partial);
3152 l3->free_objects -= ac->avail;
3154 spin_unlock(&l3->list_lock);
3156 if (unlikely(!ac->avail)) {
3159 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3161 /* cache_grow can reenable interrupts, then ac could change. */
3162 ac = cpu_cache_get(cachep);
3163 node = numa_mem_id();
3165 /* no objects in sight? abort */
3166 if (!x && (ac->avail == 0 || force_refill))
3169 if (!ac->avail) /* objects refilled by interrupt? */
3174 return ac_get_obj(cachep, ac, flags, force_refill);
3177 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3180 might_sleep_if(flags & __GFP_WAIT);
3182 kmem_flagcheck(cachep, flags);
3187 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3188 gfp_t flags, void *objp, unsigned long caller)
3192 if (cachep->flags & SLAB_POISON) {
3193 #ifdef CONFIG_DEBUG_PAGEALLOC
3194 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
3195 kernel_map_pages(virt_to_page(objp),
3196 cachep->size / PAGE_SIZE, 1);
3198 check_poison_obj(cachep, objp);
3200 check_poison_obj(cachep, objp);
3202 poison_obj(cachep, objp, POISON_INUSE);
3204 if (cachep->flags & SLAB_STORE_USER)
3205 *dbg_userword(cachep, objp) = (void *)caller;
3207 if (cachep->flags & SLAB_RED_ZONE) {
3208 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3209 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3210 slab_error(cachep, "double free, or memory outside"
3211 " object was overwritten");
3213 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3214 objp, *dbg_redzone1(cachep, objp),
3215 *dbg_redzone2(cachep, objp));
3217 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3218 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3220 #ifdef CONFIG_DEBUG_SLAB_LEAK
3225 slabp = virt_to_head_page(objp)->slab_page;
3226 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
3227 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3230 objp += obj_offset(cachep);
3231 if (cachep->ctor && cachep->flags & SLAB_POISON)
3233 if (ARCH_SLAB_MINALIGN &&
3234 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3235 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3236 objp, (int)ARCH_SLAB_MINALIGN);
3241 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3244 static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3246 if (cachep == kmem_cache)
3249 return should_failslab(cachep->object_size, flags, cachep->flags);
3252 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3255 struct array_cache *ac;
3256 bool force_refill = false;
3260 ac = cpu_cache_get(cachep);
3261 if (likely(ac->avail)) {
3263 objp = ac_get_obj(cachep, ac, flags, false);
3266 * Allow for the possibility all avail objects are not allowed
3267 * by the current flags
3270 STATS_INC_ALLOCHIT(cachep);
3273 force_refill = true;
3276 STATS_INC_ALLOCMISS(cachep);
3277 objp = cache_alloc_refill(cachep, flags, force_refill);
3279 * the 'ac' may be updated by cache_alloc_refill(),
3280 * and kmemleak_erase() requires its correct value.
3282 ac = cpu_cache_get(cachep);
3286 * To avoid a false negative, if an object that is in one of the
3287 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3288 * treat the array pointers as a reference to the object.
3291 kmemleak_erase(&ac->entry[ac->avail]);
3297 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3299 * If we are in_interrupt, then process context, including cpusets and
3300 * mempolicy, may not apply and should not be used for allocation policy.
3302 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3304 int nid_alloc, nid_here;
3306 if (in_interrupt() || (flags & __GFP_THISNODE))
3308 nid_alloc = nid_here = numa_mem_id();
3309 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3310 nid_alloc = cpuset_slab_spread_node();
3311 else if (current->mempolicy)
3312 nid_alloc = slab_node();
3313 if (nid_alloc != nid_here)
3314 return ____cache_alloc_node(cachep, flags, nid_alloc);
3319 * Fallback function if there was no memory available and no objects on a
3320 * certain node and fall back is permitted. First we scan all the
3321 * available nodelists for available objects. If that fails then we
3322 * perform an allocation without specifying a node. This allows the page
3323 * allocator to do its reclaim / fallback magic. We then insert the
3324 * slab into the proper nodelist and then allocate from it.
3326 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3328 struct zonelist *zonelist;
3332 enum zone_type high_zoneidx = gfp_zone(flags);
3335 unsigned int cpuset_mems_cookie;
3337 if (flags & __GFP_THISNODE)
3340 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3343 cpuset_mems_cookie = get_mems_allowed();
3344 zonelist = node_zonelist(slab_node(), flags);
3348 * Look through allowed nodes for objects available
3349 * from existing per node queues.
3351 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3352 nid = zone_to_nid(zone);
3354 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3355 cache->nodelists[nid] &&
3356 cache->nodelists[nid]->free_objects) {
3357 obj = ____cache_alloc_node(cache,
3358 flags | GFP_THISNODE, nid);
3366 * This allocation will be performed within the constraints
3367 * of the current cpuset / memory policy requirements.
3368 * We may trigger various forms of reclaim on the allowed
3369 * set and go into memory reserves if necessary.
3371 if (local_flags & __GFP_WAIT)
3373 kmem_flagcheck(cache, flags);
3374 obj = kmem_getpages(cache, local_flags, numa_mem_id());
3375 if (local_flags & __GFP_WAIT)
3376 local_irq_disable();
3379 * Insert into the appropriate per node queues
3381 nid = page_to_nid(virt_to_page(obj));
3382 if (cache_grow(cache, flags, nid, obj)) {
3383 obj = ____cache_alloc_node(cache,
3384 flags | GFP_THISNODE, nid);
3387 * Another processor may allocate the
3388 * objects in the slab since we are
3389 * not holding any locks.
3393 /* cache_grow already freed obj */
3399 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3405 * A interface to enable slab creation on nodeid
3407 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3410 struct list_head *entry;
3412 struct kmem_list3 *l3;
3416 l3 = cachep->nodelists[nodeid];
3421 spin_lock(&l3->list_lock);
3422 entry = l3->slabs_partial.next;
3423 if (entry == &l3->slabs_partial) {
3424 l3->free_touched = 1;
3425 entry = l3->slabs_free.next;
3426 if (entry == &l3->slabs_free)
3430 slabp = list_entry(entry, struct slab, list);
3431 check_spinlock_acquired_node(cachep, nodeid);
3432 check_slabp(cachep, slabp);
3434 STATS_INC_NODEALLOCS(cachep);
3435 STATS_INC_ACTIVE(cachep);
3436 STATS_SET_HIGH(cachep);
3438 BUG_ON(slabp->inuse == cachep->num);
3440 obj = slab_get_obj(cachep, slabp, nodeid);
3441 check_slabp(cachep, slabp);
3443 /* move slabp to correct slabp list: */
3444 list_del(&slabp->list);
3446 if (slabp->free == BUFCTL_END)
3447 list_add(&slabp->list, &l3->slabs_full);
3449 list_add(&slabp->list, &l3->slabs_partial);
3451 spin_unlock(&l3->list_lock);
3455 spin_unlock(&l3->list_lock);
3456 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3460 return fallback_alloc(cachep, flags);
3467 * kmem_cache_alloc_node - Allocate an object on the specified node
3468 * @cachep: The cache to allocate from.
3469 * @flags: See kmalloc().
3470 * @nodeid: node number of the target node.
3471 * @caller: return address of caller, used for debug information
3473 * Identical to kmem_cache_alloc but it will allocate memory on the given
3474 * node, which can improve the performance for cpu bound structures.
3476 * Fallback to other node is possible if __GFP_THISNODE is not set.
3478 static __always_inline void *
3479 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3480 unsigned long caller)
3482 unsigned long save_flags;
3484 int slab_node = numa_mem_id();
3486 flags &= gfp_allowed_mask;
3488 lockdep_trace_alloc(flags);
3490 if (slab_should_failslab(cachep, flags))
3493 cache_alloc_debugcheck_before(cachep, flags);
3494 local_irq_save(save_flags);
3496 if (nodeid == NUMA_NO_NODE)
3499 if (unlikely(!cachep->nodelists[nodeid])) {
3500 /* Node not bootstrapped yet */
3501 ptr = fallback_alloc(cachep, flags);
3505 if (nodeid == slab_node) {
3507 * Use the locally cached objects if possible.
3508 * However ____cache_alloc does not allow fallback
3509 * to other nodes. It may fail while we still have
3510 * objects on other nodes available.
3512 ptr = ____cache_alloc(cachep, flags);
3516 /* ___cache_alloc_node can fall back to other nodes */
3517 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3519 local_irq_restore(save_flags);
3520 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3521 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
3525 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
3527 if (unlikely((flags & __GFP_ZERO) && ptr))
3528 memset(ptr, 0, cachep->object_size);
3533 static __always_inline void *
3534 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3538 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3539 objp = alternate_node_alloc(cache, flags);
3543 objp = ____cache_alloc(cache, flags);
3546 * We may just have run out of memory on the local node.
3547 * ____cache_alloc_node() knows how to locate memory on other nodes
3550 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3557 static __always_inline void *
3558 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3560 return ____cache_alloc(cachep, flags);
3563 #endif /* CONFIG_NUMA */
3565 static __always_inline void *
3566 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3568 unsigned long save_flags;
3571 flags &= gfp_allowed_mask;
3573 lockdep_trace_alloc(flags);
3575 if (slab_should_failslab(cachep, flags))
3578 cache_alloc_debugcheck_before(cachep, flags);
3579 local_irq_save(save_flags);
3580 objp = __do_cache_alloc(cachep, flags);
3581 local_irq_restore(save_flags);
3582 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3583 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
3588 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
3590 if (unlikely((flags & __GFP_ZERO) && objp))
3591 memset(objp, 0, cachep->object_size);
3597 * Caller needs to acquire correct kmem_list's list_lock
3599 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
3603 struct kmem_list3 *l3;
3605 for (i = 0; i < nr_objects; i++) {
3609 clear_obj_pfmemalloc(&objpp[i]);
3612 slabp = virt_to_slab(objp);
3613 l3 = cachep->nodelists[node];
3614 list_del(&slabp->list);
3615 check_spinlock_acquired_node(cachep, node);
3616 check_slabp(cachep, slabp);
3617 slab_put_obj(cachep, slabp, objp, node);
3618 STATS_DEC_ACTIVE(cachep);
3620 check_slabp(cachep, slabp);
3622 /* fixup slab chains */
3623 if (slabp->inuse == 0) {
3624 if (l3->free_objects > l3->free_limit) {
3625 l3->free_objects -= cachep->num;
3626 /* No need to drop any previously held
3627 * lock here, even if we have a off-slab slab
3628 * descriptor it is guaranteed to come from
3629 * a different cache, refer to comments before
3632 slab_destroy(cachep, slabp);
3634 list_add(&slabp->list, &l3->slabs_free);
3637 /* Unconditionally move a slab to the end of the
3638 * partial list on free - maximum time for the
3639 * other objects to be freed, too.
3641 list_add_tail(&slabp->list, &l3->slabs_partial);
3646 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3649 struct kmem_list3 *l3;
3650 int node = numa_mem_id();
3652 batchcount = ac->batchcount;
3654 BUG_ON(!batchcount || batchcount > ac->avail);
3657 l3 = cachep->nodelists[node];
3658 spin_lock(&l3->list_lock);
3660 struct array_cache *shared_array = l3->shared;
3661 int max = shared_array->limit - shared_array->avail;
3663 if (batchcount > max)
3665 memcpy(&(shared_array->entry[shared_array->avail]),
3666 ac->entry, sizeof(void *) * batchcount);
3667 shared_array->avail += batchcount;
3672 free_block(cachep, ac->entry, batchcount, node);
3677 struct list_head *p;
3679 p = l3->slabs_free.next;
3680 while (p != &(l3->slabs_free)) {
3683 slabp = list_entry(p, struct slab, list);
3684 BUG_ON(slabp->inuse);
3689 STATS_SET_FREEABLE(cachep, i);
3692 spin_unlock(&l3->list_lock);
3693 ac->avail -= batchcount;
3694 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3698 * Release an obj back to its cache. If the obj has a constructed state, it must
3699 * be in this state _before_ it is released. Called with disabled ints.
3701 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3702 unsigned long caller)
3704 struct array_cache *ac = cpu_cache_get(cachep);
3707 kmemleak_free_recursive(objp, cachep->flags);
3708 objp = cache_free_debugcheck(cachep, objp, caller);
3710 kmemcheck_slab_free(cachep, objp, cachep->object_size);
3713 * Skip calling cache_free_alien() when the platform is not numa.
3714 * This will avoid cache misses that happen while accessing slabp (which
3715 * is per page memory reference) to get nodeid. Instead use a global
3716 * variable to skip the call, which is mostly likely to be present in
3719 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3722 if (likely(ac->avail < ac->limit)) {
3723 STATS_INC_FREEHIT(cachep);
3725 STATS_INC_FREEMISS(cachep);
3726 cache_flusharray(cachep, ac);
3729 ac_put_obj(cachep, ac, objp);
3733 * kmem_cache_alloc - Allocate an object
3734 * @cachep: The cache to allocate from.
3735 * @flags: See kmalloc().
3737 * Allocate an object from this cache. The flags are only relevant
3738 * if the cache has no available objects.
3740 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3742 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3744 trace_kmem_cache_alloc(_RET_IP_, ret,
3745 cachep->object_size, cachep->size, flags);
3749 EXPORT_SYMBOL(kmem_cache_alloc);
3751 #ifdef CONFIG_TRACING
3753 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3757 ret = slab_alloc(cachep, flags, _RET_IP_);
3759 trace_kmalloc(_RET_IP_, ret,
3760 size, cachep->size, flags);
3763 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3767 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3769 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3771 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3772 cachep->object_size, cachep->size,
3777 EXPORT_SYMBOL(kmem_cache_alloc_node);
3779 #ifdef CONFIG_TRACING
3780 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3787 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3789 trace_kmalloc_node(_RET_IP_, ret,
3794 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3797 static __always_inline void *
3798 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3800 struct kmem_cache *cachep;
3802 cachep = kmem_find_general_cachep(size, flags);
3803 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3805 return kmem_cache_alloc_node_trace(cachep, flags, node, size);
3808 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3809 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3811 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3813 EXPORT_SYMBOL(__kmalloc_node);
3815 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3816 int node, unsigned long caller)
3818 return __do_kmalloc_node(size, flags, node, caller);
3820 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3822 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3824 return __do_kmalloc_node(size, flags, node, 0);
3826 EXPORT_SYMBOL(__kmalloc_node);
3827 #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3828 #endif /* CONFIG_NUMA */
3831 * __do_kmalloc - allocate memory
3832 * @size: how many bytes of memory are required.
3833 * @flags: the type of memory to allocate (see kmalloc).
3834 * @caller: function caller for debug tracking of the caller
3836 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3837 unsigned long caller)
3839 struct kmem_cache *cachep;
3842 /* If you want to save a few bytes .text space: replace
3844 * Then kmalloc uses the uninlined functions instead of the inline
3847 cachep = __find_general_cachep(size, flags);
3848 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3850 ret = slab_alloc(cachep, flags, caller);
3852 trace_kmalloc(caller, ret,
3853 size, cachep->size, flags);
3859 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3860 void *__kmalloc(size_t size, gfp_t flags)
3862 return __do_kmalloc(size, flags, _RET_IP_);
3864 EXPORT_SYMBOL(__kmalloc);
3866 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3868 return __do_kmalloc(size, flags, caller);
3870 EXPORT_SYMBOL(__kmalloc_track_caller);
3873 void *__kmalloc(size_t size, gfp_t flags)
3875 return __do_kmalloc(size, flags, 0);
3877 EXPORT_SYMBOL(__kmalloc);
3881 * kmem_cache_free - Deallocate an object
3882 * @cachep: The cache the allocation was from.
3883 * @objp: The previously allocated object.
3885 * Free an object which was previously allocated from this
3888 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3890 unsigned long flags;
3892 local_irq_save(flags);
3893 debug_check_no_locks_freed(objp, cachep->object_size);
3894 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3895 debug_check_no_obj_freed(objp, cachep->object_size);
3896 __cache_free(cachep, objp, _RET_IP_);
3897 local_irq_restore(flags);
3899 trace_kmem_cache_free(_RET_IP_, objp);
3901 EXPORT_SYMBOL(kmem_cache_free);
3904 * kfree - free previously allocated memory
3905 * @objp: pointer returned by kmalloc.
3907 * If @objp is NULL, no operation is performed.
3909 * Don't free memory not originally allocated by kmalloc()
3910 * or you will run into trouble.
3912 void kfree(const void *objp)
3914 struct kmem_cache *c;
3915 unsigned long flags;
3917 trace_kfree(_RET_IP_, objp);
3919 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3921 local_irq_save(flags);
3922 kfree_debugcheck(objp);
3923 c = virt_to_cache(objp);
3924 debug_check_no_locks_freed(objp, c->object_size);
3926 debug_check_no_obj_freed(objp, c->object_size);
3927 __cache_free(c, (void *)objp, _RET_IP_);
3928 local_irq_restore(flags);
3930 EXPORT_SYMBOL(kfree);
3933 * This initializes kmem_list3 or resizes various caches for all nodes.
3935 static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3938 struct kmem_list3 *l3;
3939 struct array_cache *new_shared;
3940 struct array_cache **new_alien = NULL;
3942 for_each_online_node(node) {
3944 if (use_alien_caches) {
3945 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3951 if (cachep->shared) {
3952 new_shared = alloc_arraycache(node,
3953 cachep->shared*cachep->batchcount,
3956 free_alien_cache(new_alien);
3961 l3 = cachep->nodelists[node];
3963 struct array_cache *shared = l3->shared;
3965 spin_lock_irq(&l3->list_lock);
3968 free_block(cachep, shared->entry,
3969 shared->avail, node);
3971 l3->shared = new_shared;
3973 l3->alien = new_alien;
3976 l3->free_limit = (1 + nr_cpus_node(node)) *
3977 cachep->batchcount + cachep->num;
3978 spin_unlock_irq(&l3->list_lock);
3980 free_alien_cache(new_alien);
3983 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3985 free_alien_cache(new_alien);
3990 kmem_list3_init(l3);
3991 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3992 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3993 l3->shared = new_shared;
3994 l3->alien = new_alien;
3995 l3->free_limit = (1 + nr_cpus_node(node)) *
3996 cachep->batchcount + cachep->num;
3997 cachep->nodelists[node] = l3;
4002 if (!cachep->list.next) {
4003 /* Cache is not active yet. Roll back what we did */
4006 if (cachep->nodelists[node]) {
4007 l3 = cachep->nodelists[node];
4010 free_alien_cache(l3->alien);
4012 cachep->nodelists[node] = NULL;
4020 struct ccupdate_struct {
4021 struct kmem_cache *cachep;
4022 struct array_cache *new[0];
4025 static void do_ccupdate_local(void *info)
4027 struct ccupdate_struct *new = info;
4028 struct array_cache *old;
4031 old = cpu_cache_get(new->cachep);
4033 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4034 new->new[smp_processor_id()] = old;
4037 /* Always called with the slab_mutex held */
4038 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
4039 int batchcount, int shared, gfp_t gfp)
4041 struct ccupdate_struct *new;
4044 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4049 for_each_online_cpu(i) {
4050 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
4053 for (i--; i >= 0; i--)
4059 new->cachep = cachep;
4061 on_each_cpu(do_ccupdate_local, (void *)new, 1);
4064 cachep->batchcount = batchcount;
4065 cachep->limit = limit;
4066 cachep->shared = shared;
4068 for_each_online_cpu(i) {
4069 struct array_cache *ccold = new->new[i];
4072 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4073 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4074 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4078 return alloc_kmemlist(cachep, gfp);
4081 /* Called with slab_mutex held always */
4082 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
4088 * The head array serves three purposes:
4089 * - create a LIFO ordering, i.e. return objects that are cache-warm
4090 * - reduce the number of spinlock operations.
4091 * - reduce the number of linked list operations on the slab and
4092 * bufctl chains: array operations are cheaper.
4093 * The numbers are guessed, we should auto-tune as described by
4096 if (cachep->size > 131072)
4098 else if (cachep->size > PAGE_SIZE)
4100 else if (cachep->size > 1024)
4102 else if (cachep->size > 256)
4108 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
4109 * allocation behaviour: Most allocs on one cpu, most free operations
4110 * on another cpu. For these cases, an efficient object passing between
4111 * cpus is necessary. This is provided by a shared array. The array
4112 * replaces Bonwick's magazine layer.
4113 * On uniprocessor, it's functionally equivalent (but less efficient)
4114 * to a larger limit. Thus disabled by default.
4117 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
4122 * With debugging enabled, large batchcount lead to excessively long
4123 * periods with disabled local interrupts. Limit the batchcount
4128 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
4130 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
4131 cachep->name, -err);
4136 * Drain an array if it contains any elements taking the l3 lock only if
4137 * necessary. Note that the l3 listlock also protects the array_cache
4138 * if drain_array() is used on the shared array.
4140 static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4141 struct array_cache *ac, int force, int node)
4145 if (!ac || !ac->avail)
4147 if (ac->touched && !force) {
4150 spin_lock_irq(&l3->list_lock);
4152 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4153 if (tofree > ac->avail)
4154 tofree = (ac->avail + 1) / 2;
4155 free_block(cachep, ac->entry, tofree, node);
4156 ac->avail -= tofree;
4157 memmove(ac->entry, &(ac->entry[tofree]),
4158 sizeof(void *) * ac->avail);
4160 spin_unlock_irq(&l3->list_lock);
4165 * cache_reap - Reclaim memory from caches.
4166 * @w: work descriptor
4168 * Called from workqueue/eventd every few seconds.
4170 * - clear the per-cpu caches for this CPU.
4171 * - return freeable pages to the main free memory pool.
4173 * If we cannot acquire the cache chain mutex then just give up - we'll try
4174 * again on the next iteration.
4176 static void cache_reap(struct work_struct *w)
4178 struct kmem_cache *searchp;
4179 struct kmem_list3 *l3;
4180 int node = numa_mem_id();
4181 struct delayed_work *work = to_delayed_work(w);
4183 if (!mutex_trylock(&slab_mutex))
4184 /* Give up. Setup the next iteration. */
4187 list_for_each_entry(searchp, &slab_caches, list) {
4191 * We only take the l3 lock if absolutely necessary and we
4192 * have established with reasonable certainty that
4193 * we can do some work if the lock was obtained.
4195 l3 = searchp->nodelists[node];
4197 reap_alien(searchp, l3);
4199 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
4202 * These are racy checks but it does not matter
4203 * if we skip one check or scan twice.
4205 if (time_after(l3->next_reap, jiffies))
4208 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
4210 drain_array(searchp, l3, l3->shared, 0, node);
4212 if (l3->free_touched)
4213 l3->free_touched = 0;
4217 freed = drain_freelist(searchp, l3, (l3->free_limit +
4218 5 * searchp->num - 1) / (5 * searchp->num));
4219 STATS_ADD_REAPED(searchp, freed);
4225 mutex_unlock(&slab_mutex);
4228 /* Set up the next iteration */
4229 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
4232 #ifdef CONFIG_SLABINFO
4233 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4236 unsigned long active_objs;
4237 unsigned long num_objs;
4238 unsigned long active_slabs = 0;
4239 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4243 struct kmem_list3 *l3;
4247 for_each_online_node(node) {
4248 l3 = cachep->nodelists[node];
4253 spin_lock_irq(&l3->list_lock);
4255 list_for_each_entry(slabp, &l3->slabs_full, list) {
4256 if (slabp->inuse != cachep->num && !error)
4257 error = "slabs_full accounting error";
4258 active_objs += cachep->num;
4261 list_for_each_entry(slabp, &l3->slabs_partial, list) {
4262 if (slabp->inuse == cachep->num && !error)
4263 error = "slabs_partial inuse accounting error";
4264 if (!slabp->inuse && !error)
4265 error = "slabs_partial/inuse accounting error";
4266 active_objs += slabp->inuse;
4269 list_for_each_entry(slabp, &l3->slabs_free, list) {
4270 if (slabp->inuse && !error)
4271 error = "slabs_free/inuse accounting error";
4274 free_objects += l3->free_objects;
4276 shared_avail += l3->shared->avail;
4278 spin_unlock_irq(&l3->list_lock);
4280 num_slabs += active_slabs;
4281 num_objs = num_slabs * cachep->num;
4282 if (num_objs - active_objs != free_objects && !error)
4283 error = "free_objects accounting error";
4285 name = cachep->name;
4287 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4289 sinfo->active_objs = active_objs;
4290 sinfo->num_objs = num_objs;
4291 sinfo->active_slabs = active_slabs;
4292 sinfo->num_slabs = num_slabs;
4293 sinfo->shared_avail = shared_avail;
4294 sinfo->limit = cachep->limit;
4295 sinfo->batchcount = cachep->batchcount;
4296 sinfo->shared = cachep->shared;
4297 sinfo->objects_per_slab = cachep->num;
4298 sinfo->cache_order = cachep->gfporder;
4301 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4305 unsigned long high = cachep->high_mark;
4306 unsigned long allocs = cachep->num_allocations;
4307 unsigned long grown = cachep->grown;
4308 unsigned long reaped = cachep->reaped;
4309 unsigned long errors = cachep->errors;
4310 unsigned long max_freeable = cachep->max_freeable;
4311 unsigned long node_allocs = cachep->node_allocs;
4312 unsigned long node_frees = cachep->node_frees;
4313 unsigned long overflows = cachep->node_overflow;
4315 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4316 "%4lu %4lu %4lu %4lu %4lu",
4317 allocs, high, grown,
4318 reaped, errors, max_freeable, node_allocs,
4319 node_frees, overflows);
4323 unsigned long allochit = atomic_read(&cachep->allochit);
4324 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4325 unsigned long freehit = atomic_read(&cachep->freehit);
4326 unsigned long freemiss = atomic_read(&cachep->freemiss);
4328 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4329 allochit, allocmiss, freehit, freemiss);
4334 #define MAX_SLABINFO_WRITE 128
4336 * slabinfo_write - Tuning for the slab allocator
4338 * @buffer: user buffer
4339 * @count: data length
4342 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4343 size_t count, loff_t *ppos)
4345 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4346 int limit, batchcount, shared, res;
4347 struct kmem_cache *cachep;
4349 if (count > MAX_SLABINFO_WRITE)
4351 if (copy_from_user(&kbuf, buffer, count))
4353 kbuf[MAX_SLABINFO_WRITE] = '\0';
4355 tmp = strchr(kbuf, ' ');
4360 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4363 /* Find the cache in the chain of caches. */
4364 mutex_lock(&slab_mutex);
4366 list_for_each_entry(cachep, &slab_caches, list) {
4367 if (!strcmp(cachep->name, kbuf)) {
4368 if (limit < 1 || batchcount < 1 ||
4369 batchcount > limit || shared < 0) {
4372 res = do_tune_cpucache(cachep, limit,
4379 mutex_unlock(&slab_mutex);
4385 #ifdef CONFIG_DEBUG_SLAB_LEAK
4387 static void *leaks_start(struct seq_file *m, loff_t *pos)
4389 mutex_lock(&slab_mutex);
4390 return seq_list_start(&slab_caches, *pos);
4393 static inline int add_caller(unsigned long *n, unsigned long v)
4403 unsigned long *q = p + 2 * i;
4417 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4423 static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4429 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
4430 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4432 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4437 static void show_symbol(struct seq_file *m, unsigned long address)
4439 #ifdef CONFIG_KALLSYMS
4440 unsigned long offset, size;
4441 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4443 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4444 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4446 seq_printf(m, " [%s]", modname);
4450 seq_printf(m, "%p", (void *)address);
4453 static int leaks_show(struct seq_file *m, void *p)
4455 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4457 struct kmem_list3 *l3;
4459 unsigned long *n = m->private;
4463 if (!(cachep->flags & SLAB_STORE_USER))
4465 if (!(cachep->flags & SLAB_RED_ZONE))
4468 /* OK, we can do it */
4472 for_each_online_node(node) {
4473 l3 = cachep->nodelists[node];
4478 spin_lock_irq(&l3->list_lock);
4480 list_for_each_entry(slabp, &l3->slabs_full, list)
4481 handle_slab(n, cachep, slabp);
4482 list_for_each_entry(slabp, &l3->slabs_partial, list)
4483 handle_slab(n, cachep, slabp);
4484 spin_unlock_irq(&l3->list_lock);
4486 name = cachep->name;
4488 /* Increase the buffer size */
4489 mutex_unlock(&slab_mutex);
4490 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4492 /* Too bad, we are really out */
4494 mutex_lock(&slab_mutex);
4497 *(unsigned long *)m->private = n[0] * 2;
4499 mutex_lock(&slab_mutex);
4500 /* Now make sure this entry will be retried */
4504 for (i = 0; i < n[1]; i++) {
4505 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4506 show_symbol(m, n[2*i+2]);
4513 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4515 return seq_list_next(p, &slab_caches, pos);
4518 static void s_stop(struct seq_file *m, void *p)
4520 mutex_unlock(&slab_mutex);
4523 static const struct seq_operations slabstats_op = {
4524 .start = leaks_start,
4530 static int slabstats_open(struct inode *inode, struct file *file)
4532 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4535 ret = seq_open(file, &slabstats_op);
4537 struct seq_file *m = file->private_data;
4538 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4547 static const struct file_operations proc_slabstats_operations = {
4548 .open = slabstats_open,
4550 .llseek = seq_lseek,
4551 .release = seq_release_private,
4555 static int __init slab_proc_init(void)
4557 #ifdef CONFIG_DEBUG_SLAB_LEAK
4558 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4562 module_init(slab_proc_init);
4566 * ksize - get the actual amount of memory allocated for a given object
4567 * @objp: Pointer to the object
4569 * kmalloc may internally round up allocations and return more memory
4570 * than requested. ksize() can be used to determine the actual amount of
4571 * memory allocated. The caller may use this additional memory, even though
4572 * a smaller amount of memory was initially specified with the kmalloc call.
4573 * The caller must guarantee that objp points to a valid object previously
4574 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4575 * must not be freed during the duration of the call.
4577 size_t ksize(const void *objp)
4580 if (unlikely(objp == ZERO_SIZE_PTR))
4583 return virt_to_cache(objp)->object_size;
4585 EXPORT_SYMBOL(ksize);